
IV. Tangential- und Kotangentialraum

IV.1. Tangentialraum

Definition IV.1. Seien M = (M,T,A) eine Mannigfaltigkeit, q ∈M und

T̃q[M] :=
{
γ ∈ C1[(a, b);M]

∣∣ a < 0 < b , γ(0) = q
}

(IV.1)

der Raum aller C1-Kurven γ inM mit γ(0) = q. Zwei Kurven γ, γ̃ ∈ T̃q[M] heißen tangential,
[γ] = [γ̃] :⇔

∃ (U, x) ∈ A , U ∋ q :
d

dt

(
x ◦ γ

)∣∣∣
t=0

=
d

dt

(
x ◦ γ̃

)∣∣∣
t=0

. (IV.2)

Bemerkungen und Beispiele.

• Glg. (IV.2) ist kartenunabhängig. Gilt (IV.2) und sind (U, x), (V, y) ∈ A mit q ∈ U ∩ V ,
so ist

d

dt

{(
y ◦ γ

)∣∣
t=0

−
(
y ◦ γ̃

)∣∣
t=0

}

=
d

dt

{[
(y ◦ x−1) ◦ (x ◦ γ)

]∣∣
t=0

−
[
(y ◦ x−1) ◦ (x ◦ γ̃)

]∣∣
t=0

}

= Jy◦x−1[x(q)] ·
{ d

dt

(
x ◦ γ

)∣∣
t=0

−
d

dt

(
x ◦ γ

)∣∣
t=0

}
= 0 . (IV.3)

Daher ist Glg. (IV.2) gleichwertig mit

∀ (U, x) ∈ A , U ∋ q :
d

dt

(
x ◦ γ

)∣∣∣
t=0

=
d

dt

(
x ◦ γ̃

)∣∣∣
t=0

. (IV.4)

• Die Eigenschaft zweier C1-Kurven, bei q ∈ M tangential zu sein, definiert eine Äquiva-
lenzrelation.

Definition IV.2. Seien M = (M,T,A) eine Mannigfaltigkeit der Dimension m ∈ N und
q ∈M .
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(i) Die Familie

Tq[M] := T̃q[M]/[·] =
{
[γ]

∣∣ γ ∈ T̃q[M]
}

(IV.5)

der Äquivalenzklassen heißt Tangentialraum an q.

(ii) Ist φ = (U, x) ∈ A mit U ∋ q, so definieren wir

Θφ,q : Tq[M] → R
m , [γ] 7→

d

dt

(
x ◦ γ

)∣∣∣
t=0

. (IV.6)

Bemerkungen und Beispiele.

• Die Abbildung Θφ,q : Tq[M] → R
m ist eine Bijektion, denn offensichtlich ist Θφ,q nach

Glg. (IV.4) injektiv. Wählen wir ε > 0 genügend klein und definieren zu ν ∈ Rm eine
Kurve γν ∈ C1[(−ε, ε);M] durch

γν(t) := x−1
[
x(q) + tν

]
, (IV.7)

so ist γ ∈ T̃q[M] und

Θφ,q[γν ] =
d

dt

(
x ◦ γν

)∣∣∣
t=0

=
d

dt

[
x(q) + tν

]∣∣∣
t=0

= ν , (IV.8)

und Θφ,q ist damit auch surjektiv.

Definition IV.3. Seien M = (M,T,A) eine Mannigfaltigkeit der Dimension m ∈ N, q ∈ M
und φ = (U, x) ∈ A mit U ∋ q. Wir definieren

(+) : Tq[M]× Tq[M] → Tq[M] und (·) : R× Tq[M] → Tq[M] (IV.9)

durch

[γ] + λ · [γ̃] := Θ−1
φ,q

(
Θφ,q[γ] + λ ·Θφ,q[γ̃]

)
. (IV.10)

Lemma IV.4. Die Abbildungen (+) und (·) in Definition IV.3 sind wohldefiniert, und Tq[M]
ist bezüglich dieser Verknüpfungen ein reeller Vektorraum der Dimension m.

Beweis. Zunächst bemerken wir, dass sich die Vektorraumeigenschaften für Tq[M] leicht aus
den entsprechenden Eigenschaften in Rm ergeben. Beispielsweise erhält man die Kommutati-
vität der Addition aus

[γ] + [γ̃] = Θ−1
φ,q

(
Θφ,q[γ] + Θφ,q[γ̃]

)
= Θ−1

φ,q

(
Θφ,q[γ̃] + Θφ,q[γ]

)
= [γ̃] + [γ] . (IV.11)

Nicht so offensichtlich ist die Wohldefiniertheit der Verknüpfungen, d.h. die Kartenunabhängig-
keit von (IV.10). Seien dazu γ, γ̃ ∈ T̃q[M], λ ∈ R, und φ = (U, x), ψ = (V, y) ∈ A mit q ∈ U∩V .
Dann ist wegen der Linearität der Ableitung von y ◦ x−1

Θψ,q[γ] + λ ·Θψ,q[γ̃] =
d

dt

(
y ◦ γ

)∣∣∣
t=0

+ λ ·
d

dt

(
y ◦ γ̃

)∣∣∣
t=0

= Jy◦x−1 [x(q)] ·
{ d

dt

(
x ◦ γ

)∣∣∣
t=0

+ λ ·
d

dt

(
x ◦ γ̃

)∣∣∣
t=0

}

= Jy◦x−1 [x(q)] ·
(
Θφ,q[γ] + λ ·Θφ,q[γ̃]

)
. (IV.12)
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Ist andererseits ν ∈ Rm und γν ∈ T̃q[M] wieder durch (IV.7) definiert, wobei ε > 0 so klein
gewählt wird, dass [y(q) + (−ε, ε)]ν ⊂ y(V ) gilt, so ist nach (IV.8)

Θ−1
φ,q(ν) = [γν ] =

[
x−1

(
x(q) + tν

)]
(IV.13)

und somit
[
Θψ,q ◦Θ

−1
φ,q

]
(ν) = Θψ,q[γν ] = Jy◦x−1[x(q)] · ν , (IV.14)

d.h. Θψ,q ◦Θ
−1
φ,q ∈ L(Rm) und

Θψ,q ◦Θ
−1
φ,q = Jy◦x−1[x(q)] =

(
∂
(
yi[x−1(x)]

)

∂xj

∣∣∣∣
x=x(q)

)m

i,j=1

. (IV.15)

Insbesondere ist auch

Θ−1
ψ,q

(
Θψ,q[γ] + λ ·Θψ,q[γ̃]

)
= Θ−1

ψ,q

[
Jy◦x−1[x(q)] ·

(
Θφ,q[γ] + λ ·Θφ,q[γ̃]

)]

= Θ−1
φ,q

(
Θφ,q[γ] + λ ·Θφ,q[γ̃]

)
, (IV.16)

und die in (IV.9)-(IV.10) definierten Verküpfungen sind wohldefiniert. Nach Glg. (IV.10) gilt

Θφ,q

(
[γ] + λ · [γ̃]

)
= Θφ,q[γ] + λ ·Θφ,q[γ̃] , (IV.17)

für alle γ, γ̃ ∈ T̃q[M] und λ ∈ R, d.h. Θφ,q : Tq[M] → Rm ist ein bijektiver Vektorraumisomor-
phismus, also ein Isomorphismus.

Bemerkungen und Beispiele.

• Für M = (Rm,Teukl, idRm) und q ∈ R
m ist Tq[R

m] = R
m.

• Seien V ⊆ R2 offen und nichtleer und g ∈ C∞(V ;R3) injektiv, mit

∀ (r, s) ∈ V : g(r, s) :=



x(r, s)
y(r, s)
z(r, s)


 . (IV.18)

Dann ist M = (M,Trel, {φ}) mit M = g(V ) und φ = (M, g−1) eine zweidimensionale
Mannigfaltigkeit. Ist nun q = g(r0, s0) ∈M , so betrachten wir

γ1(t) := g(r0 + t, s0) , γ2(t) := g(r0, s0 + t) , (IV.19)

für |t| < ε≪ 1. Offenbar sind γ1, γ2 ∈ T̃q[M] und

g−1 ◦ γ1(t) := (r0 + t, s0) , g−1 ◦ γ2(t) := (r0, s0 + t) , (IV.20)

Also sind

Θφ,q[γ1] =
d

dt

(
g−1 ◦ γ1

)∣∣∣
t=0

=

(
1
0

)
, (IV.21)

Θφ,q[γ2] =
d

dt

(
g−1 ◦ γ2

)∣∣∣
t=0

=

(
0
1

)
. (IV.22)
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Definition IV.5. Seien M = (M,T,A) eine Mannigfaltigkeit der Dimension m ∈ N, q ∈ M
und φ = (U, x) ∈ A mit U ∋ q. Wir definieren durch

TTq[M] :=
{
Θ−1
φ,q(V )

∣∣ V ⊆ R
m , V ∈ Teukl

}
(IV.23)

eine Topologie auf Tq[M].

Bemerkungen und Beispiele.

• Nach (IV.15) ist für φ = (U, x), ψ = (V, y) ∈ A mit q ∈ U ∩ V die Abbildung Θψ,q ◦

Θ−1
φ,q = Jy◦x−1 [x(q)] ein Iso- und deshalb auch ein Homöomorphismus. Daher ist (IV.23)

kartenunabhängig.

• (Tq[M],TTq[M]) und (Rm,Teukl) sind homöomorph.

Definition IV.6. Seien M = (M,T,A) und N = (N,S,B) zwei Mannigfaltigkeiten, q ∈ M
und f ∈ C1(M;N ). Die Ableitung Dq[f ] von f bei q ist definiert als Abbildung

Dq[f ] : Tq[M] → Tf(q)[N ] , (IV.24)

Dq[f ] := Θ−1
ψ,f(q) ◦ Jy◦f◦x−1 [x(q)] ◦Θφ,q , (IV.25)

wobei φ = (U, x) ∈ A und ψ = (V, y) ∈ B mit U ∩ f−1(V ) ∋ q.

Lemma IV.7. Die Ableitung Dq[f ] von f ∈ C1(M;N ) bei q ∈ M ist wohldefiniert, d.h.
kartenunabhängig.

Beweis. Seien φ = (U, x), φ̂ = (Û , x̂) ∈ A und ψ = (V, y), ψ̂ = (V̂ , ŷ) ∈ B Paare von Karten

mit U ∩ Û ∩ f−1(V ∩ V̂ ) ∋ q. Dann gilt mit (IV.25) und (IV.15)

D̂q[f ] := Θ−1

ψ̂,f(q)
◦ Jŷ◦f◦x̂−1[x̂(q)] ◦Θφ̂,q

= Θ−1

ψ̂,f(q)
◦ Jŷ◦y−1[(y ◦ f)(q)] ◦ Jy◦f◦x−1 [x(q)] ◦ Jx◦x̂−1[x̂(q)] ◦Θφ̂,q

= Θ−1

ψ̂,f(q)
◦Θψ̂,f(q) ◦Θ

−1
ψ,f(q) ◦ Jy◦f◦x−1 [x(q)] ◦ Jx◦x̂−1 [x̂(q)] ◦Θφ,q ◦Θ

−1

φ̂,q
◦Θφ̂,q

= Θ−1
ψ,f(q) ◦ Jy◦f◦x−1[x(q)] ◦Θφ̂,q = Dq[f ] . (IV.26)

Lemma IV.8. Seien M = (M,T,A) und N = (N,S,B) zwei Mannigfaltigkeiten, q ∈M und

f ∈ C1(M;N ) und γ ∈ T̃q[M]. Dann ist

Dq[f ]
(
[γ]

)
= [f ◦ γ] . (IV.27)

Beweis. Sind φ = (U, x) ∈ A und ψ = (V, y) ∈ B Karten mit U ∩ f−1(V ) ∋ q, so ist nach der
Kettenregel

Jy◦f◦x−1 [x(q)] ◦Θφ̂,q[γ] = Jy◦f◦x−1 [x(q)] ·
d

dt

(
x ◦ γ

)∣∣∣
t=0

=
d

dt

(
y ◦ f ◦ x−1 ◦ x ◦ γ

)∣∣∣
t=0

=
d

dt

(
y ◦ f ◦ γ

)∣∣∣
t=0

= Θψ,f(q)[f ◦ γ] . (IV.28)
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Also ist

Dq[f ]
(
[γ]

)
= Θ−1

ψ,f(q) ◦ Jy◦f◦x−1[x(q)] ◦Θφ̂,q[γ] = [f ◦ γ] . (IV.29)

Definition IV.9. Seien M = (M,T,A) eine Mannigfaltigkeit der Dimension m ∈ N und
U ⊆M offen und nichtleer.

(i) Wir definieren die Mengen

T [M] :=
⊔

q∈M

Tq[M] :=
⋃

q∈M

(
{q} × Tq[M]

)
, (IV.30)

T [U ] :=
⊔

q∈U

Tq[M] :=
⋃

q∈U

(
{q} × Tq[M]

)
⊆ T [M] . (IV.31)

(ii) Ist φ = (U, x) ∈ A eine Karte, so definieren wir für γ ∈ T̃q[M]

Θφ : T [U ] → x(U)×R
m ,

(
q, [γ]

)
7→

(
x(q),Θφ,q[γ]

)
. (IV.32)

(iii) Wir definieren auf T [M] eine Topologie durch

TT [M] :=
{
Θ−1
φ (V )

∣∣ φ = (U, x) ∈ A , V ⊆ x(U)×R
m offen

}
. (IV.33)

Bemerkungen und Beispiele.

• Das System T [M] wird in der Literatur auch häufig etwas unpräzise mit
⋃
q∈M Tq[M]

bezeichnet. Diese ist jedoch etwas irreführend, da alle Tangentialräume isomorph zu R
m

sind und man sie alle identifizieren könnte. Eine Alternative bietet noch die Bezeichnung

T [M] =
⊔

q∈M

Tq[M] :=
(
Tq[M]

)
q∈M

(IV.34)

=
{
v :M →

⋃

q∈M

Tq[M]
∣∣∣ ∀ q ∈M : vq ∈ Tq[M]

}
.

• Das System TT [M] ⊆ P
(
T [M]

)
ist die kleinste Topologie auf T [M], sodass Θφ : T [U ] →

x(U)×Rm für alle φ = (U, x) ∈ A Homöomorphismen sind.

Nachdem wir den Tangentialraum T [M] topologisiert haben, wollen wir ihn auch als Manngi-
faltigkeit darstellen. Dazu definieren wir verträgliche Karten.

Lemma IV.10. Seien M = (M,T,A) eine Mannigfaltigkeit der Dimension m ∈ N und φ =
(U, x), ψ = (V, y) ∈ A zwei mit A (und miteinander) verträgliche Karten von M. Dann sind(
T [U ],Θφ

)
und

(
T [V ],Θψ

)
zwei miteinander verträgliche Karten von T [M].
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Beweis. Nach der obigen Bemerkung zu (IV.34) sind Θφ : T [U ] → x(U) × Rm und Θψ :
T [V ] → x(V ) × Rm Homöomorphismen. Zum Nachprüfen der Verträglichkeit können wir
o.B.d.A. W := U ∩ V 6= ∅. Nach (IV.15) ist dann

∀ [x(q), ν] ∈ x(U)×R
m : Θ−1

φ

(
[x(q), ν]

)
=

[
q, Θ−1

φ,q(ν)
]
, (IV.35)

woraus wir
[
Θψ ◦Θ−1

φ

](
[x(q), ν]

)
= Θψ

[
q, Θ−1

φ,q(ν)
]

=
(
y(q) ,

(
Θψ,q ◦Θ

−1
φ,q

)
[ν]

)

=
(
y(q) , Jy◦x−1 [x(q)] · ν

)
(IV.36)

erhalten. Für alle (ξ, ν) ∈ x(W )×R
m ⊆ R

m ×R
m ist also

(
Θψ ◦Θ−1

φ

)
[(ξ, ν)] =

(
[y ◦ x−1](ξ) , Jy◦x−1 [ξ] · ν

)
. (IV.37)

Mit (y ◦ x−1) ∈ C∞[x(W ); y(W )] ist somit auch

Θψ ◦Θ−1
φ ∈ C∞

[
x(W )×R

m ; y(W )×R
m
]
. (IV.38)

Unter Berufung auf Lemma IV.10 stellt das System

T [A] :=
{(
T [U ],Θφ

) ∣∣∣ φ = (U, x) ∈ A
}

(IV.39)

offenbar einen Atlas von T [M] dar, das wir nun als Mannigfaltigkeit definieren.

Definition IV.11. Sei M = (M,T,A) eine Mannigfaltigkeit der Dimension m ∈ N. Die
Mannigfaltigkeit T [M] =

(
T [M ],TT [M], T [A]

)
der Dimension 2m bezeichnen wir als Tangen-

tenbündel von M.

Bemerkungen und Beispiele.

• Seien M ⊆ R
m offen und {φ = (M, idRm)} ein Atlas von M . Mit q ∈ M , v ∈ R

m und
γ(t) := q + tv ist

Θφ(q, [γ]) =
(
q , d

dt
{q + tv}|t=0

)
= (q, v) . (IV.40)

Somit ist T [M ] diffeomorph zu M × Rm. Lokal hat das Tangentenbündel stets diese
Produktform (innerhalb eines Kartenbereichs). Nicht alle Tangentenbündel sind jedoch
auch global von dieser Form.

• Es ist z.B. T [S1] diffeomorph zu S1 ×R, aber T [S2] ist nicht diffeomorph zu S2 ×R2.

• Eine Mannigfaltigkeit M = (M,T,A) der Dimension m, deren Tangentenbündel T [M]
diffeomorph zu M ×Rm ist, nennt man parallelisierbar.

• Über Produktkarten sieht man, dass T [M×N ] = T [M]× T [N ] gilt.
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IV.2. Kotangentialraum

Parallel zur Konstruktion des Tangentialraums und des Tangentenbündels läuft die des Kotan-
gentialraums und des Kotangentenbündels einer Mannigfaltigkeit.

Definition IV.12. Seien M = (M,T,A) eine Mannigfaltigkeit, q ∈M und

T̃ ∗

q [M] :=
⋃

U∈T(q)

C1(U ;R) . (IV.41)

Zwei reelle Funktionen f, f̃ ∈ T̃ ∗
q [M] heißen kotangential bei q, [f ]∗ = [f̃ ]∗

:⇔ ∃ (U, x) ∈ A, U ∋ q : Jf◦x−1 [x(q)] = Jf̃◦x−1 [x(q)] . (IV.42)

Bemerkungen und Beispiele.

• Wie Glg. (IV.2) ist auch Glg. (IV.42) kartenunabhängig und gleichwertig mit

∀ (U, x) ∈ A, U ∋ q : Jf◦x−1 [x(q)] = Jf̃◦x−1 [x(q)] . (IV.43)

• Die Eigenschaft zweier Funktionen f, f̃ ∈ T̃ ∗
q [M], kotangential bei q ∈M zu sein, ist eine

Äquivalenzrelation.

Definition IV.13. Seien M = (M,T,A) eine Mannigfaltigkeit der Dimension m ∈ N und
q ∈M .

(i) Die Menge

T ∗

q [M] := T̃ ∗

q [M]/[·]∗ =
{
[f ]∗

∣∣ f ∈ T̃ ∗

q [M]
}

(IV.44)

der Äquivalenzklassen heißt Kotangentialraum bei q.

(ii) Ist φ = (U, x) ∈ A mit U ∋ q, so definieren wir

Θ∗

φ,q : T
∗

q [M] → R
m , [f ]∗ 7→ Jf◦x−1 [x(q)] . (IV.45)

Bemerkungen und Beispiele.

• Die Abbildung Θ∗
φ,q ist offensichtlich injektiv definiert. Sind nun µ ∈ Zm

1 und xµ ∈ C∞(U :

R) die µ. Koordinate von x = (x1, x2, . . . , xm), so ist xµ ∈ T̃ ∗
q [M], und mit x(q) = x =

(x1, x2, . . . , xm) ist

Θ∗

φ,q[x
µ]∗ = Jxµ◦x−1[x(q)] =

(
∂(xµ ◦ x−1)[x]

∂x1

∣∣∣∣
x=x(q)

, . . . ,
∂(xµ ◦ x−1)[x]

∂xm

∣∣∣∣
x=x(q)

)

=

(
∂xµ

∂x1

∣∣∣∣
x=x(q)

, . . . ,
∂xµ

∂xm

∣∣∣∣
x=x(q)

)
= eµ , (IV.46)
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wobei eµ den kanonischen Basisvektor in die µ. Koordinatenrichtung notiert. Setzen wir
zu v = (v1, . . . , vm) ∈ Rm auch

fw := w1 · x1 + w2 · x2 + . . .+ wm · xm , (IV.47)

so ist nach (IV.46)

Θ∗

φ,q[fw]
∗ =

m∑

µ=1

wµ · xµ = w , (IV.48)

und Θ∗
φ,q ist auch surjektiv, also bijektiv.

Definition IV.14. Seien M = (M,T,A) eine Mannigfaltigkeit der Dimension m ∈ N, q ∈M
und φ = (U, x) ∈ A mit U ∋ q. Wir definieren

(+) : T ∗

q [M]× T ∗

q [M] → T ∗

q [M] und (·) : R× T ∗

q [M] → T ∗

q [M] (IV.49)

durch

[γ] + λ · [γ̃] := Θ−1
φ,q

(
Θφ,q[γ] + λ ·Θφ,q[γ̃]

)
. (IV.50)

Lemma IV.15. Die Abbildungen (+) und (·) in Definition IV.14 sind wohldefiniert, und T ∗
q [M]

ist bezüglich dieser Verknüpfungen ein reeller Vektorraum der Dimension m.

Wir verzichten auf den Beweis von Lemma IV.15, leiten aber die (IV.15) entsprechende Identität
her. Seien φ = (U, x), ψ = (V, y) ∈ A mit q ∈ U ∩V . Aus (IV.47)-(IV.48) erhalten wir, dass für
alle w ∈ Rm

(Θ∗

φ,q)
−1[w] = [fw]

∗ =

[ m∑

µ=1

wµ · xµ
]∗
. (IV.51)

Für µ ∈ Zm
1 ist also

(
Θ∗

ψ,q ◦ (Θ
∗

φ,q)
−1[w]

)
µ

=
(
Θ∗

ψ,q[fw]
∗
)
µ

=
(
Jfw◦y−1 [y(q)]

)
µ

(IV.52)

=

(
∂

∂ξµ

[ m∑

τ=1

wτ x
τ [y−1(ξ)]

]∣∣∣
ξ=y(q)

)

µ

=

m∑

τ=1

wτ
(
Jx◦y−1 [y(q)]

)
τ,µ
,

was gleichwertig ist mit

Θ∗

ψ,q ◦ (Θ
∗

φ,q)
−1 = JTx◦y−1[y(q)] =

(
∂
(
xj[y−1(y)]

)

∂yi

∣∣∣∣
y=y(q)

)m

i,j=1

, (IV.53)

wobei AT die zu A transponierte Matrix ist.

Definition IV.16. Seien M = (M,T,A) eine Mannigfaltigkeit der Dimension m ∈ N und
U ⊆M offen und nichtleer.
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(i) Wir definieren die Mengen

T ∗[M] :=
⊔

q∈M

T ∗

q [M] :=
⋃

q∈M

(
{q} × T ∗

q [M]
)
, (IV.54)

T [U ] :=
⊔

q∈U

T ∗

q [M] :=
⋃

q∈U

(
{q} × Tq[M]

)
⊆ T [M] . (IV.55)

(ii) Ist φ = (U, x) ∈ A eine Karte, so definieren wir für f ∈ T̃ ∗
q [M]

Θφ : T ∗[U ] → x(U)×R
m ,

(
q, [f ]∗

)
7→

(
x(q),Θφ,q[f ]

∗
)
. (IV.56)

(iii) Wir definieren auf T ∗[M] eine Topologie durch

TT ∗[M] :=
{(

Θ∗

φ

)−1
(V )

∣∣∣ φ = (U, x) ∈ A , V ⊆ x(U)×R
m offen

}
. (IV.57)

Lemma IV.17. Seien M = (M,T,A) eine Mannigfaltigkeit der Dimension m ∈ N und φ =
(U, x), ψ = (V, y) ∈ A zwei miteinander verträgliche Karten von M. Dann sind

(
T ∗[U ],Θ∗

φ

)

und
(
T ∗[V ],Θ∗

ψ

)
zwei miteinander verträgliche Karten von T ∗[M].

Definition IV.18. Sei M = (M,T,A) eine Mannigfaltigkeit der Dimension m ∈ N. Die
Mannigfaltigkeit T ∗[M] =

(
T ∗[M ],TT ∗[M], T

∗[A]
)
der Dimension 2m bezeichnen wir als Ko-

tangentenbündel von M, wobei

T ∗[A] :=
{(
T ∗[U ], Θ∗

φ

) ∣∣∣ φ = (U, x) ∈ A
}
. (IV.58)

IV.3. Der Dualraum eines reellen Vektorraums

Wir erinnern als Nächstes an den Begriff des Dualraums eines reellen Vektorraums, wobei wir
den komplexen Fall nur deswegen nicht behandeln, weil er in dieser Vorlesung keine Rolle spielt
(und nicht, weil dieser Fall wäre). Wir nehmen im Weiteren an, dass

(
E, ‖ · ‖

)
ein reeller

Banachraum ist, d.h. ein vollständiger normierter Vektorraum über R. Die nun eingeführten
Begriffe lassen sich auch für allgemeine topologischer Vektorräume einführen, worauf wir jedoch
verzichten.

Ist
(
E, ‖ · ‖

)
ein reeller Banachraum, so nennen wir

E∗ := B(E;R) =
{
x∗ : E → R

∣∣ x∗ ist linear und stetig
}

(IV.59)

den (topologischen) Dualraum von E.

Bemerkungen und Beispiele.

• Es ist üblich, für x∗ ∈ E∗ und x ∈ E

x∗(x) =: 〈x∗ , x〉 (IV.60)

zu schreiben.
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• Für endlich-dimensionale Vektorräume ist die Forderung der Stetigkeit an x∗ ∈ E∗ obsolet,
denn in diesem Fall sind alle linearen Abbildungen stetig.

• Da E ein normierter Raum ist, ist E∗ als Raum der beschränkten linearen Operatoren
von E nach R selbst ein Banachraum mit Norm

‖x∗‖E∗ = sup
{∣∣〈x∗, x〉

∣∣ : x ∈ E , ‖x‖ ≤ 1
}
. (IV.61)

• Sind E und F zwei reelle Banachräume und L ∈ B(E;F ), so wird für festes y∗ ∈ F ∗ durch
x 7→ 〈x∗, Lx〉 eine stetige lineare Abbildung E → R definiert. Diese bezeichnet man als
zu L transponierte Abbildung LT : F ∗ → E∗, sodass

∀ y∗ ∈ F ∗, x ∈ E : 〈LTy∗ , x〉 = 〈y∗ , Lx〉 . (IV.62)

• Sind weiterhin dim(E) = m ∈ N und {e1, e2, . . . , em} ⊆ E eine Basis, so ist auch
dim(E∗) = m, und es existiert eine eindeutige Basis {e∗1, e

∗
2, . . . , e

∗
m} ⊆ E∗ so, dass

∀ i, j ∈ Z
m
1 : 〈e∗i , ej〉 = δi,j . (IV.63)

Dies ist leicht einzusehen:

– Jeder Vektor x ∈ E besitzt eine eindeutige Darstellung x = α1e1 + . . .+ αmem. Wir
definieren e∗i ∈ E∗ durch 〈e∗i , x〉 := αi, für i ∈ Zm

1 . Dann ist e∗i offensichtlich linear,
und {e∗1, e

∗
2, . . . , e

∗
m} ⊆ E∗ erfüllt (IV.63).

– Ist β1e
∗
1 + . . . + βme

∗
m = 0, so folgt aus (IV.63) für jedes j ∈ Zm

1 , dass 0 = 〈β1e∗1 +
. . .+ βme

∗
m , ej〉 = βj, und {e∗1, e

∗
2, . . . , e

∗
m} ⊆ E∗ ist linear unabhängig.

– Schließlich ist ℓ∗ ∈ E∗ eindeutig bestimmt durch die Bilder γ1 := 〈ℓ∗, e1〉, . . . , γm :=
〈ℓ∗, em〉 der Basisvektoren e∗1, e

∗
2, . . . , e

∗
m, und wir erhalten ℓ∗ = γ1e

∗
1 + . . .+ γme

∗
m ∈

span
[
{e∗1, . . . , e

∗
m}

]
.

• Schließlich bemerken wir, dass ein Basiswechsel L ∈ B(E;E), det[L] 6= 0, den Basiswechsel
(L−1)T ∈ B(E∗;E∗) in E∗ induziert.

– Sind nämlich ê1 = Le1, . . . , êm = Lem und {ê∗1, . . . , ê
∗
m} ⊆ E∗ die Basis mit 〈ê∗i , êj〉 =

δi,j, so gilt

δi,j = 〈ê∗i , êj〉 = 〈ê∗i , Lej〉 = 〈LT ê∗i , ej〉 , (IV.64)

für alle i, j ∈ Zm
1 .

– Daraus folgt, dass LT ê∗i = ei bzw. ê
∗
i = (LT )−1ei = (L−1)T ei.

• Für
(
E, ‖ · ‖

)
=

(
R
m, ‖ · ‖eukl

)
mit der Standardbasis {e1, e2, . . . , em} ⊆ R

m sind (Rm)∗ =
Rm und 〈e∗i , ·〉 = 〈ei|·〉eukl.

Definition IV.19. Seien M = (M,T,A) eine Mannigfaltigkeit der Dimension m ∈ N, q ∈M
und φ = (U, x) ∈ A mit U ∋ q. Sei weiterhin {e1, e2, . . . , em} ⊆ Rm die Standardbasis. Für
i, j ∈ Zm

1 setzen wir

∂

∂xj
:=

∂

∂xj(q)
:= Θ−1

φ,q(ej) ∈ Tq[M] , (IV.65)

dxi := dxi(q) := (Θ∗

φ,q)
−1(ei) ∈ T ∗

q [M] . (IV.66)
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Lemma IV.20.

(i) Die Teilmengen
{

∂
∂x1
, . . . , ∂

∂xm

}
⊆ Tq[M] und

{
dx1, . . . , dxm

}
⊆ T ∗

q [M] sind Basen.

(ii) Für f ∈ T̃ ∗
q [M] und γ ∈ T̃q[M] sei

〈
[f ]∗ , [γ]

〉
:=

〈
Θ∗

φ,q[f ]
∗

∣∣∣Θφ,q[γ]
〉
eukl

. (IV.67)

Dann ist

(
Tq[M]

)∗
= Tq[M]∗ , (IV.68)

und es gilt

∀ i, j ∈ Z
m
1 :

〈
dxi ,

∂

∂xj

〉
= δi,j . (IV.69)

Beweis. (i): folgt sofort aus der Tatsache, dass Θφ,q : Tq[M] → Rm und Θ∗
φ,q : Tq[M]∗ → Rm

Isomorphismen sind.

(ii): Die Linerarität von Θφ,q und Θ∗
φ,q sowie die Bilinearität des euklidschen Skalarprodukts

auf Rm sichern, dass (IV.67) ein lineares Funktional auf Tq[M] definiert, d.h. es gelten [f ]∗ ∈(
Tq[M]

)∗
und deshalb auch Tq[M]∗ ⊆

(
Tq[M]

)∗
. Da beide Vektorräume Dimension m haben,

müssen sie gleich sein, und es folgt (IV.68).

Glg. (IV.69) ergibt sich aus

〈
dxi ,

∂

∂xj

〉
=

〈
(Θ∗

φ,q)
−1(ei) , Θ

−1
φ,q(ej)

〉
= 〈ei|ej〉eukl = δi,j . (IV.70)

Bemerkungen und Beispiele.

• Mit f ∈ T̃ ∗
q [M], γ ∈ T̃q[M] und φ = (U, x) ∈ A mit U ∋ q ist

〈
[f ]∗ , [γ]

〉
=

〈
Θ∗

φ,q[f ]
∗

∣∣∣Θφ,q[γ]
〉
eukl

=
〈
Jf◦x−1 [x(q)]

∣∣∣ d
dt

(
x ◦ γ

)∣∣
t=0

〉
eukl

=
m∑

µ=1

∂(f ◦ x−1)[ξ]

∂ξµ

∣∣∣
ξ=x(q)

d

dt

(
xµ ◦ γ

)∣∣
t=0

〉
eukl

=
d

dt

(
f ◦ γ

)∣∣
t=0

, (IV.71)

nach der Kettenregel. In (IV.71) ist die Kartenunabhängigkeit manifest.

• Sind φ = (U, x), ψ = (V, y) ∈ A mit q ∈ U ∩ V , so ist, für alle j ∈ Zm
1

∂

∂yj
= Θ−1

ψ,q[ej ] = Θ−1
φ,q ◦

(
Θφ,q ◦Θ

−1
ψ,q

)
[ej] = Θ−1

φ,q

(
Jx◦y−1 [y(q)]

)
[ej]

=

m∑

i=1

(
Jx◦y−1 [y(q)]

)
j,i
Θ−1
φ,q[ei] =

m∑

i=1

∂
(
xi[y−1(y)]

)

∂yj

∣∣∣
y=y(q)

∂

∂xi
. (IV.72)
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• Genauso erhalten wir

dyi(q) =
(
Θ∗

ψ,q

)−1
[ei] =

(
Θ∗

φ,q

)−1
◦
[
Θ∗

φ,q ◦
(
Θ∗

ψ,q

)−1
]
[ei] =

(
Θ∗

φ,q

)−1
◦
(
Jy◦x−1 [x(q)]

)
[ei]

=

m∑

j=1

∂
(
yi[x−1)(x)]

)

∂xj

∣∣∣
x=x(q)

dxj(q) . (IV.73)

• Die Definitionen der Basisvektoren ∂
∂xj(q)

∈ Tq[M] und dxi(q) ∈ T ∗
q [M] stellen also gleich-

zeitig eine Merkregel für ihre Transformation unter Kartenwechsel dar.
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