

2. Übungsblatt

Upload: 27.10.2025.

Deadline: 04.11.2025, 11:30 Uhr (vor der Übung).

Aufgabe 2.1 (3 + 3)

Beweisen Sie die folgenden Aussagen:

- (a) Sei $M \neq \emptyset$ und seien $\{\mathfrak{T}_i\}_{i \in I}$ Topologien auf M, dann ist auch $\mathfrak{T} \coloneqq \bigcap_{i \in I} \mathfrak{T}_i$ eine Topologie auf M.
- (b) Sei $A \subseteq M$ eine Teilmenge von M und \mathfrak{T} eine Topologie auf M. Dann definiert

$$\mathfrak{T}_{\mathrm{rel}} := \{ A \cap U | U \in \mathfrak{T} \}$$

eine Topologie auf A.

Aufgabe 2.2 (2+2+2)

- (a) Zeigen Sie, dass $[0,1] \subseteq \mathbb{R}$ als Teilraum $([0,1],\mathfrak{T}_{rel})$ von $(\mathbb{R},\mathfrak{T}_{eukl})$ zusammenhängend ist.
- (b) Beweisen Sie Lemma I.13.
- (c) Sei (M,\mathfrak{T}) ein topologischer Raum. Dann definieren wir auf M zwei Relationen:

 $x \sim_1 y :\Leftrightarrow$ Es gibt einen zusammenhängenden Teilraum $N \subseteq M$ mit $x,y \in N$, $x \sim_2 y :\Leftrightarrow$ Es gibt einen wegzusammenhängenden Teilraum $N \subseteq M$ mit $x,y \in N$.

Zeigen Sie: \sim_1 und \sim_2 definieren Äquivalenzrelationen. Die Äquivalenzklassen $[x]_1$ bezüglich \sim_1 nennen wir **Zusammenhangskomponenten**, die Äquivalanzklassen $[x]_2$ bezüglich \sim_2 **Wegzusammenhangskomponenten**.

Aufgabe 2.3 (3 + 3)

(a) Zeigen Sie, dass durch $x_1^{-1}:(0,2\pi)\to(\cos(\varphi),\sin(\varphi))$ und $x_2^{-1}:(-\pi,\pi)\to(\cos(\varphi),\sin(\varphi))$ ein Atlas auf

$$K = \{(y_1, y_2) \in \mathbb{R}^2 | y_1^2 + y_2^2 = 1\}$$

induziert wird und geben Sie die Familie von Karten $\{\phi_1=(U_1,x_1),\phi_2=(U_2,x_2)\}$ explizit an.

(b) Geben Sie einen hausdorffschen, separablen und parakompakten topologischen Raum M und zwei nicht verträgliche Karten darauf an.

Aufgabe 2.4 (2 + 2 + 2)

Gegeben sei die Menge

$$O(2) = \{ A \in \mathbb{R}^{2 \times 2} | A^T A = A A^T = \mathbf{1}_{\mathbb{R}^2} \}$$

der orthogonalen $2\times 2\text{-Matrizen}.$

(a) Zeigen Sie, dass

$$O(2) = \left\{ \begin{pmatrix} \cos(\varphi) & \sin(\varphi) \\ -\sin(\varphi) & \cos(\varphi) \end{pmatrix}, \begin{pmatrix} \cos(\varphi) & \sin(\varphi) \\ \sin(\varphi) & -\cos(\varphi) \end{pmatrix} \right\}_{\varphi \in [0,2\pi)}.$$

- (b) Zeigen Sie, dass $O(2) \subseteq \mathbb{R}^{2 \times 2} \widehat{=} \mathbb{R}^4$ als Teilraum des topologischen Raums $(\mathbb{R}^4, \mathfrak{T}_{\text{eukl}})$ nicht (weg-) zusammenhängend ist und klassifizieren Sie die einzelnen (Weg-) Zusammenhangskomponenten.
- (c) Geben Sie einen Atlas für O(2) an.