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Aufgabe 11.1 ( 2 + 3 + 3 )
Seien S2 = (S2,Trel ,A) die 2-Sphäre mit S2 :=

{
q ∈ R3 : ∥q∥eukl = 1

}
. Betrachte die Karten auf S2,

ϕN = (S2 \ {(0, 0, 1)}, xN), ϕS = (S2 \ {(0, 0,−1)}, xS),

gegeben durch die stereografische Projektion, d. h.

xN(a, b, c) =
1

1 − c
(a, b), xS(a, b, c) =

1
1 + c

(a, b).

(a) Für alle q ∈ S2 \ {(0, 0, 1), (0, 0,−1)} berechne dxN
1 (q), dxN

2 (q) in Abhängigkeit von dxS
1 (q), dxS

2 (q).

(b) Berechne dxN
1 (q) ∧ dxN

2 (q) in Abhängigkeit von dxS
1 (q) ∧ dxS

2 (q).

(c) Zeige, dass es eine 2-Form auf S2, ω ∈ ∧2[S2], gibt, sodass

ω(q) = −(1 − c)2 dxN
1 (q) ∧ dxN

2 (q), q = (a, b, c) ∈ S2 \ {(0, 0, 1)}, (1)

und
ω(q) = (1 + c)2 dxS

1 (q) ∧ dxS
2 (q), q = (a, b, c) ∈ S2 \ {(0, 0,−1)}. (2)

Solution. Let M be a smooth manifold and let ϕ = (U, x) and ψ = (V, y) be coordinate charts such
that q ∈ U ∩ V. Then,

dxi(q) = (Θ∗
ϕ,q)

−1(ei) =
n

∑
j=1

αi,j(Θ∗
ψ,q)

−1(ej) =
n

∑
j=1

αi,j dyj(q). (3)

Applying the operator Θ∗
ψ,q to both sides of the above equality, we obtain (recall that Θ∗

ψ,q ◦ (Θ∗
ϕ,q)

−1v =

v Jx◦y−1(y(q)))
n

∑
j=1

αi,jej = ei Jx◦y−1(y(q)). (4)

This implies that
αi,j = Jx◦y−1(y(q))i,j.

(a) Let q = (a, b, c) ∈ S2 \ {(0, 0, 1), (0, 0,−1)}. Then

dxN
1 (q) = α11(q) dxS

1 (q) + α12(q) dxS
2 (q), dxN

2 (q) = α21(q) dxS
1 (q) + α22(q) dxS

2 (q),

where αij = JxN◦(xS)−1(xS(q)). We know that

xN ◦ (xS)−1(a, b) =
1

a2 + b2 (a, b).

Therefore,

JxN◦(xS)−1(a, b) =
1

(a2 + b2)2

(
b2 − a2 −2ab
−2ab a2 − b2

)
. (5)
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Consequently,

JxN◦(xS)−1(xS(a, b, c)) = JxN◦(xS)−1

(
a

c + 1
,

b
c + 1

)
=

(c + 1)2

(a2 + b2)2

(
b2 − a2 −2ab
−2ab a2 − b2

)
=

1
(1 − c)2

(
b2 − a2 −2ab
−2ab a2 − b2

)
.

(6)

Hence,

−α22(a, b, c) = α11(a, b, c) =
b2 − a2

(1 − c)2 , α12(a, b, c) = α21(a, b, c) = − 2ab
(c − 1)2 . (7)

(b) We compute

dxN
1 (q) ∧ dxN

2 (q) = (α11(q) dxS
1 (q) + α12(q) dxS

2 (q)) ∧ (α21(q) dxS
1 (q) + α22(q) dxS

2 (q))

= (α11(q)α22(q)− α12(q)α21(q)) dxS
1 (q) ∧ dxS

2 (q)

= det
(

JxN◦(xS)−1(xS(a, b, c))
)

dxS
1 (q) ∧ dxS

2 (q)

= − (a2 + b2)2

(1 − c)4 dxS
1 (q) ∧ dxS

2 (q)

= − (1 + c)2

(1 − c)2 dxS
1 (q) ∧ dxS

2 (q).

(8)

(c) Let{ϕN , ϕS} be a partition of unity subordinated to the open cover{S2 \ {(0, 0, 1)}, S2 \ {(0, 0,−1)}}.
Define the differential form ω ∈ ∧2(S2) by, for q = (a, b, c) ∈ S2,

ω(q) = −ϕN(q)(1 − c)2 dxN
1 (q) ∧ dxN

2 (q) + ϕS(q)(1 + c)2 dxS
1 (q) ∧ dxS

2 (q). (9)

Using Eq. (8) and ϕN + ϕS = 1 one see that ω satisfies the desired.

Aufhabe 11.2 ( 2 + 3 + 3 )
Sei (R2n,TR2n ,AR2n) der R2n-Raum mit dem üblichen Atlas. Betrachte die Karte

ϕ = (R2n, id),

die Identitätskarte auf R2n. Sei

{dx1(q), . . . , dxn(q), dy1(q), . . . , dyn(q)} ⊂ T∗[R2n]

die Basis des Kotangentialraums T∗[R2n], definiert durch die Karte ϕ. Betrachte die folgende 2-Form auf
R2n,

α ∈
2∧
[R2n] ⊂ T2

0 [R
2n],

definiert durch

α(q) := dx1(q) ∧ dy1(q) + dx2(q) ∧ dy2(q) + · · ·+ dxn(q) ∧ dyn(q). (10)
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(a) Zeige, dass die von α definierte bilineare Form

⟨· | ·⟩ : Tp[R
2n]× Tp[R

2n] → R

nicht entartet ist und die Antisymmetrie-Eigenschaft erfüllt:

∀w ∈ Tp[R
2n]⟨v, w⟩ = 0 ⇒ v = 0, ∀v, w ∈ Tp[R

2n] ⟨v|w⟩ = −⟨w|v⟩. (11)

(b) Zeige, dass dα = 0.

(c) Zeige, dass
α ∧ α ∧ · · · ∧ α︸ ︷︷ ︸

n mal

= n! dx1 ∧ dy1 ∧ · · · ∧ dxn ∧ dyn.

Solution. Let M be a smooth manifold and let α ∈ T2
0 (M). Then α defines a bilinear form

⟨· | ·⟩ : Tq[M]× Tq[M] → R,

which, in local coordinates ϕ = (U, x), can be written as〈
∂

∂xi(q)

∣∣∣∣ ∂

∂xj(q)

〉
= αij(q), (12)

where

α(q) =
m

∑
i,j=1

αij(q) dxi(q)⊗ dxj(q). (13)

In particular, for q ∈ U the scalar product (12) can be expressed as

⟨v | w⟩ =
〈

Θϕ,q(v), (αij(q))i,j Θϕ,q(w)
〉

eucl
, v, w ∈ Tq[M], (14)

where ⟨· | ·⟩eucl : Rm × Rm → R denotes the Euclidean inner product and (αij(q))i,j is the m × m matrix
with entries αij(q).

(a) Equation (10) yields

α(q) =
n

∑
j=1

(
dxj(q)⊗ dyj(q)− dyj(q)⊗ dxj(q)

)
. (15)

In particular,

(αij)i,j =

(
0n×n In×n
−In×n 0n×n

)
=: M.

Therefore, for all v, w ∈ Tq[R2n],

⟨v | w⟩Tq[R2n] =
〈
Θϕ,q(v), M Θϕ,q(w)

〉
eucl . (16)

Suppose that ⟨v | w⟩Tq[R2n] = 0 for all w ∈ Tq[R2n]. Since M is invertible, there exists u ∈ R2n

such that Mu = Θϕ,q(v). Taking w = Θ−1
ϕ,q(u), we obtain

0 = ⟨v | w⟩Tq[R2n] =
〈
Θϕ,q(v), M Θϕ,q(w)

〉
eucl

= ⟨Θϕ,q(v), Mu⟩eucl = ∥Θϕ,q(v)∥2
eucl.

(17)
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Hence Θϕ,q(v) = 0, and since Θϕ,q is an isomorphism, it follows that v = 0.

To verify antisymmetry, note that MT = −M. Thus,

⟨v | w⟩TqR2n = ⟨Θϕ,q(v), M Θϕ,q(w)⟩eucl

= ⟨MTΘϕ,q(v), Θϕ,q(w)⟩eucl

= −⟨MΘϕ,q(v), Θϕ,q(w)⟩eucl = −⟨w | v⟩TqR2n .

(18)

(c) Since d(dxj) = 0 and, by the graded Leibniz rule,

d(dxj ∧ dyj) = (d dxj) ∧ dyj − dxj ∧ (d dyj) = 0,

and since d is linear, we conclude that dα = 0.

(d) Let ωi := dxi ∧ dyi ∈
∧2(R2n). Then

ωi ∧ ωj = (−1)4 ωj ∧ ωi = ωj ∧ ωi,

so ωi and ωj commute. Moreover, for k ∈ {1, . . . , n},

ω2
k = (dxk ∧ dyk) ∧ (dxk ∧ dyk) = −dxk ∧ dxk ∧ dyk ∧ dyk = 0. (19)

Define αj := ∑
j
i=1 ωi, so that αn = α. We prove by induction that

(αj)
j = j! dx1 ∧ dy1 ∧ · · · ∧ dxj ∧ dyj. (20)

The base case follows from α1 = ω1 = dx1 ∧ dy1. Assume that (20) holds for some j ∈ {1, . . . , n −
1}. Since ωj+1 commutes with αj, we have

(αj+1)
j+1 = (αj + ωj+1)

j+1 =
j+1

∑
i=0

(
j + 1

i

)
α

j+1−i
j ∧ ω i

j+1. (21)

By (19), ωi
j+1 = 0 for all i ≥ 2. Moreover, using the induction hypothesis,

(αj)
j+1 = (αj)

j ∧ αj = j! ω1 ∧ · · · ∧ ωj ∧ (ω1 + · · ·+ ωj) = 0.

Substituting into (21), we obtain

(αj+1)
j+1 = (j + 1)(αj)

j ∧ ωj+1

= (j + 1)j! (ω1 ∧ · · · ∧ ωj) ∧ ωj+1

= (j + 1)! dx1 ∧ dy1 ∧ · · · ∧ dxj+1 ∧ dyj+1,

(22)

which completes the induction.

Aufgabe 11.3 ( 2 + 3 + 3 )
Sei E ein reeller Vektorraum, und sei

β = {vj : j ∈ {1, . . . , n}}

eine Basis von E. Für α ∈ E∗ sei die Kontraktion

iα :
p∧

E −→
p−1∧

E
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auf den Basisvektoren von
∧p E definiert durch

iα(vi1 ∧ · · · ∧ vip) :=
p

∑
j=1

(−1)j+1⟨α, vij⟩ vi1 ∧ · · · ∧ vij−1 ∧ vij+1 ∧ · · · ∧ vip , (23)

und linear fortgesetzt.

(a) Sei β∗ = {v∗j : j ∈ {1, . . . , n}} die duale Basis zu β. Zeige, dass für alle p ≤ n und 1 ≤ i1 < · · · <
ip ≤ n sowie für alle j ∈ {1, . . . , n} \ {i1, . . . , ip} gilt:

iv∗j (vi1 ∧ · · · ∧ vip) = 0, iv∗j (vj ∧ vi1 ∧ · · · ∧ vip) = vi1 ∧ · · · ∧ vip . (24)

(b) Zeige, dass für alle α ∈ E∗, v ∈ ∧p E und w ∈ ∧q E gilt:

iα(v ∧ w) = (iαv) ∧ w + (−1)pv ∧ (iαw). (25)

Hinweis: Beachte, dass beide Seiten von (25) multilineare Abbildungen

E∗ ×
p∧

E ×
q∧

E −→
p+q−1∧

E

sind. Daher genügt es, (25) für Basisvektoren zu beweisen.

(c) Sei M eine glatte Mannigfaltigkeit. Für ein Vektorfeld X ∈ T0
1 [M] ist die Kontraktion mit X

iX :
p∧
[M] −→

p−1∧
[M]

definiert durch
(iXω)(q) := iX(q)(ω(q)). (26)

Zeige, dass für alle α ∈ ∧p[M] und β ∈ ∧ p̃[M] die gradierte Leibnizregel gilt:

iX(α ∧ β) = (iXα) ∧ β + (−1)pα ∧ (iX β). (27)

Solution.
(a) By definition, one has

⟨v∗j , vi⟩ = 0 for i ̸= j, ⟨v∗j , vj⟩ = 1. (28)

Therefore, for j ∈ {1, . . . , n} \ {i1, . . . , ip},

iv∗j (vi1 ∧ · · · ∧ vip) =
p

∑
k=1

(−1)k+1⟨v∗j , vik⟩ vi1 ∧ · · · ∧ vik−1 ∧ vik+1 ∧ · · · ∧ vip

= 0.

Suppose that il < j < il+1. Then

vj ∧ vi1 ∧ · · · ∧ vip = (−1)l vi1 ∧ · · · ∧ vil ∧ vj ∧ vil+1 ∧ · · · ∧ vip .

Since vi1 ∧ · · · ∧ vil ∧ vj ∧ vil+1 ∧ · · · ∧ vip is an element of a basis of
∧p+1 E, we obtain

iv∗j (vj ∧ vi1 ∧ · · · ∧ vip) = (−1)l iv∗j (vi1 ∧ · · · ∧ vil ∧ vj ∧ vil+1 ∧ · · · ∧ vip)

= (−1)l(−1)l+2 vi1 ∧ · · · ∧ vip = vi1 ∧ · · · ∧ vip .
(29)
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(b) Since both the left-hand side and the right-hand side are multilinear functions on E∗ ×∧p E ×∧q E,
it suffices to verify the identity on basis elements. Let

v := vi1 ∧ · · · ∧ vip ∈ {vl1 ∧ · · · ∧ vlp : 1 ≤ l1 < · · · < lp ≤ n}

and
w := vj1 ∧ · · · ∧ vjq ∈ {vl1 ∧ · · · ∧ vlq : 1 ≤ l1 < · · · < lq ≤ n}.

We distinguish the following cases.

Case 1. {i1, . . . , ip} ∩ {j1, . . . , jq} ̸= ∅.

In this case, v ∧ w = 0, and hence iα(v ∧ w) = 0. Moreover, if

|{i1, . . . , ip} ∩ {j1, . . . , jq}| ≥ 2,

then (iαv) ∧ w = 0 and v ∧ (iαw) = 0.

Assume now that
|{i1, . . . , ip} ∩ {j1, . . . , jq}| = 1,

and let ik = jl . Since ({i1, . . . , ip} \ {ik}) ∩ {j1, . . . , jq} = ∅, we obtain

(iαv) ∧ w = (−1)k+1⟨α, vik⟩ vi1 ∧ · · · ∧ vik−1 ∧ vik+1 ∧ · · · ∧ vip ∧ w. (30)

Similarly,

v ∧ (iαw) = (−1)l+1⟨α, vil ⟩ v ∧ vj1 ∧ · · · ∧ vjl−1 ∧ vjl+1 ∧ · · · ∧ vjq . (31)

Note that

vi1 ∧ · · · ∧ vik−1 ∧ vik+1 ∧ · · · ∧ vip ∧ w = (−1)l−1+p−k v ∧ vj1 ∧ · · · ∧ vjl−1 ∧ vjl+1 ∧ · · · ∧ vjq .
(32)

Using (30)–(32) and the fact that vik = vil , we obtain

(iαv) ∧ w = (−1)p−1 v ∧ (iαw),

and therefore
(iαv) ∧ w + (−1)p v ∧ (iαw) = 0.

Case 2. {i1, . . . , ip} ∩ {j1, . . . , jq} = ∅.

Let v∗j ∈ β∗. If j /∈ {i1, . . . , ip} ∪ {j1, . . . , jq}, then

iv∗j (v ∧ w) = 0, iv∗j v = 0, iv∗j w = 0.

Suppose that j ∈ {i1, . . . , ip} ∪ {j1, . . . , jq}. If j = ik, then

iv∗j (v ∧ w) = (−1)k+1 vi1 ∧ · · · ∧ vik−1 ∧ vik+1 ∧ · · · ∧ vip ∧ w,

and since iv∗j w = 0, we obtain

iv∗j (v ∧ w) = (iv∗j v) ∧ w = (iv∗j v) ∧ w + (−1)pv ∧ (iv∗j w).

If j = jl , then

iv∗j (v ∧ w) = (−1)p+l+1 v ∧ vj1 ∧ · · · ∧ vjl−1 ∧ vjl+1 ∧ · · · ∧ vjq ,

and since iv∗j v = 0, we conclude

iv∗j (v ∧ w) = (−1)p v ∧ (iv∗j w) = (iv∗j v) ∧ w + (−1)pv ∧ (iv∗j w).
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(c) Let q ∈ M. By definition and using part (b), we obtain

(iX(α ∧ β))(q) = (q, iX(q)(α(q) ∧ β(q)))

= (q, (iX(q)α(q)) ∧ β(q) + (−1)pα(q) ∧ (iX(q)β(q)))

= ((iXα) ∧ β)(q) + (−1)p(α ∧ (iX β))(q).

(33)


