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I. Topologische Grundbegriffe

In diesem ersten Kapitel stellen wir einige Grund legende Definitionen der allgemeinen Topologie
vor. Wie üblich bezeichnet P(M) die Potenzmenge einer Menge M , d.h. das System aller
Teilmengen von M .

I.1. Topologische Räume

Definition I.1. Sei M eine Menge. Ein System T ⊆ P(M) von Teilmengen von M heißt
Topologie (auf M) :⇔
(i)

∅,M ∈ T, (I.1)

(ii)

∀A,B ∈ T : (A ∩B) ∈ T, (I.2)

(iii)

∀S ⊆ T :
( ⋃
A∈S

A
)

∈ T. (I.3)

In diesem Fall bezeichnen wir die Elemente von T als offene Mengen (in M) und (M,T) als
topologischen Raum.

Eine offene Menge A ∈ T, die x ∈ A enthält, heißt Umgebung von x. Für x ∈M bezeichnen
wir mit

T(x) :=
{
A ∈ T

∣∣ A ∋ x
}

(I.4)

die Familie der Umgebungen von x.

Ein topologischer Raum (M,T) heißt hausdorffsch :⇔

∀x, y ∈M, x ̸= y, ∃U ∈ T(x), V ∈ T(y) : U ∩ V = ∅. (I.5)
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Definition I.2. Sei (M,T) ein topologischer Raum.

(i) Eine Teilmenge A ⊆M heißt offen (s.o.) :⇔

A ∈ T. (I.6)

(ii) Eine Teilmenge A ⊆M heißt abgeschlossen :⇔

M \ A ∈ T. (I.7)

(iii) Eine Teilmenge K ⊆M heißt kompakt :⇔

Jede offene Überdeckung von K enthält eine endliche offene Überdeckung.

⇔ ∀S ⊆ T,
( ⋃
A∈S

A
)
⊇ K ∃A1, . . . , AL ∈ S : K ⊆ A1 ∪ . . . ∪ AL. (I.8)

Definition I.3. Seien (M,T) ein topologischer Raum und A ⊆M eine Teilmenge.

(i) Die Menge

A :=
⋂{

U
∣∣M \ U ∈ T, U ⊇ A

}
(I.9)

nennt man Abschluss von A.

(ii) Die Menge

A◦ :=
⋃{

V
∣∣V ∈ T, V ⊆ A

}
(I.10)

nennt man Inneres von A.

(iii) Die Menge A ⊆M heißt dicht (in M)

:⇔ A = M. (I.11)

Definition I.4. Seien (M,T) ein topologischer Raum und x ∈M ein Punkt.

(i) Ein Teilsystem B ⊆ T heißt Umgebungsbasis (von T) :⇔

∀U ∈ T ∃C ⊆ B : U =
⋃
C∈C

C . (I.12)

(ii) Ein Teilsystem L ⊆ T(x) heißt lokale Umgebungsbasis (bei x) :⇔

∀U ∈ T(x) ∃V ∈ L : V ⊆ U. (I.13)

(iii) Eine Folge (xn)
∞
n=1 ∈MN heißt konvergent :⇔

∃x ∈M ∀U ∈ T(x) ∃n0 ∈ N ∀n ≥ n0 : xn ∈ U. (I.14)

In diesem Fall heißt x Grenzwert oder Limes von (xn)
∞
n=1.
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Bemerkungen und Beispiele.

• Ist M eine Menge, so ist Tmin := {∅,M} die kleinste Topologie auf M , und P(M) ist die
größte Topologie auf M ,

• Für einen topologischen Raum (M,T) sind ∅ = M \M und M = M \ ∅ abgeschlossen
(und nach (I.1) auch offen).

• Der Abschluss A einer beliebigen Teilmenge A ⊆ M eines topologischen Raums (M,T)
ist durch (I.10) wohldefiniert, da die Familie der abgeschlossenen Mengen U ⊂M , die A
enthalten, zumindest M selbst enthält.

• Die Offenheit von ∅ sichert das Entsprechende für das Innere A◦ einer beliebigen Teilmenge
A ⊆M , definiert durch die Vereinigung (I.10).

• Der Abschluss A ist stets abgeschlossen. Sie ist die kleinste abgeschlossene Obermenge
von A.

• Besitzt ein topologischer Raum (M,T) eine abzählbare dichte Teilmenge {xn}∞n=1 ⊆ M
mit {xn}∞n=1 =M , so heißt (M,T) separabel.

• Das Innere ist A◦ stets offen. Es ist die größte offene Teilmenge von A.

Definition I.5. Seien (M,T) ein topologischer Raum und A ⊆M eine Teilmenge.

(i) Ein Punkt x ∈ A heißt innerer Punkt (I.P.) von A

:⇔ ∃U ∈ T(x) : U ⊆ A . (I.15)

(ii) Ein Punkt x ∈M heißt Häufungspunkt (H.P.) von A

:⇔ ∀U ∈ T(x) : U ∩ A ̸= ∅ . (I.16)

Lemma I.6. Seien (M,T) ein topologischer Raum und A ⊆ M eine Teilmenge. Dann gelten
folgende Aussagen

A ist offen ⇔ Jeder Punkt in A ist ein innerer Punkt von A. (I.17)

A ist abgeschlossen ⇔ Jeder Häufungspunkt von A ist in A enthalten. (I.18)

Beweis. Für A = ∅ und A = M sind (I.17) und (I.18) trivial richtig, deshalb nehmen wir im
Weiteren A ̸= ∅ und Ac =M \ A ̸= ∅ an.

(I.17),
”
⇒“: Ist A offen und x ∈ A, so ist A selbst eine offene Umgebung von x, die in A

enthalten ist, d.h. x ist ein innerer Punkt von A. Also ist jeder Punkt in A auch ein innerer
Punkt.

(I.17),
”
⇐“: Ist umgekehrt jeder Punkt in A ein innerer Punkt, so gibt es zu jedem x ∈ A ein

Ux ∈ T(x) ⊆ A, und A =
⋃
x∈A Ux ist als Vereinigung der offenen Mengen Ux selbst offen.

(I.18),
”
⇒“: Sei A abgeschlossen und Ac somit offen. Sei x ∈M ein Häufungspunkt von A. Wäre

x ∈ Ac, so wäre Ac ∈ T(x) mit A∩Ac = ∅, was in Widerspruch zur Annahme stünde, dass x ein
Häufungspunkt von A ist. Also muss x ∈ A gelten, und A enthält alle seine Häufungspunkte.
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(I.18),
”
⇐“: Enthalte umgekehrt A alle seine Häufungspunkte. Ist x ∈ Ac, so kann x also kein

Häufungspunkt von A sein, d.h. es gibt ein U ∈ T(x) mit A ∩ U = ∅. Dann ist aber U ⊆ Ac,
d.h. x ist ein innerer Punkt von Ac. Es folgt dass jeder Punkt von Ac ein innerer Punkt ist und
dass Ac nach (I.17) somit offen und deshalb A abgeschlossen sind.

Bemerkungen und Beispiele.

• Ist (M,T) hausdorffsch, so ist der Grenzwert x ∈ M einer konvergenten Folge (xn)
∞
n=1

eindeutig, und wir schreiben

x =: lim
n→∞

{
xn
}
. (I.19)

• Ist (M,T) erstabzählbar, d.h. besitzt jeder Punkt x ∈ M eine abzählbare lokale Um-
gebungsbasis T(x), so impliziert die Eindeutigkeit von Grenzwerten konvergenter Folgen
umgekehrt auch, (M,T) hausdorffsch ist.

• Konvergenz von Folgen ist für allgemeine topologische Räume definiert, jedoch nicht der
Begriff der Cauchy-Folge.

• Eine Topologie T ist durch eine Umgebungsbasis B ⊆ T bestimmt. Die offenen Mengen
in M sind sämtlichst Vereinigungen von Mengen in B.

• Seien d ∈ N und M = Rd. Dann ist ist die Familie B = {B(x, r)|x ∈ Rd, r > 0} der
offenen Kugeln

B(r, x) :=
{
y ∈ Rd

∣∣ ∥y − x∥eukl < r
}

(I.20)

eine Umgebungsbasis der euklidschen Topologie Teukl ⊆ P(Rd), wobei ∥x∥eukl :=√
x21 + . . .+ x2d für x = (x1, . . . , xd) die euklidsche Norm auf Rd bezeichnet.

• Genauso ist beispielsweise für x = 0 ∈ Rd

L =
{
B(0, 2−n)

∣∣n ∈ N
}

(I.21)

eine (abzählbare) lokale Umgebungsbasis bei 0.

• Sind (M,T) ein topologischer Raum und A ⊆M eine Teilmenge, so ist auch (A,Trel) ein
topologischer Raum, wobei man

Trel =
{
A ∩ U

∣∣ U ∈ T
}

(I.22)

als (durch T induzierte) relative Topologie (auf A) bezeichnet. Beachte, dass die
Mengen A ∩ U ⊆M in (I.22) im Allgemeinen (in M) nicht offen sind.

• Sind m,n ∈ N mit m < n und Teukl(d) die euklidsche Topologie auf Rd, so ist die durch
Teukl(n) induzierte relative Topologie auf Rm gerade Teukl(m).

I.2. Erzeugte Topologien

Lemma I.7. Seien M eine Menge und {Ti}i∈I eine Familie von Topologien Ti ⊆ P(M) auf
M . Dann ist auch ihr Durchschnitt

⋂
i∈I Ti eine Topologie auf M .
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Beweis. Nachprüfen der Topologieaxiome (i)-(iii) in Definition I.1.

Definition I.8. Seien M eine Menge und E ⊆ P(M) eine Familie von Teilmengen von M .
Dann heißt

T[E] :=
⋂{

U
∣∣ E ⊆ U ⊆ P(M), U ist eine Topologie

}
(I.23)

die von E erzeugte Topologie auf M .

Bemerkungen und Beispiele.

• Die von E erzeugte Topologie T[E] auf M ist durch (I.23) wohldefiniert, da die Familie
der Topologien auf M , die E enthalten, zumindest P(M) enthält.

• T[E] ist die kleinste Topologie auf M , die E enthält.

• Tatsächlich kann man zu gegebener Familie E ⊆ P(M) die von ihr erzeugte Topologie
und eine Umgebungsbasis explizit angeben; dies ist Inhalt von Satz I.9, dessen Beweis
man bei den Ergänzungen im Abschnitt I.5 findet.

Satz I.9. Sei E ⊆ P(M) eine Familie von Teilmengen einer Menge M . Bezeichnet

B :=
{
E1 ∩ E2 ∩ . . . ∩ En

∣∣n ∈ N, Ei ∈ E
}

(I.24)

die Familie aller endlichen Durchschnitte von Mengen aus E, so ist

T[E] = {∅,M} ∪
{ ⋃

A∈A

A
∣∣A ⊆ B

}
, (I.25)

und {∅,M} ∪B ist eine Umgebungsbasis von T[E].

Definition I.10. Seien (M,U) und (N,V) zwei topologische Räume und

Q :=
{
U × V

∣∣ U ∈ U, V ∈ V
}

⊆ P(M ×N) . (I.26)

Dann heißt die von Q erzeugte Topologie T(Q) Produkttopologie TM×N auf M × N .

Bemerkungen und Beispiele.

• Im Folgenden beziehen wir uns für M × N stets auf die Produkttopologie T(Q), wenn
nichts anderes vereinbart wurde.

• Die in (I.27) definierte Familie Q besteht selbst aus offenen Mengen und ist eine Umge-
bungsbasis der Produkttopologie auf M ×N .

• Offensichtlich kann Definition I.10 leicht induktiv auf das kartesische Produkt endlich
vieler topologischer Räume verallgemeinert werden:
Sind N ∈ N, (M1,T1), (M2,T2), . . . (MN ,TN) topologische Räume und

QN
1 :=

{
U1 × U2 × · · · × UN

∣∣ U1 ∈ T1, U2 ∈ T2, . . . , UN ∈ TN
}

⊆ P(T1 × T2 × · · · × TN) , (I.27)

so heißt die von QN
1 erzeugte Topologie T(QN

1 ) Produkttopologie TM1×···×MN
auf

M1 × · · · × MN .
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• Für unendliche kartesische Produkte topologischer Räume kann man auch eine Topologie
definieren; hier gibt es jedoch mehrere Konstruktionsmöglichkeiten. Wir kommen darauf
in Abschnitt I.3 zurück.

I.3. Stetige Abbildungen

Definition I.11. Seien (M,S) und (N,T) zwei topologische Räume. Eine Abbildung f :M →
N heißt stetig

:⇔ Urbilder offener Mengen unter f sind offen, d.h.

∀A ∈ T : f−1(A) ∈ S. (I.28)

Sind f bijektiv und f :M → N und f−1 : N →M stetig, so nennt man f einen Homöomor-
phismus.

Bemerkungen und Beispiele.

• Seien (N,S) ein topologischer Raum, M eine Menge und f : M → N eine Abbildung.
Da Urbilder mengentheoretische Operationen erhalten, ist auch

f−1(S) =
{
f−1(A)

∣∣ A ∈ S
}

⊆ P(M) (I.29)

eine Topologie (auf M).

• Offensichtlich ist T[f−1(S)] = f−1(S), d.h. sie ist die kleinste Topologie T̃ auf M , sodass

f : (M, T̃) → (N,S) stetig ist.

• Sind N ∈ N und (M1,T1), (M2,T2), . . . (MN ,TN) topologische Räume, so definieren wir
für ν ∈ ZN1 die kanonische Projektion πν :M1 × · · · ×MN →Mν durch

πν
[
(x1, . . . , xν−1, xν , xν+1, . . . , xN)

]
:= xν , (I.30)

d.h. πν liest aus x = (x1, . . . , xN) die ν. Koordinate aus. Für U1 ∈ T1, U2 ∈ T2, . . . , UN ∈
TN sind offenbar

π−1
ν [Uν ] = M1 × · · · ×Mν−1 × Uν ×Mν−1 × · · · ×MN (I.31)

und somit

π−1
1 [U1] ∩ π−1

2 [U2] ∩ · · · ∩ π−1
N [UN ] = U1 × U2 × · · · × UN . (I.32)

Damit sind die Quader aus (I.27) genau die Schnitte der Urbilder von Uν unter πν , d.h.

QN
1 =

{
π−1
1 [U1] ∩ · · · ∩ π−1

N [UN ]
∣∣ U1 ∈ T1, . . . , UN ∈ TN

}
. (I.33)

Somit ist die Produkttopologie T
[
QN

1

]
genau die kleinste Topologie auf M1 × · · · ×MN ,

für die alle kanonischen Projektionen π1, . . . , πN stetig sind.
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• Dies lässt sich auf (abzählbar oder auch überabzahlbar) unendlich viele Faktoren im
kartesischen Produkt wie folgt verallgemeinern:
Seien I ̸= ∅ eine Indexmenge und {(Mν ,Tν)}ν∈I eine Familie topologischer Räume. Wir
definieren ihr kartesische Produkt durch∏

µ∈I

Mµ :=
{
x : I →

⋃
ν∈I

Mν

∣∣∣ ∀ ν ∈ I : xν ∈Mν

}
(I.34)

und für ν ∈ I die kanonische Projektion πν :
∏

µ∈I Mµ →Mν durch

πν
[
(xµ)µ∈I

]
:= xν . (I.35)

Dann ist die Produkttopologie T∏
µ∈I Mµ auf

∏
µ∈I Mµ definiert als die kleinste

(gröbste) Topologie auf
∏

µ∈I Mµ, für die alle kanonischen Projektionen πν :
∏

µ∈I Mµ →
Mν stetig sind.

• Für die Produkttopologie T∏
µ∈I Mµ gilt der wichtige Satz von Tychonoff : Ist {(Mν ,Tν)}ν∈I

eine Familie kompakter topologischer Räume, so ist auch
(∏

µ∈I Mµ, T∏
µ∈I Mµ

)
kompakt.

I.4. Parakompakte und zusammenhängende topologische
Räume

Definition I.12. Sei (M,T) ein topologischer Raum.

(i) Eine Überdeckung S ⊆ T von M heißt lokal endlich

:⇔ ∀x ∈M ∃W ∈ T(x) :
∣∣∣{U ∈ S

∣∣ U ∩W ̸= ∅
}∣∣∣ < ∞. (I.36)

(ii) (M,T) heißt parakompakt
:⇔ Zu jeder Überdeckung U ⊆ T von M gibt es eine lokal endliche Überdeckung

V ⊆ T von M so, dass

∀U ∈ U ∃V ∈ V : V ⊆ U . (I.37)

Wir werden Parakompaktheit später bei der Definition von Mannigfaltigkeiten stets voraus-
setzen. Der folgende Satz, dessen Beweis man in den Ergänzungen I.5 findet, sichert, dass
beispielsweise metrische Räume stets parakompakt sind. Damit ist die Parakompaktheit eine
relativ schwäche Voraussetzung, die wir guten Gewissens zukünftig machen werden.

Satz I.13. Ist (M,ρ) ein metrischer Raum, so ist (M,Tρ) parakompakt und hausdorffsch.

Ein weiterer, wichtiger topologischer Begriff ist der eines zusammenhängenden topologischen
Raums, den wir jetzt einführen.

Definition I.14. Sei (M,T) ein hausdorffscher topologischer Raum
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(i) M heißt zusammenhängend :⇔

∀A,B ∈ T, A ∩B = ∅, A ∪B =M : (A =M ∧ B = ∅) ∨ (A = ∅ ∧ B =M) .
(I.38)

(ii) M heißt wegzusammenhängend :⇔

∀x, y ∈M ∃ γ ∈ C
(
[0, 1];M

)
: γ(0) = x, γ(1) = y . (I.39)

Lemma I.15. Sei (M,T) ein hausdorffscher topologischer Raum.

M ist wegzusammenhängend ⇒ M ist zusammenhängend. (I.40)

Bemerkungen und Beispiele.

• Die Umkehrung von Lemma I.15 ist i.A. nicht richtig. So ist M =M1 ∪M2 ⊆ R2 mit

M1 =
{(
x, sin(1/x)

) ∣∣∣ x > 0
}

und M2 = {0} × [−1, 1] (I.41)

zwar zusammenhängend, jedoch nicht wegzusammenhängend.

• Für Mannigfaltigkeiten sind die Eigenschaften, zusammenhängend oder wegzusammenhängend
zu sein jedoch gleichwertig, wie wir im nächsten Kapitel zeigen.
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I.5. Ergänzungen

I.5.1. Explizite Charakterisierung eines topologischen Raums - Beweis
von Satz I.9:

Wir definieren T′ ⊆ P(X) durch die rechte Seite in (I.25),

T′ := {∅,M} ∪
{ ⋃
A∈A

A
∣∣A ⊆ B

}
. (I.42)

Offensichtlich sind ∅,M ∈ T′.

Seien A =
⋃
G∈GG,B =

⋃
H∈HH ∈ T′, mit G,H ⊆ B. Mit G,H ∈ B ist auch G ∩ H ∈ B.

Dann ist also

F :=
{
G ∩H

∣∣G ∈ G, H ∈ H
}

⊆ B, (I.43)

und es gilt

A ∩B =
( ⋃
G∈G

G
)
∩
( ⋃
H∈H

H
)

=
⋃
G∈G

⋃
H∈H

G ∩H =
⋃
F∈F

F ∈ T′. (I.44)

Sei nun J ̸= ∅ eine Indexmenge und Aj =
⋃
G∈Gj

G ∈ T′ mit Gj ⊆ B, für alle j ∈ J . Dann ist

auch G̃ :=
⋃
j∈J Gj ⊆ B, und es gilt⋃

j∈J

Aj =
⋃
j∈J

⋃
G∈Gj

G =
⋃
G∈G̃

G ∈ T′. (I.45)

Also ist T′ ⊇ E eine Topologie auf M .

Sei nun T′′ ⊇ E (irgend)eine Topologie auf M , die E umfasst. Da T′′ unter Bildung von Durch-
schnitten endlich vieler Mengen abgeschlossen ist, gilt auch B ⊆ T′′. Da T′′ weiterhin auch
unter Vereinigungen beliebiger Teilsysteme seiner selbst abgeschlossen ist, ist dann auch

T′ ⊆ T′′. (I.46)

Daher ist T′ ⊇ E die kleinste Topologie, die E umfasst.

Offensichtlich ist {∅,M} ∪B auch eine Umgebungsbasis.

I.5.2. Metrische Räume sind parakompakt - Beweis von Satz I.13:

Sei {Us}s∈S ⊆ T eine Überdeckung von M . Aus dem Auswahlaxiom bzw. dem Zornschen
Lemma folgt, dass wir S als total geordnet annehmen können. Für n ∈ N und s ∈ S definieren
wir induktiv

Vs,n :=
⋃

x∈As,n

B(x, 2−n), (I.47)

As,n :=
{
x ∈ Us

∣∣ B(x, 3 · 2−n) ⊆ Us, ∀t < s, ∀k < n : x /∈ Ut, x /∈ Vt,k
}
. (I.48)
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Offenbar ist Vs,n offen und Vs,n ⊆ Us. Seien nun x ∈ M und s ∈ S so, dass x ∈ Us und x /∈ Ut
für alle t < s gilt. Für genügend großes n ∈ N ist dann auch B(x, 3 · 2−n) ⊆ Us, da Us offen
ist. Ist x /∈ As,n, so gibt es t < s und k < n, so dass x ∈ Vt,k. Ist hingegen x ∈ As,n, so gilt
trivialerweise x ∈ Vs,n. In jedem Fall gilt also

M =
⋃

s∈S,n∈N

Vs,n. (I.49)

D.h. {Vs,n}s∈S,n∈N ist eine offene Überdeckung vonM mit Vs,n ⊆ Us, und es verbleibt zu zeigen,
dass {Vs,n}s∈S,n∈N lokal endlich ist.

Zu festem n ∈ N wählen wir nun x ∈ Vt,n und y ∈ Vs,n mit t < s. Dann gibt es x̃ ∈ At,n und
ỹ ∈ As,n so, dass

x ∈ B(x̃, 2−n) ⊆ B(x̃, 3 · 2−n), (I.50)

y ∈ B(ỹ, 2−n), ỹ ∈ Us \ Ut. (I.51)

Wegen B(x̃, 3 · 2−n) ⊆ Ut ist ỹ /∈ B(x̃, 3 · 2−n). Also ist ρ(x̃, ỹ) ≥ 3 · 2−n und damit

ρ(x, y) ≥ ρ(x̃, ỹ)− ρ(x, x̃)− ρ(y, ỹ) ≥ 2−n. (I.52)

Somit ist

∀ t < s, n ∈ N : dist(Vt,n ; Vs,n) := inf
{
ρ(x, y)

∣∣ x ∈ Vt,n; y ∈ Vs,n
}

≥ 2−n, (I.53)

wobei wir dist(A, ∅) := ∞ setzen. Durch Vertauschen der Rollen von t und s erhalten wir damit

∀ s, t ∈ S, t ̸= s, n ∈ N : dist(Vt,n ; Vs,n) ≥ 2−n. (I.54)

Seien nun x ∈M und t ∈ S sowie j ∈ N so, dass x ∈ Vt,j. Da Vt,j offen ist, gilt auch

W := B(x, 2−k) ⊆ B(x, 2−k+2) ⊆ Vt,j, (I.55)

für k ∈ N genügend groß. Nach (I.54) ist W ∩ Vs,n = ∅ für alle n ∈ N, falls s ̸= t, d.h.

U :=
{
Vs,n

∣∣ s ∈ S, n ∈ N, W ∩ Vs,n ̸= ∅
}

⊆
{
Vt,n
}∞
n=1

. (I.56)

Sind nun n ≥ k + j und y ∈ At,n, so ist y /∈ Vt,j, da j < n. Damit ist jedoch y /∈ B(x, 2−k+2),
d.h. ρ(x, y) ≥ 2−k+2 − 2−k = 3 · 2−k. Also ist

W ∩ Vt,n =
⋃

y∈As,n

[
W ∩B(y, 2−n)

]
⊆

⋃
y∈As,n

[
W ∩B(y, 2−k)

]
= ∅, (I.57)

und wir erhalten, dass

|U| ≤
∣∣{Vt,n}k+j−1

n=1

∣∣ = k + j − 1 < ∞. (I.58)
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II. Mannigfaltigkeiten

Wir kommen nun zur Theorie der Mannigfaltigkeiten. Im Weiteren nehmen wir von allen to-
pologischen Räumen stets an, dass sie hausdorffsch, separabel und parakompakt sind.

II.1. Karten und Atlanten

Definition II.1. Sei (M,T) ein (hausdorffscher, separabler und parakompakter) topologischer
Raum.

(i) Sind U ∈ T offen, m ∈ N und φ : U → φ(U) ⊆ Rm ein Homöomorphismus, so bezeichnen
wir C = (U,φ) als Karte (von M).

(ii) Zwei Karten C1 = (U1, φ1), C2 = (U2, φ2) von M heißen verträglich

:⇔ Falls U12 := U1 ∩ U2 ̸= ∅, so gelten:

φ1 ◦ φ−1
2 ∈ C∞(φ2(U12) ; φ1(U12)

)
, (II.1)

φ2 ◦ φ−1
1 ∈ C∞(φ1(U12) ; φ2(U12)

)
, (II.2)

∀ ξ ∈ φ2(U12) : det
(
J [φ1 ◦ φ−1

2 ](ξ)
)

̸= 0. (II.3)

Lemma II.2. Seien (M,T) ein topologischer Raum und C1 = (U1, φ1), C2 = (U2, φ2) zwei
Karten von M mit U12 := U1 ∩U2 ̸= ∅ und φ1(U1) ⊆ Rm1 , φ2(U2) ⊆ Rm2 jeweils offen. Erfüllen
φ1 und φ2 die Bedingungen (II.1) und (II.2), so ist

m1 = m2. (II.4)

Beweis. Seien ξ0 ∈ φ2(U12) ein Koordinatenpunkt, J := J [φ1 ◦ φ−1
2 ](ξ0) die Jacobimatrix von

φ1 ◦ φ−1
2 bei ξ0, {e1, . . . , em2} ⊆ Rm2 die Standardbasis, δ > 0 und

yi(δ) :=
1

δ

{(
φ1 ◦ φ−1

2

)
(ξ0 + δei) −

(
φ1 ◦ φ−1

2

)
(ξ0)

}
, (II.5)

für i = 1, 2, . . . ,m2. Dann ist limδ→0 ri(δ) = 0 mit

ri(δ) := yi(δ)− Jei. (II.6)
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Sind nun α1, α2, . . . , αm2 ∈ R so gewählt, dass

m2∑
i=1

αi yi(δ) = 0, (II.7)

so gilt mit ξ :=
∑m2

i=1 α
i ei auch

Jξ = −
m2∑
i=1

αi ri(δ), (II.8)

d.h.

ξ = −
m2∑
i=1

αi J−1ri(δ). (II.9)

Insbesondere ist

max
i

(
|αi|
)

≤ max
i

(
|αi|
)
·
∥∥J−1

∥∥ · ( m2∑
j=1

∥rj(δ)∥
)

< max
i

(
|αi|
)
, (II.10)

falls δ > 0 genügend klein ist. Also gilt

α1 = α2 = · · · = αm2 = 0 (II.11)

und {
y1(δ), . . . , ym2(δ)

}
⊆ Rm1 (II.12)

ist linear unabhängig. Somit gilt m1 ≥ m2. Genauso folgt umgekehrt m2 ≥ m1.

Die Bedingung der Glattheit -oder wenigstens stetigen Differenzierbarkeit- der Abbildungen
φ1 ◦ φ−1

2 und φ2 ◦ φ−1
1 erleichtert den Beweis der Gleichheit von m1 und m2 enorm; tatsächlich

gilt m1 = m2 auch, wenn nur die Stetigkeit von φ1 ◦ φ−1
2 und φ2 ◦ φ−1

1 vorausgesetzt wird, wie
Brouwer 1910 gezeigt hat.

Satz II.3 (Brouwer). Seien m1,m2 ∈ N, U1 ⊆ Rm1 , U2 ⊆ Rm2 offen und f : U1 → U2 ein
Homöomorphismus. Dann ist m1 = m2.

Die Subtilität dieser Aussage wird deutlich, wenn man den folgenden Satz von Peano von 1890
liest, der zeigt, dass die Bijektivität von φ1 ◦ φ−1

2 (und somit auch φ2 ◦ φ−1
1 ) unverzichtbar ist.

Satz II.4 (Peano). Es gibt eine stetige Abbildung f ∈ C([0, 1] ; [0, 1]× [0, 1]), die surjektiv ist,

f([0, 1]) = [0, 1]× [0, 1]. (II.13)
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Beweis. Wir definieren fn : [0, 1] → [0, 1]× [0, 1] für n ∈ N0 durch folgendes Bild:

[BILD]

Offenbar gilt dann für alle n ∈ N und t ∈ [0, 1], dass

∥fn(t)− fn+1(t)∥ ≤
√
2

3n
, (II.14)

∀m ≥ n, 0 ≤ k ≤ 3n+1 : fm

(
k

3n+1

)
= fn

(
k

3n+1

)
. (II.15)

Insbesondere ist für N < n < m

sup
t∈[0,1]

∥fm(t)− fn(t)∥ ≤
√
2

∞∑
k=N+1

3−k =
3−(N+1)

√
2(1− 1

3
)

=
3−N

2
√
2

→ 0, (II.16)

für N → ∞, d.h. (fn)
∞
n=0 ∈

(
C([1, 0] ; [1, 0]× [1, 0])

)N0 ist gleichmäßig konvergent und konver-
giert deshalb gegen eine stetige Grenzfunktion

f := lim
n→∞

fn ∈ C
(
[1, 0] ; [1, 0]× [1, 0]

)
. (II.17)

Offenbar ist f([0, 1]) ⊆ [0, 1]× [0, 1] dicht, d.h.

f([0, 1]) = [0, 1]× [0, 1], (II.18)

und als Bild der kompakten Menge [0, 1] unter der stetigen Abbildung f ist f([0, 1]) auch selbst
kompakt und insbesondere abgeschlossen, d.h.

f([0, 1]) = f([0, 1]) = [0, 1]× [0, 1]. (II.19)

Definition II.5. Sei (M,T) ein topologischer Raum.

(i) Eine Familie A = {Cα = (Uα, φα)}α∈I von Karten von M heißt Atlas von M :⇔
∀α, β ∈ I : Cα und Cβ sind verträglich; (II.20)

M ⊆
⋃
α∈I

Uα ; (II.21)

∃m ∈ N ∀α ∈I : φα(Uα) ⊆ Rm ist offen. (II.22)

(ii) Zwei Atlanten A, A′ von M heißen verträglich

:⇔ ∀C ∈ A, C ′ ∈ A′ : C und C ′ sind verträglich. (II.23)

Bemerkungen und Beispiele.

• Trotz der Gleichheit der Dimensionen m1 = m2 von sich überlappenden Karten gemäß
Lemma II.2 müssen wir eine einheitliche Dimension m alle Karten gesondert in Defini-
tion II.5 fordern, da M nicht zusammenhängend sein muss und es möglicherweise eine
ZerlegungM = U1∪U2 in zwei disjunkte offene Teilmengen U1∩U2 = ∅ mit Dimensionm1

auf U1 und Dimension m2 ̸= m1 auf U2 gibt.
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II.2. Mannigfaltigkeiten als Äquivalenzklassen verträglicher
Atlanten

Lemma II.6. Sei (M,T) ein topologischer Raum. Dann definiert die Verträglichkeit von At-
lanten von M eine Äquivalenzrelation “∼” auf dem System aller Atlanten von M .

Beweis. Reflexivität A ∼ A und Symmetrie A1 ∼ A2 ⇔ A2 ∼ A1 sind trivial, nur bei der
Transitivität A1 ∼ A2,A2 ∼ A3 ⇒ A1 ∼ A3 gibt es etwas zu beweisen. Seien dazu A1,A2,A3

drei Atlanten von M , gelte A1 ∼ A2 und A2 ∼ A3 und seien C1 = (U1, φ1) ∈ A1 und
C3 = (U3, φ3) ∈ A3 mit U13 := U1 ∩ U3 ̸= ∅.
Ist nun p ∈ U13, so gibt es eine Karte C2 = (U2, φ2) ∈ A2, für die U2 ∋ p gilt. Also ist
p ∈ U123 := U1 ∩ U2 ∩ U3 gilt, da A2 ein Atlas von M ist. Daher gibt es eine offene Umgebung
V1 ⊆ Rm von ξ1 := φ1(p), sodass auf V1

φ3 ◦ φ−1
1 =

(
φ3 ◦ φ−1

2

)
◦
(
φ2 ◦ φ−1

1

)
(II.24)

gilt. Als Komposition der glatten Abbildungen φ2 ◦ φ−1
1 und φ3 ◦ φ−1

2 ist φ3 ◦ φ−1
1 selbst glatt

auf V1 ∋ ξ1. Weiterhin ist mit ξ2 := φ2(p) nach der Kettenregel

det
(
J [φ3 ◦ φ−1

1 ](ξ1)
)

= det
(
J [φ3 ◦ φ−1

2 ](ξ2)
)
· det

(
J [φ2 ◦ φ−1

1 ](ξ1)
)

̸= 0. (II.25)

Genauso folgt die Glattheit von φ1 ◦ φ−1
3 auf einer offenen Umgebung V3 von ξ3 := φ3(p) und

det J [φ1 ◦ φ−1
3 ](ξ3) ̸= 0.

Da p ∈ U13 beliebig war, impliziert dies die Verträglichkeit von C1 und C3, also die Transitivität
von “∼”.

Für die nun folgende Definition einer (differenzierbaren) Mannigfaltigkeit wollen wir noch einige
zusätzliche Eigenschaften das topologischen Raums (M,T) fordern, um Pathologien auszuschlie-
ßen, die uns in die Irre führen würden.

Definition II.7. Seien (M,T) ein topologischer Raum, A ein Atlas von M und m ∈ N die
Dimension der Bildbereiche der Karten in A.

(i) Die zu A gehörige Äquivalenzklasse bezüglich verträglicher Atlanten bezeichnen wir als
(differenzierbare) Mannigfaltigkeit M = (M,T,A).

(ii) Die Zahl m ∈ N nennen wir Dimension der Mannigfaltigkeit M.

Bemerkungen und Beispiele.

• Seien d ∈ N und M ⊆ Rd. Im Folgenden betrachten wir auf M immer die durch die
euklidsche Topologie auf Rd induzierte relative Topologie Trel auf M ⊆ Rd. Zu M ⊆ Rd

ist die Familie {M ∩ B(q, 2−n)}q∈Qd,n∈N eine abzählbare Umgebungsbasis, deshalb ist
(M,Tρ) als topologischer Raum separabel.

• Beispielsweise ist zwar S1 := {q ∈ R2 : ∥q∥ = 1} als Teilmenge von R2 nicht offen, in der
relativen Topologie ist (S1,Trel) aber offen (und abgeschlossen und auch kompakt).
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• Seien d ∈ N und M ⊆ Rd ein nichtleere offene Teilmenge (etwa auch M = Rd). Dann ist
C = (M, id) eine Karte von M , A = {C} ein Atlas und (M,Teukl,A) eine Mannigfaltig-
keit.

• S1 = (S1,Trel,A) mit S1 = {q ∈ R2 : |q| = 1} ⊆ R2 ist eine 1-dimensionale Mannig-
faltigkeit, wobei A = {C+, C−} mit C± = (U±, φ±), U± := S1 \ {(0,±1)}, φ±(U±) = R

und

∀ q = (q1, q2) ∈ U+ : φ+(q) :=
2q1

1− q2
, (II.26)

∀ q = (q1, q2) ∈ U− : φ−(q) :=
2q1

1 + q2
. (II.27)

Die Karten C± bezeichnet man als stereografische Projektionen.

Satz II.8. Seien n, d ∈ N mit n ≤ d−1, A ⊆ Rd offen und nichtleer und F = (F 1, . . . , F d−n) ∈
C∞(A;Rd−n) so, dass

∀ q ∈ N : rk

[(∂F i(q)

∂qj

)
i=1,...,d

j=1,...,d−n

]
= d− n, (II.28)

d.h. die Jacobimatrix J [F ](q) von F habe an jedem Punkt q ∈ N den maximalen Rang d− n,
wobei

N := {q ∈ A | F (q) = 0 } . (II.29)

Dann definiert (N,Trel) eine Mannigfaltigkeit der Dimension n.

Beweis. Seien q ∈ N und J =
(
∂F i(q)
∂xj

)
i,j

die Jacobimatrix von F bei q. Nach geeigneter Um-

ordnung der Variablen ist J = (A |B), wobei A ∈ M(d−n)×(d−n)(R) mit det(A) ̸= 0 und
B ∈ M(d−n)×(n)(R), gemäß (II.28). Nach dem Satz über implizite Funktionen besitzt die Glei-
chung F (q̂) = 0 in einer Umgebung von q eine lokale Auflösung nach q̂1, . . . , q̂d−n. Genauer
gibt es zwei offen Mengen Uq ⊆ Rd, Wq ⊆ Rn und h = (h1, . . . , hd−n) ∈ C∞(W ;Rd−n) so, dass
q ∈ Vq :=

(
Rd−n ×Wq

)
∩ Uq und dass

∀ q̂ = (y, ξ) ∈ Vq : F (y, ξ) = 0 ⇔ y = h(ξ). (II.30)

Somit definiert
(
Vq, q̂ = (y, ξ) 7→ ξ

)
eine Karte von N , die q enthält, und

{(
Vq, (y, z) 7→ z

)}
q∈N

ist ein Atlas von N .

Bemerkungen und Beispiele.

• Für n ∈ N ist Sn := {x ∈ Rn+1 : |x|eukl = 1 } eine Mannigfaltigkeit der Dimension n.

• Für n ∈ N sei A := {A ∈ Mn×n(R) | det(A) = 1} ⊆ Rn2
. Dann definiert (A,Trel)

eine Mannigfaltigkeit der Dimension n2 − 1. Um dies zu sehen, beobachten wir, dass für
A = (ai,j)

n
i,j=1,

det(A) =
∑
π∈Sn

(−1)πaπ(1),1 . . . aπ(n),n (II.31)
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und deshalb

∂ det(A)

∂ai,j
=

∑
π∈Sn,
π(j)=i

(−1)π aπ(1),1 . . . aπ(j−1),j−1 · aπ(j+1),j+1 . . . aπ(N),N (II.32)

ist. Mit anderenWorten ist die Jacobimatrix J [det](A) der Determinante gleich der Matrix
Aminor der Minoren von A. Somit ist dann

det
(
J [det](A)

)
= det[Aminor] = 1, (II.33)

für alle A ∈ A, denn A·ATminor = det(A)·1 = 1. Insbesondere gibt es ein (i, j) ∈ {1, . . . , n}2
so, dass (

J [det](A)
)
i,j

=
∂ det(A)

∂ai,j
̸= 0 , (II.34)

und rk
[
J [det](A)

]
= 1.

• Sind (M1,T1,A1) und (M2,T2,A2) zwei Mannigfaltigkeiten der Dimensionen m1 bzw.
m2, so ist auch (M1×M2,TM1×M2 ,A12) eine Mannigfaltigkeit bzgl. der Produkttopologie
TM1×M2 , wobei

A12 :=
{(
U1 × U2, (φ1, φ2)

)∣∣∣ (U1, φ1) ∈ A1, (U2, φ2) ∈ A2

}
(II.35)

und die Dimension von (M1 ×M2,TM1×M2 ,A12) gleich m1 +m2 ist.

• Sind m,n ∈ N, U ⊆ Rm offen und F ∈ C∞(U ;Rn), so definiert der Graph

GF :=
{
[ξ, F (ξ)] ∈ Rm+n

∣∣∣ ξ ∈ U
}

⊆ Rm+n (II.36)

eine Mannigfaltigkeit der Dimension m, denn A =
{(

GF , [ξ, F (ξ)] 7→ ξ
)}

ist ein Atlas
von GF .

II.3. Zusammenhang und Wegzusammenhang von
Mannigfaltigkeiten

Als Nächstes beschreiben wir die allgemeine Gestalt von Mannigfaltigkeiten.

Lemma II.9. Sei (M,T,A) eine Mannigfaltigkeit.

(M,T) ist wegzusammenhängend ⇔ (M,T) ist zusammenhängend. (II.37)

Beweis. Wir berufen auf Lemma I.15 und zeigen nur

(M,T) ist zusammenhängend ⇒ (M,T) ist wegzusammenhängend. (II.38)
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Seien dazu q0 ∈M und

W :=
{
q ∈M

∣∣ ∃ γ ∈ C
(
[0, 1];M

)
: γ(0) = q0, γ(1) = q

}
. (II.39)

Es ist zu zeigen, dass W = M gilt. Dazu beweisen wir zuerst, dass W abgeschlossen ist. Sei
also p ∈ M ein Häufungspunkt von W und C = (U,φ) ∈ A eine Karte mit U ∋ p. Dann gibt
es ε > 0 so, dass B(φ(p), ε) ⊆ φ(U). Wir setzen V := φ−1

[
B(φ(p), ε)

]
⊆ U . Dann ist V ∈ T(p)

und wegzusammenhängend, denn zu p′, p′′ ∈ V definiert

γ(t) := φ−1
[
t φ(p′) + (1− t)φ(p′′)

]
(II.40)

einen stetigen Weg in V von p′ nach p. Da V eine offene Umgebung des Häufungspunkts p ist,
gilt W ∩ V ̸= ∅, und es gibt ein p′ ∈ W ∩ V , d.h. es gibt einen stetigen Weg von q0 nach p′

und auch von p′ nach p. Somit ist p ∈ W , d.h. W enthält alle ihre Häufungspunkte, und nach
Lemma I.6 sind W abgeschlossen und W c =M \W offen.

Seien andererseits p ∈ W und D = (V, ψ) ∈ A mit V ∋ p. Dann gibt es abermals eine offene
Umgebung R ⊆ V , R ∈ T(p), die wegzusammenhängend ist. Mit p ∈ W ist also auch R ⊆ W
und W ist somit offen.

Zusammenfassend erhalten wir:

M = W ∪ W c, W,W c ∈ T, W ̸= ∅. (II.41)

weil M zusammenhängend ist, impliziert dies W c = ∅ und dann auch W =M , wie behauptet.

Bemerkungen und Beispiele.

• Wir brauchen bei Mannigfaltigkeiten also zwischen zusammenhängend und wegzusam-
menhängend nicht unterscheiden.

• Sei (M,T) ein topologischer Raum. Für q, p ∈M wird durch

q ∼ p :⇔ ∃ γ ∈ C
(
[0, 1];M

)
: γ(0) = q, γ(1) = p (II.42)

offensichtlich eine Äquivalenzrelation auf M definiert. Die Äquivalenzklassen bezeichnen
wir als (Weg-) Zusammenhangskomponenten.

• Mit dieser Äquivalenzrelation erhalten wir folgenden Satz.

Satz II.10. Ist (M,T,A) eine Mannigfaltigkeit, so gibt es eine disjunkte Familie {(Ml,Tl,Al)}l∈L
wegzusammenhängender Mannigfaltigkeiten, so dass

M =
⋃
l∈L

Ml. (II.43)

II.4. Ausschöpfungen und Partition der Eins

Satz II.11. Ist (M,T,A) eine (weg-)zusammenhängende Mannigfaltigkeit, so besitzt M eine
abzählbare kompakte Ausschöpfung, d.h. es gibt eine Folge (Kn)

∞
n=1 ∈ MN kompakter

19



Teilmengen von M , sodass

K1 ⊆
◦
K2 ⊆ K2 ⊆ · · · ⊆ Kn ⊆

◦
Kn ⊆ Kn+1 ⊆ · · · (II.44)

und

M =
∞⋃
n=1

Kn. (II.45)

Zur Vorbereitung der nächsten Definition erinnern wir an den Begriff des Trägers

supp[f ] :=
{
p ∈M

∣∣ f(p) > 0
}

(II.46)

einer nichtnegativen stetigen Funktion f ∈ C(M ;R+
0 ) auf einem topologischen Raum (M,T).

Es ist also supp[f ] = f−1[R+] ∈ T als Urbild der offenen Menge R+ ⊆ R+
0 unter der stetigen

Abbildung f selbst offen.

Definition II.12. SeienM = (M,T,A) eine zusammenhängende Mannigfaltigkeit und {Ui}i∈I ⊆
T eine offene Überdeckung von M . Eine Familie {χα}α∈J ⊆ C(M ; [0, 1]) stetiger Abbildungen
heißt (zu {Ui}i∈I gehörige) Partition der Eins :⇔

(i) ∀α ∈ J ∃ i ∈ I : Vα := supp[χα] ⊆ Ui ; (II.47)

(ii) ∀ q ∈M ∃W ∈ T(q) :
∣∣{α ∈ J

∣∣ Vα ∩W ̸= ∅
}∣∣ < ∞ ; (II.48)

(iii) ∀ q ∈M :
∑
α∈J

χα(q) = 1 ; (II.49)

(iv) ∀ (U,φ) ∈ A , α ∈ J , Vα ∩ U ̸= ∅ :

(χα ◦ φ−1) ∈ C∞(φ(Vα ∩ U); [0, 1]) . (II.50)

Satz II.13. Sind M = (M,T,A) eine zusammenhängende Mannigfaltigkeit und {Ui}i∈I ⊆ T
eine offene Überdeckung von M , so gibt es eine zu {Ui}i∈I gehörige, abzählbare Partition
{χℓ}∞ℓ=1 ⊆ C(M ; [0, 1]) der Eins.

Beweis. Nach Satz II.11 gibt es eine kompakte Ausschöpfung vonM , d.h. eine Folge (Kn)
∞
n=1 ∈

P(M)N kompakter Teilmengen, sodass Kn ⊆
◦
Kn+1, für alle n ∈ N, und M =

⋃∞
n=1Kn.

Ist p ∈ M , so gibt es aufgrund der Überdeckungseigenschaften n ∈ N, i ∈ I und (Sp, φp) ∈ A
so, dass p ∈ (Kn+1 \Kn) ∩ Ui ∩ Sp, wobei wir K0 := ∅ notieren. Für εp > 0 genügend klein ist
dann auch

V (p) := φ−1
p

[
B
(
φp(p), 3εp

)]
⊆
( ◦
Kn+2 \Kn

)
∩ Ui ∩ Sp . (II.51)

Für n = 1 ist dann {V (p) | p ∈ K1} ⊆ T eine offene Überdeckung von K1. Da K1 kompakt ist,
gibt es L(1) ∈ N und q1, q2, . . . qL(1) ∈ K1 so, dass

K1 ⊆
L(1)⋃

ℓ=L(0)+1

V (qℓ) , (II.52)
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wobei L(0) := 0 < L(1). Genauso gibt es L(2) ∈ N, L(2) > L(1) und qL(1)+1, . . . qL(2) ∈ K2 \
◦
K1

so, dass

K2 \
◦
K1 ⊆

L(2)⋃
ℓ=L(1)+1

V (qℓ) (II.53)

usw. Allgemein folgt induktiv, dass es zu jedem n ∈ N ein L(n+ 1) ∈ N, L(n+ 1) > L(n) und

qL(n)+1, . . . qL(n+1) ∈ Kn+1 \
◦
Kn so gibt, dass

Kn+1 \
◦
Kn ⊆

L(n+1)⋃
ℓ=L(n)+1

V (qℓ) . (II.54)

Zusammengefügt erhalten wir eine Folge (qℓ)
∞
ℓ=1 ∈ MN von Punkten, sodass {V (qℓ)}∞ℓ=1 eine

offene Überdeckung von M ist.

Sei weiterhin ℓ ∈ N. Dann gibt es ein m ∈ N0 so, dass L(m) < ℓ ≤ L(m + 1), und es sind

qℓ ∈ Km+1 \
◦
Km und V (qℓ) ⊆

◦
Km+2 \Km gemäß (II.51). Insbesondere gilt

V (qℓ) ∩ (Kn+1 \Kn) = ∅ , (II.55)

falls n + 1 ≤ m, d.h. falls ℓ > L(n + 1), und ebenso falls n ≥ m + 2, d.h. falls n ≥ 2 und
ℓ ≤ L(n− 1).

Sind nun p ∈M und dann n(p) ∈ N0, i(p) ∈ I und (Sp, φp) ∈ A so, dass p ∈ (Kn(p)+1 \Kn(p))∩
Ui(p) ∩ Sp, so sind V (p) ∈ T(p) und V (p) ⊆

◦
Kn(p)+2 \Kn(p), gemäß (II.51). Außerdem folgt aus

(II.55), dass∣∣∣{ℓ ∈ N ∣∣ V (qℓ) ∩ V (p) ̸= ∅
}∣∣∣ ≤ L[n(p) + 1] − L[max{n(p)− 1, 0}] < ∞ . (II.56)

Wir wählen nun eine Funktion f ∈ C∞(R+
0 ; [0, 1]

)
, für die f ≡ 1 auf [0, 1], f ′ ≤ 0 und f ≡ 0

auf [2,∞) gilt. Für ℓ ∈ N kürzen wir (Vℓ, φℓ) :=
(
V (qℓ), φqℓ

)
, ξℓ := φℓ(qℓ) und εℓ := εqℓ ab und

definieren eine Funktion γℓ :M → [0, 1] durch

∀ p ∈ Vℓ = φ−1
ℓ

[
B
(
ξℓ , 3εℓ

)]
: γℓ(p) := f

[(φℓ(p)− ξℓ
εℓ

)2]
(II.57)

und γℓ ≡ 0 auf M \ Vℓ. Offensichtlich ist

∀ ξ ∈ φℓ[Vℓ] = B
(
ξℓ, 3εℓ

)]
:
[
γℓ ◦ φ−1

ℓ

]
(ξ) = f

[(ξ − ξℓ
εℓ

)2]
, (II.58)

und somit ist γℓ◦φ−1 =
[
γℓ◦φ−1

ℓ

]
◦
[
φℓ◦φ−1

]
∈ C∞(φ[supp(γℓ)∩U ]), für jede Karte (U,φ) ∈ A

mit supp(γℓ) ∩ U ̸= ∅.
Wir definieren schließlich χℓ :M → [0, 1] für p ∈M durch

χℓ(p) :=

( ∞∑
ℓ′=1

γℓ′(p)

)−1

· γℓ(p) =

( L[n(p)+1]∑
ℓ′=L[max{n(p)−1,0}]

γℓ′(p)

)−1

· γℓ(p) , (II.59)
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so dass offensichtlich χℓ ◦φ−1 ∈ C∞(φ[supp(χℓ)∩U ]), für jede Karte (U,φ) ∈ A mit supp(χℓ)∩
U ̸= ∅ und

∀ p ∈M :
∞∑
ℓ=1

χℓ(p) = 1 (II.60)

gelten. Offenbar ist {χℓ}∞ℓ=1 eine zu {Ui}i∈I gehörige, abzählbare Partition der Eins.

Bemerkungen und Beispiele.

• Die Eigenschaft einer zusammenhängenden Mannigfaltigkeit, eine abzählbare und lokal
endliche Partition der Eins zu besitzen, wird für uns an Bedeutung gewinnen, wenn wir
Immersionen diskutieren und wenn wir Integrale über Mannigfaltigkeiten definieren.

• Zunächst wenden wir uns jedoch dem Begriff differenzierbarer Abbildungen zwischen
Mannigfaltigkeiten zu. Dazu erinnern wir an den Begriff der k-fach stetig differenzier-
baren Abbildungen, den wir von auf offenen Mengen Ω ⊆ Rm auf beliebige nichtleere
Teilmengen A ⊆ Rm wie folgt verallgemeinern.

• Seien m,n ∈ N und k ∈ N0. Für ∅ ≠ A ⊆ Rm heißt f : A → Rn k-mal stetig
differenzierbar, f ∈ Ck(A;Rn)

:⇔ ∃Ω ∈ TRm , Ω ⊇ A, f̃ ∈ Ck(Ω;Rn) : f = f̃ ↿A . (II.61)

Definition II.14. Seien M = (M,T,A) und N = (N,S,B) zwei Mannigfaltigkeiten und
k ∈ N0.

(i) Eine Abbildung f :M → N heißt k-mal stetig differenzierbar, f ∈ Ck(M ;N)

:⇔ ∀ (U,φ) ∈ A, (V, ψ) ∈ B, W := U ∩ f−1(V ) ̸= ∅ :(
ψ ◦ f ◦ φ−1

)
∈ Ck

(
φ(W ); [ψ ◦ f ](W )

)
. (II.62)

(ii) Sind a, b ∈ R mit a < b und M =
(
(a, b), TR, {idR}) =: (a, b), so heißt f ∈ Ck

(
(a, b);N

)
Ck-Kurve in N . Außerdem schreiben wir Ck(M) := Ck(M ;M).

(iii) Sind f : M → N bijektiv und f ∈ C∞(M ;N) sowie auch f−1 ∈ C∞(N ;M), so nennen
wir f einen Diffeomorphismus. In diesem Fall heißen M und N diffeomorph.

Bemerkungen und Beispiele.

• Der Begriff der k-fachen stetigen Differenzierbarkeit ist wohldefiniert, d.h. unabhängig
von den zu Grunde liegenden Atlanten innerhalb der ihrer Äquivalenzklasse. In der Tat,
sind (U,φ), (Ũ , x̃) zwei miteinander verträgliche Karten von M und (V, ψ), (Ṽ , ỹ) zwei

miteinander verträgliche Karten von N so, dass W := U ∩ Ũ ∩ f−1(V ∩ Ṽ ) ̸= ∅, so ist

ỹ ◦ f ◦ x̃−1 = (ỹ ◦ ψ−1) ◦ (ψ ◦ f ◦ φ−1) ◦ (φ ◦ x̃−1) (II.63)

auf W , und wegen der Glattheit von ỹ ◦ ψ−1 und φ ◦ x̃−1 ist

(ỹ ◦ f ◦ x̃−1) ∈ Ck
(
x̃(W ); [ỹ ◦ f ](W )

)
⇔ (ψ ◦ f ◦ φ−1) ∈ Ck

(
φ(W ); [ψ ◦ f ](W )

)
.

(II.64)
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• Wird M = (M,T,A) durch eine einzige Karte (M,φ) dargestellt, d.h. ist A = {(M,φ)},
so ist φ : M → φ(M) ein Diffeomorphismus, wobei wir φ(M) ⊆ Rm als Mannigfaltigkeit
mit Atlas

{(
φ(M), idRm

)}
auffassen.

• Ist M1 = (R,TR,A1) mit A1 = {(R, φ)} und φ(x) = x3, so ist M1 diffeomorph zu
M′

1 = (R,TR, idR)

• Sind M2 = M′
2 = (R,TR, idR), so ist jedoch f : R→ R, f(x) := x3, kein Diffeomorphis-

mus zwischen M2 und M′
2, da

idR ◦ f−1 ◦ idR /∈ C∞(M2;M′
2) . (II.65)

• Aus diesen, zunächst verwirrenden Beispielen lernen wir, dass derselbe topologische Raum
(hier: (R,TR) verschiedene Mannigfaltigkeitsstrukturen tragen kann: Im vorletzten Bei-
spiel ist x 7→ x3 die die Mannigfaltigkeit definierende Kartenabbildung. Wenngleich M′

1

und M′
2 dieselbe Topologien besitzen, sind in M1 die Punkte um p = 0 unendlich stark

verdichtet.

Definition II.15. Sei M = (M,T,A) eine Mannigfaltigkeit. Eine Mannigfaltigkeit M̂ =

(M̂, T̂, Â) heißt Überlagerungsmannigfaltigkeit (von M)

:⇔ Es gibt eine Abbildung π ∈ C∞(M̂;M) mit den folgenden beiden Eigenschaften:

∀ p ∈M : π−1[{p}] ⊆ M̂ ist abzählbar und (II.66)

∀ p ∈M ∃V ∈ T(p) : π−1[V ] ist diffeomorph zu V × π−1[{p}] . (II.67)

In diesem Fall nennt man π Projektion von M̂ auf M.

Bemerkungen und Beispiele.

• Seien M = S1 = (S1,Trel, {C±}) und M̂ = (R,Teukl, idR). Wir stellen S1 = {z ∈ C :
|z| = 1} als komplexe Zahlen vom Betrag eins dar.

• Wir definieren die Projektion π : R→ S1 durch

∀α ∈ R : π(α) := eiα . (II.68)

und beobachten, dass

π−1[{eiβ}] = β + 2πZ . (II.69)

• Weiterhin ist V := {eiα |α ∈ Iβ,ε} ∈ Trel(β) für ε > 0 eine offene Umgebung von β, wobei
Iβ,ε := (β − ε, β + ε). Ihr Urbild unter π ist gegeben durch

π−1[V ] = Iβ,ε + 2πZ . (II.70)

• Für ε < π ist Iβ,ε + 2πZ eine nichtzusammenhängende eindimensionale Mannigfaltigkeit.
Weiterhin gibt es dann zu jedem p̂ ∈ Iβ,ε + 2πZ genau ein α(p̂) ∈ Iβ,ε und genau ein
n(p̂) ∈ Z so, dass p̂ = α(p̂) + 2πn(p̂).
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• Man prüft nun leicht nach, dass

J : Iβ,ε + 2πZ → Iβ,ε × Z , p̂ 7→
(
α(p̂), n(p̂)

)
(II.71)

ein Diffeomorphismus ist.

• Folglich ist R eine Überlagerungsmannigfaltigkeit von S1 mit Projektion π von R auf S1.

Definition II.16. Sei M = (M,T,A) eine Mannigfaltigkeit der Dimensionen m. Eine Man-
nigfaltigkeit N = (N,S,B) heißt Teilmannigfaltigkeit (von M) der Dimensionen n. :⇔
n < m, N ⊆M ist Teilmenge vonM , die Topologie auf N ist die T induzierte relative Topologie
S = {U ∩N |U ∈ T}, und es gibt einen mit A verträglichen Atlas A′ von M , sodass

(i) ∀ (U,φ) ∈ A′ : U ∩N =
{
p ∈ U

∣∣ φn+1(p) = φn+2(p) = · · · = φm(p) = 0
}
; (II.72)

(i)
{(
U ∩N, (φ1, φ2, . . . , φn)

) ∣∣ (U,φ) ∈ A′} ist ein mit B verträglicher Atlas von N .
(II.73)

Aus Satz II.8 erhalten wir mit diesen Begriffen sofort folgendes Korollar.

Korollar II.17. Seien m,n ∈ N, n ≤ m − 1, M = (M,T,A) eine Mannigfaltigkeit der
Dimension m, F ∈ C∞(M ;Rm−n) und N := {p ∈ M |F (p) = 0}. Ist rk[F ] = m − n auf N ,
so ist N = (N,S,B) eine Teilmannigfaltigkeit von M der Dimension n (bezüglich eines durch
lokale Auflösungen von F (p) = 0 gewonnenen Atlas B).

Bemerkungen und Beispiele.

• Seien m = 2, n = 1, M = (R2 \ {0},Teukl,A) und

N = S1 =
{
q = (a, b) ∈ R2

∣∣ ∥q∥2eukl = a2 + b2 = 1
}

⊆ R2 \ {0} , (II.74)

wobei A = {D+, D−} mit D± = (W±, ψ±), W± := R2 \ ({0} ×R±
0 ) und

∀ q = (a, b) ∈ W± : φ1
±(q) :=

2a√
a2 + b2 ∓ b

, φ2
±(q) := a2 + b2 − 1 . (II.75)

• Dann sind

W± ∩ S1 =
{
q ∈ R2 \ {0}

∣∣ φ2
±(q) = 0

}
= U± (II.76)

und

A′ :=
{
(W+ ∩ S1, φ2

+) , (V− ∩ S1, φ2
−)
}

= {C+, C−} (II.77)

ist gerade der in (II.26)-(II.27) definierte Atlas der stereografischen Projektionen.

• Also ist S1 eine eindimensionale Teilmannigfaltigkeit von R2.
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II.5. Ergänzungen

II.5.1. Existenz kompakter Ausschöpfungen - Beweis von Satz II.11:

Seien q ∈M und Cq = (Uq, φq) ∈ A eine Karte mit U ∋ q. Für εq > 0 genügend klein ist

B(φq(q), εq) ⊆ φq(Uq) (II.78)

und mit

Vq := φ−1
q

[
B(φq(q), εq)

]
(II.79)

ist {Vq}q∈M eine offene Überdeckung von M , und als Bild einer kompakten Menge unter der
stetigen Abbildung φ−1

q ist

∀ q ∈M : Vq = φ−1
q

[
B(φq(q), εq)

]
kompakt. (II.80)

Nach Voraussetzung ist (M,T) parakompakt, und es existiert eine lokal endliche Überdeckung
{Wα}α∈J von M , wobei es für jedes q ∈ M ein solches α ∈ J gibt, dass Wα ⊆ Vq. Als
abgeschlossene Teilmenge der kompakten Menge Vq ist auch

∀α ∈ J : Wα kompakt. (II.81)

Da {Wα}α∈J lokal endlich ist, gibt es zu jedem p ∈ M eine Umgebung Sp ∈ T(p), und eine
endliche Menge Ip ⊆ J , |Ip| <∞ so, dass

∀α ∈ J \ Ip : Wα ∩ Sp = ∅, (II.82)

d.h. nur endlich vieleWα schneiden Sp. Da {Wα}α∈J eine Überdeckung vonM ist, gilt natürlich
auch Sp ⊆

⋃
α∈Ip Wα.

Sei nun K ⊆ M kompakt. Dann ist {Sp}p∈K eine offene Überdeckung von K, und daher gibt
es p1, . . . , pL ∈ K, so dass K ⊆ Sp1 ∪Sp2 ∪ · · · ∪SpL . Mit I(K) := Ip1 ∪ · · · ∪ IpL gilt dann aber

K ⊆
⋃

α∈I(K)

Wα , ∀α ∈ J \ I(K) : Wα ∩K = ∅. (II.83)

Wegen

|I(K)| = |Ip1 ∪ · · · ∪ IpL| ≤
L∑
ℓ=1

|Ipℓ | < ∞ (II.84)

bedeutet (II.83), dass auch K nur von endlich vielen Wα geschnitten wird.

Wir wählen nun o ∈ J so, dass Wo ̸= ∅ und setzen

K1 := Wo , K2 :=
⋃

α∈I(K1)

Wα (II.85)
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und induktiv für n ∈ N

Kn+1 :=
⋃

α∈I(Kn)

Wα . (II.86)

Offenbar ist K1 kompakt. Sind K1, K2, . . . , Kn kompakt, so schneiden nur endliche viele Wα

mit jeweils kompaktem AbschlussWα die Menge Kn, und deshalb ist dann auch Kn+1 kompakt.
Durch Induktion erhalten wir die Kompaktheit aller Kn, für n ∈ N. Außerdem ist

Kn ⊆
⋃

α∈I(Kn)

Wα ⊂
◦
Kn+1, (II.87)

da
⋃
α∈I(Kn)

Wα eine offene Teilmenge von Kn+1 ist und somit in der größten offenen Teilmenge
◦
Kn+1 ⊆ Kn+1 enthalten ist. Es verbleibt zu zeigen, dass

N :=
∞⋃
n=1

Kn = M (II.88)

gilt. Wegen Kn ⊆
◦
Kn+1 ⊆ Kn+1 ist

N =
∞⋃
n=1

◦
Kn+1 (II.89)

als Vereinigung offener Mengen selbst offen.

Ist q ∈ N , so gibt es ein α ∈ J mitWα ∋ q, da {Wα}α∈J eine offene Überdeckung ist. Dann gilt
jedoch auch N ∩Wα ̸= ∅, denn anderenfalls wäre N \Wα ⊇ N eine echt größere abgeschlossene
Menge als N , die N umfasst, was der Definition des Abschlusses von N widerspräche. Wegen
N ∩Wα ̸= ∅ gibt es ein n ∈ N so, dass Wα ∩Kn ̸= ∅. Aber dann gilt

q ∈ Wα ⊆ Kn+1 ⊆ N, (II.90)

gemäß der Definition (II.86) von Kn+1. Also ist N auch abgeschlossen, und N c ist offen. Da
M = N ∪ N c nach Voraussetzung zusammenhängend ist und N ⊇ Wo ̸= ∅ gilt, muss N c = ∅
sein, d.h. (II.88) gilt.
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III. Immersionen und Einbettungen

III.1. Immersionen als Abbildung vollen Ranges

Definition III.1. Seien M = (M,T,A) und N = (N,S,B) zwei Mannigfaltigkeiten der
Dimensionen m = dim(M) bzw. n = dim(N ) und f ∈ C1(M ;N).

(i) Sind p ∈M und (U,φ) ∈ A und (V, ψ) ∈ B so, dass p ∈ U ∩ f−1(V ), so heißt

rk[f ](p) := rk
[
Jψ◦f◦φ−1

(
φ(p)

)]
(III.1)

Rang von f bei p.

(ii) Die Funktion f heißt Immersion (von M in N) :⇔

∀ p ∈M : rk[f ](p) = m. (III.2)

(iii) Die Funktion f heißt Einbettung (von M in N) :⇔
Die Funktion f ist eine injektive Immersion und f : (M,T) → (N,S) ist ein Homöomor-
phismus.

(iv) Die Funktion f heißt Submersion (von M auf N) :⇔

∀ p ∈M : rk[f ](p) = n . (III.3)

Bemerkungen und Beispiele.

• Wie üblich ist der Rang von f bei p ∈M unabhängig von den gewählten Karten (U,φ) ∈
A und (V, ψ) ∈ B und insofern wohldefiniert.

• Ist f ∈ C1(M ;N) eine Immersion, so ist m ≤ n, da rk[f ] ≤ min{m,n}.
• Ist f ∈ C1(M ;N) eine Submersion, so ist m ≥ n, abermals wegen rk[f ] ≤ min{m,n}.
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III.2. Matrizen festen Ranges

Im Folgenden seien m,n, k ∈ N mit k ≤ min{m,n}, und wir betrachten reelle n×m-Matrizen

A =

a1,1 · · · a1,m
...

...
an,1 · · · an,m

 ∈ Rn×m . (III.4)

Zu jedem Paar (I, J) von Teilmengen I = {i(1), i(2), . . . , i(k)} ⊆ Zn1 , mit 1 ≤ i(1) < i(2) <
. . . < i(k) ≤ n, und J = {j(1), j(2), . . . , j(k′)} ⊆ Zm1 bezeichnen wir mit A(I, J) ∈ Rk×k′ die
reelle k × k′-Matrix

A(I, J) :=

ai(1),j(1) · · · ai(1),j(k′)
...

...
ai(k),j(1) · · · ai(k),j(k′)

 . (III.5)

Lemma III.2. Seien m,n, k ∈ N mit k ≤ min{m,n} und A = (ai,j)i∈Zn
1 ,j∈Zm

1
∈ Rn×m eine

reelle n×m-Matrix. Dann gilt

rk[A] ≥ k ⇔ ∃ I ⊆ Zn1 J ⊆ Zm1 |I| = |J | = k : det[A(I, J)] ̸= 0 . (III.6)

Beweis. ⇒: Ist rk[A] ≥ k, so ist insbesondere der Spaltenrang von A mindestens gleich k und es

gibt (mindestens) k linear unabhängige Spaltenvektoren b⃗j(1), b⃗j(2), . . . , b⃗j(k), wobei 1 ≤ j(1) <
j(2) < . . . < j(k) ≤ m und

b⃗j :=


a1,j
a2,j
...
an,j

 . (III.7)

Dies ist gleichwertig mit der Aussage, dass die n× k-Matrix

A(Zn1 , J) :=

a1,j(1) · · · a1,j(k)
...

...
an,j(1) · · · an,j(k)

 (III.8)

vom Rang rk[A(Zn1 , J)] = k ist, wobei J = {j(1), j(2), . . . , j(k)} ⊆ Zm1 . Dies zieht jedoch die
Existenz einer solchen Menge I = {i(1), i(2), . . . , i(k)} ⊆ Zn1 , mit 1 ≤ i(1) < i(2) < . . . <
i(k) ≤ n, nach sich, dass der Rang der k × k-Matrix A(I, J) gleich k und sie somit invertibel
ist, was det[A(I, J)] ̸= 0 impliziert.

⇐: Seien det[A(I, J)] ̸= 0, wobei I = {i(1), i(2), . . . , i(k)} ⊆ Zn1 , 1 ≤ i(1) < i(2) < . . . <
i(k) ≤ n, und J = {j(1), j(2), . . . , j(k)} ⊆ Zm1 , 1 ≤ j(1) < j(2) < . . . < j(k) ≤ m. Mit

der Notation aus Glg. (III.7) ist dann {⃗bj(1), b⃗j(2), . . . , b⃗j(k)} ⊆ Rn eine linear unabhängige,
k-elementige Teilmenge von Spaltenvektoren in A und der Rang von A ist mindestens gleich
k.
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Korollar III.3. Seien m,n, k ∈ N mit k ≤ min{m,n} und A = (ai,j)i∈Zn
1 ,j∈Zm

1
∈ Rn×m eine

reelle n×m-Matrix. Dann sind folgende Aussagen äquivalent:

(i) rk[A] = k;

(ii) Es gibt I ⊆ Zn1 und J ⊆ Zm1 mit |I| = |J | = k so, dass det[A(I, J)] ̸= 0, und für alle
I ′ ⊆ Zn1 und J ′ ⊆ Zm1 mit |I ′| = |J ′| = k + 1 gilt det[A(I ′, J ′)] = 0.

(iii) Es gibt I ⊆ Zn1 und J ⊆ Zm1 mit |I| = |J | = k so, dass det[AI,J ] ̸= 0, und für alle
α ∈ Zn1 \ I und β ∈ Zm1 \ J gilt det[AI∪{α} , J∪{β}] = 0.

Beweis. Lemma III.2 impliziert, dass (i) ⇔ (ii) und trivialerweise gilt auch (ii) ⇒ (iii). Die
Aussage folgt also, wenn wir (iii) ⇒ (i) zeigen. Dazu können wir k+1 ≤ min{m,n} annehmen,
denn für k = min{m,n} gibt es nichts zu beweisen.

Seien also I = {i(1), i(2), . . . , i(k)} ⊆ Zn1 , 1 ≤ i(1) < i(2) < . . . < i(k) ≤ n, und J =
{j(1), j(2), . . . , j(k)} ⊆ Zm1 , 1 ≤ j(1) < j(2) < . . . < j(k) ≤ m, so, dass det[A(I, J)] ̸= 0 sowie
β ∈ Zm1 \ J . Nach geeigneter Zeilen- und Spaltenvertauschung können wir o.B.d.A. annehmen,
dass I = J = Zk1 und β ∈ Zmk+1 sind. Für i ∈ Zn1 setzen wir nun

c⃗i = (ai,1 , . . . , ai,k , ai,β) ∈ Rk+1 (III.9)

Dann ist det[A(Zk1,Z
k
1)] ̸= 0 und demgemäß ist

A(Zk1,Z
k
1 ∪ {β}) =

a1,1 · · · a1,k a1,k+1
...

...
...

ak,1 · · · ak,k ak,k+1

 =

c⃗1...
c⃗k

 (III.10)

eine Matrix vom Rang rk[A(Zk1,Z
k
1 ∪ {β})] = k und deshalb C(Zk1) := {c⃗1, . . . , c⃗k} ⊆ Rk+1

linear unabhängig. Für α ∈ Znk+1 folgt aus (iii), dass

0 = det[A(Zk1 ∪ {α},Zk1 ∪ {β}) =


a1,1 · · · a1,k a1,β
...

...
...

ak,1 · · · ak,k ak,β
aα,1 · · · aα,k aα,β

 =


c⃗1
...
c⃗k
c⃗α

 , (III.11)

und deshalb ist C(Zk1) ∪ {c⃗α} linear abhängig. Es folgt, dass c⃗α ∈ span[C(Zk1)]. Da α ∈ Znk+1

beliebig ist, erhalten wir, dass

c⃗1, . . . , c⃗k , c⃗k+1 , . . . , c⃗n ∈ span[C(Zk1)] (III.12)

und somit

∀ β ∈ Zmk+1 : rk[A(Zn1 ,Z
k
1 ∪ {β})] = rk[A(Zn1 ,Z

k
1)] = k . (III.13)

Setzen wir wieder

b⃗j :=


a1,j
a2,j
...
an,j

 , (III.14)
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so sindA(Zn1 ,Z
k
1) = (⃗b1, . . . , b⃗k) und wegen rk[A(Zn1 ,Z

k
1)] = k die Menge B[Zk1] := {⃗b1, . . . , b⃗k} ⊆

Kn linear unabhängig. Weiterhin sind wegen rk[A(Zn1 ,Z
k
1 ∪ {β})] = k die Menge B[Zk1] ∪ {⃗bβ}

linear abhängig und deshalb b⃗β ∈ B[Zk1], für alle β ∈ Zmk+1. Wir erhalten

b⃗1, . . . , b⃗k , b⃗k+1 , . . . , b⃗n ∈ span[B(Zk1)] (III.15)

und somit

rk[A] = rk
[
(⃗b1 , . . . , b⃗k , b⃗k+1 , . . . , b⃗n)

]
= k . (III.16)

Satz III.4. Seien m,n, k ∈ N mit k ≤ min{m,n} und

Rn×m
rk=k :=

{
A ∈ Rn×m ∣∣ rk[A] = k

}
, (III.17)

Rn×m
rk≥k :=

{
A ∈ Rn×m ∣∣ rk[A] ≥ k

}
. (III.18)

Dann ist Rn×m
rk≥k ⊆ Rn·m offen und Rn×m

rk=k ⊆ Rn×m
rk≥k ist eine Teilmannigfaltigkeit von Rn×m der

Dimension k(m+ n− k).

Beweis. Gemäß Lemma III.2 ist

Rn×m
rk≥k =

⋃
I⊆Zn

1 ,J⊆Zm
1 ,|I|=|J |=k

E(I, J) , wobei (III.19)

E(I, J) :=
{
A ∈ Rn×m ∣∣ det[A(I, J)] ̸= 0

}
. (III.20)

Die Mengen E(I, J) ⊆ Rn×m sind offen und damit auch Rn×m
rk≥k ⊆ Rn×m. Trivialerweise ist

Rn×m
rk≥k ⊆ Rn×m eine Mannigfaltigkeit der Dimension n ·m.

Weiterhin ist Rn×m
rk=k = R

n×m
rk≥k im Fall, dass k = min{m,n}, und wir können o.B.d.A. im Weiteren

k + 1 ≤ min{m,n} annehmen. Nach Lemma III.3 (iii) ist

Rn×m
rk=k =

⋃
I⊆Zn

1 ,J⊆Zm
1 ,|I|=|J |=k

L(I, J) , wobei (III.21)

L(I, J) :=
{
A ∈ E(I, J)

∣∣∣ ∀α ∈ Zn1 \ I , β ∈ Zm1 \ J : det[A(I ∪ {α} , J ∪ {β})] = 0
}
.

(III.22)

Sind etwa I = J = Zk1, so definieren wir Fα,β : Rn×m → R für α ∈ Znk+1 und β ∈ Zmk+1 durch

Fα,β(A) = det[A(Zk1 ∪ {k + α} , Zk1 ∪ {k + β})] = det



a1,1 · · · a1,k a1,β
...

...
...

ak,1 · · · ak,k ak,β
aα,1 · · · aα,k aα,β


 (III.23)
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und weiterhin F : Rn×m → R(n−k)×(m−k) durch

F (A) :=
(
Fα,β(A)

)
α∈Zn−k

1 ,β∈Zm−k
1

=

 F1,1(A) · · · F1,m−k(A)
...

...
Fn−k,1(A) · · · Fn−k,m−k(A)

 . (III.24)

Nach dem Leibnizschen Entwicklungssatz ist

Fα,β(A) = aα,β · det[A(Zk1,Zk1)] + R(A) (III.25)

wobei R(A) von Matrixelementen ai,j abhängt, für die (i ≤ k) ∨ (j ≤ k) gilt. Für i, α ∈ Znk+1

und j, β ∈ Zmk+1 ist also

∂Fα,β(A)

∂ai,j
= δi,α δj,β det[A(Zk1,Z

k
1)] . (III.26)

Da det[A(Zk1,Z
k
1)] ̸= 0 auf E(Zk1,Zk1) ist, folgt daraus

∀A ∈ E(Zk1,Zk1) : rk[JF (A)] = (n− k)(m− k) , (III.27)

und dass JF auf E(Zk1,Zk1) somit maximalen Rang besitzt. Nach Korollar II.17 ist damit

L(Zk1,Zk1) =
{
A ∈ E(Zk1,Zk1)

∣∣∣ rk[F (A)] = 0
}

(III.28)

und entsprechend auch Rn×m
rk=k =

⋃
I⊆Zn

1 ,J⊆Zm
1 ,|I|=|J |=k L(I, J) ⊆ Rn×m

rk≥k eine Teilmannigfaltigkeit
der Dimension

dim
[
Rn×m

rk=k

]
= nm− (n− k)(m− k) = k(m+ n− k) . (III.29)

III.3. Immersions- und Einbettungsätze

Lemma III.5. Seien m,n ∈ N mit n ≥ 2m, Ω ⊆ Rm offen und nichtleer und f ∈ C2(Ω;Rn).
Dann gibt es zu jedem ε > 0 ein A = (ai,j)i∈Zn

1 ,j∈Zm
1

∈ Rn×m mit maxi∈Zn
1 ,j∈Zm

1
|ai,j| ≤ ε so,

dass mit fA(x) = f(x) + Ax die Funktion fA ∈ C2(Ω;Rn) eine Immersion ist.

Beweis. Wir führen den Beweis nur für m ≥ 2, der Fall m = 1 ist eine Übungsaufgabe. Wir
bezeichnen mit J := Jf die Jacobi-Matrix von f und mit JA := J + A die Jacobi-Matrix von
A. Es ist zu zeigen, dass eine Matrix A = (ai,j)i∈Zn

1 ,j∈Zm
1
∈ Rn×m existiert, sodass

∀x ∈ Ω : rk[JA(x)] = m und ∀ i ∈ Zn1 , j ∈ Zm1 : |ai,j| ≤ ε . (III.30)

Wir fixieren k ∈ Zm−1
1 und betrachten die Abbildung Fk ∈ C1(Ω×Rn×m

rk=k ; R
n×m),

(x,B) 7→ Fk(x,B) := B − J(x) . (III.31)
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Da m− k ≥ 1 ist, folgt

dim[Rn×m]− dim[Ω×Rn×m
rk=k] = mn−

{
m+ k(m+ n− k)

}
= mn−m− km− kn+ k2

= (n− k)(m− k)−m ≥ (2m− k)(m− k)−m ≥ (m+ 1) · 1−m = 1 . (III.32)

Da Fk stetig differenzierbar ist, ist das (nm)-dimensionale Lebesgue-Maß des Bildes von Fk
gleich null, für alle k ∈ Zm−1

1 , und wir erhalten

µRn×m [W ] = 0 , wobei W :=
m−1⋃
k=1

Fk
(
Ω×Rn×m

rk=k

)
. (III.33)

In diese Aussage geht die stetige Differenzierbarkeit von Fk in subtiler Weise ein, was wir jedoch
aus Zeitmangel nicht näher erläutern; wir erinnern aber an Satz II.4, der zeigt, dass die bloße
Stetigkeit der Abbildung Fk für (III.33) nicht ausreichen würde.

Aus (III.33) folgt insbesondere, dass W ⊆ Rn×m keine inneren Punkte enthält, und wir können
zu jedem ε > 0 ein A = (ai,j)i∈Zn

1 ,j∈Zm
1

∈ W c mit maxi∈Zn
1 ,j∈Zm

1
|ai,j| ≤ ε finden. Aus der

Definition (III.33) von W folgt dann, dass

∀ k ∈ Zm−1
1 , x ∈ Ω , B ∈ Rn×m

rk=k : A ̸= B − J(x) , (III.34)

was nach Auflösen zu JA(x) = J(x) + A ̸= B impliziert, dass

JA(x) /∈
m−1⋃
k=1

Rn×m
rk=k , also JA(x) ∈ Rn×m

rk=m (III.35)

für jedes x ∈ Ω gilt. Dies bedeutet jedoch, dass rk[FA] = m auf Ω ist.

Lemma III.6. SeienM = (M,T,A) eine Mannigfaltigkeit der Dimensionm und f ∈ C1(M ;Rn+1)
mit n ≥ m + 1. Sind (U,φ) ∈ A, K ⊆ U kompakt und rk[f ] = m auf K, so gibt es ein δ > 0,
sodass

∀h ∈ C1(U ;Rn+1) , max
q∈K

∥∥Jh◦φ−1 [φ(q)]
∥∥
op

≤ δ : rk[f + h] = m auf K . (III.36)

Beweis. Wir führen die Notation J (f) = (J
(f)
i,j )i∈Zn

1 ,j∈Zm
1

:= Jf◦φ−1 ◦ φ : U → Rn×m ein und

bezeichnen mit J
(f)
I := (J

(f)
i,j )i∈I,j∈Zm

1
: U → Rm×m, für jede Teilmenge I ⊆ Zn1 mit |I| = m.

Nach Voraussetzung ist rk[J (f)(q)] = m und deshalb auch

D(q) := max
{
| det[J (f)

I (q)]|
∣∣ I ⊆ Zn1 , |I| = m

}
> 0 , (III.37)

für alle q ∈ K. Die Abbildung D : U → R+ ist stetig und nimmt deshalb auf K ein positives
Minimum 2ε := minq∈K D(q) > 0 an. Für jedes q ∈ K gibt es also ein I(q) ⊆ Zn1 mit |I(q)| = m

und | det[J (f)
I(q)(q)]| ≥ 2ε. Definieren wir nun

Vq :=
{
p ∈ U : | det[J (f)

I(q)(p)]| > ε
}
, (III.38)
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so ist {Vq}q∈K eine offene Überdeckung von K, die wegen deren Kompaktheit eine endliche
offene Überdeckung enthält, d.h. es gibt L ∈ N und q(1), q(2), . . . , q(L) ∈ K so, dass

K =
L⋃
ℓ=1

Kℓ , wobei Kℓ := K ∩ Vq(ℓ) und
∣∣ det[J (f)

I(ℓ)]
∣∣ ≥ ε auf Kℓ (III.39)

mit I(ℓ) := I(q(ℓ)) gilt. Insbesondere erhalten wir, dass J
(f)
I(ℓ) auf dem Kompaktum Kℓ invertibel

ist und

Λ := max
{∥∥(J (f)

I(ℓ)(q)
)−1∥∥

op

∣∣∣ ℓ ∈ ZL1 , q ∈ Kℓ

}
< ∞ . (III.40)

Glg. (III.40) kann beispielsweise direkt über die Darstellung der Inversen einer m×m-Matrix
mit Hilfe der Matrix der Minoren gewonnen werden.

Ist nun h ∈ C1(U ;Rn+1) mit

max
{
∥J (h)

I(ℓ)(q)∥op
∣∣ ℓ ∈ ZL1 , q ∈ Kℓ

}
≤ δ :=

1

2Λ
, (III.41)

so setzen wir

Rℓ(q) :=
∞∑
k=0

(−1)k
(
J
(f)
I(ℓ)(q)

)−1
[
J
(h)
I(ℓ)(q) ·

(
J
(f)
I(ℓ)(q)

)−1
]k

(III.42)

und beobachten, dass diese Reihe in Norm konvergiert, da

∥Rℓ(q)∥op ≤
∞∑
k=0

∥∥∥(J (f)
I(ℓ)(q)

)−1
[
J
(h)
I(ℓ)(q) ·

(
J
(f)
I(ℓ)(q)

)−1
]k∥∥∥

op
(III.43)

≤
∞∑
k=0

∥∥(J (f)
I(ℓ)(q)

)−1∥∥k+1

op
∥J (h)

I(ℓ)(q)∥
k
op ≤ Λ

∞∑
k=0

2−k = 2Λ < ∞ .

Außerdem sieht man leicht, dass

Rℓ(q) · J (f+h)
I(ℓ) (q) = Rℓ(q) · J (f)

I(ℓ)(q) + Rℓ(q) · J (h)
I(ℓ)(q) = 1Rm (III.44)

und analog J
(f+h)
I(ℓ) (q) ·Rℓ(q) = 1Rm , d.h.

Rℓ(q) =
(
J
(f+h)
I(ℓ) (q)

)−1
(III.45)

und rk[f+h] = m auf Kℓ. Fügen wir dies für alle ℓ ∈ ZL1 zusammen, erhalten wir rk[f+h] = m
auf K.

Satz III.7. Seien M = (M,T,A) eine zusammenhängende Mannigfaltigkeit der Dimension m,
f ∈ C1(M ;Rn) mit n ≥ 2m undD ∈ C(M ;R+). Dann existiert eine Immersion g ∈ C∞(M ;Rn)
von M in Rn so, dass

∀ q ∈M : ∥f(q)− g(q)∥ ≤ D(q) . (III.46)
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Beweis. Nach Satz II.11 gibt es kompakte Mengen Kr ⊆
◦
Kr+1 so, dass M =

⋃∞
r=1Kr. Wir

vervenden im Weiteren den Beweis von Satz II.13, dem gemäß es weiterhin eine Partition
{χℓ}∞ℓ=1 ⊆ C∞(M ; [0, 1]) der Eins, {qℓ}∞ℓ=1 ⊆ M , {εℓ}∞ℓ=1 ⊆ R+ und {(Uℓ, φℓ)}∞ℓ=1 ⊆ A, ξℓ :=
φℓ(qℓ) so gibt, dass

χℓ ≡ 1 auf V ′
ℓ , mit V ′

ℓ := φ−1
ℓ [B(ξℓ, εℓ)] , (III.47)

supp[χℓ] ⊆ Vℓ := φ−1
ℓ [B(ξℓ, 3εℓ)] , (III.48)

Kr+1 \
◦
Kr ⊆

L(r+1)⋃
ℓ=L(r)+1

V ′
ℓ ⊆

L(r+1)⋃
ℓ=L(r)+1

Vℓ ⊆
◦
Kr+2 \Kr−1 . (III.49)

Sei δ1 > 0. Gemäß Lemma III.5 existiert A1 ∈ Rn×m mit ∥A1∥∞ ≤ δ1 so, dass

f̃1 : B(ξ1, 3ε1) → Rn , f̃1(ξ) := f [φ−1
1 (ξ)] + A1(ξ − ξ1) (III.50)

eine Immersion ist, rk[f̃1] = m. Dann setzen wir

f1(q) := f [q] + χ1(q) · A1[φ1(q)− ξ1] , (III.51)

für q ∈M und beobachten, dass f1 = f̃1 ◦ φ1 auf V ′
1 und daher

rk[f1] = rk[f̃1 ◦ φ1] = m (III.52)

auf V ′
1 . Für jedes q ∈M ist weiterhin

∥f1[q]− f [q]∥
D(q)

≤ max
ξ∈B(ξ1,3ε1)

{
∥A1(ξ − ξ1)∥
D[φ−1

1 (ξ)]

}
≤ 2 ε1 δ1

minq∈W1
{D(q)}

≤ 1

2
, (III.53)

vorausgesetzt, wir wählen

δ1 :=
1

4
ε1 min

q∈W1

{D(q)} > 0 . (III.54)

Seien nun L ∈ N und fL ∈ C∞(M ;Rn) so definiert, dass

rk[fL] = m auf
L⋃
ℓ=1

Vℓ und ∀ q ∈M :
∥fL[q]− f [q]∥

D(q)
≤

L∑
ℓ=1

2−ℓ . (III.55)

Zu δL+1 > 0 existieren gemäß Lemma III.5 AL+1 ∈ Rn×m mit ∥AL+1∥∞ ≤ δL+1 so, dass

rk[f̃L+1] = m auf B(ξL+1, 3εL+1) , (III.56)

wobei

f̃L+1 : B(ξL+1, 3εL+1) → Rn , f̃L+1(ξ) := fL[φ
−1
L+1(ξ)] + AL+1(ξ − ξL+1) . (III.57)
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Mit

fL+1(q) := fL[q] + χL+1(q) · AL+1[φL+1(q)− ξL+1] (III.58)

ist dann fL+1 = f̃L+1 ◦ φL+1 auf V ′
L+1 und deshalb

rk[fL+1] = m auf V ′
L+1 , (III.59)

d.h. fL+1 : V
′
L+1 → Rn ist eine Immersion.

Für alle q ∈M ist weiterhin

∥∥fL+1[q]− f [q]
∥∥ ≤

∥∥fL+1[q]− fL[q]
∥∥ + D(q)

( L∑
ℓ=1

2−ℓ
)

(III.60)

≤ 3 εL+1 δL+1 · 1
[
q ∈ WL+1

]
+ D(q)

( L∑
ℓ=1

2−ℓ
)

≤ D(q)
( L+1∑
ℓ=1

2−ℓ
)
,

vorausgesetzt, wir wählen

δL+1 :=
1

6
2−L εL+1 min

q∈WL+1

{D(q)} > 0 . (III.61)

Weiterhin ist für q ∈ WL+1 mit ξ := φL+1(q) ∈ B(ξL+1, 3εL+1)

J (fL+1)(q)− J (fL)(q) = J (fL+1−fL)(q) = JχL+1◦φ−1
L+1

[AL+1(ξ − ξL+1) + χL+1(q) · AL+1

(III.62)

und deshalb∥∥J (fL+1)(q)− J (fL)(q)
∥∥
op

≤ max
ξ∈B(ξL+1,3εL+1)

{∥∥JχL+1◦φ−1
L+1

(ξ)
∥∥
op

}
δL+1 εL+1 + δL+1 . (III.63)

Nach Lemma III.6 kann durch eine genügend kleine Wahl vom δL+1 > 0 also gesichert werden,
dass

rk[fL+1] = m auf
L⋃
ℓ=1

WL+1 . (III.64)

Da {χℓ}∞ℓ=1 ⊆ C∞(M ; [0, 1]) eine lokal endliche Partition der Eins ist, gibt es zu jedem q ∈ M
ein L0 ∈ N und ein Uq ∈ T(q) so, dass

∀L ≥ L0 , q
′ ∈ Uq : fL(q

′) = fL0(q
′) . (III.65)

Es folgt, dass g := limL→∞ fL existiert, glatt ist und die gewünschten Eigenschaften rk[g] = m
und ∥f − g∥ ≤ ψ besitzt.

Wir stellen noch ohne Beweis den folgenden Staz von Whitney vor.

35



Satz III.8 (Whitney). Ist M = (M,T,A) eine Mannigfaltigkeit der Dimension m, so gibt
es eine Einbettung f ∈ C∞(M ;R2m+1) von M in R2m+1, und f(M) = f(M) ⊆ R2m+1 ist
abgeschlossen.

Bemerkungen und Beispiele.

• Wir verzichten hier auf den Beweis des Whitneyschen Einbettungssatzes, Satz III.8, und
geben uns mit Satz III.7 zufrieden. Gleichwohl lässt sich die Hinzunahme einer weiteren
Dimension von 2m nach 2m+1 beim Übergang von einer Immersion zu einer Einbettung
an Beispielen plausibel machen.

• In den meisten konkreten Anwendungen haben wir es mit parametrisierten (Hyper-)Flächen
zu tun. Dies sind Mengen der Form

M =
K⋃
k=1

yk(Vk) ⊆ Rd , (III.66)

wobei Vk ⊆ Rm nichtleere offene Mengen (Parameterbereiche) mit m < d und yk ∈
C∞(Vk;R

d) injektiv sind.

• Mit A =
{(
yk(Vk) , y

−1
k

)}K
k=1

wird (M,Trel,A) zur m-dimensionalen, in Rd immersierten
oder sogar eingebetteten Mannigfaltigkeit. Satz III.8 sagt also, dass alle Mannigfaltigkei-
ten von dieser Form sind - oder wenigstens diffeomorph dazu, vorausgesetzt, wir nehmen
d ≥ 2m+ 1 an.
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IV. Tangential- und Kotangentialraum

IV.1. Tangentialraum

Definition IV.1. Seien M = (M,T,A) eine Mannigfaltigkeit, q ∈M und

T̃q[M ] :=
{
γ ∈ C1[(a, b);M ]

∣∣ a < 0 < b , γ(0) = q
}

(IV.1)

der Raum aller C1-Kurven γ in M mit γ(0) = q. Zwei Kurven γ, γ̃ ∈ T̃q[M ] heißen tangential,
[γ] = [γ̃] :⇔

∃ (U,φ) ∈ A , U ∋ q :
d

dt

(
φ ◦ γ

)∣∣∣
t=0

=
d

dt

(
φ ◦ γ̃

)∣∣∣
t=0

. (IV.2)

Bemerkungen und Beispiele.

• Glg. (IV.2) ist kartenunabhängig. Gilt (IV.2) und sind (U,φ), (V, ψ) ∈ A mit q ∈ U ∩ V ,
so ist

d

dt

{(
ψ ◦ γ

)∣∣
t=0

−
(
ψ ◦ γ̃

)∣∣
t=0

}
=

d

dt

{[
(ψ ◦ φ−1) ◦ (φ ◦ γ)

]∣∣
t=0

−
[
(ψ ◦ φ−1) ◦ (φ ◦ γ̃)

]∣∣
t=0

}
= Jψ◦φ−1 [φ(q)] ·

{ d
dt

(
φ ◦ γ

)∣∣
t=0

− d

dt

(
φ ◦ γ

)∣∣
t=0

}
= 0 . (IV.3)

Daher ist Glg. (IV.2) gleichwertig mit

∀ (U,φ) ∈ A , U ∋ q :
d

dt

(
φ ◦ γ

)∣∣∣
t=0

=
d

dt

(
φ ◦ γ̃

)∣∣∣
t=0

. (IV.4)

• Die Eigenschaft zweier C1-Kurven, bei q ∈ M tangential zu sein, definiert eine Äquiva-
lenzrelation.

Definition IV.2. Seien M = (M,T,A) eine Mannigfaltigkeit der Dimension m ∈ N und
q ∈M .
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(i) Die Familie

Tq[M ] := T̃q[M ]/[·] =
{
[γ]
∣∣ γ ∈ T̃q[M ]

}
(IV.5)

der Äquivalenzklassen heißt Tangentialraum an q.

(ii) Ist C = (U,φ) ∈ A mit U ∋ q, so definieren wir

ΘC,q : Tq[M ] → Rm , [γ] 7→ d

dt

(
φ ◦ γ

)∣∣∣
t=0

. (IV.6)

Bemerkungen und Beispiele.

• Die Abbildung ΘC,q : Tq[M ] → Rm ist eine Bijektion, denn offensichtlich ist ΘC,q nach
Glg. (IV.4) injektiv. Wählen wir ε > 0 genügend klein und definieren zu ν ∈ Rm eine
Kurve γν ∈ C1[(−ε, ε);M ] durch

γν(t) := φ−1
[
φ(q) + tν

]
, (IV.7)

so ist γ ∈ T̃q[M ] und

ΘC,q[γν ] =
d

dt

(
φ ◦ γν

)∣∣∣
t=0

=
d

dt

[
φ(q) + tν

]∣∣∣
t=0

= ν , (IV.8)

und ΘC,q ist damit auch surjektiv.

Definition IV.3. Seien M = (M,T,A) eine Mannigfaltigkeit der Dimension m ∈ N, q ∈ M
und C = (U,φ) ∈ A mit U ∋ q. Wir definieren

(+) : Tq[M ]× Tq[M ] → Tq[M ] und (·) : R× Tq[M ] → Tq[M ] (IV.9)

durch

[γ] + λ · [γ̃] := Θ−1
C,q

(
ΘC,q[γ] + λ ·ΘC,q[γ̃]

)
. (IV.10)

Lemma IV.4. Die Abbildungen (+) und (·) in Definition IV.3 sind wohldefiniert, und Tq[M ]
ist bezüglich dieser Verknüpfungen ein reeller Vektorraum der Dimension m.

Beweis. Zunächst bemerken wir, dass sich die Vektorraumeigenschaften für Tq[M ] leicht aus den
entsprechenden Eigenschaften in Rm ergeben. Beispielsweise erhält man die Kommutativität
der Addition aus

[γ] + [γ̃] = Θ−1
C,q

(
ΘC,q[γ] + ΘC,q[γ̃]

)
= Θ−1

C,q

(
ΘC,q[γ̃] + ΘC,q[γ]

)
= [γ̃] + [γ] . (IV.11)

Nicht so offensichtlich ist die Wohldefiniertheit der Verknüpfungen, d.h. die Kartenunabhängig-
keit von (IV.10). Seien dazu γ, γ̃ ∈ T̃q[M ], λ ∈ R, und C = (U,φ), D = (V, ψ) ∈ A mit
q ∈ U ∩ V . Dann ist wegen der Linearität der Ableitung von ψ ◦ φ−1

ΘD,q[γ] + λ ·ΘD,q[γ̃] =
d

dt

(
ψ ◦ γ

)∣∣∣
t=0

+ λ · d
dt

(
ψ ◦ γ̃

)∣∣∣
t=0

= Jψ◦φ−1 [φ(q)] ·
{ d
dt

(
φ ◦ γ

)∣∣∣
t=0

+ λ · d
dt

(
φ ◦ γ̃

)∣∣∣
t=0

}
= Jψ◦φ−1 [φ(q)] ·

(
ΘC,q[γ] + λ ·ΘC,q[γ̃]

)
. (IV.12)
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Ist andererseits ν ∈ Rm und γν ∈ T̃q[M ] wieder durch (IV.7) definiert, wobei ε > 0 so klein
gewählt wird, dass [ψ(q) + (−ε, ε)]ν ⊂ ψ(V ) gilt, so ist nach (IV.8)

Θ−1
C,q(ν) = [γν ] =

[
φ−1

(
φ(q) + tν

)]
(IV.13)

und somit [
ΘD,q ◦Θ−1

C,q

]
(ν) = ΘD,q[γν ] = Jψ◦φ−1 [φ(q)] · ν , (IV.14)

d.h. ΘD,q ◦Θ−1
C,q ∈ L(Rm) und

ΘD,q ◦Θ−1
C,q = Jψ◦φ−1 [φ(q)] =

(
∂
(
ψi[φ−1(x)]

)
∂xj

∣∣∣∣
x=φ(q)

)m
i,j=1

. (IV.15)

Insbesondere ist auch

Θ−1
D,q

(
ΘD,q[γ] + λ ·ΘD,q[γ̃]

)
= Θ−1

D,q

[
Jψ◦φ−1 [φ(q)] ·

(
ΘC,q[γ] + λ ·ΘC,q[γ̃]

)]
= Θ−1

C,q

(
ΘC,q[γ] + λ ·ΘC,q[γ̃]

)
, (IV.16)

und die in (IV.9)-(IV.10) definierten Verküpfungen sind wohldefiniert. Nach Glg. (IV.10) gilt

ΘC,q

(
[γ] + λ · [γ̃]

)
= ΘC,q[γ] + λ ·ΘC,q[γ̃] , (IV.17)

für alle γ, γ̃ ∈ T̃q[M ] und λ ∈ R, d.h. ΘC,q : Tq[M ] → Rm ist ein bijektiver Vektorraumisomor-
phismus, also ein Isomorphismus.

Bemerkungen und Beispiele.

• Für M = (Rm,Teukl, idRm) und q ∈ Rm ist Tq[R
m] = Rm.

• Seien V ⊆ R2 offen und nichtleer und g ∈ C∞(V ;R3) injektiv, mit

∀ (r, s) ∈ V : g(r, s) :=

x(r, s)y(r, s)
z(r, s)

 . (IV.18)

Dann ist M = (M,Trel, {C}) mit M = g(V ) und C = (M, g−1) eine zweidimensionale
Mannigfaltigkeit. Ist nun q = g(r0, s0) ∈M , so betrachten wir

γ1(t) := g(r0 + t, s0) , γ2(t) := g(r0, s0 + t) , (IV.19)

für |t| < ε≪ 1. Offenbar sind γ1, γ2 ∈ T̃q[M ] und

g−1 ◦ γ1(t) := (r0 + t, s0) , g−1 ◦ γ2(t) := (r0, s0 + t) , (IV.20)

Also sind

ΘC,q[γ1] =
d

dt

(
g−1 ◦ γ1

)∣∣∣
t=0

=

(
1
0

)
, (IV.21)

ΘC,q[γ2] =
d

dt

(
g−1 ◦ γ2

)∣∣∣
t=0

=

(
0
1

)
. (IV.22)
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Definition IV.5. Seien M = (M,T,A) eine Mannigfaltigkeit der Dimension m ∈ N, q ∈ M
und C = (U,φ) ∈ A mit U ∋ q. Wir definieren durch

TTq [M ] :=
{
Θ−1
C,q(V )

∣∣ V ⊆ Rm , V ∈ Teukl

}
(IV.23)

eine Topologie auf Tq[M ].

Bemerkungen und Beispiele.

• Nach (IV.15) ist für C = (U,φ), D = (V, ψ) ∈ A mit q ∈ U ∩ V die Abbildung ΘD,q ◦
Θ−1
C,q = Jψ◦φ−1 [φ(q)] ein Iso- und deshalb auch ein Homöomorphismus. Daher ist (IV.23)

kartenunabhängig.

• (Tq[M ],TTq [M ]) und (Rm,Teukl) sind homöomorph.

Definition IV.6. Seien M = (M,T,A) und N = (N,S,B) zwei Mannigfaltigkeiten, q ∈ M
und f ∈ C1(M ;N). Die Ableitung Dq[f ] von f bei q ist definiert als Abbildung

Dq[f ] : Tq[M ] → Tf(q)[N ] , (IV.24)

Dq[f ] := Θ−1
D,f(q) ◦ Jψ◦f◦φ−1 [φ(q)] ◦ΘC,q , (IV.25)

wobei C = (U,φ) ∈ A und D = (V, ψ) ∈ B mit U ∩ f−1(V ) ∋ q.

Lemma IV.7. Die Ableitung Dq[f ] von f ∈ C1(M ;N) bei q ∈ M ist wohldefiniert, d.h.
kartenunabhängig.

Beweis. Seien C = (U,φ), ϕ̂ = (Û , x̂) ∈ A und D = (V, ψ), ψ̂ = (V̂ , ŷ) ∈ B Paare von Karten

mit U ∩ Û ∩ f−1(V ∩ V̂ ) ∋ q. Dann gilt mit (IV.25) und (IV.15)

D̂q[f ] := Θ−1

ψ̂,f(q)
◦ Jŷ◦f◦x̂−1 [x̂(q)] ◦Θϕ̂,q

= Θ−1

ψ̂,f(q)
◦ Jŷ◦ψ−1 [(ψ ◦ f)(q)] ◦ Jψ◦f◦φ−1 [φ(q)] ◦ Jφ◦x̂−1 [x̂(q)] ◦Θϕ̂,q

= Θ−1

ψ̂,f(q)
◦Θψ̂,f(q) ◦Θ

−1
D,f(q) ◦ Jψ◦f◦φ−1 [φ(q)] ◦ Jφ◦x̂−1 [x̂(q)] ◦ΘC,q ◦Θ−1

ϕ̂,q
◦Θϕ̂,q

= Θ−1
D,f(q) ◦ Jψ◦f◦φ−1 [φ(q)] ◦Θϕ̂,q = Dq[f ] . (IV.26)

Lemma IV.8. Seien M = (M,T,A) und N = (N,S,B) zwei Mannigfaltigkeiten, q ∈M und

f ∈ C1(M ;N) und γ ∈ T̃q[M ]. Dann ist

Dq[f ]
(
[γ]
)

= [f ◦ γ] . (IV.27)

Beweis. Sind C = (U,φ) ∈ A und D = (V, ψ) ∈ B Karten mit U ∩ f−1(V ) ∋ q, so ist nach der
Kettenregel

Jψ◦f◦φ−1 [φ(q)] ◦Θϕ̂,q[γ] = Jψ◦f◦φ−1 [φ(q)] · d
dt

(
φ ◦ γ

)∣∣∣
t=0

=
d

dt

(
ψ ◦ f ◦ φ−1 ◦ φ ◦ γ

)∣∣∣
t=0

=
d

dt

(
ψ ◦ f ◦ γ

)∣∣∣
t=0

= ΘD,f(q)[f ◦ γ] . (IV.28)
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Also ist

Dq[f ]
(
[γ]
)

= Θ−1
D,f(q) ◦ Jψ◦f◦φ−1 [φ(q)] ◦Θϕ̂,q[γ] = [f ◦ γ] . (IV.29)

Definition IV.9. Seien M = (M,T,A) eine Mannigfaltigkeit der Dimension m ∈ N und
U ⊆M offen und nichtleer.

(i) Wir definieren die Mengen

T [M ] :=
⊔
q∈M

Tq[M ] :=
⋃
q∈M

(
{q} × Tq[M ]

)
, (IV.30)

T [U ] :=
⊔
q∈U

Tq[M ] :=
⋃
q∈U

(
{q} × Tq[M ]

)
⊆ T [M ] . (IV.31)

(ii) Ist C = (U,φ) ∈ A eine Karte, so definieren wir für γ ∈ T̃q[M ]

ΘC : T [U ] → φ(U)×Rm ,
(
q, [γ]

)
7→

(
φ(q),ΘC,q[γ]

)
. (IV.32)

(iii) Wir definieren auf T [M ] eine Topologie durch

TT [M ] :=
{
Θ−1
C (V )

∣∣ C = (U,φ) ∈ A , V ⊆ φ(U)×Rm offen
}
. (IV.33)

Bemerkungen und Beispiele.

• Das System T [M ] wird in der Literatur auch häufig etwas unpräzise mit
⋃
q∈M Tq[M ]

bezeichnet. Diese ist jedoch etwas irreführend, da alle Tangentialräume isomorph zu Rm

sind und man sie alle identifizieren könnte. Eine Alternative bietet noch die Bezeichnung

T [M ] =
⊔
q∈M

Tq[M ] :=
(
Tq[M ]

)
q∈M

(IV.34)

=
{
v :M →

⋃
q∈M

Tq[M ]
∣∣∣ ∀ q ∈M : vq ∈ Tq[M ]

}
.

• Das System TT [M ] ⊆ P
(
T [M ]

)
ist die kleinste Topologie auf T [M ], sodass ΘC : T [U ] →

φ(U)×Rm für alle C = (U,φ) ∈ A Homöomorphismen sind.

Nachdem wir den Tangentialraum T [M ] topologisiert haben, wollen wir ihn auch als Manngi-
faltigkeit darstellen. Dazu definieren wir verträgliche Karten.

Lemma IV.10. Seien M = (M,T,A) eine Mannigfaltigkeit der Dimension m ∈ N und C =
(U,φ), D = (V, ψ) ∈ A zwei mit A (und miteinander) verträgliche Karten von M . Dann sind(
T [U ],ΘC

)
und

(
T [V ],ΘD

)
zwei miteinander verträgliche Karten von T [M ].

41



Beweis. Nach der obigen Bemerkung zu (IV.34) sind ΘC : T [U ] → φ(U) × Rm und ΘD :
T [V ] → φ(V ) × Rm Homöomorphismen. Zum Nachprüfen der Verträglichkeit können wir
o.B.d.A. W := U ∩ V ̸= ∅. Nach (IV.15) ist dann

∀ [φ(q), ν] ∈ φ(U)×Rm : Θ−1
C

(
[φ(q), ν]

)
=
[
q, Θ−1

C,q(ν)
]
, (IV.35)

woraus wir [
ΘD ◦Θ−1

C

](
[φ(q), ν]

)
= ΘD

[
q, Θ−1

C,q(ν)
]

=
(
ψ(q) ,

(
ΘD,q ◦Θ−1

C,q

)
[ν]
)

=
(
ψ(q) , Jψ◦φ−1 [φ(q)] · ν

)
(IV.36)

erhalten. Für alle (ξ, ν) ∈ φ(W )×Rm ⊆ Rm ×Rm ist also(
ΘD ◦Θ−1

C

)
[(ξ, ν)] =

(
[ψ ◦ φ−1](ξ) , Jψ◦φ−1 [ξ] · ν

)
. (IV.37)

Mit (ψ ◦ φ−1) ∈ C∞[φ(W );ψ(W )] ist somit auch

ΘD ◦Θ−1
C ∈ C∞[φ(W )×Rm ; ψ(W )×Rm

]
. (IV.38)

Unter Berufung auf Lemma IV.10 stellt das System

T [A] :=
{(
T [U ],ΘC

) ∣∣∣ C = (U,φ) ∈ A
}

(IV.39)

offenbar einen Atlas von T [M ] dar, das wir nun als Mannigfaltigkeit definieren.

Definition IV.11. Sei M = (M,T,A) eine Mannigfaltigkeit der Dimension m ∈ N. Die
Mannigfaltigkeit T [M] =

(
T [M ],TT [M ], T [A]

)
der Dimension 2m bezeichnen wir als Tangen-

tenbündel von M.

Bemerkungen und Beispiele.

• Seien M ⊆ Rm offen und {C = (M, idRm)} ein Atlas von M . Mit q ∈ M , v ∈ Rm und
γ(t) := q + tv ist

ΘC(q, [γ]) =
(
q , d

dt
{q + tv}|t=0

)
= (q, v) . (IV.40)

Somit ist T [M ] diffeomorph zu M × Rm. Lokal hat das Tangentenbündel stets diese
Produktform (innerhalb eines Kartenbereichs). Nicht alle Tangentenbündel sind jedoch
auch global von dieser Form.

• Es ist z.B. T [S1] diffeomorph zu S1 ×R, aber T [S2] ist nicht diffeomorph zu S2 ×R2.

• Eine Mannigfaltigkeit M = (M,T,A) der Dimension m, deren Tangentenbündel T [M]
diffeomorph zu M ×Rm ist, nennt man parallelisierbar.

• Über Produktkarten sieht man, dass T [M×N ] = T [M]× T [N ] gilt.
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IV.2. Kotangentialraum

Parallel zur Konstruktion des Tangentialraums und des Tangentenbündels läuft die des Kotan-
gentialraums und des Kotangentenbündels einer Mannigfaltigkeit.

Definition IV.12. Seien M = (M,T,A) eine Mannigfaltigkeit, q ∈M und

T̃ ∗
q [M ] :=

⋃
U∈T(q)

C1(U ;R) . (IV.41)

Zwei reelle Funktionen f, f̃ ∈ T̃ ∗
q [M ] heißen kotangential bei q, [f ]∗ = [f̃ ]∗

:⇔ ∃ (U,φ) ∈ A, U ∋ q : Jf◦φ−1 [φ(q)] = Jf̃◦φ−1 [φ(q)] . (IV.42)

Bemerkungen und Beispiele.

• Wie Glg. (IV.2) ist auch Glg. (IV.42) kartenunabhängig und gleichwertig mit

∀ (U,φ) ∈ A, U ∋ q : Jf◦φ−1 [φ(q)] = Jf̃◦φ−1 [φ(q)] . (IV.43)

• Die Eigenschaft zweier Funktionen f, f̃ ∈ T̃ ∗
q [M ], kotangential bei q ∈M zu sein, ist eine

Äquivalenzrelation.

Definition IV.13. Seien M = (M,T,A) eine Mannigfaltigkeit der Dimension m ∈ N und
q ∈M .

(i) Die Menge

T ∗
q [M ] := T̃ ∗

q [M ]/[·]∗ =
{
[f ]∗

∣∣ f ∈ T̃ ∗
q [M ]

}
(IV.44)

der Äquivalenzklassen heißt Kotangentialraum bei q.

(ii) Ist C = (U,φ) ∈ A mit U ∋ q, so definieren wir

Θ∗
C,q : T

∗
q [M ] → Rm , [f ]∗ 7→ Jf◦φ−1 [φ(q)] . (IV.45)

Bemerkungen und Beispiele.

• Die Abbildung Θ∗
C,q ist offensichtlich injektiv definiert. Sind nun µ ∈ Zm1 und φµ ∈

C∞(U : R) die µ. Koordinate von φ = (φ1, φ2, . . . , φm), so ist φµ ∈ T̃ ∗
q [M ], und mit

φ(q) = x = (x1, x2, . . . , xm) ist

Θ∗
C,q[φ

µ]∗ = Jφµ◦φ−1 [x(q)] =

(
∂(φµ ◦ φ−1)[x]

∂x1

∣∣∣∣
x=x(q)

, . . . ,
∂(φµ ◦ φ−1)[x]

∂xm

∣∣∣∣
x=x(q)

)
=

(
∂xµ

∂x1

∣∣∣∣
x=x(q)

, . . . ,
∂xµ

∂xm

∣∣∣∣
x=x(q)

)
= eµ , (IV.46)

43



wobei eµ den kanonischen Basisvektor in die µ. Koordinatenrichtung notiert. Setzen wir
zu v = (v1, . . . , vm) ∈ Rm auch

fw := w1 · φ1 + w2 · φ2 + . . .+ wm · φm , (IV.47)

so ist nach (IV.46)

Θ∗
C,q[fw]

∗ =
m∑
µ=1

wµ · φµ = w , (IV.48)

und Θ∗
C,q ist auch surjektiv, also bijektiv.

Definition IV.14. Seien M = (M,T,A) eine Mannigfaltigkeit der Dimension m ∈ N, q ∈M
und C = (U,φ) ∈ A mit U ∋ q. Wir definieren

(+) : T ∗
q [M ]× T ∗

q [M ] → T ∗
q [M ] und (·) : R× T ∗

q [M ] → T ∗
q [M ] (IV.49)

durch

[γ] + λ · [γ̃] := Θ−1
C,q

(
ΘC,q[γ] + λ ·ΘC,q[γ̃]

)
. (IV.50)

Lemma IV.15. Die Abbildungen (+) und (·) in Definition IV.14 sind wohldefiniert, und T ∗
q [M ]

ist bezüglich dieser Verknüpfungen ein reeller Vektorraum der Dimension m.

Wir verzichten auf den Beweis von Lemma IV.15, leiten aber die (IV.15) entsprechende Identität
her. Seien C = (U,φ), D = (V, ψ) ∈ A mit q ∈ U ∩ V . Aus (IV.47)-(IV.48) erhalten wir, dass
für alle w ∈ Rm

(Θ∗
C,q)

−1[w] = [fw]
∗ =

[ m∑
µ=1

wµ · φµ
]∗
. (IV.51)

Für µ ∈ Zm1 ist also(
Θ∗
D,q ◦ (Θ∗

C,q)
−1[w]

)
µ

=
(
Θ∗
D,q[fw]

∗)
µ

=
(
Jfw◦ψ−1 [ψ(q)]

)
µ

(IV.52)

=

(
∂

∂ξµ

[ m∑
τ=1

wτ φ
τ [ψ−1(ξ)]

]∣∣∣
ξ=ψ(q)

)
µ

=
m∑
τ=1

wτ
(
Jφ◦ψ−1 [ψ(q)]

)
τ,µ
,

was gleichwertig ist mit

Θ∗
D,q ◦ (Θ∗

C,q)
−1 = JTφ◦ψ−1 [ψ(q)] =

(
∂
(
φj[ψ−1(y)]

)
∂yi

∣∣∣∣
y=ψ(q)

)m
i,j=1

, (IV.53)

wobei AT die zu A transponierte Matrix ist.

Definition IV.16. Seien M = (M,T,A) eine Mannigfaltigkeit der Dimension m ∈ N und
U ⊆M offen und nichtleer.
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(i) Wir definieren die Mengen

T ∗[M ] :=
⊔
q∈M

T ∗
q [M ] :=

⋃
q∈M

(
{q} × T ∗

q [M ]
)
, (IV.54)

T [U ] :=
⊔
q∈U

T ∗
q [M ] :=

⋃
q∈U

(
{q} × Tq[M ]

)
⊆ T [M ] . (IV.55)

(ii) Ist C = (U,φ) ∈ A eine Karte, so definieren wir für f ∈ T̃ ∗
q [M ]

ΘC : T ∗[U ] → φ(U)×Rm ,
(
q, [f ]∗

)
7→

(
φ(q),ΘC,q[f ]

∗) . (IV.56)

(iii) Wir definieren auf T ∗[M ] eine Topologie durch

TT ∗[M ] :=
{(

Θ∗
C

)−1
(V )

∣∣∣ C = (U,φ) ∈ A , V ⊆ φ(U)×Rm offen
}
. (IV.57)

Lemma IV.17. Seien M = (M,T,A) eine Mannigfaltigkeit der Dimension m ∈ N und C =
(U,φ), D = (V, ψ) ∈ A zwei miteinander verträgliche Karten von M . Dann sind

(
T ∗[U ],Θ∗

C

)
und

(
T ∗[V ],Θ∗

D

)
zwei miteinander verträgliche Karten von T ∗[M ].

Definition IV.18. Sei M = (M,T,A) eine Mannigfaltigkeit der Dimension m ∈ N. Die
Mannigfaltigkeit T ∗[M] =

(
T ∗[M ],TT ∗[M ], T

∗[A]
)
der Dimension 2m bezeichnen wir als Ko-

tangentenbündel von M, wobei

T ∗[A] :=
{(
T ∗[U ], Θ∗

C

) ∣∣∣ C = (U,φ) ∈ A
}
. (IV.58)

IV.3. Der Dualraum eines reellen Vektorraums

Wir erinnern als Nächstes an den Begriff des Dualraums eines reellen Vektorraums, wobei wir
den komplexen Fall nur deswegen nicht behandeln, weil er in dieser Vorlesung keine Rolle spielt
(und nicht, weil dieser Fall wäre). Wir nehmen im Weiteren an, dass

(
E, ∥ · ∥

)
ein reeller

Banachraum ist, d.h. ein vollständiger normierter Vektorraum über R. Die nun eingeführten
Begriffe lassen sich auch für allgemeine topologischer Vektorräume einführen, worauf wir jedoch
verzichten.

Ist
(
E, ∥ · ∥

)
ein reeller Banachraum, so nennen wir

E∗ := B(E;R) =
{
x∗ : E → R

∣∣ x∗ ist linear und stetig
}

(IV.59)

den (topologischen) Dualraum von E.

Bemerkungen und Beispiele.

• Es ist üblich, für x∗ ∈ E∗ und x ∈ E

x∗(x) =: ⟨x∗ , x⟩ (IV.60)

zu schreiben.
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• Für endlich-dimensionale Vektorräume ist die Forderung der Stetigkeit an x∗ ∈ E∗ obsolet,
denn in diesem Fall sind alle linearen Abbildungen stetig.

• Da E ein normierter Raum ist, ist E∗ als Raum der beschränkten linearen Operatoren
von E nach R selbst ein Banachraum mit Norm

∥x∗∥E∗ = sup
{∣∣⟨x∗, x⟩∣∣ : x ∈ E , ∥x∥ ≤ 1

}
. (IV.61)

• Sind E und F zwei reelle Banachräume und L ∈ B(E;F ), so wird für festes y∗ ∈ F ∗ durch
x 7→ ⟨x∗, Lx⟩ eine stetige lineare Abbildung E → R definiert. Diese bezeichnet man als
zu L transponierte Abbildung LT : F ∗ → E∗, sodass

∀ y∗ ∈ F ∗, x ∈ E : ⟨LTy∗ , x⟩ = ⟨y∗ , Lx⟩ . (IV.62)

• Sind weiterhin dim(E) = m ∈ N und {e1, e2, . . . , em} ⊆ E eine Basis, so ist auch
dim(E∗) = m, und es existiert eine eindeutige Basis {e∗1, e∗2, . . . , e∗m} ⊆ E∗ so, dass

∀ i, j ∈ Zm1 : ⟨e∗i , ej⟩ = δi,j . (IV.63)

Dies ist leicht einzusehen:

– Jeder Vektor x ∈ E besitzt eine eindeutige Darstellung x = α1e1 + . . .+ αmem. Wir
definieren e∗i ∈ E∗ durch ⟨e∗i , x⟩ := αi, für i ∈ Zm1 . Dann ist e∗i offensichtlich linear,
und {e∗1, e∗2, . . . , e∗m} ⊆ E∗ erfüllt (IV.63).

– Ist β1e
∗
1 + . . . + βme

∗
m = 0, so folgt aus (IV.63) für jedes j ∈ Zm1 , dass 0 = ⟨β1e∗1 +

. . .+ βme
∗
m , ej⟩ = βj, und {e∗1, e∗2, . . . , e∗m} ⊆ E∗ ist linear unabhängig.

– Schließlich ist ℓ∗ ∈ E∗ eindeutig bestimmt durch die Bilder γ1 := ⟨ℓ∗, e1⟩, . . . , γm :=
⟨ℓ∗, em⟩ der Basisvektoren e∗1, e∗2, . . . , e∗m, und wir erhalten ℓ∗ = γ1e

∗
1 + . . . + γme

∗
m ∈

span
[
{e∗1, . . . , e∗m}

]
.

• Schließlich bemerken wir, dass ein Basiswechsel L ∈ B(E;E), det[L] ̸= 0, den Basiswechsel
(L−1)T ∈ B(E∗;E∗) in E∗ induziert.

– Sind nämlich ê1 = Le1, . . . , êm = Lem und {ê∗1, . . . , ê∗m} ⊆ E∗ die Basis mit ⟨ê∗i , êj⟩ =
δi,j, so gilt

δi,j = ⟨ê∗i , êj⟩ = ⟨ê∗i , Lej⟩ = ⟨LT ê∗i , ej⟩ , (IV.64)

für alle i, j ∈ Zm1 .
– Daraus folgt, dass LT ê∗i = ei bzw. ê

∗
i = (LT )−1ei = (L−1)T ei.

• Für
(
E, ∥ · ∥

)
=
(
Rm, ∥ · ∥eukl

)
mit der Standardbasis {e1, e2, . . . , em} ⊆ Rm sind (Rm)∗ =

Rm und ⟨e∗i , ·⟩ = ⟨ei|·⟩eukl.

Definition IV.19. Seien M = (M,T,A) eine Mannigfaltigkeit der Dimension m ∈ N, q ∈M
und C = (U, x) ∈ A mit U ∋ q. Sei weiterhin {e1, e2, . . . , em} ⊆ Rm die Standardbasis. Für
i, j ∈ Zm1 setzen wir

∂

∂xj
:=

∂

∂xj(q)
:= Θ−1

C,q(ej) ∈ Tq[M ] , (IV.65)

dxi := dxi(q) := (Θ∗
C,q)

−1(ei) ∈ T ∗
q [M ] . (IV.66)
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Lemma IV.20.

(i) Die Teilmengen
{

∂
∂x1
, . . . , ∂

∂xm

}
⊆ Tq[M ] und

{
dx1, . . . , dxm

}
⊆ T ∗

q [M ] sind Basen.

(ii) Für f ∈ T̃ ∗
q [M ] und γ ∈ T̃q[M ] sei〈

[f ]∗ , [γ]
〉

:=
〈
Θ∗
C,q[f ]

∗
∣∣∣ΘC,q[γ]

〉
eukl

. (IV.67)

Dann ist (
Tq[M ]

)∗
= Tq[M ]∗ , (IV.68)

und es gilt

∀ i, j ∈ Zm1 :
〈
dxi ,

∂

∂xj

〉
= δi,j . (IV.69)

Beweis. (i): folgt sofort aus der Tatsache, dass ΘC,q : Tq[M ] → Rm und Θ∗
C,q : Tq[M ]∗ → Rm

Isomorphismen sind.

(ii): Die Linearität von ΘC,q und Θ∗
C,q sowie die Bilinearität des euklidschen Skalarprodukts

auf Rm sichern, dass (IV.67) ein lineares Funktional auf Tq[M ] definiert, d.h. es gelten [f ]∗ ∈(
Tq[M ]

)∗
und deshalb auch Tq[M ]∗ ⊆

(
Tq[M ]

)∗
. Da beide Vektorräume Dimension m haben,

müssen sie gleich sein, und es folgt (IV.68).

Glg. (IV.69) ergibt sich aus〈
dxi ,

∂

∂xj

〉
=
〈
(Θ∗

C,q)
−1(ei) , Θ

−1
C,q(ej)

〉
= ⟨ei|ej⟩eukl = δi,j . (IV.70)

Bemerkungen und Beispiele.

• Mit f ∈ T̃ ∗
q [M ], γ ∈ T̃q[M ] und C = (U,φ) ∈ A mit U ∋ q ist

〈
[f ]∗ , [γ]

〉
=
〈
Θ∗
C,q[f ]

∗
∣∣∣ΘC,q[γ]

〉
eukl

=
〈
Jf◦φ−1 [φ(q)]

∣∣∣ d
dt

(
φ ◦ γ

)∣∣
t=0

〉
eukl

=
m∑
µ=1

∂(f ◦ φ−1)[ξ]

∂ξµ

∣∣∣
ξ=φ(q)

d

dt

(
φµ ◦ γ

)∣∣
t=0

〉
eukl

=
d

dt

(
f ◦ γ

)∣∣
t=0

, (IV.71)

nach der Kettenregel. In (IV.71) ist die Kartenunabhängigkeit manifest.

• Sind C = (U,φ), D = (V, ψ) ∈ A mit q ∈ U ∩ V , so ist, für alle j ∈ Zm1

∂

∂ψj
= Θ−1

D,q[ej] = Θ−1
C,q ◦

(
ΘC,q ◦Θ−1

D,q

)
[ej] = Θ−1

C,q

(
Jφ◦ψ−1 [ψ(q)]

)
[ej]

=
m∑
i=1

(
Jφ◦ψ−1 [ψ(q)]

)
j,i
Θ−1
C,q[ei] =

m∑
i=1

∂
(
φi[ψ−1(y)]

)
∂yj

∣∣∣
y=ψ(q)

∂

∂xi
. (IV.72)
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• Genauso erhalten wir

dyi(q) =
(
Θ∗
D,q

)−1
[ei] =

(
Θ∗
C,q

)−1 ◦
[
Θ∗
C,q ◦

(
Θ∗
D,q

)−1
]
[ei] =

(
Θ∗
C,q

)−1 ◦
(
Jψ◦φ−1 [φ(q)]

)
[ei]

=
m∑
j=1

∂
(
ψi[φ−1)(x)]

)
∂xj

∣∣∣
x=φ(q)

dxj(q) . (IV.73)

• Die Definitionen der Basisvektoren ∂
∂xj(q)

∈ Tq[M ] und dxi(q) ∈ T ∗
q [M ] stellen also gleich-

zeitig eine Merkregel für ihre Transformation unter Kartenwechsel dar.
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V. Vektorfelder und Lie-Ableitung

V.1. Vektorfelder und Vektorbündel

Im vorigen Kapitel haben wir gesehen, dass das Tangentenbündel T [M] -ebenso wie das Ko-
tangentenbündel T ∗[M]- eine Mannigfaltigkeit bildet; dabei sind der Ausgangspunkt die Man-
nigfaltigkeit M = (M,T,A) und

T [M ] =
⋃
q∈M

{q} × Tq[M ] und T ∗[M ] =
⋃
q∈M

{q} × T ∗
q [M ] . (V.1)

Sei nun C = (U,φ) ∈ A eine Karte vonM . Für jeden Punkt q ∈ U ist γq ∈ T̃q[M ] mit γq(t) = q
(konstante Funktion) und ΘC,q[γq] = 0, d.h. [γq] = 0 ∈ Tq[M ]. Wir setzen

M̂ :=
{(
q, [γq]

) ∣∣∣ q ∈M
}

⊆ T [M ] . (V.2)

Dann ist

M̂ ∪ T [U ] =
{(
q, [γ]

) ∣∣∣ ΘC

(
q, [γ]

)
= (q, 0)

}
, (V.3)

und M̂ ist eine Teilmannigfaltigkeit von T [M ]. Außerdem ist M ∋ q 7→ (q, [γq]) ∈ M̂ ein
Diffeomorphismus. Daher ist M (diffeomorph zu) eine Teilmannigfaltigkeit von T [M].

Wir identifizieren M̂ und M und erhalten die Projektion

π : T [M ] →M ,
(
q, [γ]

)
7→ q . (V.4)

Definition V.1. Eine Mannigfaltigkeit M = (M,T,A) der Dimension m ∈ N heißt paralle-
lisierbar

:⇔ T [M] ist diffeomorph zu M ×Rm. (V.5)

Definition V.2. Seien M = (M,T,A) eine Mannigfaltigkeit, N ⊆ M eine Teilmannigfaltig-
keit, π :M → N eine Surjektion und F ein reeller Vektorraum.
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(i) (M,T,A, N, π, F ) heißt Vektorbündel :⇔

∀ q ∈ N ∃U ∈ T[q] : π−1(U ∪N) ist diffeomorph zu (U ∪N)×Rm. (V.6)

In diesem Fall nennt man N die Basis und π−1({q}) die Faser.

(ii) Ist M diffeomorph zu N × F , so heißt das Vektorbündel (M,T,A, N, π, F ) trivialisier-
bar.

Bemerkungen und Beispiele.

• Seien M = Rm × Rn, N = Rm, F = Rn, π(x, y) := x ∈ Rm, für (x, y) ∈ Rm × Rn.
Offenbar ist M = N × F trivialisierbar.

• Seien M = (M,T,A) eine Mannigfaltigkeit der Dimension m, F = Rm und π : T [M ] →
M , π(q, v) = q. Dann ist das Tangentenbündel T [M] ein Vektorbündel

(
T [M ],TT [M ], T [A],M, π,Rm)

mit Basis M und Faser π−1({q}) = Tq[M ]. Offensichtlich gilt(
T [M ],TT [M ], T [A],M, π,Rm) ist trivialisierbar ⇔ T [M] ist parallelisierbar. (V.7)

• Seien U1 = (0, 2π)× (−1, 1), U2 =
(
[0, π) ∪ (π, 2π)

)
× (−1, 1) und

φ1(α, x) := (α, x) , (V.8)

φ2(α, x) :=

{
(α, x) , falls α ∈ [0, π),

(α− 2π,−x) , falls α ∈ (π, 2π).
(V.9)

Die Mannigfaltigkeit M = U1 ∪ U2 mit Atlas A = {(U1, φ1) , (U1, φ1)} heißt Möbiusband.
Sie ist nicht trivialisierbar, denn sie ist nicht orientierbar - ein Begriff, den wir später noch
kennenlernen werden.

Definition V.3. Sei M = (M,T,A) eine Mannigfaltigkeit.

(i) Eine Abbildung X ∈ C∞(M ;T [M ]
)
mit π ◦X = idM heißt (glattes) Vektorfeld (auf

M). Die Menge der glatten Vektorfelder auf M bezeichnen wir mit T 0
1 [M ].

(ii) Eine Abbildung ω ∈ C∞(M ;T ∗[M ]
)
mit π ◦ ω = idM heißt (glattes) Differenzialform

(auf M). Die Menge der glatten Differenzialformen auf M bezeichnen wir mit T 1
0 [M ].

Bemerkungen und Beispiele.

• Die Bedingung π ◦X = idM stellt sicher, dass Vektorfelder X ∈ T 0
1 [M ] Abbildungen der

Form X(q) = (q̂, vq) mit q̂ = q und daher vq ∈ Tq̂[M ] = Tq[M ] sind. Es ist deshalb üblich
(und ungefährlich), den ersten Teil q des Bildes (q, vq) wegzulassen und X(q) mit v zu
identifizieren, d.h. man nimmt o.B.d.A. an, dass X(q) ∈ Tq[M ].

• Analog nimmt man für eine Differenzialform ω ∈ T 1
0 [M ] an, dass ω(q) ∈ T ∗

q [M ] liegt, da
auch hier π ◦ ω = idM sichert, dass ω(q) im zu q gehörigen Kotangentialraum liegt.
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Satz V.4. Sei M = (M,T,A) eine Mannigfaltigkeit der Dimensionm ∈ N. Dann sind folgende
Aussagen gleichwertig:

T [M] ist parallelisierbar (V.10)

⇔ ∃X1, X2, . . . , Xm ∈ T 0
1 [M ] : X1, X2, . . . , Xm sind linear unabhängig (V.11)

:⇔ ∃X1, X2, . . . , Xm ∈ T 0
1 [M ] , ∀ q ∈M :

{X1(q), X2(q), . . . , Xm(q)} ⊆ Tq[M ] ist linear unabhängig.

Beweis. – muss noch eingegeben werden –

Definition V.5. Sei M = (M,T,A) eine Mannigfaltigkeit und X ∈ T 0
1 [M ] ein Vektorfeld. Die

X zugeordnete Lie-Ableitung

LX : C∞(M ;R) → C∞(M ;R) (V.12)

ist definiert durch [
LXf

]
(q) := Dq[f ]

(
X(q)

)
= Jf◦φ−1 [φ(q)] ◦ΘC,q[X(q)] , (V.13)

wobei C = (U,φ) ∈ A so gewählt ist, dass U ∋ q.

Bemerkungen und Beispiele.

• Natürlich ist (V.13) kartenunabhängig.

• Aus (V.13) erhalten wir sofort die Linearität von LX , nämlich[
LXf

]
(q) + α

[
LXg

]
(q) = Dq[f ]

(
X(q)

)
+ αDq[g]

(
X(q)

)
= Dq[f + αg]

(
X(q)

)
=
[
LX(f + αg)

]
(q) . (V.14)

• Wir beobachten weiterhin, dass[
(f · g) ◦ φ−1

]
(ξ) = f [φ−1](ξ)] · g[φ−1](ξ)] =

[
f ◦ φ−1

]
(ξ) ·

[
g ◦ φ−1

]
(ξ) (V.15)

und daher die Lie-Ableitung der Leibniz-Regel (Produktregel) genügt,[
LX(f · g)

]
(q) = J[f◦φ−1]·[g◦φ−1][φ(q)] ◦ΘC,q[X(q)]

= [f ◦ φ−1]
(
φ(q)

)
· Jg◦φ−1 [φ(q)] ◦ΘC,q[X(q)] (V.16)

+ [g ◦ φ−1]
(
φ(q)

)
· Jf◦φ−1 [φ(q)] ◦ΘC,q[X(q)]

= f(q) ·
[
LXg

]
(q) + g(q) ·

[
LXf

]
(q) .

• Somit gilt für alle f, g ∈ C∞(M ;R) und α ∈ R, dass

LX(f + αg) = LX(f) + αLx(g) , (V.17)

LX(f · g) = LX(f) · g + f · Lx(g) . (V.18)
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• Mit Hilfe von (IV.45) und (IV.71) erkennen wir, dass

[LXf ](q) = Jf◦φ−1 [φ(q)] ◦ΘC,q[X(q)] =
〈
[f ]∗q , X(q)

〉
, (V.19)

wobei ⟨ , ⟩ : T ∗
q [M ]× Tq[M ] → R die Dualitätsklammer bezeichnet.

• Wir erinnern daran, dass f ∈ C∞(M ;R) gleichwertig mit der Aussage ist, dass f ◦φ−1 ∈
C∞(φ(U);R), für jede Karte C = (U,φ) ∈ A von M .

• Sind M ⊆ Rm offen und A = {(M, idM)}, so stimmt die Definition von C∞(M ;R) mit
der aus der Analysisvorlesung bekannten überein. In diesem Fall ist

T 0
1 [M ] =

{
X ∈ C∞(M ;M ×Rm)

∣∣ π ◦X = idM
}
, (V.20)

und für X ∈ T 0
1 [M ] und q ∈ M ist X(q) =

(
X1(q), X2(q), . . . , Xm(q)

)T ∈ Rm. (Wir
können wieder die erste Komponente q von X(q) ignorieren.)

Ist nun f ∈ C∞(M ;R), so ist mit φ = idM und q ∈M

[f ]∗q = Jf◦φ−1 [φ(q)] =

(
∂f(q)

∂q1
,
∂f(q)

∂q2
, . . .

∂f(q)

∂qm

)
(V.21)

und somit

[LXf ](q) =
〈
[f ]∗q , X(q)

〉
=

m∑
µ=1

∂f(q)

∂q1
Xµ(q) . (V.22)

Am Punkt q ∈M ist [LXf ](q) also die Richtungsableitung in Richtung des Vektors X(q).

• Seien d ≥ m+1, U ⊆ Rm offen und h ∈ C∞(U ;Rd) eine Einbettung vonM := h(U) ⊆ Rd,
d.h. h ist injektiv und rk[Jh] = m auf U . Außerdem sind {H = (M,h−1)} ein Atlas und

T 0
1 [M ] = C∞(M ;T [M ]

)
, (V.23)

da M parallelisierbar mit Diffeomorphismus ΘH : T [M ] →M ×Rm ist. Beachte, dass

M =
{(
h1(ξ), . . . , hd(ξ)

)T ∣∣∣ ξ = (ξ1, . . . , ξm)T ∈ U
}
. (V.24)

Sind q = h(ξ) ∈M und γν(t) := h(ξ + teν), für ν ∈ Zm1 , so ist γν ∈ T̃q[M ] und

ΘH,q[γν ] =
d

dt

(
h−1 ◦ γν

)∣∣∣
t=0

= eν . (V.25)

Ist weiterhin f ∈ C∞(Rd;R), so erhalten wir f ∈ C∞(M ;R) durch Restriktion von f aus
M (die wir mit demselben Buchstaben bezeichnen). Für X ∈ T 0

1 [M ] mit ΘH,q[X(q)] =(
v1q , . . . , v

m
q

)T ∈ Rm ist dann

[LXf ](q) =
〈
Jf◦h(ξ)

∣∣ vq〉eukl =
m∑
ν=1

∂[f ◦ h](ξ)
∂ξν

· vνq . (V.26)
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• Sind (fn)
∞
n=1 ∈ C∞(M ;R)N und f ∈ C∞(M ;R), so heißt

(fn)
∞
n=1 konvergent gegen f , fn → f

:⇔ ∀ q ∈M, C = (U,φ) ∈ A, U ∋ q, α ∈ (N0)
m : (V.27)

lim
n→∞

{
∂αξ
[
fn ◦ φ−1

](
φ(q)

)}
= ∂αξ

[
f ◦ φ−1

](
φ(q)

)
,

wobei ∂αξ := ∂α
1

∂(ξ1)α1 · · · ∂α
m

∂(ξm)αm mit α = (α1, . . . , αm) die übliche Multiindexnotation ist.

• Eine Abbildung L : C∞(M ;R) → C∞(M ;R) heißt stetig :⇔

∀ (fn)∞n=1 ∈ C∞(M ;R)N, fn → f ∈ C∞(M ;R) : L(fn) → L(f) . (V.28)

• Sind X ∈ T 0
1 [M ] ein Vektorefeld, q ∈ M und C = (U,φ) ∈ A mit U ∋ q, so beobachten

wir, dass mit X(q) =
∑m

ν=1 x
ν(q) ∂

∂φν(q)
auch

ΘC,q[X(q)] =
m∑
ν=1

xν(q)ΘC,q

[
∂

∂φν(q)

]
=
(
x1(q), . . . , xm(q)

)T
. (V.29)

Mit (fn)
∞
n=1 ∈ C∞(M ;R)N und f ∈ C∞(M ;R) so, dass fn → f , ist für q ∈M also

[
(LXfn) ◦ φ−1

]
(ξ) =

m∑
ν=1

xν
(
φ−1(ξ)

) ∂[fn ◦ φ−1](ξ)

∂ξν
, (V.30)

[
(LXf) ◦ φ−1

]
(ξ) =

m∑
ν=1

xν
(
φ−1(ξ)

) ∂[f ◦ φ−1](ξ)

∂ξν
. (V.31)

Da ξ 7→ xν
(
φ−1(ξ)

)
glatt ist, folgt sofort, dass (LXfn) → (LXf). Also ist

LX : C∞(M ;R) → C∞(M ;R) stetig. (V.32)

Satz V.6. Seien M = (M,T,A) eine Mannigfaltigkeit und L : C∞(M ;R) → C∞(M ;R) eine
stetige Abbildung, die linear ist und die Leibniz-Regel erfüllt, d.h. für die

L(f + αg) = L(f) + αL(g) , (V.33)

L(f · g) = L(f) · g + f · L(g) (V.34)

für alle f, g ∈ C∞(M ;R) und α ∈ R gilt. Dann existiert genau ein Vektorfeld X ∈ T 0
1 [M ] so,

dass L = LX die zugehörige Lie-Ableitung ist.

Beweis. Wir definieren

L :=
{
L : C∞(M ;R) → C∞(M ;R)

∣∣ L ist stetig ud erfüllt (V.33) und (V.34)
}
. (V.35)

Ist X ∈ T 0
1 [M ] ein Vektorfeld, so besitzt die Lie-Ableitung LX gemäß (V.17), (V.18) und (V.32)

die geforderten Eigenschaften und daher ist LX ∈ L, d.h.

L(·) : T
0
1 [M ] → L , X 7→ LX (V.36)
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definiert eine Abbildung, deren Bijektivität behauptet wird.

Injektivität: Seien X, Y ∈ T 0
1 [M ] und LX = LY . Sind q ∈M , C = (U,φ) ∈ A mit U ∋ q und

X(q) =
m∑
ν=1

xνq
∂

∂φν(q)
und Y (q) =

m∑
ν=1

yνq
∂

∂φν(q)
, (V.37)

so ist mit f ∈ C∞(M ;R), supp[f ] ⊆ U und f ≡ φµ in einer Umgebung von q,

[LXf ](q) =
m∑
ν=1

xνq
∂[f ◦ φ−1](ξ)

∂ξν

∣∣∣∣
ξ=φ(q)

= xµq und [LY f ](q) =
m∑
ν=1

yνq
∂[f ◦ φ−1](ξ)

∂ξν

∣∣∣∣
ξ=φ(q)

= yµq .

(V.38)

Somit ist xµq = yµq , für alle q ∈M und alle µ ∈ Zm1 , d.h.

X = Y . (V.39)

Surjektivität: Sei L ∈ L. Wir setzen 1 ∈ C∞(M ;R), q 7→ 1, d.h. 1 ist identisch gleich eins auf
M . Aus der Linearität von L und der Leibniz-Regel erhalten wir zunächst

L(1) = L(1 · 1) = L(1) · 1 + 1 · L(1) = 2L(1) (V.40)

und deshalb L(1) = 0 und somit auch

∀α ∈ R : L(α 1) = 0 . (V.41)

Seien nun f ∈ C∞(M ;R), q0 ∈M und C = (U,φ) ∈ A mit U ∋ q0. Mit ξ0 = φ(q0) ist dann für
alle ξ ∈ B(ξ0, ε) und ε > 0 genügend klein nach Taylor

[f ◦ φ−1](ξ) = [f ◦ φ−1](ξ0) +
m∑
ν=1

(ξν − ξν0 )
∂[f ◦ φ−1](ξ0)

∂ξν

+
m∑

µ,ν=1

(ξµ − ξµ0 ) (ξ
ν − ξν0 )Fµ,ν [ξ; ξ0] , (V.42)

wobei

Fµ,ν [ξ; ξ0] :=

∫ 1

0

(1− t)

{
∂2[f ◦ φ−1](tξ + (1− t)ξ0)

∂ξµ ∂ξν

}
dt . (V.43)

Mit q = φ−1(ξ) ist also

f(q) = f(q0) +
m∑
ν=1

(
φν(q)− ξν0

) ∂[f ◦ φ−1](ξ0)

∂ξν

+
m∑

µ,ν=1

(
φµ(q)− ξµ0

) (
φν(q)− ξν0

)
Fµ,ν [φ(q); ξ0] . (V.44)
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Mit (V.41), der Leibniz-Regel und der Linearität erhalten wir daraus, dass

[Lf ](q) =
m∑
ν=1

[Lφν ](q)
∂[f ◦ φ−1](ξ0)

∂ξν
(V.45)

+
m∑

µ,ν=1

{
[Lφµ](q)

(
φν(q)− ξν0

)
Fµ,ν [φ(q); ξ0] (V.46)

+
(
φµ(q)− ξµ0

)
[Lφν ](q)Fµ,ν [φ(q); ξ0] (V.47)

+
(
φµ(q)− ξµ0

) (
φν(q)− ξν0

) [
L
(
Fµ,ν ◦ [φ(·); ξ0]

)]
(q)

}
. (V.48)

Für q = q0 verschwinden die Terme (V.46) und (V.47) und wegen der Stetigkeit von L auch
(V.48), und wir erhalten

[Lf ](q0) =
m∑
ν=1

[Lφν ](q0)
∂[f ◦ φ−1](ξ0)

∂ξν
. (V.49)

Wir setzen nun

X(q0) := Θ−1
C,q0

[(
[Lφ1](q0), [Lφ

1](q0), . . . , [Lφ
m](q0)

)T]
(V.50)

und bemerken, dass diese Definition kartenunabhängig ist (was wir hier nicht nachprüfen) und
somit auf M ein Vektorfeld global definiert, d.h. es ist X ∈ T 0

1 [M ]. Außerdem ist

[LXf ](q0) =
m∑
ν=1

(
ΘC,q0 [X(q)]

)ν ∂[f ◦ φ−1](ξ0)

∂ξν
= [Lf ](q0) . (V.51)

Damit ist L(·) : T
0
1 [M ] → L auch surjektiv.

Definition V.7. Seien M = (M,T,A) und N = (N,S,B) zwei Mannigfaltigkeiten und Φ :
M → N ein Diffeomorphismus. Dann definieren wir

Φ∗ : T
1
0 [M ] → T 1

0 [N ] , X 7→ D[Φ] ◦X ◦ Φ−1 . (V.52)

Konkret ist für X ∈ T 1
0 [M ] und q ∈ M , q̃ = Φ(q) ∈ N , C = (U, ψ) ∈ A mit U ∋ q und

C̃ = (Ũ , ψ̃) ∈ B mit Ũ ∋ q̃

[Φ∗X](q̃) =
(
Θ−1

C̃,ψ̃
◦ Jψ̃◦Φ◦ψ−1 [ψ(q)] ◦ΘC,ψ[X(q)]

)∣∣∣
q=Φ−1(q̃)

= Θ−1

C̃,ψ̃
◦ Jψ̃◦Φ◦ψ−1 [ψ ◦ Φ−1(q̃)] ◦ΘC,ψ

[
X
(
Φ−1(q̃)

)]
.

(V.53)

Die Wirkung von Φ∗ wird klarer, wenn man die Lie-Ableitung betrachtet.

Lemma V.8. Seien Mi = (Mi,Ti,Ai) für i = 1, 2, 3 drei Mannigfaltigkeiten, Φ : M1 → M2

und Ψ :M2 →M3 Diffeomorphismen, X ∈ T 1
0 [M1] und f ∈ C∞(M2;R). Dann gelten

LX(f ◦ Φ) = [LΦ∗X(f)] ◦ Φ , (V.54)

Ψ∗ ◦ Φ∗ = (Ψ ◦ Φ)∗ , (V.55)(
Φ−1

)
∗ = (Φ∗)

−1 . (V.56)
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Beweis. Seien q1 ∈ M , q2 := Φ(q1) ∈ M2, q3 := Ψ(q2) ∈ M3 und Ci = (Ui, ηi) ∈ Ai, für
i = 1, 2, 3. Für f ∈ C∞(M2;R) ist

[LΦ∗X(f)](q2) = Jf◦η−1
2
[η2(q2)] ◦ΘC2,q2 [Φ∗X(q2)]

= Jf◦η−1
2
[η2(q2)] ◦ Jη2◦Φ◦η−1

1
[η1(q1)] ◦ΘC1,q1 [X(q1)]

= Jf◦Φ◦η−1
1
[η1(q1)] ◦ΘC1,q1 [X(q1)] = [LX(f ◦ Φ)](q1) , (V.57)

was (V.54) beweist.

Ist weiterhin g ∈ C∞(M3;R), so ist nach (V.54)

[L(Ψ◦Φ)∗X(g)] ◦Ψ ◦ Φ = LX(g ◦Ψ ◦ Φ) = [LΦ∗X(g ◦Ψ)] ◦ Φ = [LΨ∗◦Φ∗X(g)] ◦ Φ ◦Ψ .
(V.58)

Da g beliebig gewählt werden kann, ist L(Ψ◦Φ)∗X = LΨ∗◦Φ∗X , und aus Satz V.6 erhalten wir
damit (Ψ ◦ Φ)∗[X] = Ψ∗ ◦ Φ∗[X], und da auch X ein beliebiges Vektorfeld ist, folgt (V.55).

Glg. (V.56) ergibt sich aus (V.55) als Spezialfall M3 = M1 und Ψ = Φ−1.
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VI. Tensoranalysis

VI.1. Tensorprodukte

Definition VI.1. Seien n ∈ N und E1, E2, . . . , En Vektorräume über R der Dimensionen
mj := dim[Ej] ∈ N, wobei j ∈ Zn1 .
(i) Eine Abbildung ℓ : ×n

i=1Ej → R heißt multilinear :⇔

∀ k ∈ Zn1 , (xj)nj=1 ∈ ×n
j=1Ej, yk, zk ∈ Ek, α ∈ R : (VI.1)

ℓ(x1, . . . , xk−1, yk + αzk, xk+1, . . . , xn) = ℓ(x1, . . . , xk−1, yk, xk+1, . . . , xn)

+ α · ℓ(x1, . . . , xk−1, zk, xk+1, . . . , xn) .

(ii) Das Tensorprodukt von E1, . . . , En ist definiert durch

E1 ⊗ E2 ⊗ · · · ⊗ En :=
n⊗
j=1

Ej := A∗, (VI.2)

d.h. als Dualraum des Vektorraums

A :=
{
ℓ : ×n

j=1Ej → R
∣∣ ℓ ist multilinear

}
. (VI.3)

Bemerkungen und Beispiele.

• Seien 1ψ∗ ∈ E∗
1 ,

2ψ∗ ∈ E∗
2 , . . . ,

nψ∗ ∈ E∗
n. Dann definiert 1ψ∗ ⊗ . . .⊗ nψ∗ : ×n

j=1Ej → R,〈
1ψ∗ ⊗ . . .⊗ nψ∗, (x1, . . . , xn)

〉
:=
〈
1ψ∗, x1

〉
· . . . · ⟨nψ∗, xn⟩ (VI.4)

offensichtlich eine multilineare Abbildung.

Lemma VI.2. Seien
{
e
(j)
1 , e

(j)
2 , . . . , e

(j)
mj

}
⊆ Ej Basen und

{
e
(j)
1

∗
, e

(j)
2

∗
, . . . , e

(j)
mj

∗}
⊆ E∗

j die

zugehörigen dualen Basen,
〈
e
(j)
i

∗
, e

(j)
k

〉
= δik, für j ∈ Zn1 . Dann ist

E∗ :=

{
e
(1)
k1

∗
⊗ e

(2)
k2

∗
⊗ . . .⊗ e

(n)
kn

∗
∣∣∣∣k1 ∈ Zm1

1 , . . . , kn ∈ Zmn
1

}
⊆ A (VI.5)

eine Basis.
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Beweis. Nach obiger Bemerkung ist E∗ ⊆ A und damit auch spanE∗ ⊆ A. Seien weiterhin
α(k1, . . . , kn) ∈ R, für kj ∈ Z

mj

1 , und

λ∗ :=

m1∑
l1=1

. . .
mn∑
ln=1

α(l1, . . . , ln)e
(1)
l1

∗
⊗ . . .⊗ e

(n)
ln

∗
= 0. (VI.6)

Für k1 ∈ Zm1
1 , . . . , kn ∈ Zmn

1 ist dann

0 =
〈
λ∗,
(
e
(1)
k1
, . . . , e

(n)
kn

)〉
=

m1∑
l1=1

. . .
mn∑
ln=1

α(l1, . . . , ln)
〈
e
(1)
l1

∗
⊗ . . .⊗ e

(n)
ln

∗
,
(
e
(1)
k1

⊗ . . .⊗ e
(n)
kn

)〉
=

m1∑
l1=1

. . .
mn∑
ln=1

α(l1, . . . , ln)
n∏
j=1

〈
e
(j)
lj

∗
, e

(j)
kj

〉
︸ ︷︷ ︸

=δljkj

= α(k1, . . . , kn).

(VI.7)

Also ist E∗ linear unabhängig. Ist nun λ∗ ∈ A, so setzen wir

λ̂∗ :=
∑
l1,...,ln

λ∗
(
e
(1)
l1
, . . . , e

(n)
ln

)
e
(1)
l1

∗
⊗ . . .⊗ e

(n)
ln

∗
(VI.8)

und beobachten, dass (wie in (VI.7)) für alle k1, . . . , kn,

λ̂∗
(
e
(1)
k1
, . . . , e

(n)
kn

)
=
∑
l1,...,ln

λ∗
(
e
(1)
l1
, . . . , e

(n)
ln

)〈
e
(1)
l1

∗
⊗ . . .⊗ e

(n)
ln

∗
,
(
e
(1)
k1
, . . . , e

(n)
kn

)〉
︸ ︷︷ ︸

=
∏n

j=1 δljkj

= λ∗
(
e
(1)
k1
, . . . , e

(n)
kn

)
.

(VI.9)

Da sowohl λ∗ als auch λ̂∗ multilinear sind, gilt somit auch

λ̂∗ = λ̂∗

(
m1∑
l1=1

〈
e
(1)
l1

∗
, x1

〉
e
(1)
l1
, . . . ,

mn∑
ln=1

〈
e
(n)
ln

∗
, xn

〉
e
(n)
ln

)

=

m1∑
l1=1

. . .
mn∑
ln=1

(
n∏
j=1

〈
e
(j)
lj

∗
, xj

〉)
λ̂∗
(
e
(1)
l1
, . . . , e

(n)
ln

)
=

m1∑
l1=1

. . .
mn∑
ln=1

(
n∏
j=1

〈
e
(j)
lj

∗
, xj

〉)
λ∗
(
e
(1)
l1
, . . . , e

(n)
ln

)
= λ∗(x1, . . . , xn),

(VI.10)

für alle (x1, . . . , xn) ∈ ×n
j=1Ej, d.h.

λ∗ = λ̂∗ ∈ spanE∗. (VI.11)
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Korollar VI.3. Für j ∈ Zn1 seien Ej reelle Vektorräume der Dimensionen mj ∈ N,{
e
(j)
1 , . . . , e

(j)
mj

}
⊆ Ej Basen und

{
e
(j)
1

∗
, . . . , e

(j)
mj

∗}
⊆ E∗

j die zugehörigen dualen Basen. Dann

ist

dimR(E1 ⊗ E2 ⊗ . . .⊗ En) = m1 ·m2 · . . . ·mn (VI.12)

und {
e
(1)
k1

⊗ e
(2)
k2

⊗ . . .⊗ e
(n)
kn

∣∣∣k1 ∈ Zm1
1 , . . . , kn ∈ Zmn

1

}
⊆

n⊗
j=1

Ej (VI.13)

ist eines Basis, wobei

e
(1)
k1

⊗ e
(2)
k2

⊗ . . .⊗ e
(n)
kn

:=
(
e
(1)
k1

∗
⊗ . . .⊗ e

(n)
kn

∗)∗
, (VI.14)

d.h. 〈
e
(1)
l1

∗
⊗ . . .⊗ e

(n)
ln

∗
, e

(1)
k1

⊗ . . .⊗ e
(n)
kn

〉
= δ(l1,...,ln),(k1,...,kn) =

n∏
j=1

δljkj . (VI.15)

Definition VI.4. Für j ∈ Zn1 seien Ej, Fj reellen Vektorräume endlicher Dimension und Lj ∈
B(Ej;Fj). Dann ist (L1 ⊗ L2 ⊗ . . . ⊗ Ln) ∈ B

(⊗n
j=1Ej;

⊗n
j=1 Fj

)
definiert durch (die lineare

Fortsetzung von)

(L1 ⊗ L2 ⊗ . . .⊗ Ln)
(
e
(1)
k1

⊗ . . .⊗ e
(n)
kn

)
:=
(
L1e

(1)
k1

⊗ . . .⊗ Lne
(n)
kn

)
. (VI.16)

VI.2. Tensorfelder, Metriken und Riemannsche
Mannigfaltigkeiten

Definition VI.5. Seien (M,T,A) eine m-dimensionale Mannigfaltigkeit, q ∈M und r, s ∈ N.
Der Vektorraum Tq

r
s[M ] der Tensoren, die kovariant r. Stufe und kontravariant s.

Stufe sind, ist gegeben durch

Tq
r
s[M ] :=

(
r⊗
j=1

T ∗
q [M ]

)
⊗

(
s⊗
j=1

Tq[M ]

)
. (VI.17)

Bemerkungen und Beispiele.

• Offenbar gilt: {
L1 ⊗ . . .⊗ Ln :

n⊗
j=1

Ej →
n⊗
j=1

Fj ist bijektiv

}
⇔
{
∀ j ∈ Zn1 : Lj : Ej → Fj ist bijektiv

}
.

(VI.18)
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• Sei C = (U,φ) ∈ A eine Karte einer Mannigfaltigkeit (M,T,A) und q ∈ U . Mit (VI.18)
ist somit (

r⊗
j=1

Θ∗
C,q

)
⊗

(
s⊗
j=1

ΘC,q

)
: Tq

r
s[M ] → R(mr+s) (VI.19)

ein Isomorphismus.

• Wir definieren nun T r
s[U ] :=

⋃
q∈U{q} × Tq

r
s[M ] und durch(

r⊗
Θ∗
C

)
⊗

(
s⊗

ΘC

)
: T r

s[U ] → φ(U)×R(mr+s),((
r⊗

Θ∗
C

)
⊗

(
s⊗

ΘC

))(
q, η∗1 ⊗ . . .⊗ η∗r ⊗ κ1 ⊗ . . .⊗ κs

)
:=
(
φ(q),Θ∗

C [η
∗
1]⊗ . . .⊗Θ∗

C [η
∗
r ]⊗ΘC [κ1]⊗ . . .⊗ΘC [κs]

)
(VI.20)

eine Karte von

T r
s[M ] :=

⋃
q∈M

{q} × Tq
r
s[M ]. (VI.21)

• Sind C = (U,φ) und C̃ = (Ũ , φ̃) zwei miteinander verträgliche Karten vonM , so sind auch

(T r
s[U ], (

⊗rΘ∗
C)⊗ (

⊗sΘC)) und (T r
s[Ũ ], (

⊗rΘ∗
C̃
)⊗ (

⊗sΘC̃)) miteinander verträglich.

Definition VI.6. Sei (M,T,A) eine Mannigfaltigkeit.

(i) Die Mannigfaltigkeit (T r
s[M ],×r+sT,A r

s), mit Atlas

A r
s :=

{(
T r
s[U ],

( r⊗
Θ∗
C

)
⊗
( r⊗

ΘC

))∣∣∣∣∣C = (U,φ) ∈ A

}
(VI.22)

heißt Bündel der r-fach kovarianten und s-fach kontravarianten Tensoren.

(ii) Eine Abbildung t ∈ C∞(M;T r
s[M ]) mit t ◦ π = idM heißt r-fach kovariantes und

s-fach kontravariantes Tensorfeld oder kurz r − s−Tensorfeld. Die Menge der r−
s−Tensorfelder bezeichnen wir mit T r

s[M ]. Lokal kann man t schreiben als

t(q) =
m∑

i1,...,ir=1

m∑
j1,...,js

α i1,...,ir
j1,...,jr

(q)dφi1(q)⊗ . . .⊗ dφir(q)⊗
∂

∂φj1(q)
⊗ . . .⊗ ∂

∂φjs(q)
.

(VI.23)

Definition VI.7. Seien (M,T,A) eine m-dimensionale Mannigfaltigkeit und g ∈ T 2
0[M ] ein

2−0−Tensorfeld, da lokal bei q ∈M als g(q) =
∑m

i,j=1 g
ij(q) dφi(q)⊗dφj(q) geschrieben werden

kann.
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(i) Das Tensorfeld g heißt Metrik (auf M)

:⇔ ∀ q ∈M : gij(q) = gji(q) und alle Eigenwerte von (gij(q))mi,j=1 ∈ Mm×m(R)

sind strikt positiv.

(VI.24)

In diesem Fall heißt (M,T,A, g) Riemannsche Mannigfaltigkeit.

(ii) (M, T ,A, g) heißt pseudo-Riemannsche Mannigfaltigkeit

:⇔ ∀ q ∈M : gij(q) = gji(q), det[g(q)] ̸= 0, und g(q) ist indefinit. (VI.25)

Bemerkungen und Beispiele.

• Die einfach kontravarianten Tensorfelder sind genau die Vektorfelder, die einfach kovari-
anten Tensorfelder die Kovektorfelder.

• Eine Metrik g ∈ T 2
0[M ] auf M definiert zu q ∈ M ein (positiv definites) Skalarprodukt

auf Tq[M ] durch

⟨·|·⟩ : Tq[M ]× Tq[M ] → R, (VI.26)〈 ∂

∂φi(q)

∣∣∣ ∂

∂φj(q)

〉
:= gij(q), (VI.27)

falls g lokal durch g(q) =
∑m

i,j=1 g
ij(q)dφi(q)⊗ dφj(q) gegeben ist. (Selbstverständlich ist

hier nachzuprüfen, dass ⟨·|·⟩ wohldefiniert - also kartenunabhängig - ist.)

• Sind umgekehrt ⟨·|·⟩q : Tq[M ] × Tq[M ] → R Skalarprodukte und gij(q) := ⟨ ∂
∂dφi(q)

| ∂
∂φj(q)

⟩
für alle i, j ∈ Zm1 glatt in q, so definiert g(q) =

∑m
i,j=1 g

ij(q)dφi(q) ⊗ dφj(q) eine Metrik
auf M . Die Metriken auf M stehen also mit Skalarprodukten auf Tq[M ] in Bijektion.

Satz VI.8. Sei (M,T,A) eine m-dimensionale Mannigfaltigkeit. Dann gibt es eine Metrik
g ∈ T 2

0[M ] auf M .

Beweis. Nach Satz III.8 kannM ⊆ R2m+1 eingebettet werden und (R2m+1,TR2m+1 , (R2m+1, id))
ist eine Riemannsche Mannigfaltigkeit bezüglich der Metrik g(x) =

∑2m+1
j=1 dxj ⊗ dxj (also die

vom euklidischen Skalarprodukt auf Tx[R
2m+1] = R2m+1 induzierte). Für eine Teilmannigfal-

tigkeit N ⊆ N̂ gilt jedoch in kanonischer Weise Tq[N ] ⊆ Tq[N̂ ] und daher induziert das von
Tq[R

2m+1] auf Tq[M ] restringierte Skalarprodukt ein Skalarprodukt auf Tq[M ] und somit eine
Metrik auf M .

Bemerkungen und Beispiele.

• Seien M = {q ∈ Rr||q| = r}, r > 0, U := M ∩ {q = (x, y, z) ∈ R3|y > 0} und
φ : U → (−π

2
, π
2
)× (0, π),

φ−1(ϑ, α) :=

r · cosϑ · cosα
r · cosϑ · sinα

r · sinϑ

 . (VI.28)
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Auflösen nach den Koordinaten liefert

φ1(q) ≡ ϑ(q) := arcsin

(
z√

x2 + y2 + z2

)
, (VI.29)

φ2(q) ≡ α(q) := arccos

(
x√

x2 + y2

)
. (VI.30)

Wir setzen C := (U,φ). Wegen M ⊆ R3 ist zu q ∈M ⊆ R3

T̃q(M) = {γ ∈ C1((a, b);M)|a < 0 < b, γ(0) = q}
⊆ {γ ∈ C1((a, b);R3)|a < 0 < b, γ(0) = q}
= T̃q(R

3),

(VI.31)

und insofern erwarten wir, dass auch Tq(M) ⊆ Tq(R
3) gilt. Dies ist in der tat richtig; wir

müssen aber vorsichtig vorgehen. Verwenden wir die Karte C von M , so ergibt sich nach
Definition IV.19

∂

∂ϑ(q)
= Θ−1

C,q(e1),
∂

∂α(q)
= Θ−1

C,q(e2). (VI.32)

Aus dieser Gleichung können wir nicht die gewünschte Inklusion ablesen. Betrachten wir
jedoch die Karte (R3, id) von R3, so ist

Θ(R3,id),q = idR3 (VI.33)

und mit

γq,ϑ(t) = φ−1(ϑ+ t, α), γq,α(t) = φ−1(ϑ, α+ t), (VI.34)

d

dt
(γq,ϑ)(0) =

−r · sinϑ · cosα
−r · sinϑ · sinα

r · cosϑ

 , (VI.35)

d

dt
(γq,α)(0) =

−r · cosϑ · sinα
r · cosϑ · cosα

0

 . (VI.36)

Mit (VI.33) erhalten wir also

∂

∂ϑ(q)
=

−r · sinϑ · cosα
−r · sinϑ · sinα

r · cosϑ

 ,
∂

∂α(q)
=

−r · cosϑ · sinα
r · cosϑ · cosα

0

 ∈ Tq[R
3] (VI.37)

Wie im Beweis von Satz VI.8 vorgegeben, bilden wir nun

gϑϑ(q) =
〈 ∂

∂ϑ(q)

∣∣∣ ∂

∂ϑ(q)

〉
eukl

= r2(sin2 ϑ · cos2 α + sin2 ϑ · sin2 α + cos2 ϑ) = r2, (VI.38)

gαα(q) =
〈 ∂

∂α(q)

∣∣∣ ∂

∂α(q)

〉
eukl

= r2 cos2 ϑ · (sin2 α + cos2 α) = r2, (VI.39)

gαϑ(q) = gϑα(q) =
〈 ∂

∂α(q)

∣∣∣ ∂

∂ϑ(q)

〉
eukl

= r2 · sinϑ · cosϑ · (sinα · cosα− sinα · cosα) = 0,

(VI.40)
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und erhalten die Metrik (q = φ−1(ϑ, α))

g(q) = r2dϑ(q)⊗ dϑ(q) + r2 · cosϑ dα(q)⊗ dα(q). (VI.41)

Für die nächste Definition machen wir eine Vorbetrachtung. Sind (M,T,A) und (N,S,B) zwei
m-dimensionale Mannigfaltigkeiten und Φ : M → N eine Diffeomorphismus, so definiert die
Ableitung Dq[Φ] : Tq[M ] → TΦ(q)[N ],

Dq[Φ] = Θ−1

C̃,Φ(q)
◦ Jφ̃◦Φ◦φ−1(φ(q)) ◦ΘC,q (VI.42)

einen Isomorphismus. Wir wollen nun einen Isomorphismus D∗
q [Φ] : T ∗

q [M ] → T ∗
Φ(q)[N ] so

definieren, dass für alle v∗ ∈ T ∗
q [M ] und w ∈ Tq[M ]〈
D∗
q [Φ]v

∗∣∣Dq[Φ]w
〉
N
=
〈
v∗
∣∣w〉

M
. (VI.43)

Mit (IV.63), d.h. ⟨LTy∗|x⟩ = ⟨y∗|Lx⟩, folgt dann〈
v∗
∣∣w〉

M
=
〈
D∗
q [Φv

∗∣∣Dq[Φ]w
〉
N
=
〈
Dq[Φ]

TDq[Φ]
∗v∗
∣∣w〉

M
. (VI.44)

Da v∗ und w alle Vektoren in T ∗
q [M ] bzw. Tq[M ] durchlaufen, folgt daraus, dass

D∗
q [Φ] =

(
Dq[Φ]

−1
)T

=
(
Dq[Φ]

T
)−1

. (VI.45)

Definition VI.9. Seien (M,T,A) und (N,S,B) Mannigfaltigkeiten der Dimension m und
Φ ∈ C∞(M,N) ein Diffeomorphismus.

(i) Wir definieren

D∗[Φ] : T ∗[M ] → T ∗[N ], D∗[Φ](q, v∗) :=
(
Φ(q),

(
Dq[Φ]

T
)−1

(v∗)
)
. (VI.46)

(ii) Weiterhin induziert Φ einen Diffeomorphismus

Φ∗ : T r
s[M ] → T r

s[N ], Φ∗t :=

(
r⊗
D∗[Φ]⊗

s⊗
D[Φ]

)
◦ t ◦ Φ−1. (VI.47)

Satz VI.10. Seien (M,T,A) und (N,S,B) zwei m-dimensionale Mannigfaltigkeiten,
Φ ∈ C∞(M ;N) ein Diffeomorphismus, f ∈ C∞(M ;R) und df ∈ T 1

0[M ] das lokal durch

df(q) =
∑m

j=1
∂(f◦φ−1)

∂xj
|x=φ(q) · dφj(q) gegebene Vektorfeld. Dann ist

Φ∗(df) = d(f ◦ Φ−1). (VI.48)

Beweis. Mit p = Φ(q) ∈ N , q ∈M ist für alle v ∈ Tp[N ]〈
d(f ◦ Φ−1)(p)

∣∣v〉
N
= Dp[f ◦ Φ−1](v) = DΦ−1(p)[f ] ◦Dp[Φ

−1](v)

=
〈
df(Φ−1)(p)

∣∣Dp[Φ
−1]v

〉
M

=
〈
Dp[Φ

−1]T ◦ df(Φ−1)(p)
∣∣v〉

N

=
〈
Φ∗(df)(p)

∣∣v〉
N
.

(VI.49)
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VI.3. Differenzialformen

Als Nächstes wenden wir uns den antisymmetrischen Differentialformen, den p-Formen,
p = 0, 1, . . . ,m, zu. Dazu betrachten wir einen m-dimensionalen Vektorraum E mit Basis
{e1, e2, . . . , em} ⊆ E. Dann bilden die Vektoren

{ei1 ⊗ ei2 ⊗ . . .⊗ eip |∀ j ∈ Z
p
1 : ij ∈ Zm1 } ⊆

p⊗
E :=

p⊗
j=1

E (VI.50)

eine Basis. Wir vereinbaren außerdem, dass
⊗0E := R = R · 1 (∼= konst. Funktionen). Für

p ∈ N definieren wir nun Ap ∈ B[
⊗pE;

⊗pE] durch lineare Fortsetzung von

Ap(ψ1 ⊗ ψ⊗ . . .⊗ ψp) :=
1

p!

∑
π∈Sp

(−1)πψπ(1) ⊗ . . .⊗ ψπ(p), (VI.51)

wobei ψ1, ψ2, . . . , ψp ∈ E. Außerdem setzen wir A0 := id⊗0 E. Beachte, dass (π := η ◦ κ)

A2
p(ψ1 ⊗ . . .⊗ ψp) =

1

p!

∑
κ∈Sp

(−1)κAp(ψκ(1) ⊗ . . .⊗ ψκ(p))

=

(
1

p!

)2 ∑
η,κ∈Sp

(−1)κ(−1)p ψη◦κ(1) ⊗ . . .⊗ ψη◦κ(p)

=

(
1

p!

)2 ∑
η,π∈Sp

(−1)π ψπ(1) ⊗ . . .⊗ ψπ(p)

= Ap(ψ1 ⊗ . . .⊗ ψp),

(VI.52)

d.h.

A2
p = Ap (VI.53)

ist eine Projektion. Wir setzen

Ap(ψ1 ⊗ ψ2 ⊗ . . .⊗ ψp) =: ψ1 ∧ ψ2 ∧ . . . ∧ ψp. (VI.54)

Offensichtlich gelten

ψπ(1) ∧ ψπ(2) ∧ . . . ∧ ψπ(p) = (−1)πψ1 ∧ . . . ∧ ψp, (VI.55)

und daher

ψi = ψj, i < j ⇒ ψ1 ∧ . . . ∧ ψi ∧ . . . ∧ ψj ∧ . . . ∧ ψp = 0, (VI.56)

wie bei Determinanten. Insbesondere ist

∀ (i1, . . . , ip) ∈ (Zm1 )
p : ei1 ∧ ei2 ∧ . . . ∧ eip = 0, (VI.57)

falls p > m, da in diesem Fall stets (mindestens) zwei Indizes ik = il, l < k, übereinstimmen.
Daher ist

∀ p ≥ m+ 1 : Ap = 0, (VI.58)

und wir können im Weiteren oB.d.A. 0 ≤ p ≤ m annehmen.
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Definition VI.11. Seien p ∈ N⋗
⊬ und E einm-dimensionaler Vektorraum überR. Den Teilraum

p∧
E := Ap

[
p⊗
E

]
(VI.59)

bezeichnet man als das (p-fache) antisymmetrische Tensorprodukt von E.

Lemma VI.12. Sei p ∈ Zm0 und E ein m-dimensionaer Vektorraum über R. Die Menge

Lp := {ei1 ∧ ei2 ∧ . . . ∧ eip|1 ≤ i1 < i2 < . . . < ip ≤ m} ⊆
p∧
E (VI.60)

ist eine Basis, und
∧pE hat die Dimension

dimR

(
p∧
E

)
=

(
m

p

)
. (VI.61)

Beweis. Nach (VI.55) und (VI.57) gilt

span(Lp) =
p∧
E, (VI.62)

und es verbleibt die Unabhängigkeit zu zeigen. Wir verzichten darauf.

Wir wollen nun zwischen antisymmetrischen Tensorprodukten verschiedenen Grades hin- und
herspringen können und definieren dazu das Keilprodukt.

Definition VI.13. Seien p, p̃ ∈ N. Dann ist das Keilprodukt

∧ :

(
p∧
E

)
×

(
p̃∧
E

)
→

p+p̃∧
E (VI.63)

durch

ωp ∧ ωp̃ := Ap+p̃[ωp ⊗ ωp̃] (VI.64)

definiert.

Bemerkungen und Beispiele.

• Es sind stets
∧0E = R · 1 und

∧1E =
⊗1E = E.

• Für E = R2 sind also

0∧
E = R · 1,

1∧
E = R,

2∧
E = R ·

{(
1
0

)
⊗
(
0
1

)
−
(
0
1

)
⊗
(
1
0

)}
︸ ︷︷ ︸

=2·

1
0

∧

0
1

.

(VI.65)
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• Für E = R3 sind

0∧
E = R · 1,

1∧
E = span{e1, e2, e3},

2∧
E = span{e2 ∧ e3, e1 ∧ e3, e1 ∧ e2},

3∧
E = R · e1 ∧ e2 ∧ e3.

(VI.66)

• Offensichtlich sind (wegen der gleichen Dimension)
∧pE und

∧m−pE isomorph.

• Das Keilprodukt fügt sich konsistent in die Definition (VI.54) ein, denn (VI.64) ist äqui-
valent zu

(ψ1 ∧ . . . ∧ ψp) ∧ (ψp+1 ∧ . . . ∧ ψp+p̃) = Ap+p̃
(
(ψ1 ∧ . . . ∧ ψp)⊗ (ψp+1 ∧ . . . ∧ ψp+p̃)

)
= ψ1 ∧ . . . ∧ ψp ∧ ψp+1 ∧ . . . ∧ ψp+p̃,

(VI.67)

d.h. das Keilprodukt ist assoziativ.

• Nach (VI.67) ist dann auch

(ψ1 ∧ . . . ∧ ψp) ∧ (φ1 ∧ . . . ∧ φp̃) = ψ1 ∧ . . . ∧ ψp ∧ φ1 ∧ . . . ∧ φp̃
= (−1)pφ1 ∧ ψ1 ∧ . . . ∧ ψp ∧ φ2 ∧ . . . ∧ φp̃
...

= (−1)p·p̃φ1 ∧ φ2 ∧ . . . ∧ φp̃ ∧ ψ1 ∧ . . . ∧ ψp
= (−1)p·p̃(φ1 ∧ . . . ∧ φp̃) ∧ (ψ1 ∧ . . . ∧ ψp).

(VI.68)

Durch Linearität überträgt sich dies auf
∧pE ×

∧p̃E, und wir erhalten

ωp ∧ ω̃p̃ = (−1)p·p̃ ω̃p̃ ∧ ωp, (VI.69)

für ωp ∈
∧pE und ω̃p̃ ∈

∧p̃E.

• Die Hodge-Abbildung (∗) :
∧pE →

∧m−pE ist durch die lineare Fortsetzung von

(ei1 ∧ . . . ∧ eip)(∗) := sgn

(
i1, . . . , ip, j1, . . . , jm−p

1, . . . , p, p+ 1, . . . ,m

)
· (ej1 ∧ . . . ∧ ejm−p) (VI.70)

definiert, wobei 1 ≤ i1 < i2 < . . . < ip ≤ m und 1 ≤ j1 < j2 < . . . < jm−p ≤ m, so dass

{j1, . . . , jm−p} = Zm1 \ {i1, . . . , ip}. (VI.71)

• Sind p ∈ Zm1 und w ∈ E∗, so ist die Kontraktion ιω :
∧pE →

∧p−1E durch lineare
Fortsetzung von

ιω(φ1 ∧ . . . ∧ φp) :=
p∑
j=1

(−1)j+1⟨ω|φj⟩φ1 ∧ . . . ∧ φj−1 ∧ φj+1 ∧ . . . ∧ φp (VI.72)

und ιω :
∧0E →

∧0E, ιω = 0, definiert.
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Definition VI.14. Sei E ein m-dimensionaler Vektorraum. Die direkte Summe

Ff (E) :=
∧

E :=
m⊕
p=0

(
p∧
E

)
(VI.73)

der VR der p-fach antisymm. Tensorprodukte nenn man fermionischer Fockraum über E.

Definition VI.15. Seien p ∈ Zm0 und (M,T,A) eine m-dimensionale Mannigfaltigkeit. Das
Vektorbündel mit Basis M und Faser

∧p T ∗
q [M ] ist

p∧
T ∗[M ] :=

⋃
q∈M

{q} ×
p∧
T ∗
q [M ]; (VI.74)

die antisymmetrischen Tensorfelder

∧(p)
[M ] :=

{
ωp ∈ C∞(M ;

p∧
T ∗[M ]

)∣∣∣π ◦ ωp = idM

}
⊆ T p

0(M) (VI.75)

bezeichnen wir als p-Formen (auf M),∧
[M ] :=

{
ω ∈ C∞(M ;

∧
T ∗[M ]

)∣∣∣π ◦ ω = idM

}
, (VI.76)

ist der Raum der Differentialformen.

Bemerkungen und Beispiele.∧(0)
= C∞(M ;R),

∧(1)
= T 1

0[M ]. (VI.77)

VI.4. Die äußere Ableitung

Definition VI.16. Sei (M, T ,A) eine m-dimensionale Mannigfaltigkeit, q ∈M und
C = (U,φ) ∈ A, so dass q ∈ U .

(i) Die äußere Ableitung d :
∧(0)[M ] →

∧(1)[M ] ist definiert durch

df(q) :=
m∑
j=1

∂(f ◦ φ−1)

∂xj

∣∣∣
x=φ(q)

· dφj(q). (VI.78)

(ii) Für p ∈ Zm−1
1 ist die äußere Ableitung d :

∧(p)[M ] →
∧(p+1)[M ] durch lineare Fortsetzung

von

d(f · φi1 ∧ . . . ∧ φip)(q) := df(q) ∧ dφi1(q) ∧ . . . ∧ dφip(q) (VI.79)

definiert.
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(iii) Die äußere Ableitung d :
∧
[M ] →

∧
[M ] ist durch

d

(
m⊕
p=0

ωp

)
(q) :=

m−1⊕
p=0

dωp(q) (VI.80)

definiert. (Insbesondere ist d(
∧(m)[M ]) = 0.)

Lemma VI.17. Seien p, p̃ ∈ Zm0 , (M,T,A) einem-dimensionale Mannigfaltigkeit. Dann besitzt
die äußere Ableitung folgende Eigenschaften:

(i)∀ω, ω̃ ∈
∧

[M ], α ∈ R : d(ω + αω̃) = dω + αdω̃, (VI.81)

(ii)∀ωp ∈
∧(p)

[M ], ω̃p̃ ∈
∧(p̃)

[M ] : d(ωp ∧ ω̃p̃) = dωp ∧ ω̃p̃ + (−1)pωp ∧ dω̃p̃, (VI.82)

(iii)∀ω ∈
∧

[M ] : d2ω = d(dω) = 0 . (VI.83)

Beweis. (i) ist trivial.
(ii) erhalten wir durch lineare Fortsetzung aus d(fg) = g · df + f · dg und

d
[(
f dφi1 ∧ . . . dφip

)
∧
(
g dφip+1 ∧ . . . ∧ dφip+p̃

)]
= d
[
(fg) dφi1 ∧ . . . dφip ∧ dφip+1 ∧ . . . ∧ dφip+p̃

]
= d(fg) ∧ dφi1 ∧ . . . dφip ∧ dφip+1 ∧ . . . ∧ dφip+p̃

= g · df ∧ dφi1 ∧ . . . dφip ∧ dφip+1 ∧ . . . ∧ dφip+p̃

+ f · dg ∧ dφi1 ∧ . . . dφip ∧ dφip+1 ∧ . . . ∧ dφip+p̃

=
(
df ∧ dφi1 ∧ . . . dφip

)
∧
(
g · dφip+1 ∧ . . . ∧ dφip+p̃

)
+ (−1)p

(
f · dφi1 ∧ . . . dφip

)
∧
(
dg ∧ dφip+1 ∧ . . . ∧ dφip+p̃

)
=
(
d
[
f · dφi1 ∧ . . . dφip

])
∧
(
g · dφip+1 ∧ . . . ∧ dφip+p̃

)
+ (−1)p

(
f · dφi1 ∧ . . . dφip

)
∧
(
d
[
g · dφip+1 ∧ . . . ∧ dφip+p̃

])
.

(VI.84)

(iii) ergibt sich aus:

d2
(
f · dφi1 ∧ . . . dφip

)
= d
[
df ∧ dφi1 ∧ . . . dφip

]
=

m∑
j=1

d

[(
∂(f ◦ φ−1)

∂xj
◦ φ
)
· dφj ∧ dφi1 ∧ . . . dφip

]

=
m∑

k,j=1

(
∂2(f ◦ φ−1)

∂xk∂xj
◦ φ
)
· dφk ∧ dφj ∧ dφi1 ∧ . . . dφip

=

(
m∑

k,j=1

(
∂2(f ◦ φ−1)

∂xk∂xj
◦ φ
)
· (dφk ∧ dφj)

)
︸ ︷︷ ︸

=0

∧
(
dφi1 ∧ . . . dφip

)
,

(VI.85)
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denn

m∑
k,j=1

(
∂2(f ◦ φ−1)

∂xk∂xj
◦ φ
)
· dφk ∧ dφj =

m∑
j,k=1

(
∂2(f ◦ φ−1)

∂xj∂xk
◦ φ
)

︸ ︷︷ ︸
=

(
∂2(f◦φ−1)
∂xk∂xj

◦φ
)

· dφj ∧ dφk︸ ︷︷ ︸
=−dφk∧dφj

= −
m∑

k,j=1

(
∂2(f ◦ φ−1)

∂xk∂xj
◦ φ
)
· dφk ∧ dφj.

(VI.86)

Lemma VI.18. Sei (M,T,A) einem-dimensionale Mannigfaltigkeit. Dann ist die äußere Ablei-

tung durch ihre Wirkung auf
∧(0) = C∞(M ;R) und die Eigenschaften (VI.81)-(VI.83) eindeutig

bestimmt.

Beweis. Sei d̃ :
∧
[M ] →

∧
[M ] eine weitere Abbildung, so dass d̃

∣∣∧(0)[M ]
= d

∣∣∧(0)[M ]
und d̃ die

Eigenschaften (VI.81) - (VI.83) besitzt. Dann ist

d̃
[
f · dφi1 ∧ . . . dφip

]
= d̃f︸︷︷︸

=df

∧dφi1 ∧ . . . dφip

+

p∑
j=1

(−1)jf · dφi1 ∧ . . . ∧ d̃(dφij) ∧ . . . ∧ dφip .
(VI.87)

Für i ∈ Zm1 ist jedoch dφi = d(φi), wobei φ ∈ C∞(U ;R) die i. Koordinatenfunktion der

Kartenabbildung ist. Also ist dφi = d̃(φi) und d̃(dφi) = d̃(d̃(φi)) = 0. Damit ist aber

d̃
[
f · dφi1 ∧ . . . dφip

]
= df ∧ dφi1 ∧ . . . dφip = d

[
f · dφi1 ∧ . . . dφip

]
. (VI.88)

Korollar VI.19. Die äußere Ableitung d :
∧
[M ] →

∧
[M ] ist wohldefiniert, also kartenun-

abhängig.

Beweis. Wäre d̃ bei q ∈M mit einer anderen Karte C̃ = (Ũ , φ̃) mit q ∈ Ũ definiert, so besäße

d̃ die Eigenschaften (VI.81) - (VI.83) und würde auf C∞(M ;R) mit d übereinstimmen. Nach

Lemma VI.18 ist also d = d̃.
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VII. Integrale und der Satz von Stokes

VII.1. Name

Bei der Definition des Integrals auf einer m-dimensionalen Mannigfaltigkeit M = (M,T,A)
spielen diem-Formen (p = m) eine große Rolle. Wir erinnern uns zunächst auf die Tatsache, dass

lokal
∧(m)[U ] ≃

∧(0)[U ] = C∞(U,R) in einen Kartengebiet U ⊆M einer Karte C = (U,φ) ∈ A
gilt, ∧(m)

[U ] =
{
f dφ1 ∧ dφ2 ∧ · · · ∧ dφm

∣∣∣ f ∈ C∞(U,R)
}

(VII.1)

Lemma VII.1. Seien C = (U,φ), Ĉ = (Û , φ̂) ∈ A mit V = U ∩ Û ̸= ∅. Dann gilt für alle
q ∈ V

dφ̂1(q) ∧ dφ̂2(q) ∧ · · · ∧ dφ̂m(q) = det[J(q)] dφ1(q) ∧ dφ2(q) ∧ · · · ∧ dφm(q) , (VII.2)

wobei

J(q) := Jφ̂◦φ−1 [φ(q)] =

(
∂[φ̂i ◦ φ−1](ξ)

∂ξj

∣∣∣
ξ=φ(q)

)
i,j=1,...,m

. (VII.3)

Beweis. Auf V gilt

dφ̂i =
m∑
κ=1

Ji,κ dφ
κ , (VII.4)

also

dφ̂1 ∧ · · · ∧ dφ̂m =
∑
π∈Sm

(−1)π

m!
dφ̂π(1) ⊗ dφ̂π(2) ⊗ · · · ⊗ dφ̂π(m) (VII.5)

=
∑
π∈Sm

(−1)π

m!

m∑
κ(1),...,κ(m)=1

Jπ(1),κ(1) Jπ(2),κ(2) · · · Jπ(m),κ(m) dφ
κ(1) ⊗ · · · ⊗ dφκ(m)

=
m∑

κ(1),...,κ(m)=1

1

m!
dφκ(1) ⊗ · · · ⊗ dφκ(m)

( ∑
π∈Sm

(−1)π Jπ(1),κ(1) · · · Jπ(m),κ(m)

)
.
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Definieren wir,

v1 :=

J1,1
...

Jm,1

 , . . . , vm :=

J1,m
...

Jm,m

 ∈ Rm, (VII.6)

so erkennen wir, dass∑
π∈Sm

(−1)π Jπ(1),κ(1) · · · Jπ(m),κ(m) = det(vκ(1), vκ(2), . . . , vκ(m)) (VII.7)

=

{
0 , falls {κ(1), . . . , κ(m)} ≠ Zm1 ,

(−1)κ det(J) , falls {κ(1), . . . , κ(m)} = Zm1 ,

wobei (−1)κ das Signum der Permutation κ : Zm1 → Zm1 ist. Also ist

dφ̂1 ∧ · · · ∧ dφ̂m =
∑
κ∈Sm

(−1)κ

m!
det(J) dφκ(1) ⊗ · · · ⊗ dφκ(m)

= det(J) dφ1 ∧ · · · ∧ dφm . (VII.8)

Definition VII.2. Eine m-dimensionale Mannigfaltigkeit (M,T,A) heißt orientierbar

:⇔ ∃Ω ∈
∧(m)

[M ] ∀ q ∈M : Ω(q) ̸= 0 . (VII.9)

Lemma VII.3. Sei M = (M,T,A) eine zusammenhängende m-dimensionale Mannigfaltigkeit
und m ≥ 2. Dann ist M = (M,T,A) genau dann orientierbar, wenn es einen mit A verträgli-

chen Atlas Ã = {Cα}α∈I von M so gibt, dass für alle Cα = (Uα, φα), Cβ = (Uβ, φ̂β) ∈ Ã mit
Uα ∩ Uβ ̸= ∅ auch

∀ q ∈ Uα ∩ Uβ : det Jφβ◦φ−1
α
[φα(q)] > 0 (VII.10)

gilt.

Beweis. ⇒: Seien M = (M,T,A) orientierbar und Ω ̸= 0 eine nirgends verschwindende m-
Form. Ist C = (U,φ) ∈ A, so ist

∀ q ∈ U : Ω(q) = g(q) dφ1(q) ∧ · · · ∧ dφm(q), (VII.11)

wobei g(q) ̸= 0 ist. Wegen der Stetigkeit von φ und g ist entweder

(i) ∀q ∈ U : g(q) > 0 oder (ii) ∀q ∈ U : g(q) < 0. (VII.12)

Im Fall (i) setzen wir C̃[C] := C, im Fall (ii) vertauschen wir die Koordinaten ξ1 = φ1(q) und

ξ2 = φ2(q), d.h. wir setzen C̃[C] := (Ũ , φ̃) mit Ũ := U und(
φ̂1, φ̂2, φ̂3, . . . , ˜̂φm

)
:=

(
φ2, φ2, φ3, . . . , φn

)
. (VII.13)
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So erhalten wir einen Atlas

Ã :=
{
C̃[C]

∣∣ C ∈ A
}
, (VII.14)

sodass

∀C̃ = (Ũ , φ̃) ∈ Ã, q ∈ Ũ : Ω(q) = g(q) dφ̃1(q) ∧ · · · ∧ dφ̃m(q), g(q) > 0. (VII.15)

Seien ϕ̃ = (Ũ , x̃), ϕ̂ = (Û , x̂) mit Ũ ∩ Û ̸= ∅ und q ∈ Ũ ∩ Û . Danach ist

Ω(q) = g̃(q) dφ̃1(q) ∧ · · · ∧ dφ̃m(q), g̃(q) > 0. (VII.16)

Ω(q) = = ĝ(q) dv̂phi1(q) ∧ · · · ∧ dv̂phim(q), ĝ(q) > 0. (VII.17)

Nach Lemma VII.1 ist dann

g̃(q) = ĝ(q) det (Jx̂◦x̃−1(x̃(q))) , (VII.18)

d.h.

det (Jx̂◦x̃−1(x̃(q)) =
g̃(q)

ĝ(q)
> 0. (VII.19)

⇐ : Seien A = {ϕα = (Uα, xα)}α∈J ein Atlas von M mit det
(
J (α,β)

)
> 0 auf Uα ∩ Uβ, wobei

J (α,β)(q) := Jxα◦x−1
β
(xβ(q)) (VII.20)

und {χα}α∈J eine lokal endliche Partition der Eins, d.h. für alle q ∈M und α ∈ J gilt

0 ≤ χα ≤ 1, suppχα ⊂ Uα,
∑
α∈J

χα(q) = 1, (VII.21)

#{β ∈ J | Uα ∩ Uβ ̸= ∅} <∞. (VII.22)

Wir wählen nun (unter Verwendung des Auswahlaxioms) eine Abbildung α0 :M → J , sodass

∀q ∈M : χα0(q)(q) > 0. (VII.23)

Wir setzen nun für q ∈M

Ω(q) :=
∑
α∈J

χα(q) dxα,1(q) ∧ · · · ∧ dxα,m(q) (VII.24)

wobei die Summe auf der rechten Seite nur endlich viele Summanden enthält. Dann ist Ω ∈∧(m)[M ] und für alle q ∈M ist

Ω(q) = g(q) dxα0(q),1(q) ∧ · · · ∧ dxα0(q),m(q), (VII.25)

wobei gemäß Lemma VII.1

g(q) =
∑
α∈J

χα(q) det
(
J (α,α0(q))(q)

)
≥ χα0(q)(q) > 0. (VII.26)
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Bemerkungen und Beispiele.

• Für M ⊂ Rm offen mit der Karte (M, idM) ist

∀x ∈M : Ω(x) := dx1 ∧ · · · ∧ dxm ̸= 0, (VII.27)

und M ist orientierbar.

• Das Möbiusband ist nicht orientierbar, da sich die lokal gegebene 2-Form dx ∧ dy nicht
stetig zu einer globalen 2-Form zusammensetzen lässt.

Definition VII.4. Sei (M,T,A) eine orientierbare Mannigfaltigkeit der Dimension m ∈ N

und m-Form Ω ∈
∧(m)[M ] und Atlas {ϕα = (Uα, xα)}α∈J , sodass

∀α ∈ J, q ∈ Uα : Ω(q) = gα(q) dxα,1 ∧ · · · ∧ dxα,m(q), gα(q) > 0. (VII.28)

Sei weiterhin {χα}α∈J eine lokal endliche Partition der Eins. Für f ∈ C0(M,R) eine stetige
Funktion auf M mit kompaktem Träger ist das Integral von f · Ω über M definiert durch∫

M

f(q)Ω(q) :=
∑
α∈J

∫
Rm

(χα · f · gα)((xα)−1(x)) dxm. (VII.29)

Bemerkungen und Beispiele.

• Das Integral (VII.29) ist kartenunabhängig.

• Im Folgenden verwenden wir den Halbraum Hm und seinen Rand ∂Hm :

Hm := R+
0 ×Rm−1 = {(x1, . . . , xm) ∈ Rm | x1 ≥ 0}, (VII.30)

∂Hm := {0} ×Rm−1 = {(x1, . . . , xm) ∈ Rm | x1 = 0}. (VII.31)

Definition VII.5. Seien (M,T) ein metrisierbarer, separabler topologischer Raum undm ∈ N.

(i) Sind U ∈ T und x : U → x(U) ⊂ Hm ein Homeömorphismus, so bezeichnen wir ϕ = (U, x)
als berandete Karte (von M).

(ii) Zwei berandete Karten ϕ = (U, x), ϕ̂ = (Û , x̂) heißen verträglich : ⇐⇒{
V := U ∩ Û ̸= ∅ ⇒ (VII.32)

x̂ ◦ x−1 ∈ C∞(x(V ), x̂(V ))

x ◦ x̂−1 ∈ C∞(x̂(V ), x(V )).
}

(iii) Eine Familie A berandeter Karten heißt berandeter Atlas (von M) : ⇐⇒

∀ϕ, ϕ̂ ∈ A : ϕ und ϕ̂ sind verträglich (VII.33)

M =
⋃

(U,x)∈A

U. (VII.34)
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(iv) Zwei berandete Atlanten A, Â von M heißen verträglich : ⇐⇒

∀ϕ ∈ A, ϕ̂ ∈ Â : ϕ und sind verträglich (VII.35)

(v) Ist A ein berandeter Atlas vonM , so nennt man die Äquivalenzklasse (M,T,A) bezüglich
verträglichen berandeter Atlanten eine berandete Mannigfaltigkeit

(vi) Ist (M,T,A) eine berandete Mannigfaltigkeit so nennen wir

∂M :=
⋃

(U,x)∈A

x−1(x(U) ∩ ∂Hm) (VII.36)

den Rand von M.

Bemerkungen und Beispiele.

• Ist M = {(x, y, z) ∈ R3 | x2 + y2 + z2 = 1, z ≥ 0} die Nordhalbkugel, so wählen wir

Ux,+ := {(x, y, z) ∈M | x > 1/2},
Ux,− := {(x, y, z) ∈M | x < −1/2},
Uy,+ := {(x, y, z) ∈M | y > 1/2}, (VII.37)

Uy,− := {(x, y, z) ∈M | y < −1/2},

Uz :=

{
(x, y, z) ∈M | x2 + y2 <

8

10

}

xx,±(x, y, z) := (z, y), xy,±(x, y, z) = (z, x), xz(x, y, z) := (x, y). (VII.38)

• Ist (M,T,A) eine berandete, m-dimensionale Mannigfaltigkeit m ≥ 2, so ist ∂M eine
randlose Mannigfaltigkeit der Dimension m − 1, denn ∂M resultiert aus M durch Ein-
schränkung der Kartenabbildungen x auf x−1

1 (0) und die Bildbereiche (x2, · · · , xm) der
Karten vom ∂M sind nicht auf den Halbraum Hm−1 beschränkt.

Lemma VII.6. Sei (M,T,A) eine berandete und orientierbare Mannigfaltigkeit der Dimension
m ≥ 2. Dann ist auch ∂M orientierbar.

Beweis. Seien ϕ = (U, x), ϕ̂ = (Û , x̂) zwei berandete Karten von M , q ∈ U ∩ Û ∩ ∂M und

det J(q) > 0, (VII.39)

wobei J = Jx̂◦x−1 ◦ x, d.h.

Jk,l(q) =
∂(x̂k ◦ x−1)(y)

∂xl

∣∣∣
y=x(q)

, (VII.40)

die Jacobi-Matrix von x̂ ◦ x−1 ist. Wir können O.B.d.A. x̂(q) = x(q) annehmen. Mit y =
(y1, . . . , ym) is dann nach dem Satz von Taylor

x̂1 ◦ x−1(y) =
m∑
l=1

J1,l(q)yl +O(y2). (VII.41)
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Für y1 = 0 und ∥y∥2 genügend klein ist x−1(y) ∈ ∂M also

0 = x̂1[x
−1(0)] =

m∑
l=2

J1,l(q)yl + o(y2). (VII.42)

Mit y = ε · el, l ∈ Zm2 und |ε| << 1 folgt daraus

J1,2(q) = J1,3(q) = · · · = J1,m(q) = 0. (VII.43)

Für y1 > 0, y2 = · · · = ym = 0, y21 << 1 ist andererseits x−1(y) ∈M \ ∂M , also

0 < x̂1[x
−1(y)] = J1,1(q)y1 +O(y21), (VII.44)

woraus wir

J1,1(q) > 0 (VII.45)

erhalten. Daher nimmt J(q) die folgende Blockform an

J(q) =


J1,1(q) > 0 0 · · · 0
J2,1(q) J2,2(q) · · · J2,m(q)

...
...

...
Jm,1(q) Jm,2(q) · · · Jm,m(q)

 , (VII.46)

und mit

J̃(q) :=

J2,2(q) · · · J2,m(q)
...

...
Jm,2(q) · · · Jm,m(q)

 , (VII.47)

folgt, dass

det J̃(q) =
det J(q)

J1,1(q)
> 0. (VII.48)

Da M orientierbar ist, existiert ein Atlas so dass det Jx̂◦x−1 > 0 für alle ϕ = (U, x), ϕ̂ =
(Û , x̂) ∈ A mit U ∩ Û ̸= ∅. Damit gilt det J˜̂x◦x̃−1 > 0 auch für den Atlas von ∂M , den wir durch
Projektion von x̂ und x auf die 2-m Komponenten gewinnen, und ∂M ist ebenfalls orientierbar.

Satz VII.7 (Stokes). Seien m ≥ 2, (M,T,A) eine berandete, orientierbare Mannigfaltigkeit

der Dimension m und ω ∈
∧(m−1)[M ] eine (m− 1)- Form mit kompaktem Träger. Dann gilt∫

M

dω =

∫
∂M

ω. (VII.49)
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Beweis. Seien zunächst supp(ω) ⊂ U und ϕ = (U, x) ∈ A eine berandete Karte von M . Mit

x̃1 := x2, x̃2 := x3, . . . , x̃m−1 := xm und Ũ := U ∩ ∂M ist dann ϕ̃ = (Ũ , x̃) die entsprechend
induzierte Karte von ∂M . Seien weiterhin ωj ∈ C∞(U ;R), sodass für q ∈ U

ω(q) =
m∑
j=1

ωj(q) dx1(q) ∧ · · · ∧ dxj−1(q) ∧ dxj+1(q) ∧ · · · ∧ dxm(q). (VII.50)

Damit ist

dω(q) =
m∑
j=1

dωj(q) ∧ dx1(q) ∧ · · · ∧ dxj−1(q) ∧ dxj+1(q) ∧ · · · ∧ dxm(q)

=
m∑

j,k=1

∂ωj ◦ x−1(y)

∂xk

∣∣∣
y=x(q)

dxk(q) ∧ · · · ∧ dxj−1(q) ∧ dxj+1(q) ∧ · · · ∧ dxm(q)

=
m∑
j=1

(−1)j−1∂ωj ◦ x−1(y)

∂xj

∣∣∣
y=x(q)

dx1(q) ∧ · · · ∧ dxm(q) (VII.51)

und wir erhalten∫
U

dω =
m∑
j=1

(−1)j−1

∫
Hm

∂(ωj ◦ x−1)

∂xj
(y) dmy =

∫ ∞

−∞
dy2 · · ·

∫ ∞

−∞
dym

{∫ ∞

0

∂(ω1 ◦ x−1)(y)

∂x1
dy1

}

+
m∑
j=2

∫ ∞

0

dy1

∫ ∞

−∞
dy2 · · · dyj−1dyj+1 · · · dym

{∫ ∞

−∞

∂(ωj ◦ x−1)(y)

∂xj
dyj

}
︸ ︷︷ ︸

=ωj◦x−1(y1,··· ,yj=+∞,··· ,ym)−ωj◦x−1(y1,··· ,yj=−∞,··· ,ym)=0

=

∫ ∞

−∞
dy2 · · · dym ω1 ◦ x−1(0, y2, · · · , ym) =

∫
∂M∩U

ω1(q) dx̃1(q) ∧ · · · ∧ dx̃m−1(q)

=

∫
∂M∩U

ω, (VII.52)

da

ω(q)
∣∣∣
∂M

= ω1(q) dx̃1(q) ∧ · · · ∧ dx̃m−1(q). (VII.53)
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