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Aufgabe 3.1 (2 + 3 + 3)
Für m ≥ 1 betrachten wir die Menge

Rm/Zm :=
{
[x] : x ∈ Rm} ,

wobei

[x] :=
{

x + n : n ∈ Zm} .

Wir betrachten eine Norm ρ : Rm → [0, ∞) und definieren

d : Rm × Rm → [0, ∞) , d(x, y) := ρ(x − y) .

(a) Zeigen Sie, dass d : Rm × Rm → [0, ∞) eine translationsinvariante Metrik auf Rm ist.

(b) Zeigen Sie, dass

d′ : Rm/Zm × Rm/Zm → [0, ∞) , d′([x], [y]) = ρ′([x − y]) ,

mit

ρ′ : Rm/Zm → [0, ∞) , ρ′([x]) := inf
n∈Zm

ρ(x + n) ,

eine Metrik auf Rm/Zm definiert.

(c) Zeigen Sie, dass die Abbildung

[·] : (Rm,Td) → (Rm/Zm,Td′)

stetig ist.

Lösung.

(a) Es gilt d(x, y) = ρ(x − y) = 0 genau dann, wenn x − y = 0. Zudem gilt

d(x, y) = ρ(x − y) = ρ(y − x) = d(y, x).

Dreiecksungleichung: Für x, y, z gilt

d(x, z) = ρ(x − z) = ρ(x − y + y − z) ≤ ρ(x − y) + ρ(y − z) = d(x, y) + d(y, z). (1)

Translationsinvarianz:

d(x + z, y + z) = ρ(x + z − y − z) = ρ(x − y) = d(x, y).
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(b) Offenbar gilt d′([x], [y]) = d′([y], [x]) und d′([x], [x]) = 0. Nun zeigen wir die Nichtentartung.
Dazu benötigen wir folgendes Lemma.

Lemma. Für alle x ∈ Rm gilt:

inf
n∈Zm

ρ(x + n) = min
n∈Zm

ρ(x + n).

Beweis des Lemmas. Die Cauchy-Schwarz-Ungleichung impliziert für x = (x1, . . . , xm) ∈ Rm:

∑ |xi| = (|x1|, . . . , |xm|) · (1, . . . , 1) ≤
√

m ∥x∥Rm .

Sei ei = (0, . . . , 1, . . . , 0). Da ρ eine Norm ist, gilt:

ρ(x) ≤
m

∑
i=1

|xi|ρ(ei) ≤
√

m max{ρ(ei) : i = 1, . . . , m} · ∥x∥Rm =: C∥x∥Rm .

Dann folgt
|ρ(x)− ρ(y)| ≤ ρ(x − y) ≤ C∥x − y∥Rm ,

also ist ρ : (Rm, ∥ · ∥) → R stetig. Daher existiert für alle x ∈ Sm−1 ein L > 0 mit

|ρ(x)| ≥ L.

Damit für alle x ̸= 0:

ρ(x) = ∥x∥ ρ

(
x

∥x∥

)
≥ L∥x∥ → ∞ für ∥x∥ → ∞.

Also existiert für jedes x ∈ Rm ein endliches Gebiet in Zm, in dem das Infimum angenommen wird.
Somit ist es ein Minimum.

—

Mit dem Lemma folgt: Falls d′([x], [y]) = 0, dann

0 = inf
n∈Zm

ρ(x − y + n) = min
n∈Zm

ρ(x − y + n),

und somit existiert ein n ∈ Zm mit ρ(x − y + n) = 0. Da ρ eine Norm ist, folgt x = y + n, also
[x] = [y].

Dreiecksungleichung: Für [x], [y], [z] existieren nach dem Lemma N, M ∈ Zm mit

ρ′([x − z]) = ρ(x − z + N), ρ′([z − y]) = ρ(z − y + M).

Also:

d′([x], [z]) + d′([z], [y]) = ρ(x − z + N) + ρ(z − y + M)

≥ ρ(x − y + M + N) ≥ ρ′([x − y]) = d′([x], [y]).

(c) Sei [x] ∈ Rm/Zm und ε > 0. Wähle y ∈ Rm mit d(x, y) < ε. Dann gilt:

d′([x], [y]) = inf
n∈Zm

ρ(x − y + n) ≤ ρ(x − y) = d(x, y) < ε.

Somit ist die Abbildung stetig.
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Aufgabe 3.2 (3 + 2 + 3)
Sei (M,T) ein topologischer Raum und U ⊂ T eine offene Überdeckung von M.

(a) Angenommen, für alle U ∈ U gilt∣∣{V ∈ U : V ∩ U ̸= ∅}
∣∣ < ∞.

Beweisen Sie, dass U lokal endlich ist.

(b) Geben Sie ein Gegenbeispiel zur Umkehrung von (a) an.

(c) Angenommen, für alle U ∈ U ist U kompakt, und U ist lokal endlich. Beweisen Sie, dass für alle
U ∈ U gilt: ∣∣{V ∈ U : V ∩ U ̸= ∅}

∣∣ < ∞ .

Lösung.

(a) Sei x ∈ M. Da U eine offene Überdeckung ist, existiert ein U ∈ U mit x ∈ U. Per Definition
schneidet U nur endlich viele Mengen aus U .

(b) Betrachte (0, ∞) mit der Standardtopologie. Definiere

U := {(n, ∞) : n ∈ {0, 1, 2, . . . }}.

Für jedes x ∈ (0, ∞) ist U = (0, x + 1) eine offene Menge mit x ∈ (0, x + 1), und

{V ∈ U : V ∩ (0, x + 1) ̸= ∅}

ist endlich. Daher ist U lokal endlich. Jedoch erfüllt sie die andere Bedingung nicht.

(c) Sei U ∈ U . Da U lokal endlich ist, existiert für jedes x ∈ U eine offene Umgebung Ox von x derart,
dass ∣∣{V ∈ U : V ∩ Ox ̸= ∅}

∣∣ < ∞.

Die Menge {Ox : x ∈ U} ist eine offene Überdeckung von U. Da U kompakt ist, besitzt sie eine
endliche Teilüberdeckung {Oxi : i = 1, . . . , n}. Da U ⊂ U ⊂ ⋃n

i=1 Oxi , gilt:

{V ∈ U : V ∩ U ̸= ∅} ⊂
n⋃

i=1

{V ∈ U : V ∩ Oxi ̸= ∅}.

Letztere Vereinigung ist eine Vereinigung endlicher Mengen und somit endlich.

Aufgabe 3.3 (8)
Seien n, m ∈ N und Mn×m(R) der Raum der reellen n × m-Matrizen. Sei r ∈ N mit r ≤ min(n, m).
Zeigen Sie, dass {

A ∈ Mn×m(R) : rk(A) = r
}

eine glatte Mannigfaltigkeit ist und bestimmen Sie ihre Dimension.
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Lösung.
Zunächst geben wir eine lokale Karte für das Element

1r :=
(

1 0
0 0

)
∈ Mr

n×m(R).

Betrachte die offene Menge O ⊂ Rr×r:

O := det −1
r×r((1/2, 3/2)).

Wir definieren die stetige Abbildung

ϕ : O × R(n−r)×r × Rr×(m−r) → Mn×m(R), ϕ(L, M, N) =

(
L N
M ML−1N

)
.

Insbesondere gilt ϕ(1, 0, 0) = 1r. Weiterhin sei

U := ϕ
(
O × R(n−r)×r × Rr×(m−r)) ⊂ Mr

n×m(R).

Wir zeigen, dass U eine offene Menge in Mr
n×m(R) ist. Betrachte die Menge

U′ :=
{(

L N
M R

)
: L ∈ O ⊂ Rr×r, M ∈ R(n−r)×r, N ∈ Rr×(m−r), R ∈ R(n−r)×(m−r)

}
⊂ Mn×m(R),

welche offen in Mn×m(R) ist. Wir zeigen nun:

U = U′ ∩Mr
n×m(R), (2)

was impliziert, dass U offen bezüglich der relativen Topologie von Mr
n×m(R) ist. Die Inklusion ⊂ ist klar.

Für ⊃: Sei Q ∈ U′ ∩Mr
n×m(R), dann gilt

Q =

(
L N
M R

)
für geeignete Matrizen L, N, M, R. Da L ∈ O, ist det(L) ̸= 0, also ist L invertierbar. Daher sind die r
Spalten der Matrix (

L
M

)
linear unabhängig. Da Q Rang r hat, müssen die Spalten von(

N
R

)

im von den Spalten von
(

L
M

)
erzeugten Raum liegen. Mit anderen Worten, es existiert eine Matrix C ∈

Mr×(m−r)(R) mit (
N
R

)
=

(
LC
MC

)
.

Dann gilt C = L−1N und R = ML−1N, somit

Q =

(
L N
M R

)
=

(
L N
M ML−1N

)
= ϕ(L, M, N) ∈ U.
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Wir betrachten die Karte

x : U ⊂ Mr
n×m(R) → O × R(n−r)×r × Rr×(m−r), x

(
L N
M R

)
= (L, M, N).

Da x ◦ ϕ = I und ϕ ◦ x = I, ist x ein Homöomorphismus. Somit ist (x, U) eine Karte für 1r.
Nun geben wir eine Karte für ein allgemeines A ∈ Mr

n×m(R) an.
Lemma 1. Für jede Matrix A ∈ Mn×m(R)mit Rang r existieren invertierbare Matrizen XA ∈ Mn×n(R)

und YA ∈ Mm×m(R) derart, dass
XA AYA = 1r.

Für A ∈ Mr
n×m(R) seien XA, YA wie im Lemma 1. Dann ist die Abbildung

ϕA : Mr
n×m(R) → Mr

n×m(R), ϕA(Q) = XAQYA

ein Homöomorphismus mit ϕA(A) = 1r. Sei UA := ϕ−1
A (U) und die Karte

xA := x ◦ ϕA : UA → O × R(n−r)×r × Rr×(m−r).

Dann ist (xA, UA) eine Karte für A.
Betrachte den Kartenwechsel. Seien A, B ∈ Mr

n×m(R) und XA, XB, YA, YB wie im Lemma 1. Wir setzen

XBX−1
A =

(
X1 X2
X3 X4

)
, Y−1

A YB =

(
Y1 Y2
Y3 Y4

)
,

mit den passenden Blockgrößen. Für (L, M, N) ∈ xA(UA ∩ UB) ⊂ O × R(n−r)×r × Rr×(m−r) gilt:

xB ◦ x−1
A (L, M, N) = x ◦ ϕB ◦ ϕ−1

A

(
L N
M ML−1N

)
= x

(
XBX−1

A

(
L N
M ML−1N

)
Y−1

A YB

)
= ( f1(L, M, N), f2(L, M, N), f3(L, M, N)),

(3)

wobei die fi glatte Funktionen sind. Daher bildet

{(xA, UA) : A ∈ Mr
n×m(R)}

ein glattes Atlas für Mr
n×m(R).


