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Aufgabe 6.1 (8)
Sei Ω ⊂ R eine offene Menge. Für n ≥ 2 sei f ∈ C2(Ω, Rn). Zeigen Sie, dass für jedes ε > 0 ein
v = (v1, . . . , vn) ∈ Rn mit max{|v1|, · · · , |vn|} < ε existiert, sodass die Funktion

fv(t) := f (t) + vt

für alle t ∈ Ω die Eigenschaft f ′v(t) ̸= 0 erfüllt.

Solution Let us denote f (t) = ( f1(t), . . . , fn(t)). Fix a closed interval [a, b] ⊂ Ω. Since f ′ ∈
C1(Ω, Rn), there exists L > 0 such that for all x, y ∈ [a, b] one has

| f ′j (x)− f ′j (y)| ≤ L|x − y|, j ∈ {1, . . . , n}.

Let P = {a = t0 < t1 < · · · < tp = b} be a partition of [a, b]. For each interval [ti−1, ti] define

mi,j := min{ f ′j (x) : x ∈ [ti−1, ti]}, Mi,j := max{ f ′j (x) : x ∈ [ti−1, ti]},

and consider the box
Qi = [mi,1, Mi,1]× · · · × [mi,n, Mi,n].

Then f ′([ti−1, ti]) ⊂ Qi. Moreover,

|Mi,j − mi,j| ≤ L|ti − ti−1|.

Hence,
λn(Qi) ≤ Ln|ti − ti−1|n = Ln|ti − ti−1| |ti − ti−1| n−1.

Therefore,

λn( f ′([a, b])) ≤
p

∑
i=1

λn(Qi) ≤ Ln max
i∈{1,...,p}

|ti − ti−1| n−1
p

∑
i=1

(ti − ti−1) = Ln(b− a) max
i

|ti − ti−1| n−1.

Since n − 1 ≥ 1, for every ε > 0 we may choose a partition P such that the right-hand side is smaller
than ε. Thus,

λn( f ′([a, b])) = 0.

Now take a countable family of closed intervals {Ik} such that Ω =
⋃

k Ik. Then

λn( f ′(Ω)) = 0.

Hence,
B(0, ε) ∩

(
Rn \ (− f ′(Ω))

)
̸= ∅.

Choose v in this set. Then |vj| < ε and v /∈ − f ′(Ω), which means v ̸= − f ′(x) for all x ∈ Ω. Therefore

f ′v(x) = f ′(x) + v ̸= 0 for all x ∈ Ω.

This proves the claim.
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Aufgabe 6.2 (2 + 2 + 2 + 2)

1. Gib eine differenzierbare Abbildung
f : R2 → R3

an, sodass R2/2πZ2 und ran[ f ] diffeomorph sind.

2. Zeige, dass eine n-dimensionale Mannigfaltigkeit M, die ein Produkt von Sphären ist, eine Einbettung
in Rn+1 besitzt:

(a) Zeige, dass die Abbildung
(t, x) 7→ etx

eine Einbettung von R × Sd nach Rd+1 ist.

(b) Zeige, dass Sd × Rk in Rd+k eingebettet werden kann.

(c) Sei d1, . . . , dk ≥ 1 mit d1 + · · ·+ dk = n. Zeige, dass eine Einbettung existiert:

f : Sd1 × · · · × Sdk → Rn+1.

Solution.

1. Let f : R2 → R3 be the function

f (θ1, θ2) =
(
(2 + cos θ2) cos θ1, (2 + cos θ2) sin θ1, sin θ2

)
.

Note that if (θ1, θ2) = (θ̃1, θ̃2) + 2π(n1, n2), then f (θ1, θ2) = f (θ̃1, θ̃2). Therefore, there exists a
continuous map

f̃ : T2 → R3, f̃ [θ1, θ2] = f (θ1, θ2).

Moreover, if f̃ [θ1, θ2] = f̃ [φ1, φ2], then (cos θ1, sin θ1) = (cos φ1, sin φ1), so θ1 = φ1 + 2πn1.
Similarly θ2 = φ2 + 2πn2. Thus [θ1, θ2] = [φ1, φ2] and f̃ is injective. Since T2 is compact and R3

is Hausdorff, any injective continuous map is a homeomorphism onto its image.

For [θ1, θ2] ∈ T2 consider the local parametrization

ψ : (θ1 − π, θ1 + π)× (θ2 − π, θ2 + π) −→ π
(
(θ1 − π, θ1 + π)× (θ2 − π, θ2 + π)

)
,

ψ(θ, σ) = [θ, σ].

Then
f̃ ◦ ψ(θ, σ) = f (θ, σ),

and

J f̃ ◦ψ(θ, σ) = J f (θ, σ) =

−(2 + cos σ) sin θ − sin σ cos θ
(2 + cos σ) cos θ − sin σ sin θ

0 cos σ

 .

The column vectors C1, C2 satisfy C1 · C2 = 0 and ∥C1∥, ∥C2∥ > 0, hence they are linearly inde-
pendent. Thus J f (θ, σ) is an immersion. Therefore f̃ is a smooth embedding, and hence

T2 ∼= f̃ (T2) = f (R2).
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2. Consider the map
f : R × Sd → Rd+1, f (t, x) = etx.

This map is clearly continuous. If f (t, x) = f (s, y), then ∥ f (t, x)∥ = et = es, hence t = s, and then
x = y. Thus f is injective. Its inverse is

g : Rd+1 \ {0} → R × Sd, g(z) = (log ∥z∥, z/∥z∥),

which is continuous. Thus f is a homeomorphism onto its image.

Let (x1, . . . , xd+1) ∈ Sd. Assume x1 > 0 and consider the local chart

φ : U ⊂ Sd → Rd, φ(x1, . . . , xd+1) = (x2, . . . , xd+1),

with inverse
φ−1(x2, . . . , xd+1) =

(√
1 − ∥x∥2, x2, . . . , xd+1

)
.

Then

f ◦ (idR × φ−1)(t, x2, . . . , xd+1) = et(√1 − ∥x∥2, x2, . . . , xd+1
)
,

which is smooth and whose Jacobian matrix is

J f ◦(id×φ−1) = et


√

1 − ∥x∥2 − x2√
1−∥x∥2

· · · − xd+1√
1−∥x∥2

x2 1 0 · · ·
...

. . .
...

xd+1 0 · · · 1

 ,

If J f ◦(id×φ−1)v = 0, then vi = −xiv1 and

0 = (v1, v2, · · · , vd+1) · (
√

1 + ∥x∥2, · · · ,−(1 + ∥x∥2)−1/2xd+1) = v1
1√

1 − ∥x∥2
,

then v1 = 0 and v2 = v3 = · · · = vd+1 = 0. Hence J f ◦(id×φ−1) is injective. Thus f is a smooth
embedding.

Now define

h : Sd × Rk → (Sd × R)× Rk−1, h(x, (r1, . . . , rk)) = ((x, r1), (r2, . . . , rk)),

and

F : (Sd × R)× Rk−1 → Rd+1 × Rk−1, F((x, r), (r2, . . . , rk)) = (erx, (r2, . . . , rk)).

Since the map in part (a) is an embedding, F is an embedding. It is clear that h is also an embedding;
hence F ◦ h is an embedding. Thus Sd × Rk embeds in Rd+k.

Finally, for products of spheres we proceed by induction. The base case Sd ↪→ Rd+1 is clear. Assume

F : Sd1 × · · · × Sdk → Rn+1, n = d1 + · · ·+ dk,

is an embedding. Let dk+1 ≥ 1. By (b) there is an embedding

G : Rn+1 × Sdk+1 → Rn+dk+1+1.

Define
H :

(
Sd1 × · · · × Sdk

)
× Sdk+1 → Rn+dk+1+1, H(x, y) = G

(
F(x), y

)
.

Since H is a composition of embeddings, it is an embedding. This completes the induction.
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Aufgabe 6.3 (2 + 2 + 2 + 2)
Wir bezeichnen mit S2 die Einheitskugel in R3 und definieren die folgende Äquivalenzrelation auf S2:

x ∼ y ⇐⇒ x = ±y.

Sei P2 = S2/ ∼. Betrachten wir die Abbildung

f : R3 → R3, (x, y, z) 7→ (2xz, 2yz, 1 − 2z2).

(a) Zeigen Sie, dass die Einschränkung von g = f |S2 auf S2 eine C∞-Abbildung von S2 nach S2 ist.

(b) Bestimmen Sie die Punkte q ∈ S2, an denen die Ableitung Dq[g] nicht invertierbar ist.

(c) Zeigen Sie, dass eine glatte Abbildung
h : P2 → S2

existiert, sodass
g = h ◦ π,

wobei π : S2 → P2 die kanonische Projektion ist.

(d) Zeigen Sie, dass h surjektiv ist, und bestimmen Sie die Punkte q ∈ P2, an denen die Ableitung Dq[h]
nicht invertierbar ist.

Solution

(a) If (x, y, z) ∈ S2, then

∥ f (x, y, z)∥2 = 4x2z2 + 4y2z2 + 1 − 4z2 + 4z4 = 4z2(x2 + y2 + z2)− 4z2 + 1 = 1.

Thus f (S2) ⊂ S2. Since f is a polynomial map, it is C∞.

For surjectivity, note first that f (1, 0, 0) = (0, 0, 1). If z ̸= 1, then

f

( √
2

2
√

1 − z
x,

√
2

2
√

1 − z
y,

√
1 − z

2

)
= (x, y, z).

(b) Let (x0, y0, z0) ∈ S2.

(a) If z0 = 0, assume w.l.o.g. x0 > 0. Take the local parametrizations

ϕ(y, z) = (
√

1 − y2 − z2, y, z), ψ(x, y) = (x, y,
√

1 − x2 − y2), (1)

with ψ−1(x, y, z) = (x, y). Then

ψ−1 ◦ g ◦ ϕ(y, z) = (2z
√

1 − y2 − z2, 2yz).

The Jacobian at (y0, 0) is

(
0 2

√
1 − y2

0

0 2y0

)
and is not invertible.
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(b) Suppose z0 ̸= 0. If (x0, y0, z0) ̸= (0, 0,±1) and w.l.o.g. x0 · z0 > 0, use the local parametri-
zation

ϕ(y, z) = (
√

1 − y2 − z2, y, z).

with ϕ−1(x, y, z) = (y, z). Then, ϕ−1 ◦ g ◦ ϕ(y, z) = (2yz, 1 − 2z2). The Jacobian is at

(y0, z0) is
(

2z0 2y0
0 −4z0

)
. Since z0 ̸= 0, the Jacobian is invertible.

For (0, 0, 1) we have g(0, 0, 1) = (0, 0,−1). Use the local parametrizations

ϕ(x, y) = (x, y,
√

1 − x2 − y2), ψ(x, y) = (x, y,−
√

1 − x2 − y2), (2)

with ψ−1(x, y, z) = (x, y), giving

ψ−1 ◦ g ◦ ϕ(x, y) =
(
2x
√

1 − x2 − y2, 2y
√

1 − x2 − y2
)
,

whose Jacobian at (0, 0) is
(

2 0
0 2

)
and it is invertible. A similar computation works at

(0, 0,−1).

Thus the critical points are exactly the set

{(x, y, 0) ∈ S2}.

(c) If (x, y, z) ∼ (x′, y′, z′) in P2 then (x, y, z) = ±(x′, y′, z′), hence g(x, y, z) = g(x′, y′, z′). Thus
there exists a continuous

h : P2 → S2

such that g = h ◦ π.

Local charts for P2 may be taken as:

ϕx : {(x, y, z) : x ̸= 0}/∼ → B1(0), ϕx[(x, y, z)] = (y, z),

ϕz : {(x, y, z) : z ̸= 0}/∼ → B1(0), ϕz[(x, y, z)] = (x, y),

with inverses

ϕ−1
x (y, z) = [(

√
1 − y2 − z2, y, z)], ϕ−1

z (x, y) = [(x, y,
√

1 − x2 − y2)].

Let [(x0, y0, z0)] ∈ T2. If z0 = 0 and x0 ̸= 0, then [(x0, y0, 0)] satisfies h[(x0, y0, 0)] = (0, 0, 1).
We consider ψ−1 ◦ h ◦ ϕ−1

x with ψ as in Eq. (1)

ψ−1 ◦ h ◦ ϕ−1
x (y, z) = ψ−1 ◦ g

(√
1 − y2 − z2, y, z

)
= (2z

√
1 − y2 − y2, 2yz),

The Jacobian at (y0, 0) is not invertible. The case y0 ̸= 0 is similar.

If z0 ̸= 0. If [(x0, y0, z0)] ̸= [(0, 0, 1)]. Assuming w.l.o.g. that x0 · z0 > 0, we obtain (taking ϕ as in
Eq. (1))

ϕ−1 ◦ h ◦ ϕ−1
x (y, z) = ϕ−1 ◦ g(

√
1 − y2 − z2, y, z) = (2yz, 1 − 2z2),

and its Jacobian at (y0, z0) is invertible. Finally for [(0, 0, 1)], taking ψ as in Eq. (2) we obtain

ψ−1 ◦ h ◦ ϕ−1
z (x, y) = (2x

√
1 − x2 − y2, 2y

√
1 − x2 − y2).

The Jacobian at (0, 0) is
(

2 0
0 2

)
which is invertible. The critical points is the set {[(x, y, 0)] ∈ P2}.


