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Aufgabe 10.1 ( 6 )
Sei M eine glatte Mannigfaltigkeit. Sei X ∈ T0

1 (M) ein Vektorfeld mit der Eigenschaft

[X, Y] = 0 für alle Y ∈ T0
1 (M).

Zeige, dass X = 0 gilt.

Solution. Let p ∈ M and let ϕ = (U, x) ∈ AM be a chart such that p ∈ U. In local coordinates, the
vector field X can be written as

X(q) =
(

q,
n

∑
k=1

Xk(q)
∂

∂xk(q)

)
, q ∈ U. (1)

Fix i, j ∈ {1, . . . , n}. Denote by πj : Rn → R, πj(x) = xj, the projection onto the j-th coordinate and
define f j ∈ C∞(M; R) by

f j(q) = πj ◦ x(q), q ∈ V ⊂ U,

where V ⊂ U is an open neighborhood of p.
Consider the vector field Y ∈ T0

1 [M] given by

Y(q) =
(

q,
∂

∂xi(q)

)
, q ∈ V.

Then, for every q ∈ V,

(LY f j)(q) = Dq[ f j]

(
∂

∂xi(q)

)
= Jπj(x(q)) ei = δij.

Hence LY f j is constant on V, and therefore

LX(LY f j)(q) = 0, q ∈ V. (2)

On the other hand, from (1) we obtain

(LX f j)(q) =
n

∑
k=1

Xk(q) Dq[ f j]

(
∂

∂xk(q)

)
= X j(q), q ∈ U. (3)

Consequently, for q ∈ V,

LY(LX f j)(q) =
∂(X j ◦ x−1)

∂xi
(x(q)). (4)

By hypothesis, L[X,Y] f j = 0. Using (2) and (4) we obtain

0 = L[X,Y] f j(q) = LX(LY f j)(q)− LY(LX f j)(q) = −∂(X j ◦ x−1)

∂xi
(x(q)), q ∈ V.

Hence X j is constant on V, say X j(q) = cj ∈ R.
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Fix j and define Z ∈ T0
1 [M] by

Z(q) =
(

q, cj f j(q)
∂

∂xj(q)

)
, q ∈ V.

Since LX f j(q) = cj (see Eq. (3)) is constant , we have

LZ(LX f j)(q) = 0, q ∈ V.

Moreover,
(LZ f j)(q) = cj f j(q).

Therefore,

0 = L[X,Z] f j(q) = LX(LZ f j)(q)− LZ(LX f j)(q) = cj(LX f j)(q) = c2
j .

Thus cj = 0. Since j was arbitrary,

X(p) = (p, 0), ∀p ∈ M.

Aufgabe 10.2 [Jacobi-Identität] ( 6 )
Sei M eine glatte Mannigfaltigkeit und seien X, Y, Z ∈ T0

1 (M). Zeige, dass

[X, [Y, Z]] + [Y, [Z, X]] + [Z, [X, Y]] = 0

gilt.

Solution. Using the definition one obtains

L[X,[Y,Z]] = LX ◦ L[Y,Z] − L[Y,Z] ◦ LX

= LX ◦
(

LY ◦ LZ − LZ ◦ LY

)
−

(
LY ◦ LZ − LZ ◦ LY

)
◦ LX

= LX ◦ LY ◦ LZ − LX ◦ LZ ◦ LY − LY ◦ LZ ◦ LX + LZ ◦ LY ◦ LX.

(5)

In the same way, one obtains

L[Y,[Z,X]] = LY ◦ LZ ◦ LX − LY ◦ LX ◦ LZ

− LZ ◦ LX ◦ LY + LX ◦ LZ ◦ LY,
(6)

and
L[Z,[X,Y]] = LZ ◦ LX ◦ LY − LZ ◦ LY ◦ LX

− LX ◦ LY ◦ LZ + LY ◦ LX ◦ LZ.
(7)

Adding equations (5), (6), and (7), we obtain

L[X,[Y,Z]] + L[Y,[Z,X]] + L[Z,[X,Y]]

= L[X,[Y,Z]]+[Y,[Z,X]]+[Z,[X,Y]] = 0.

Therefore,
[X, [Y, Z]] + [Y, [Z, X]] + [Z, [X, Y]] = 0,

which proves the Jacobi identity and hence the result.
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Aufhabe 10.3 [Lie-Algebra einer Lie-Gruppe] ( 3 + 3 )
Eine Lie-Algebra A über R ist ein reeller Vektorraum zusammen mit einer bilinearen Abbildung

[·, ·] : A×A → A,

genannt die Lie-Klammer, die folgende Eigenschaften erfüllt:

1. Bilinearität: Für alle a ∈ R und X, Y, Z ∈ A gilt

[aX + Y, Z] = a[X, Z] + [Y, Z], [X, aY + Z] = a[X, Y] + [X, Z].

2. Antisymmetrie:
[X, Y] = −[Y, X].

3. Jacobi-Identität:
[X, [Y, Z]] + [Y, [Z, X]] + [Z, [X, Y]] = 0.

Sei G eine glatte Mannigfaltigkeit mit einer glatten Verknüpfung

· : G × G → G,

sodass (G, ·) eine Gruppe ist.
Für jedes g ∈ G sei die Linkstranslation

Lg : G → G, Lg(h) = g · h.

Definiere
gG = {X ∈ T0

1 (G) | (Lg)∗X = X für alle g ∈ G}.

(a) Zeige, dass (gG, [·, ·]) eine Lie-Algebra ist.

(b) Zeige, dass die Abbildung
r : gG → TeG, r(X) = X(e),

wobei e ∈ G das neutrale Element bezeichnet, ein linearer Isomorphismus ist.

Solution

(a) The set T0
1 [M], endowed with the operations

(X + Y)(q) = (q, Xq + Yq), (sX)(q) = (q, sXq),

is a vector space. Moreover, if X, Y ∈ gG, then

(Lg)∗(X + Y) = D[Lg] ◦ (X + Y) ◦ (Lg)
−1

= D[Lg] ◦ X ◦ (Lg)
−1 + D[Lg] ◦ Y ◦ (Lg)

−1

= (Lg)∗X + (Lg)∗Y = X + Y,

(Lg)∗(sX) = D[Lg] ◦ (sX) ◦ (Lg)
−1 = s(Lg)∗X = sX.

(8)

Hence, gG is a vector subspace of T0
1 [M].
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Next, we show that gG is closed under the Lie bracket. We use the general identity: for a diffeomor-
phism Φ : M → N, X ∈ T0

1 [M], and f ∈ C∞(N),

LΦ∗X f = LX( f ◦ Φ) ◦ Φ−1.

Let f ∈ C∞(G; R) and X, Y ∈ gG. Then

L(Lg)∗[X,Y] f = L[X,Y]( f ◦ Lg) ◦ (Lg)
−1

= LX

(
LY( f ◦ Lg)

)
◦ (Lg)

−1 − LY

(
LX( f ◦ Lg)

)
◦ (Lg)

−1

= L(Lg)∗X ◦ L(Lg)∗Y( f )− L(Lg)∗Y ◦ L(Lg)∗X( f )

= L[(Lg)∗X,(Lg)∗Y] f = L[X,Y] f .

Therefore,
(Lg)∗[X, Y] = [X, Y],

and hence [X, Y] ∈ gG.

Finally, we verify that [·, ·] satisfies the axioms of a Lie bracket.

(a) Bilinearity. Let X, Y, Z ∈ T0
1 [G] and r ∈ R. Then

L[rX+Y,Z] = LrX+Y ◦ LZ − LZ ◦ LrX+Y

= r(LX ◦ LZ − LZ ◦ LX) + LY ◦ LZ − LZ ◦ LY

= rL[X,Z] + L[Y,Z] = Lr[X,Z]+[Y,Z].

(9)

Hence,
[rX + Y, Z] = r[X, Z] + [Y, Z].

Linearity in the second variable is analogous.

(b) Antisymmetry. For X, Y ∈ T0
1 [G], a direct computation gives

L[X,Y] = −L[Y,X] = L−[X,Y],

which implies [X, Y] = −[Y, X].

(c) Jacobi identity. This follows from Exercise 10.2.

(b) For s ∈ R and X, Y ∈ gG,

r(sX + Y) = π2((sX + Y)(e))
= sπ2(X(e)) + π2(Y(e)) = sr(X) + r(Y),

(10)

so r is linear.

We now show that r is surjective. Let v ∈ Te[G] and define

X(g) := D[Lg](e, v) = (g, De[Lg]v).

The map X is smooth by the following general result: if F : M × N → R is smooth and then
fp : N → R, fp(q) = F(p, q) is smooth and

D[ fp](q, v) = D[F]((p, q), (0, v)).
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Since the group multiplication · : G × G → G is smoot using the previous result we obtain

X = D[·] ◦ Z

where Z : G → T[G × G], Z(g) = ((g, e), (0, v)) which is smooth and therefore X is smooth.

Moreover, for all g, g′ ∈ G,

((Lg)∗X)(g′) = D[Lg] ◦ X ◦ (Lg)
−1(g′)

= D[Lg](g−1g′, De[Lg−1g′ ]v)

= (g′, Dg−1g′ [Lg]De[Lg−1g′ ]v)

= (g′, De[Lg′ ]v) = X(g′).

(11)

Thus X ∈ gG. Since Le = IG and De[IG] = ITe[G]

r(X) = π2(e, De[Le]v) = π2(e, v) = v,

so r is surjective.

Finally, we show that r is injective. Suppose r(X) = 0. Then, for any g ∈ G,

(e, 0) = X(e) = ((Lg−1)∗X)(e)

= D[Lg−1 ] ◦ X ◦ (Lg−1)−1(e)

= D[Lg−1 ](g, Xg) = (e, Dg[Lg−1 ]Xg).

Hence Dg[Lg−1 ]Xg = 0. Since Lg−1 is a diffeomorphism, its differential is an isomorphism, and
therefore Xg = 0. Thus X(g) = (g, 0) for all g ∈ G.

Aufgabe 10.4 [Die orthogonale Gruppe] ( 3 + 3 ) Sei

O(n) := {M ∈ Rn×n | MT M = In}, Sym(n) := {M ∈ Rn×n | MT = M}.

Betrachte die Abbildung

F : Rn×n → Sym(n), F(A) = AAT − In.

(a) Zeige, dass
JF(A)H = AHT + HAT,

und folgere, dass O(n) eine glatte Untermannigfaltigkeit der Dimension n(n−1)
2 ist.

(b) Zeige, dass
TA[O(n)] ∼= {H ∈ Rn×n | HAT + AHT = 0}

gilt und dass
T[O(n)] ∼= {(A, H) ∈ Rn×n × Rn×n | HAT + AHT = 0}.

(c) Verwende Übung 10.3(b) sowie den vorherigen Teil, um zu folgern, dass

o(n) := gO(n)
∼= {H ∈ Rn×n | HT + H = 0}.
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Solution.

(a) Let A, H ∈ Rn×n. By definition,

F(A + H) = (A + H)(A + H)T − I

= AAT − I + AHT + HAT + HHT

= F(A) + TA(H) + HHT,

where
TA : Rn×n → Rn×n, TA(H) = AHT + HAT,

which is a linear map. Since

∥HHT∥eukl ≤ ∥H∥2
eukl, ∥H∥eukl =

√
∑
i,j

H2
ij,

it follows that TA is the differential of F at A, that is,

JF(A)H = TA(H) = AHT + HAT.

Now let A ∈ O(n). For M ∈ Sym(n), set

H :=
1
2

MA.

Then
JF(A)H = AHT + HAT =

1
2

AAT M +
1
2

MAAT = M.

Hence, for every A ∈ O(n), the map

JF(A) : Rn×n → Sym(n)

is surjective.

Consider the linear isomorphism

L : Sym(n) → Rn(n+1)/2, L(M) = (M11, M12, M22, . . . , M1n, Mnn).

Define F̃ = L ◦ F. Since L is linear, we have

JF̃(A) = L ◦ JF(A).

Therefore, JF̃(A) is surjective for all A ∈ O(n). Consequently,

O(n) = F̃−1({0})

is a submanifold of Rn×n of dimension

n2 − n(n + 1)
2

.

Note that for M, N ∈ O(n),
MN(MN)T = MNNT MT = I,
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hence MN ∈ O(n). Thus, the multiplication map

· : O(n)× O(n) → O(n)

is well defined. Since matrix multiplication

· : Rn×n × Rn×n → Rn×n

is smooth, its restriction to O(n)× O(n) is also smooth.

(b) From the previous item, we obtain

TA[O(n)] ∼= Ker(JF̃(A)) = Ker(JF(A)) = {H ∈ Rn×n : HAT + AHT = 0},

and therefore
T[O(n)] ∼= {(A, H) ∈ O(n)× Rn×n : HAT + AHT = 0}.

(c) Since (O(n), ·) is a group and the multiplication map is smooth (Exercise 10.3), O(n) is a Lie group.
Hence, its Lie algebra gO(n) is isomorphic to

TI [O(n)].

Using item (b), we obtain the desired characterization.


