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Aufgabe 11.1 (2 +3+3)
Seien 5% = (5%, %, A) die 2-Sphiire mit $? := {q € R?: [|g||cus = 1}. Betrachte die Karten auf S2,

oy = (S2\{(0,0,1)},xY), ¢s = (5*\{(0,0,~1)},x°),

gegeben durch die stereografische Projektion, d. h.

xN(a, b,c) =

1 S _
E(a,b), x°(a,b,c) =

1 -1|—c (a,b).
(a) Firalleq € S\ {(0,0,1), (0,0, —1)} berechne dx}¥ (q), dx)Y (q) in Abhingigkeit vondx{ (q), dx5 (q).
(b) Berechne dx}(q) A dx)(g) in Abhingigkeit von dx7 (q) A dx3(q).
(c) Zeige, dass es eine 2-Form auf $2, w € /\2[‘52], gibt, sodass
w(q) = —(1—c)dx{'(q9) Ndxy'(q), q=(abc)€S*\{(0,01)}, ey
und

w(q) = (1+c)?dx; (q) Adx3(q), q=(ab,c) €S \{(0,0,~1)}. 2)

Solution. Let M be a smooth manifold and let ¢ = (U, x) and ¢ = (V,y) be coordinate charts such
thatg € U N V. Then,

dxi(q) = (©,) " ( Z“z; ©y,4)" Z“ud% )
j=

Applying the operator ®17W to both sides of the above equality, we obtain (recall that ®17W o (@;‘,/q) “lp =
0 ]xoy*1 (y(Q)))

2 ai,jej = € ]xoy*l (y(Q)) (4)
=1

This implies that
Qij = ]xoy—1 (y(q))l,]

(@) Letg = (a,b,c) € S*>\ {(0,0,1),(0,0,—1)}. Then

dx) (q) = a11(q) dx7(q) + a12(q) dx3(q),  dxy (q) = ax(q) dx? (9) + a2 (q) dx5(q),

where ajj = Jong(y5)1 (x5(g)). We know that

Therefore,

1 b?> —a?> —2ab
oo 00 = g (. o 1e) ®



Consequently,

c+1'c+1

(e+1)? (P2 —a® —2ab
T (a2 422\ —2ab a®-1?

1 b* —a* —2ab
T (1-c)2\ —2ab a*-1*)"

b? — a2 2ab
(1—C)2, “12(a/bzc) _“21(a/bfc) - _(C—1>2‘

a b
]xNo(xS)*l(xs(a/b,C» = ]xNo(xS)1< )

(6)

Hence,

—an(a,b,c) =ag1(a,b,c) =

(b) We compute

dx'(q) Adxy(q) = (a11(q) dx? (9) + a12(q) dx3(q)) A (a21(q) dx7 (9) + aa(q) dx3 (q))
= (an1(q)ax(q) — a12(q)a21(q)) dx? (9) A dx3(q)
= det(Jono(ys)-1 (x°(a,b,c))) dxi(q) A dx5(q)

oty )
_ _(uj’z)i dx3 (q) Adx3 (q)

2
_ _8“:32 dx; (q) A dx3(q).

(c) Let{¢n, ¢s} be apartition of unity subordinated to the open cover {S?\ {(0,0,1)}, S*\ {(0,0, —1)}}.
Define the differential form w € A*(S?) by, for g = (a,b,c) € S?,

w(q) = —Pn(9) (1~ 0)*dxy’(q) Adxy'(q) + ps(9) (1 +)*dxi (9) A dx3(q). ©)

Using Eq. (8) and ¢ + ¢s = 1 one see that w satisfies the desired.

Aufhabe 11.2 (2 + 3 + 3)

Sei (R?", Tan, Aga:) der R?"-Raum mit dem iiblichen Atlas. Betrachte die Karte
¢ = (R*,id),
die Identititskarte auf IR*". Sei
{dx1(q),..., dxu(q),dy1(q), .., dya(9)} C T*[R*]
dig Basis des Kotangentialraums T*[IR?"], definiert durch die Karte ¢. Betrachte die folgende 2-Form auf
R,

x € \[R™] C T3[R*"],

definiert durch

a(q) :=dx1(q) Ndy1(q) +dxa(q) Adya(q) + - - +dxn(q) A dyn(q). (10)



(a) Zeige, dass die von « definierte bilineare Form
(-]-) : T[R¥] x T,[R*] — R
nicht entartet ist und die Antisymmetrie-Eigenschaft erfiillt:
Vw € T,[R*™|(v,w) =0=0v=0, Yo,we T,[R*] (v|w) = —(w|v).
(b) Zeige, dass da = 0.

(c) Zeige, dass
a NN AN =nldxy ANdyy A - Adxy ANdy,.
—_———

n mal

Solution. Let M be a smooth manifold and let a € Tg(M). Then a defines a bilinear form
(1) M X Ty[M] = R,

which, in local coordinates ¢ = (U, x), can be written as

<8x1 ‘ 1) > = ocij(Q),

Z &(q)dx;(q) ® dx;(q).
i,j=1

where

In particular, for g € U the scalar product (I2) can be expressed as

(0| w) = (Opq(0), (@7(9))i; Opq(w)) ,  vweTyM],

eucl

1D

(12)

(13)

(14)

where (- | *)eu : R x R™ — R denotes the Euclidean inner product and (a”/(g)); ; is the m x m matrix

with entries a’/(q).

(a) Equation (T0) yields

iw,®%w—mm®m@)
L

<‘Xij)i,j — (Onxn Inxn) — M.

_Il’lXI’l OHXH

In particular,

Therefore, for all v, w € T,[R*"],

<U | w>Tq[]R2”} = <®¢rq(v)’M®¢/q(w)>eucl :

15)

(16)

Suppose that (v | w>Tq[]R2n} = 0 forall w € T,[IR*"]. Since M is invertible, there exists 1 € R*"

such that Mu = @y, (v). Taking w = ®4j;(u), we obtain

0= (v|w)rg T,[R?"] = = (0,4 (v), MOyq(w)) .y
- <®¢,q( )/Mu>eucl = H®¢,q( )Heucl

amn



(©

(d)

Hence G)Wi (v) = 0, and since G)M is an isomorphism, it follows that v = 0.

To verify antisymmetry, note that M7 = — M. Thus,
(v | w)r,Ren = (Og,4(0), MOy 4(W))eucl

= <MT®¢,Q(U)I®¢,q(w)>eucl

= —(MOyp4(0), Opq(w))euct = —(w | V)1, R20-
Since d(dx;) = 0 and, by the graded Leibniz rule,

d(dx] AN dy]) = (d dx]) N dy] — dx] N (d dy]) =0,
and since d is linear, we conclude that da = 0.
Let w; := dx; Ndy; € /\Z(IRZ”). Then
wi \wj = (—1)4w]- N wi = w; \w;,
so w; and w; commute. Moreover, for k € {1,...,n},
w,% = (dxk A dyk) VAN (dxk A dyk) = —dxk A dxk N dyk N dyk =0.

Define aj := 25:1 wj, so that &, = a. We prove by induction that

(a;)) = jldxy Adys A -+ Ndxj Ady;.

The base case follows from a1 = w1 = dx1 A dy;. Assume that holds for some j € {1,..

1}. Since wj; 1 commutes with «;, we have
s o
. ‘ +1 +1— ;
()" = (0 + wjr) T = ) <] ; > 0 A W)y
i=0
By (19), w; 41 = Oforalli > 2. Moreover, using the induction hypothesis,
(Déj)j+1 = (OCj)j/\Dé]‘ :j!wl/\---/\wj/\(wl—i—‘--—kwj) = 0.
Substituting into (21]), we obtain
(1) = (i + D) (o) A wja
= (]+1)]' (w1 AR /\C(J]) /\(U]'+1
= (] + 1)!dx1 N dyl VANKIERAN dx]'+1 /\dy]'+1,

which completes the induction.

Aufgabe 11.3 (2 +3 + 3)

Sei E ein reeller Vektorraum, und sei

B={vj:je{l,...,n}}

eine Basis von E. Fiir & € E* sei die Kontraktion

p p-1
io: N\E— N E

(18)

(19)

(20)

LN —

2

(22)



auf den Basisvektoren von A" E definiert durch
p
io(0 Ao Avy) =) (= 1), 0i) iy A AO AN AN A, (23)
j=1
und linear fortgesetzt.

(a) Seif* = {v]* :j€{1,...,n}} die duale Basis zu . Zeige, dass fiiralle p < nund1 < iy < --- <
ip <nsowiefirallej € {1,...,n}\ {iy,...,ip} gilt:

iv]»_«(vil /\~~-/\Z)l‘p) =0, l'v]f(vj/\’()il AN '-/\’Uip) =v; N '-/\’Uip. 24)
(b) Zeige, dass firallex € E*, v € AP Eund w € A\7E gilt:
ipn(v Aw) = (iyo) ANw + (—=1)Pv A (ipw). (25)

Hinweis: Beachte, dass beide Seiten von (23) multilineare Abbildungen
ptq-1
" X /\ E x /\ E— N\ E
sind. Daher geniigt es, (23)) fiir Basisvektoren zu beweisen.

(c) Sei M eine glatte Mannigfaltigkeit. Fiir ein Vektorfeld X € T? [M] ist die Kontraktion mit X

4 p—1
ix: A\IM] — A [M]

definiert durch

(ixw)(q) = ix(g(w(q))- (26)
Zeige, dass fiir alle « € A\P[M] und B € AP [M] die gradierte Leibnizregel gilt:
ix(aAB) = (ixa) AB+ (=1)Pa A (ixB). (27)
Solution.
(a) By definition, one has
(vj,vi)) =0 fori#j, (vj,v;) =1 (28)
Therefore, forj € {1,...,n} \ {i1,...,i,},
: - k 1
zv;«(vll Avg,) =Y (1) 05, 04) Uiy A AT A A A
k=1
=0.

Suppose that i; < j < 7;41. Then
0 ATy A Av = (=1) i A Aoy ADj A A AT
Since v, A+ Avjy AU AD A A vi, is an element of a basis of /\7ngl E, we obtain
o (0 AV A AD;) = (—1)11‘1,;5(01-1 A ANoy AO AT N AT

29
= (11 -

/\"'/\Uip:Ui]/\"'/\Uip.
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(b) Since both the left-hand side and the right-hand side are multilinear functions on E* x AP E x A\TE,
it suffices to verify the identity on basis elements. Let

vi=vy A Av €{op A Aot 1< < <y <t

and
wi=vj A ANvj €{op Ao Ao 1< <o < g <}

We distinguish the following cases.

Case 1. {i1,...,ip} NV {j1,...,js} # ©@.
In this case, v A w = 0, and hence i, (v A w) = 0. Moreover, if

i1, ipy O {1, o} > 2,
then (i,v) Aw = 0and v A (i,w) = 0.
Assume now that
i i N, jg bl =1,
and let i = j;. Since ({i1,...,ip} \ {ix}) N {j1,...,jq} = D, we obtain

(ix0) N = (=1 a,v;) vy A Avy  Avj, A Avi, A (30)
Similarly,

oA (fgw) = (=1)"Na,0) 0 Avjy A Avj Avj, A Ay (31)
Note that

Ui A A AT A Aoy Aw = (D) R o Avp Ao A A A A
(32)
Using (30)—(32)) and the fact that v; = v;,, we obtain

(iy0) Nw = (=1)P Lo A (iyw),

and therefore
(iyo) Nw+ (=1)P o A (i,w) = 0.

Case 2. {i1,...,ip} N {j1,.--,jg} = D.
Letv; € B 0fj & {ir,...,ip} U {j1, ..., jg}, then
iv;f(v Aw) =0, iv;fv =0, iv;_sw =0.

Suppose that j € {i1,...,ip} U{ji,...,jg}. If j = ik, then

z'v;(v/\w) = (-1 o, A AT AV, N Noj, Aw,
and since iv}«w = 0, we obtain

iv]%(v Aw) = (iv]»fv) ANw = (iv;;v) ANw+ (—=1)Po A (iv}«w).

If j = j;, then

iy (0N W) = (=) o Avy A A AT A A v},
and since iv}«v = 0, we conclude

iy (vAw) = ()P o A (iyw) = (io:0) N+ (=1)P0 A (iy-w).



(c) Letg € M. By definition and using part (b), we obtain

(ix(a A B)) (@) = (q,ix(q) (a(q) A B(q)))
= (4, (ix(g@(9) A B(g) + (=1)Pa(q) A (ix(q)B(q))) (33)



