

1. Übungsblatt

Upload: 22.10.2025.

Deadline: 28.10.2025, 11:30 Uhr (vor der Übung).

Aufgabe 1.1 (1+1+1+1,5+1,5)

Geben Sie topologische Räume (M_i, \mathfrak{T}_i) , $i \in \{1, 2, 3\}$ so an, dass

- (a) in (M_1, \mathfrak{T}_1) Grenzwerte von konvergenten Folgen nicht eindeutig sind,
- (b) (M_2, \mathfrak{T}_2) eine kompakte Teilmenge $K_2 \subseteq M_2$ besitzt, die nicht abgeschlossen ist,
- (c) (M_3, \mathfrak{T}_3) zusammenhängend aber nicht wegzusammenhängend ist,

und beweisen Sie diese Aussagen. Sei nun (M, \mathfrak{T}) hausdorffsch. Beweisen Sie:

- (d) In (M,\mathfrak{T}) sind Grenzwerte konvergenter Folgen eindeutig.
- (e) Ist $K \subseteq M$ kompakt, so ist K abgeschlossen.

Aufgabe 1.2 (3 + 3)

- (a) Es seien (M,\mathfrak{T}) und (N,\mathfrak{S}) zwei zueinander homöomorphe topologische Räume, d.h., es existiert ein Homöomorphismus $f:M\to N$. Argumentieren Sie jeweils kurz und möglichst präzise, weshalb sich die in der Vorlesung besprochenen Eigenschaften **hausdorffsch** und **Kompaktheit** von M auf N übertragen würden.
- (b) Seien $(M_1, \mathfrak{T}_1) = (M_2, \mathfrak{T}_2) = (\mathbb{R}, \mathfrak{T}_{\text{eukl}})$. Zeigen Sie, dass

$$\pi_1^{-1}[\mathfrak{T}_{\text{eukl}}] \cap \pi_2^{-1}[\mathfrak{T}_{\text{eukl}}] = (\mathbb{R}^2, \mathfrak{T}_{\text{eukl}}).$$