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Aufgabe 6.1 (8)
Sei () C R eine offene Menge. Fiir n > 2 sei f € C2(Q,R"). Zeigen Sie, dass fiir jedes ¢ > 0 ein
v=(v1,...,04) € R" mit max{|v1]|, -, |vn|} < e€existiert, sodass die Funktion

fo(t) := f(t) + ot
fiir alle t € Q) die Eigenschaft f;(t) # 0 erfiillt.

Solution Let us denote f(t) = (fi(t),...,fa(t)). Fix a closed interval [a,b] C Q. Since f' €
CH(Q, R"), there exists L > 0 such that for all x,y € [a, b] one has

i) =il <Llx—yl, je{l...,n}
Let P = {a =ty <t; <--- <t, = b} be apartition of [a, b]. For each interval [t;,_1,t;] define
mj; = min{f].’(x) S [ti—ll ti]}/ Mi,j = max{fj/(x) ‘x € [ti—l/ ti]}’

and consider the box
Qi = [mj1, Mi1] x -+ X [mj,, M.

Then f'([ti_1,t]) C Q;. Moreover,
‘Mi,]‘ - mi,j| < L|ti — ti,1|.
Hence,
AMQy) < LMt — tiq|" = L"|t; — tiq| [t; — tia|" T
Therefore,

|4
E(ti — tifl) = Ln(b — a) max |ti — ti,1|n_1.
/ i

max ’ti - ti,1 | n-1
P} i1

ie{l,...p

|4
A"(f'([a,b])) < ;/\"(Qi) <L

Since n — 1 > 1, for every € > 0 we may choose a partition P such that the right-hand side is smaller
than €. Thus,

A (f'([a, b)) = 0.
Now take a countable family of closed intervals { I} such that Q) = (J; Iy. Then

A'(f1(Q) =0.

Hence,
B(0,6) N (R"\ (—£(Q))) £ .
Choose v in this set. Then |v;| < eand v ¢ — f'(Q)), which means v # — f'(x) for all x € Q). Therefore

fo(x)=f(x)+0v#0 forallx e Q.

This proves the claim.



Aufgabe 6.2 2+2+2+2)

1. Gib eine differenzierbare Abbildung
f:R* =R’

an, sodass IR? /27tZ? und ran[f] diffeomorph sind.

2. Zeige, dass eine n-dimensionale Mannigfaltigkeit M, die ein Produkt von Sphéren ist, eine Einbettung
in R"*1 besitzt:
(a) Zeige, dass die Abbildung
(t,x) > e'x
eine Einbettung von R x $ nach R¥+1 ist.
(b) Zeige, dass 5% x R¥ in R?** eingebettet werden kann.

(c) Seidy,...,dy > 1mitdy + - - -+ dy = n. Zeige, dass eine Einbettung existiert:

8 x o x 8 5 R

Solution.

1. Let f : R> — R be the function
f(61,602) = ((2+4 cosb) cos by, (2 + cosby)sinb, sinby).

Note that if (81,602) = (01,0,) + 27t(n1,n2), then f(61,0,) = f(61,0,). Therefore, there exists a
continuous map y ~
f:T2 =R, f[01,6,] = f(64,62).

Moreover, if f[@l,(?z] = f[(pl, @2, then (cosby,sinf;) = (cos ¢1,sin¢q), so 01 = @1 + 27ny.
Similarly 6, = @5 + 27t1,. Thus [01,02] = [@1, ¢2] and f is injective. Since T? is compact and R3
is Hausdorff, any injective continuous map is a homeomorphism onto its image.

For [01,02] € T? consider the local parametrization

(01—, 01+ 7) x (6 — 7, O+ ) — 7w((61 — 77,01 + 1) X (6, — 71,6, + 7)),

P(6,0)=10,0].
Then )
foy(0,0)=f(6,0),
and
—(2+4cosco)sinf —sino cos6
Ifolp(G,U) =Jf(0,0) = | (2+cosc)cos —sinosind
0 cos o

The column vectors Cy, Cy satisfy C; - C; = 0 and ||Cy]|, [|C2|| > 0, hence they are linearly inde-
pendent. Thus J¢(6, ) is an immersion. Therefore f is a smooth embedding, and hence

T? = f(T?) = f(R?).



2. Consider the map
FiR xS 5 R f(tx) =etx.

This map is clearly continuous. If f(t,x) = f(s,y), then || f(t,x)|| = ¢! = ¢°, hence t = s, and then
x = y. Thus f is injective. Its inverse is

g RN\ {0} = R xS, g(z) = (log ||z[|, z/I|z])),

which is continuous. Thus f is a homeomorphism onto its image.

Let (x1,...,%.1) € S%. Assume x; > 0 and consider the local chart

q):UCSd—>IRd, P(x1,.. ., x441) = (X2, .., X441),

o o, xgi1) = (V1= [Ix]2 x2, .o, Xa41).

fo(idr x @ D(t,x2, ..., X441) = e'(\/1—[[x|2 x2, ..., xa11),

with inverse

Then

which is smooth and whose Jacobian matrix is

/1 —|xl|2 — X2 L. Xdn
I+ 1—||x||2 V1=

X2 1 0

Ijotiaxg 1) = ¢ . , D
Xit1 o - 1
If ]fo(idxq)_l)v = 0, then v; = —x;v71 and
/ _ 1
0= (01102/ te ,Ud+]) : < 1+ HXHZI te r_<1 + HXHZ) 1/2xd+1) = Ulw;

then vy = 0and vy = v3 = -+ = v;,1 = 0. Hence ]fo(idX(P—l) is injective. Thus f is a smooth
embedding.

Now define

B8t x RF = (89 xR) x REY,  h(x, (r1,...,10)) = ((x,71), (ra, ..., 78)),
and
F: (89 xR) xR R REY, F((x,7), (r2,...,1m0)) = (€%, (ra,...,7%)).

Since the map in part (a) is an embedding, F is an embedding. It is clear that / is also an embedding;
hence F o 1 is an embedding. Thus $¢ x RF embeds in R***.

Finally, for products of spheres we proceed by induction. The base case 8¢ «— R¥*1 is clear. Assume
F:8%x ... x 8% 5 R"™,  n=d+. - +dy,
is an embedding. Let di,q > 1. By (b) there is an embedding
G : R" x gk _y Rkt

Define
H: (8% x - x 8%) x 8%t — R™entl - H(x,y) = G(F(x), y).

Since H is a composition of embeddings, it is an embedding. This completes the induction.



Aufgabe 6.3 2+2+2+2)

Wir bezeichnen mit S? die Einheitskugel in IR? und definieren die folgende Aquivalenzrelation auf S
X~y &= x=3dy.
Sei P2 = 52/ ~. Betrachten wir die Abbildung
f:R* =R (x,y,z)— (2xz 2yz, 1 —22%).
(a) Zeigen Sie, dass die Einschriinkung von g = f|g2 auf S? eine C*®-Abbildung von S? nach S? ist.

(b) Bestimmen Sie die Punkte g € S%, an denen die Ableitung D,[g] nicht invertierbar ist.

(c) Zeigen Sie, dass eine glatte Abbildung
h:P* — S

existiert, sodass
g=horm,

wobei 77 : §* — P? die kanonische Projektion ist.

(d) Zeigen Sie, dass h surjektiv ist, und bestimmen Sie die Punkte g € P2, an denen die Ableitung D, [h]
nicht invertierbar ist.

Solution
(a) If (x,y,z) € S?, then
If(x,y,2)||? = 4x?2% + 4222 + 1 — 42> + 428 =422 (P + > +22) 422 + 1= 1.

Thus f(S?) C S2. Since f is a polynomial map, it is C*.
For surjectivity, note first that f(1,0,0) = (0,0,1). If z # 1, then

V2 V2 1—-z
f(zmx’ 2z \/2> = (v y2)

(b) Let (Xo,yo,Zo) € 52

(a) If zg = 0, assume w.l.o.g. xo > 0. Take the local parametrizations

p(v,z) = (J1-v*—22y2), Py =Xy \/1-x2—y?), (D

with = 1(x,y,z) = (x,y). Then

v logog(y,z) = (2z4/1 — y? — 22, 2yz).
[1_ 2
The Jacobian at (1o, 0) is (8 2y 1=y 0) and is not invertible.

Zyo



(©

(b) Suppose zg # 0. If (x0, yo,20) # (0,0, £1) and w.L.o.g. x¢ - zop > 0, use the local parametri-

zation
¢(y,z) = (\1-y*—2%y,2).

with ¢~1(x,y,2) = (y,z). Then, ¢ 1 o god(y,z) = (2yz, 1 — 2z%). The Jacobian is at

(Yo, 20) is <2(Z)0 ZZE > Since zg # 0, the Jacobian is invertible.
—4zp

For (0,0,1) we have g(0,0,1) = (0,0, —1). Use the local parametrizations

p(x,y) = (v, y\/1-22=y?),  v(xy) = (xvy —/1-x2—y?), 2)

with v~ 1(x,y,z) = (x,y), giving

plogop(x,y) = (2xy/1—x2 =2, 2y3 /1 —x2 — ?),

2

whose Jacobian at (0,0) is (0 )

(0,0,—1).
Thus the critical points are exactly the set

{(x,y,0) € 521,

If (x,y,z) ~ (x/,y,2') in P? then (x,y,z) = +£(x,y/,2'), hence ¢(x,y,z) = g(x’,y’,z’). Thus
there exists a continuous

> and it is invertible. A similar computation works at

h:P? — S
such that g = h o 7.

Local charts for P> may be taken as:
¢r:{(xy,2) :x # 0}/ ~ = B1(0),  ¢u[(xy,2)] = (y,2),
¢ : {(x,y,z) 1z # 0}/N - Bl(o)/ (PZ[(x/y/Z)] = (x/y)/

with inverses

o' (v.2) =[(V1-y¥ =2 y2)l, ¢ (ny) =[xy J1-22—2)].

Let [(x0,Y0,20)] € T?. If zo = 0 and xq # 0, then [(xo, yo,0)] satisfies h[(x0,0,0)] = (0,0,1).
We consider ! o o ¢! with ¢ as in Eq. (T))

plohogp M (y,z) =¢! og<\/1 —y2 -2y, Z) = (2z\/1—y* —y*2y2),

The Jacobian at (yo, 0) is not invertible. The case yo 7# 0 is similar.
If zg # 0. If [(x0, Yo, 20)] # [(0,0,1)]. Assuming w.l.o.g. that x¢ - zy > 0, we obtain (taking ¢ as in

Eq. (1))
¢ oho¢ N (y,z) = ¢ og(\/1—y2—22y,2) = (2yz,1 —22°),

and its Jacobian at (1o, zo) is invertible. Finally for [(0,0,1)], taking ¢ as in Eq. (Z) we obtain

plohog N (x,y) = (2x\/1 —x2 —y2,2y\/1 —x2—y?).

The Jacobian at (0,0) is ( 0> which is invertible. The critical points is the set {[(x,y,0)] € P?}.
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