IV. Tangential- und Kotangentialraum

IV.1. Tangentialraum

Definition IV.1. Seien M = (M, %, A) eine Mannigfaltigkeit, ¢ € M und

T M] == {y€C'(a,b); M] | a<0<b, 4(0)=q} (IV.1)

der Raum aller C'-Kurven 7 in M mit v(0) = ¢. Zwei Kurven v, 5 € T,[M] heiBen tangential,

=01
- ae=7)
=0  dt\" 7
Bemerkungen und Beispiele.
e Glg. (IV.2) ist kartenunabhéngig. Gilt (IV.2) und sind (U, z), (V,y) € Amit ¢ € UNV,
SO ist

IU,z) €A, Usq: %(@7) (IV.2)

_ %{[(yog—l)o(:ﬁoy)”to [(yog_ )O(ZEO’Y):Ht*O}
i le@)] - { (2o — T@ol) = 0. av

Daher ist Glg. (IV.2) gleichwertig mit

e Die Eigenschaft zweier C'-Kurven, bei ¢ € M tangential zu sein, definiert eine Aquiva-
lenzrelation.

VU) eA Usg:  (zon)

=0

Definition IV.2. Seien M = (M, %, A) eine Mannigfaltigkeit der Dimension m € IN und
qe M.
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(i) Die Familie
T,M] = TM/[) = {1 |~ € T M]} (IV.5)
der Aquivalenzklassen heifft Tangentialraum an q.

(ii) Ist ¢ = (U,z) € Amit U 5 ¢, so definieren wir

m d
Osqt TM] = R™, ] = = (z09)

(IV.6)

=0
Bemerkungen und Beispiele.

e Die Abbildung ©,, : T,[M] — R™ ist eine Bijektion, denn offensichtlich ist ©, , nach
Glg. (IV.4) injektiv. Wahlen wir € > 0 geniigend klein und definieren zu v € R™ eine
Kurve v, € C![(—¢,¢); M] durch

Wt) = z ' z(q) + tv], (IV.7)
so ist v € T,[M] und

OpqlV] = % (z o %)

und Oy, ist damit auch surjektiv.

= v, (IV.8)

= 2 [xlq) + 1] o

t=0 dt

Definition IV.3. Seien M = (M, %, A) eine Mannigfaltigkeit der Dimension m € IN, ¢ € M
und ¢ = (U, z) € A mit U 5 q. Wir definieren

() : TIM) X TIM] = T,M] und () R x T,[M] = T,[M] (Iv.9)
durch
1+ 2B = 074 (80ab] + A-04,04]) (IV.10)

Lemma IV.4. Die Abbildungen (4) und (-) in Definition IV.3 sind wohldefiniert, und 7,,[M]
ist beziiglich dieser Verkniipfungen ein reeller Vektorraum der Dimension m.

Beweis. Zunéchst bemerken wir, dass sich die Vektorraumeigenschaften fiir 7, [M] leicht aus
den entsprechenden Eigenschaften in R™ ergeben. Beispielsweise erhilt man die Kommutati-
vitat der Addition aus

P+ 1] = 0;4(0sa] + Ougld]) = O54(Oualil+Os4l) = [+ 1. (IV.11)

Nicht so offensichtlich ist die Wohldefiniertheit der Verkniipfungen, d.h. die Kartenunabhéngig-
keit von (IV.10). Seien dazu y,5 € Ty[M], A € R,und ¢ = (U, z),¢ = (V,y) € Amit g € UNV.

Dann ist wegen der Linearitét der Ableitung von y o !

Ouahl T30l = S(yom)| _ +r-S(yos)|
= el { e, + A yleod)| )
= Ty [2(0)] -+ (O0gl1] + A O[3 (IV.12)
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Ist andererseits v € R™ und v, € fq[/\/l] wieder durch (IV.7) definiert, wobei € > 0 so klein
gewahlt wird, dass [y(q) + (—¢,¢)]v C y(V) gilt, so ist nach (IV.8)

0,0v) = [nl = [z7'(2lg) + tv)] (IV.13)

und somit

[@ﬂaq © @qf,ﬂ (V) = Oygln] = Jgoz‘l[i(qn v, (IV.14)

d.h. ©y,00,, € L(R™) und

@quo@;j; = Jg@z*@(‘])] =

(q))m . (IV.15)

Insbesondere ist auch

071 (Oual) + 2 0ulil) = 07, [Juer12(@)] - (Buali] + 1+ Of3])|

- @d_%lq (@@q['ﬂ +A- @qﬁ,q['?]) 5 (IV.16)
und die in (IV.9)-(IV.10) definierten Verkiipfungen sind wohldefiniert. Nach Glg. (IV.10) gilt
54V +A-[7]) = Opalr]+ A 04,4031, (IV.17)

fiir alle 7,5 € T,[M] und A € R, d.h. O, : T,[M] — R™ ist ein bijektiver Vektorraumisomor-
phismus, also ein Isomorphismus. O

Bemerkungen und Beispiele.
e Fiir M = (R™, Tey, idgm) und ¢ € R™ ist T,[R™] = R™.
e Seien V C R? offen und nichtleer und g € C°°(V; R?) injektiv, mit
x(r, s)

V(r,s)eV: g(rs) = ygr,s; . (IV.18)

Dann ist M = (M, %, {¢}) mit M = g(V) und ¢ = (M, g ') eine zweidimensionale
Mannigfaltigkeit. Ist nun ¢ = g(ro, s9) € M, so betrachten wir

m(t) == glro+1t,5), () = g(ro,so+1t), (IV.19)

fiir |£| < e < 1. Offenbar sind 71,2 € T,[M] und

g lom(t) = (ro+t,50), g lom(t) = (ro,s0+1), (IV.20)
Also sind
d,  _ 1
Osalm] == (97" om) T (0) : (IV.21)
d, _ 0
Opalre] =2 (97 0m)| = (1) : (IV.22)
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Definition IV.5. Seien M = (M, %, A) eine Mannigfaltigkeit der Dimension m € N, ¢ € M
und ¢ = (U, z) € A mit U > q. Wir definieren durch

gTq[M} = {@(;_5,1]<V) ‘ Vv g Rma Ve (Zeukl} (IVQ?))
eine Topologie auf T,[M].

Bemerkungen und Beispiele.

e Nach (IV.15) ist fiir ¢ = (U,2),¢ = (V,y) € Amit ¢ € UNV die Abbildung ©,, o
o, 1 = Jyoz-1[2(q)] ein Iso- und deshalb auch ein Homdomorphismus. Daher ist (IV.23)
kartenunabhang1g.

o (T;IM],Zp, ) und (R™, Tey) sind hombomorph.

Definition IV.6. Seien M = (M,%, A) und N = (N, S, B) zwei Mannigfaltigkeiten, ¢ € M
und f € CY(M;N). Die Ableitung D,[f] von f bei q ist definiert als Abbildung

Dy[f]: TyM] — TyNT, (IV.24)
Dy[f] = @¢1f(q yofoz™ 1[z(q)] 0 O, (IV.25)
wobei ¢ = (U,z) € Aund ¢ = (V,y) e Bmit UN f~1(V) 3 ¢q.

Lemma IV.7. Die Ableitung D,[f] von f € C'(M;N) bei ¢ € M ist wohldefiniert, d.h.
kartenunabhéngig.

Beweis. Seien ¢ = (U, z),¢ = ((7,@ € Aund ¢ = (V, g)ﬂ/; = (‘7,@ € B Paare von Karten
mit UNU N f~(V NV) 3 ¢ Dann gilt mit (IV.25) und (IV.15)

Dylf] =07} 0 Jypesi[tla)] 0 O,

—@;f 0 Tyoy 11y © (@] 0 Tyogos-1[2(@)] © Ty 1[2(0)] 0 O,

= 07 00110 ° O30 © yosor 1 [2(a)] © Jyos 1 [£(0)] 0 Op g 0 07 0.6

= 0% © Tuerort2(@)] 005, = D,lJ]. (1V.26)
O

Lemma IV.8. Seien M = (M, %, A) und N = (N, &, B) zwei Mannigfaltigkeiten, ¢ € M und
feCY {M;N) und v € T,[M]. Dann ist

D[fI(h) = [fenl. (IV.27)

Beweis. Sind ¢ = (U,z) € Aund ¢ = (V,y) € B Karten mit U N f~'(V) 3 ¢, so ist nach der
Kettenregel

d d
Tyosor=1[2(q)] 05,0 = Jgofof@(q”@(zov)‘t:o = S (yofoatozoq)|
d
@(QOJCOV)LZO = Oy lf o] (IV.28)
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Also ist

DylfI() = O, © Jyeror1[2(@)] 005,10 = [fon]. (IV.29)

Definition IV.9. Seien M = (M, %, A) eine Mannigfaltigkeit der Dimension m € IN und
U C M offen und nichtleer.

(i) Wir definieren die Mengen

M) = | | TM] = | ({q}qu[M]>, (IV.30)
Tv] = || TM) = | ({a} x TIM) € TIM]. (IV.31)

(i) Ist ¢ = (U,z) € A eine Karte, so definieren wir fiir v € T, [M]

O, : T[U] = z(U)xR™, (a,[1]) = (2(a).Op4l])- (IV.32)

(i) Wir definieren auf T[M)] eine Topologie durch

Trg = {60,'(V) | o= (U,z) € A, V Cz(U) x R™ offen} . (IV.33)

Bemerkungen und Beispiele.

e Das System T[M)] wird in der Literatur auch haufig etwas unprizise mit (J,,, 75[M]
bezeichnet. Diese ist jedoch etwas irrefiihrend, da alle Tangentialrdume isomorph zu R™
sind und man sie alle identifizieren kénnte. Eine Alternative bietet noch die Bezeichnung

TM] = | | M) = (Tq[/\/l]) (IV.34)

eM
qeM q

:{U:M% UTq[M]’vqu: quTq[M]}.

qeEM

e Das System Trng C B(T[M)]) ist die kleinste Topologie auf T'[M], sodass O, : T[U] —
z(U) x R™ fir alle ¢ = (U, z) € A Homéomorphismen sind.

Nachdem wir den Tangentialraum 7'[M] topologisiert haben, wollen wir ihn auch als Manngi-
faltigkeit darstellen. Dazu definieren wir vertrégliche Karten.

Lemma IV.10. Seien M = (M, %, A) eine Mannigfaltigkeit der Dimension m € IN und ¢ =

(U,z),v = (V,y) € A zwei mit A (und miteinander) vertrigliche Karten von M. Dann sind
(T[U],©4) und (T'[V],O) zwei miteinander vertrigliche Karten von T[M].
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Beweis. Nach der obigen Bemerkung zu (IV.34) sind ©, : T[U] — z(U) x R™ und Oy :
TV] — z(V) x R™ Homoomorphismen. Zum Nachpriifen der Vertriglichkeit kénnen wir
0.B.d.A. W :=UnNV #{. Nach (IV.15) ist dann

Viz(g),v] € z(U) x R™: 0, ([z(q),V]) = [¢, ©,,()], (IV.35)
(0400, ([2(0). 7)) = ©ula, ©550)] = (5(0). (B0 O5})1M)
= (40) Jyerrz(@)] -v) (1V.36)

erhalten. Fiir alle ({,v) € z(W) x R™ C R™ x R™ ist also

(0v0 07 )] = (lyoa™1(©), Jpearile] ). (Iv.37)

Mit (yoz™") € C™[x(W);y(W)] ist somit auch
Oy00," € C¥[z(W) x R™; y(W) x R™]. (IV.38)
]

Unter Berufung auf Lemma IV.10 stellt das System
T[A] = {(T[U], 0,) ‘ 6= (Uz)e A} (IV.39)
offenbar einen Atlas von T[M] dar, das wir nun als Mannigfaltigkeit definieren.

Definition IV.11. Sei M = (M, %, A) eine Mannigfaltigkeit der Dimension m € IN. Die
Mannigfaltigkeit T[M] = (T[M], Tring, T[A]) der Dimension 2m bezeichnen wir als Tangen-
tenbiindel von M.

Bemerkungen und Beispiele.
e Seien M C R™ offen und {¢ = (M,idgm)} ein Atlas von M. Mit ¢ € M, v € R™ und
Y(t) == q+tv ist

(0, []) = (¢, Gla+tv}l=o) = (¢:0). (IV.40)

Somit ist T[M] diffeomorph zu M x R™. Lokal hat das Tangentenbiindel stets diese
Produktform (innerhalb eines Kartenbereichs). Nicht alle Tangentenbiindel sind jedoch
auch global von dieser Form.

e Esist z.B. T[$!] diffeomorph zu $' x R, aber T'[$?] ist nicht diffeomorph zu $* x R2.

e Eine Mannigfaltigkeit M = (M, %, A) der Dimension m, deren Tangentenbiindel 7' M|
diffeomorph zu M x R™ ist, nennt man parallelisierbar.

e Uber Produktkarten sieht man, dass T[M x N = T[M] x T[N] gilt.
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IV.2. Kotangentialraum

Parallel zur Konstruktion des Tangentialraums und des Tangentenbiindels lduft die des Kotan-
gentialraums und des Kotangentenbiindels einer Mannigfaltigkeit.

Definition IV.12. Seien M = (M, %, A) eine Mannigfaltigkeit, ¢ € M und

;M) = |J CUU:R). (IV.41)
UeZ(q)
Zwei reelle Funktionen f, f € f; [M] heilen kotangential bei g, [f]* = [f]*
o AUz)e A Usq: Jpp[2()] = Jpop[z(9)]. (1v.42)
Bemerkungen und Beispiele.
e Wie Glg. (IV.2) ist auch Glg. (IV.42) kartenunabhéngig und gleichwertig mit
VUz) e A Usq: Jpu1[z(q)] = Jjoplz(q)]. (IV.43)

e Die Eigenschaft zweier Funktionen f, f € Tq* [M], kotangential bei ¢ € M zu sein, ist eine
Aquivalenzrelation.

Definition IV.13. Seien M = (M, %, A) eine Mannigfaltigkeit der Dimension m € IN und
qe M.

(i) Die Menge

Ty M) = Ty ML = {1 | f e Ty M)} (IV.44)

der Aquivalenzklassen heift Kotangentialraum bei q.

(i) Ist ¢ = (U,z) € Amit U > ¢, so definieren wir

g TyIM] = R™, " = Jpear[z(q)].- (IV.45)

q

Bemerkungen und Beispiele.

e Die Abbildung ©7} , ist offensichtlich injektiv definiert. Sind nun p € Z7* und 2 € C*°(U :
R) die . Koordinate von z = (z!,22,...,2™), so ist z* € T;*[M], und mit z(q) =
(xt, 2%, ... ™) ist

xr =

B <8(£“ oz !)z]

GZ,q[Qu]* - Jy‘ogfl[l‘(q)] - 81’1

(o
 \ ozt

r=x(q)
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wobei e* den kanonischen Basisvektor in die p. Koordinatenrichtung notiert. Setzen wir
zuv = (v',...,v™) € R™ auch

fo =w' -zt +w? 22+ 4 w™ ™, (IV.47)

so ist nach (IV.46)
Op ful” = Y w2t = w, (IV.48)
pn=1

und OF , ist auch surjektiv, also bijektiv.

Definition IV.14. Seien M = (M, %, A) eine Mannigfaltigkeit der Dimension m € N, g € M
und ¢ = (U, z) € A mit U 5 q. Wir definieren

() : TAM] X TEM] = TAM] und (4) : R x TM] = TE M| (IV.49)

q

durch

]+ A (] = 074 (0ab] + A-O4,l3]) (IV50)

Lemma IV.15. Die Abbildungen (+) und (-) in Definition IV.14 sind wohldefiniert, und 77y [M]
ist beziiglich dieser Verkniipfungen ein reeller Vektorraum der Dimension m.

Wir verzichten auf den Beweis von Lemma V.15, leiten aber die (IV.15) entsprechende Identitét
her. Seien ¢ = (U, z),7 = (V,y) € Amit g € UNV. Aus (IV.47)-(IV.48) erhalten wir, dass fiir
alle w € R™

(©5,)7 ] = ()" = {zmjw_} v 1)
Fiir 1 € 77 ist also M
(%00 (€507 ul) = (€L,lh]), = (o lw(@)), (v 52)
(2 [zm; w2y (©)] ’fw)u - fj w, (e (@),
was gleichwertig ist mit _ _
0,005, =L, = (8@%; ) yg(q)):l, (IV.53)

wobei AT die zu A transponierte Matrix ist.

Definition IV.16. Seien M = (M, %, A) eine Mannigfaltigkeit der Dimension m € IN und
U C M offen und nichtleer.
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(i) Wir definieren die Mengen

M) = || oM = ({q}xT;[M]), (IV.54)
o] = [ T;M) = ({a} x TIMI) € TIM]. (IV.55)

(i) Ist ¢ = (U, z) € A eine Karte, so definieren wir fiir f € Tq* (M]
0,:T'U) — oU) xR, (aUT) = (2a)Oullfl).  (IV.50)
(iii) Wir definieren auf 7*[M] eine Topologie durch

Troppg = {(@;;)“(V) ‘ 6= (Uz)e A, VCazlU)xR" offen} . (IV.57)

Lemma IV.17. Seien M = (M, %, A) eine Mannigfaltigkeit der Dimension m € IN und ¢ =
(U,z),¢» = (V,y) € A zwei miteinander vertréigliche Karten von M. Dann sind (T*[U], ©})
und (T*[V],©;,) zwei miteinander vertriigliche Karten von T*[M)].

Definition IV.18. Sei M = (M, %, A) eine Mannigfaltigkeit der Dimension m € IN. Die
Mannigfaltigkeit T*[M] = (T*[M], Tr-nq, T*[A]) der Dimension 2m bezeichnen wir als Ko-
tangentenbiindel von M, wobei

THA] = {(T*[U], o) ’ 6= (U e A}. (IV.58)

IV.3. Der Dualraum eines reellen Vektorraums

Wir erinnern als Néchstes an den Begriff des Dualraums eines reellen Vektorraums, wobei wir
den komplexen Fall nur deswegen nicht behandeln, weil er in dieser Vorlesung keine Rolle spielt
(und nicht, weil dieser Fall wére). Wir nechmen im Weiteren an, dass (E, || - ||) ein reeller
Banachraum ist, d.h. ein vollstéindiger normierter Vektorraum iiber R. Die nun eingefiihrten
Begriffe lassen sich auch fiir allgemeine topologischer Vektorrdume einfithren, worauf wir jedoch
verzichten.

Ist (E, | -||) ein reeller Banachraum, so nennen wir
E* := B(E;R) = {2": E— R | 2" ist linear und stetig} (IV.59)

den (topologischen) Dualraum von E.

Bemerkungen und Beispiele.

e Eis ist iiblich, fir z* € E* und x €
2 (z) = (2", x) (IV.60)

zu schreiben.
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e Fiir endlich-dimensionale Vektorrdaume ist die Forderung der Stetigkeit an x* € E* obsolet,
denn in diesem Fall sind alle linearen Abbildungen stetig.

e Da FE ein normierter Raum ist, ist £* als Raum der beschriankten linearen Operatoren
von F nach R selbst ein Banachraum mit Norm

b = sup{\<x*,x>\: ve B, ||z g1}. (IV.61)

2|

e Sind E und F zwei reelle Banachrdume und L € B(F; F), so wird fiir festes y* € F* durch
x +— (x*, Lz) eine stetige lineare Abbildung F — R definiert. Diese bezeichnet man als
zu L transponierte Abbildung LT : F* — E*, sodass

Vy* e F*, xe E: (L'y*, 2) = (y*, Lx). (IV.62)

e Sind weiterhin dim(E) = m € IN und {ej, ey, ...,e,} C E eine Basis, so ist auch
dim(E*) = m, und es existiert eine eindeutige Basis {e},¢€},...,e" } C E* so, dass

\V/Z,] € ZT : <6;k,6j> = 52‘73‘ . (IV63)

Dies ist leicht einzusehen:

— Jeder Vektor x € E besitzt eine eindeutige Darstellung © = aje; + ... + apép,. Wir
definieren ef € E* durch (e}, z) := a, fiir ¢ € Z}". Dann ist e offensichtlich linear,
und {ej,es, ... e} C E* erfiillt (IV.63).
— Ist Bief + ...+ Bnel, = 0, so folgt aus (IV.63) fiir jedes j € Z7*, dass 0 = (Sie] +
oo+ Buer, ;) = B, und {ej, e5,. .., el } C E* ist linear unabhéngig.
— Schliefilich ist * € E* eindeutig bestimmt durch die Bilder ~; := (€*,e1),...,Ym =
(¢*, en,) der Basisvektoren e}, e}, ... e und wir erhalten ¢* = yiel + ... + y,el, €
span[{ef,... e }].
e SchlieBlich bemerken wir, dass ein Basiswechsel L € B(E; E), det[L] # 0, den Basiswechsel
(LHT € B(E*; E*) in E* induziert.
— Sind némlich é; = Ley, ..., é, = Le,, und {é},..., €} C E* die Basis mit (€}, ¢é;) =
d;.j, so gilt
;= (€5.¢;) = (é],Le;) = (L"éf,¢5), (IV.64)
fir alle 7,5 € Z7".
— Daraus folgt, dass LT¢; = ¢; bzw. ¢f = (L) te; = (LY e;.
e Fiir (E,|-]|) = (R™ || [lewst) mit der Standardbasis {e1, s, ..., ey} € R™ sind (R™)* =
R™ und (e}, ) = (€i]")eu-

Definition IV.19. Seien M = (M, %, A) eine Mannigfaltigkeit der Dimension m € N, g € M
und ¢ = (U,z) € A mit U > ¢. Sei weiterhin {ej,es,...,€,} € R™ die Standardbasis. Fiir
1,] € 27" setzen wir

% = 8x?(q) = @;}q(ej) e T,[M], (IV.65)
dz' = da'(q) = (0;,) (e;) € T;[M]. (IV.66)
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Lemma IV.20.
(i) Die Teilmengen {32, ..., 5% } C Ty[M] und {dz',...,dz™} C T;[M] sind Basen.

» Qx™m

(i) Fir f € Tq*[./\/l] und € T,[M)] sei

(A1 ) = (Olf1" | ©aal]) - (IV.67)
Dann ist
(T,M))" = T[M]", (IV.68)
und es gilt
Vi, j €z : <dxi, %> - (IV.69)

Beweis. (i): folgt sofort aus der Tatsache, dass Oy, : Ty[M] — R™ und O} , : T,[M]* — R™
Isomorphismen sind.

@ Die Lineraritdt von ©4, und ©j  sowie die Bilinearitit des euklidschen Skalarprodukts
auf R™ sichern, dass (IV.67) ein lineares Funktional auf T,[M] definiert, d.h. es gelten [f]* €
(T,IM])" und deshalb auch T,[M]* C (T,[M])". Da beide Vektorriume Dimension m haben,
miissen sie gleich sein, und es folgt (IV.68).

Glg. (IV.69) ergibt sich aus

(da', %} = ((€5,)7(e), O34(e3)) = (eiles)eua = i (1V.70)

Bemerkungen und Beispiele.
e Mit f € T;*[M], v eT,M]und ¢ = (U,z) € Amit U 3 q ist

(A1 1) = (O3, L1

Oual) = (Tpoer (@] | 5 (£07)] o)

= O(fox? d d
N Zl%tgg(q)ﬁ(guov)}tokukl = %(fOW)‘tZO, (IV.71)

eukl

nach der Kettenregel. In (IV.71) ist die Kartenunabhéngigkeit manifest.
e Sind ¢ = (U,2),¢ = (V,y) € Amit g € UNV, so ist, fiir alle j € Z"

aigj - @Jvlcl[ej] - @¢q © (@¢q © @w,lq)[ej] = @;}J(Jmoy 1@((])])[6]]
= O(zty=!
= > (e [(@),, O54le] = (z %yj(y)]) yy(q)%. (IV.72)

47



e Genauso erhalten wir

dz? (q) . (IV.73)

z=xz(q)

0yl (@)]
=2 K O |

Jj=1

e Die Definitionen der Basisvektoren am%@) € Ty[M] und dz'(q) € T;[M] stellen also gleich-
zeitig eine Merkregel fiir ihre Transformation unter Kartenwechsel dar.

48



