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. Topologische Grundbegriffe

In diesem ersten Kapitel stellen wir einige Grund legende Definitionen der allgemeinen Topologie
vor. Wie iiblich bezeichnet B(M) die Potenzmenge einer Menge M, d.h. das System aller
Teilmengen von M.

I.1. Topologische Raume

Definition I.1. Sei M eine Menge. Ein System ¥ C (M) von Teilmengen von M heifit
Topologie (auf M) <

(i)

0,M e %, (L1)

(ii)
VA,BeT: (ANB) € T, (1.2)

(i)
V&S C T <UA) € T (1.3)

In diesem Fall bezeichnen wir die Elemente von ¥ als offene Mengen (in M) und (M, ) als
topologischen Raum.

Eine offene Menge A € T, die x € A enthilt, heifit Umgebung von x. Fiir x € M bezeichnen
wir mit
T(z) = {AeT| A5z} (L.4)
die Familie der Umgebungen von x.
Ein topologischer Raum (M, ¥) heifit hausdorffsch <
Ve,ye M, z#vy, 3Ue€%(x), VeZ(y: unv = . (L5)



Definition I.2. Sei (M, T) ein topologischer Raum.
(i) Eine Teilmenge A C M heifit offen (s.o0.) :<

A e % (1.6)

(ii) Eine Teilmenge A C M heifit abgeschlossen : &

M\A € %. (L.7)

(iii) Eine Teilmenge K C M heifit kompakt &
Jede offene Uberdeckung von K enthilt eine endliche offene Uberdeckung.
s V6 CH, (U A) SK 3A,...,A,e6: K C AU...UA. (L8
Ac6

Definition I.3. Seien (M, ¥) ein topologischer Raum und A C M eine Teilmenge.
(i) Die Menge

A= ({U|M\Ueg UDA} (1.9)

nennt man Abschluss von A.
(ii) Die Menge

A= J{v|vez vca} (1.10)

nennt man Inneres von A.

(iii) Die Menge A C M heifit dicht (in M)
& A = M. (I.11)
Definition I.4. Seien (M, ¥) ein topologischer Raum und = € M ein Punkt.
(i) Ein Teilsystem B C T heift Umgebungsbasis (von ¥) :&

vUeT 3ecw: U= |]JC. (1.12)
Cec

(ii) Ein Teilsystem £ C ¥(z) heifit lokale Umgebungsbasis (bei x) 1<
VUES(z) IVel: V CU (1.13)
(iii) Eine Folge (x,)%°, € M™N heifit konvergent :<
JxeM VU eZ(x) dng e N VYn>ng: xz, € U. (I.14)

In diesem Fall heiit + Grenzwert oder Limes von (x,)2 ;.



Bemerkungen und Beispiele.
e Ist M eine Menge, so ist T, := {0, M} die kleinste Topologie auf M, und B(M) ist die
grofite Topologie auf M,

e Fiir einen topologischen Raum (M, %) sind ) = M \ M und M = M \ () abgeschlossen
(und nach (I.1) auch offen).

e Der Abschluss A einer beliebigen Teilmenge A C M eines topologischen Raums (M, ¥)
ist durch (I.10) wohldefiniert, da die Familie der abgeschlossenen Mengen U C M, die A
enthalten, zumindest M selbst enthélt.

e Die Offenheit von () sichert das Entsprechende fiir das Innere A° einer beliebigen Teilmenge
A C M, definiert durch die Vereinigung (1.10).

e Der Abschluss A ist stets abgeschlossen. Sie ist die kleinste abgeschlossene Obermenge
von A.

e Besitzt ein topologischer Raum (M, %) eine abzéhlbare dichte Teilmenge {z,}7>, € M
mit {x,}>2, = M, so heifit (M, T) separabel.

e Das Innere ist A° stets offen. Es ist die groite offene Teilmenge von A.

Definition I.5. Seien (M, ¥) ein topologischer Raum und A C M eine Teilmenge.
(i) Ein Punkt x € A heiBt innerer Punkt (I.P.) von A

& AU e%(x): UCA. (I.15)

(ii) Ein Punkt x € M heit Haufungspunkt (H.P.) von A

s YUET(x): UNA £ 0. (1.16)

Lemma 1.6. Seien (M,¥) ein topologischer Raum und A C M eine Teilmenge. Dann gelten
folgende Aussagen

Aist offen <« Jeder Punkt in A ist ein innerer Punkt von A. (L.17)

A ist abgeschlossen < Jeder Haufungspunkt von A ist in A enthalten. (I.18)

Beweis. Fiir A = () und A = M sind (I1.17) und (I.18) trivial richtig, deshalb nehmen wir im
Weiteren A # () und A°= M \ A # 0 an.

(I1.17), ,=*“: Ist A offen und =z € A, so ist A selbst eine offene Umgebung von z, die in A

enthalten ist, d.h. x ist ein innerer Punkt von A. Also ist jeder Punkt in A auch ein innerer
Punkt.

(I1.17), ,,<=*: Ist umgekehrt jeder Punkt in A ein innerer Punkt, so gibt es zu jedem z € A ein
Uy, € %(x) CA und A=, ., U, ist als Vereinigung der offenen Mengen U, selbst offen.

(I.18), ,=*: Sei A abgeschlossen und A€ somit offen. Sei x € M ein Haufungspunkt von A. Wére
x € A° so wire A° € T(x) mit ANA° = (), was in Widerspruch zur Annahme stiinde, dass x ein
Héaufungspunkt von A ist. Also muss x € A gelten, und A enthéilt alle seine Hiufungspunkte.

z€A



(I.18), ,<=*“: Enthalte umgekehrt A alle seine Hiufungspunkte. Ist = € A°, so kann z also kein
Héufungspunkt von A sein, d.h. es gibt ein U € %(z) mit AN U = (). Dann ist aber U C A€,
d.h. z ist ein innerer Punkt von A€. Es folgt dass jeder Punkt von A€ ein innerer Punkt ist und
dass A° nach (I.17) somit offen und deshalb A abgeschlossen sind. O

Bemerkungen und Beispiele.

e Ist (M, %) hausdorffsch, so ist der Grenzwert x € M einer konvergenten Folge (x,)5,
eindeutig, und wir schreiben

z = lim {z,}. (I.19)

n—oo

e Ist (M, %) erstabzihlbar, d.h. besitzt jeder Punkt € M eine abzihlbare lokale Um-
gebungsbasis T(x), so impliziert die Eindeutigkeit von Grenzwerten konvergenter Folgen
umgekehrt auch, (M, ¥) hausdorffsch ist.

e Konvergenz von Folgen ist fiir allgemeine topologische Rdume definiert, jedoch nicht der
Begrift der Cauchy-Folge.

e Eine Topologie T ist durch eine Umgebungsbasis B C ¥ bestimmt. Die offenen Mengen
in M sind sédmtlichst Vereinigungen von Mengen in ‘B.

e Seien d € N und M = R® Dann ist ist die Familie B = {B(z,r)|x € R% r > 0} der
offenen Kugeln

B(r,z) = {y € R*| ||y — @lleus <7} (1.20)

Va4 ..+ 22 fiir @ = (21, ... ,24) die euklidsche Norm auf R? bezeichnet.

e Genauso ist beispielsweise fiir z = 0 € R?

eine Umgebungsbasis der euklidschen Topologie Teua C B(RY), wobei ||2]loua =

£ ={B0,27")|neN} (I.21)

eine (abzdhlbare) lokale Umgebungsbasis bei 0.

e Sind (M, ¥) ein topologischer Raum und A C M eine Teilmenge, so ist auch (A, T,e) ein
topologischer Raum, wobei man

T = {ANU | U €%} (1.22)

als (durch ¥ induzierte) relative Topologie (auf A) bezeichnet. Beachte, dass die
Mengen ANU C M in (1.22) im Allgemeinen (in M) nicht offen sind.

e Sind m,n € N mit m < n und Tua(d) die euklidsche Topologie auf RY, so ist die durch
Teux1(n) induzierte relative Topologie auf R™ gerade Teya(m).

1.2. Erzeugte Topologien

Lemma I.7. Seien M eine Menge und {¥;};cz eine Familie von Topologien ¥; C PB(M) auf
M. Dann ist auch ihr Durchschnitt (,.; T; eine Topologie auf M.



Beweis. Nachpriifen der Topologicaxiome (i)-(iii) in Definition I.1. O

Definition I.8. Seien M eine Menge und € C PB(M) eine Familie von Teilmengen von M.
Dann heif3t

TE] = m {U] € CUCTP(M), slist eine Topologie} (1.23)
die von €& erzeugte Topologie auf M.

Bemerkungen und Beispiele.

e Die von €& erzeugte Topologie T[€] auf M ist durch (I.23) wohldefiniert, da die Familie
der Topologien auf M, die & enthalten, zumindest B(M) enthilt.

e T[¢] ist die kleinste Topologie auf M, die € enthélt.

e Tatsédchlich kann man zu gegebener Familie & C (M) die von ihr erzeugte Topologie
und eine Umgebungsbasis explizit angeben; dies ist Inhalt von Satz 1.9, dessen Beweis
man bei den Ergénzungen im Abschnitt 1.5 findet.

Satz 1.9. Sei & C PB(M) eine Familie von Teilmengen einer Menge M. Bezeichnet

B:={EiNEN..NE/|neN, Ec¢} (1.24)
die Familie aller endlichen Durchschnitte von Mengen aus €, so ist
gle] = {0,M} U { UA\%Q%}, (1.25)
Aet

und {0, M} U B ist eine Umgebungsbasis von T[€].

Definition I.10. Seien (M, ) und (N,*Y) zwei topologische Rdume und
Q= {UxV|Ues, VeU} C P(M xN). (1.26)
Dann heifit die von 9 erzeugte Topologie T(QQ) Produkttopologie T s« auf M X N.

Bemerkungen und Beispiele.

e Im Folgenden beziehen wir uns fiir M x N stets auf die Produkttopologie (), wenn
nichts anderes vereinbart wurde.

e Die in (1.27) definierte Familie  besteht selbst aus offenen Mengen und ist eine Umge-
bungsbasis der Produkttopologie auf M x N.

e Offensichtlich kann Definition I.10 leicht induktiv auf das kartesische Produkt endlich
vieler topologischer Rdume verallgemeinert werden:
Sind N € N, (M, %), (M3, %), ... (My,%y) topologische Rdume und

QY ={UixUsx - xUy|U1 €%y, U €%s, ..., Uy € Ty}
Q‘Ii(‘fﬁfl X‘SQ X oo X‘ZN), <I27)

so heifit die von QY erzeugte Topologie T(QY) Produkttopologie Tas x...xrry auf
My X -+ X My.



e Fiir unendliche kartesische Produkte topologischer Rdume kann man auch eine Topologie
definieren; hier gibt es jedoch mehrere Konstruktionsmoglichkeiten. Wir kommen darauf
in Abschnitt 1.3 zuriick.

1.3. Stetige Abbildungen

Definition I.11. Seien (M, &) und (N, ¥) zwei topologische Raume. Eine Abbildung f : M —
N heif}it stetig
& Urbilder offener Mengen unter f sind offen, d.h.

VAeT: (A € 6. (I1.28)

Sind f bijektiv und f: M — N und f~': N — M stetig, so nennt man f einen Homdomor-
phismus.

Bemerkungen und Beispiele.

e Seien (N, S) ein topologischer Raum, M eine Menge und f : M — N eine Abbildung.
Da Urbilder mengentheoretische Operationen erhalten, ist auch

f7U(8) = {4 Ae6} C pWM) (1.29)
eine Topologie (auf M).

o Offensichtlich ist T[f~1(&)] = (&), d.h. sie ist die kleinste Topologie T auf M, sodass
f:(M,%) — (N, S) stetig ist.

e Sind N € N und (M;,%,), (M, %s),...(My,Ty) topologische Riaume, so definieren wir
fiir v € Z die kanonische Projektion 7, : M; X -+ x My — M,, durch

T, [(:L’l, U R S T B ,xN)] = T,, (1.30)

d.h. 7, liest aus = (z1,...,zy) die v. Koordinate aus. Fiir U; € T;,Uy € T5,..., Uy €
Ty sind offenbar

mMU)) = Myx - x M,y x U, x M_1 X -+ x My (1.31)
und somit
U N U] NNt [Un] = U x Uy x - x Uy (1.32)
Damit sind die Quader aus (1.27) genau die Schnitte der Urbilder von U, unter m,, d.h.
QY = {a ' [U)n--- N [Ux]| Ui € Fi, ..., Uy € Ty} (1.33)

Somit ist die Produkttopologie ¥ [Q{V } genau die kleinste Topologie auf M; x --- x My,
fiir die alle kanonischen Projektionen 7, ..., 7y stetig sind.



e Dies ldsst sich auf (abzdhlbar oder auch {iberabzahlbar) unendlich viele Faktoren im
kartesischen Produkt wie folgt verallgemeinern:
Seien Z # {) eine Indexmenge und {(M,,%,)},ez eine Familie topologischer Rdume. Wir
definieren ihr kartesische Produkt durch

[T, = {2 Um,
veL

neLT

VveT: z, € M,,} (1.34)

und fiir v € 7 die kanonische Projektion 7, : ]| et M, — M, durch

T, [(:pu)ug} = x,. (1.35)

Dann ist die Produkttopologie Tpp, __a, auf II pez M, definiert als die kleinste
(grébste) Topologie auf [],.; M), fiir die alle kanonischen Projektionen m, : ], M, —
M, stetig sind.

e Fiir die Produkttopologie Tnuez m, gilt der wichtige Satz von Tychonoff : Ist {(M,, %) }ver
eine Familie kompakter topologischer Raume, so ist auch ( IT wer My, ‘ZHuez Mu) kompakt.

1.4. Parakompakte und zusammenhangende topologische
Raume

Definition I.12. Sei (M, %) ein topologischer Raum.
(i) Eine Uberdeckung & C T von M heifit lokal endlich

o VoeM3WeT(x): ‘{U66|Uﬂw#@}‘ < oo (1.36)

(ii) (M,%) heiBt parakompakt )
& Zu jeder Uberdeckung 4 C T von M gibt es eine lokal endliche Uberdeckung
U C T von M so, dass

VUesU IVeV: VCU. (1.37)

Wir werden Parakompaktheit spéter bei der Definition von Mannigfaltigkeiten stets voraus-
setzen. Der folgende Satz, dessen Beweis man in den Ergédnzungen 1.5 findet, sichert, dass
beispielsweise metrische Rdume stets parakompakt sind. Damit ist die Parakompaktheit eine
relativ schwéche Voraussetzung, die wir guten Gewissens zukiinftig machen werden.

Satz 1.13. Ist (M, p) ein metrischer Raum, so ist (M, %,) parakompakt und hausdorffsch.

Ein weiterer, wichtiger topologischer Begriff ist der eines zusammenhéngenden topologischen
Raums, den wir jetzt einfiihren.

Definition I.14. Sei (M, ) ein hausdorffscher topologischer Raum



(i) M heiit zusammenhingend :<

VA BeX, ANB=0, AUB=M: (A=MAB=0)V (A=0AB=M).

(1.38)
(ii) M heifit wegzusammenhingend :&
Vae,ye M 3y e C([0,1; M) :  ~(0) ==, v(1) =y. (1.39)
Lemma I.15. Sei (M, %) ein hausdorffscher topologischer Raum.
M ist wegzusammenhéngend = M ist zusammenhéngend. (1.40)

Bemerkungen und Beispiele.

e Die Umkehrung von Lemma I.15 ist i.A. nicht richtig. So ist M = M; U M, C R? mit
M, = {(x,sin(l/x)) ‘ x> O} und My, = {0} x [-1,1] (1.41)

zwar zusammenhédngend, jedoch nicht wegzusammenhéangend.

e Fiir Mannigfaltigkeiten sind die Eigenschaften, zusammenhéngend oder wegzusammenhéngend
zu sein jedoch gleichwertig, wie wir im néchsten Kapitel zeigen.
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1.5. Erganzungen

1.56.1. Explizite Charakterisierung eines topologischen Raums - Beweis
von Satz 1.9:

Wir definieren ¥ C B(X) durch die rechte Seite in (1.25),
To={0,M}u {|JA|acB}. (1.42)
Aet

Offensichtlich sind (), M € ¥'.
Seien A = Ugeg G5 B = Upes H € T, mit 6,9 C B. Mit G, H € B ist auch GN H € B.

Dann ist also
§={GnH|Ge®, HeH} C B, (1.43)

und es gilt
AﬂB:<UG>m<UH>:UUGHH:UFG‘Z’. (1.44)
Geo He$ Ge® HeH Feg

Sei nun J # () eine Indexmenge und A; = UGGGJ_ G € T mit &; C B, fiir alle j € J. Dann ist

auch & := Ujcs 8; € B, und es gilt
Ua = UJe=JcezT (1.45)
JjET JjET GEB; Ge®

Also ist ¥' O €& eine Topologie auf M.

Sei nun ¥” O €& (irgend)eine Topologie auf M, die & umfasst. Da T unter Bildung von Durch-
schnitten endlich vieler Mengen abgeschlossen ist, gilt auch B C ¥”. Da ¥” weiterhin auch
unter Vereinigungen beliebiger Teilsysteme seiner selbst abgeschlossen ist, ist dann auch

T C T (1.46)

Daher ist T D € die kleinste Topologie, die & umfasst.
Offensichtlich ist {(), M} UB auch eine Umgebungsbasis.

1.5.2. Metrische Raume sind parakompakt - Beweis von Satz 1.13:

Sei {U,}scs C T eine Uberdeckung von M. Aus dem Auswahlaxiom bzw. dem Zornschen
Lemma folgt, dass wir & als total geordnet annehmen koénnen. Fiir n € IN und s € G definieren
wir induktiv

Vin == |J Blz, 27, (1.47)
IeAs,n
Agp = {z € U, ‘ B(x,3-27")CUs, Vit<s,Vk<n: z¢U, x¢ Vt,k}. (1.48)

11



Offenbar ist V;,, offen und Vj,, C Us. Seien nun € M und s € & so, dass « € Us und = ¢ U,
fir alle t < s gilt. Fiir gentigend grofles n € IN ist dann auch B(z,3-27") C U,, da U; offen
ist. Ist x ¢ As,, so gibt es t < s und k < n, so dass € V. Ist hingegen = € A, so gilt
trivialerweise x € V. In jedem Fall gilt also

M= |J Vi (1.49)

se6,nelN

D.h. {V;n}sesnen ist eine offene Uberdeckung von M mit V;,, C Uy, und es verbleibt zu zeigen,
dass {V.n}see nen lokal endlich ist.

Zu festem n € IN wihlen wir nun x € V;,, und y € V;,, mit ¢ < s. Dann gibt es = € A;,, und
y € A, so, dass

x € B(#2™") C B(# 3-27"), (1.50)

y € B(§,2™"), §€U\U,. (L51)
Wegen B(z, 3-27") C U ist y ¢ B(x, 3-27"). Also ist p(Z,y) > 3-27" und damit
p(z,y) =2 p(Z,9) — plz,2) = ply,5) = 27" (1.52)
Somit ist
Vi<s,nelN: dist(Vi,; Vin) = inf {p(x,y) ’ € Vins y € Vsn} > 27" (1.53)
wobei wir dist(A, ) := oo setzen. Durch Vertauschen der Rollen von ¢ und s erhalten wir damit
Vs, teB, t#s, nelN: dist(Vin; Ven) > 27" (I.54)
Seien nun x € M und t € & sowie j € IN so, dass € V; ;. Da V; ; offen ist, gilt auch
W = B(x,27%) C B(x, 27"?) C V;y, (1.55)
fiir k € IN gentigend grof. Nach (1.54) ist W NV;,, = 0 fur alle n € N, falls s # ¢, d.h.
U= {Vin|s€eS, neN, WnV,, #0} € {Vin} .. (1.56)

Sind nun n > k4 j und y € Ay, so ist y ¢ Vi, da j < n. Damit ist jedoch y ¢ B(z, 2752),
d.h. p(z,y) > 272 — 27k = 3. 27k Also ist

WV, = |J WnBw2™] ¢ |J WnBw.2™"] =14, (1.57)

yeAs,n yeASyn

und wir erhalten, dass

U < HVinhh7H = k+j—1 < oo (1.58)

12



Il. Mannigfaltigkeiten

Wir kommen nun zur Theorie der Mannigfaltigkeiten. Im Weiteren nehmen wir von allen to-
pologischen Rédumen stets an, dass sie hausdorffsch, separabel und parakompakt sind.

11.1. Karten und Atlanten

Definition II1.1. Sei (M, %) ein (hausdorffscher, separabler und parakompakter) topologischer
Raum.

(i) Sind U € T offen, m € Nund ¢ : U — ¢(U) C R™ ein Homéomorphismus, so bezeichnen
wir C' = (U, p) als Karte (von M).

(i) Zwei Karten Cy = (U, 1), C2 = (Us, p2) von M heiflen vertraglich
e Falls Ujs := Uy NU; # 0, so gelten:

prop,' € C™ (@2(U12) ; 801(U12))7 (IL.1)
propr € C™ (@1(U12) ; 802(U12))7 (I1.2)
VEE pa(Unz) : det (J[wr 0 3'](€)) # 0. (11.3)

Lemma II.2. Seien (M, ¥) ein topologischer Raum und C) = (Uy, 1), Cy = (Us, p2) zwei
Karten von M mit Uy := Uy NUz # 0 und o1 (Uy) € R™, o(Usy) € R™2 jeweils offen. Erfiillen
¢1 und @y die Bedingungen (II.1) und (I1.2), so ist

myp = My. (114)

Beweis. Seien & € @o(Urs) ein Koordinatenpunkt, J := J[p; o @5 '](&) die Jacobimatrix von
@100y " bei &, {e1,..., em,} € R™ die Standardbasis, 6 > 0 und

1 _ _
yi(d) = 5{(901 O ¥y 1)(50 + (5&) - (<P1 SR 1)(50)}7 (H-5)
fir i =1,2,...,my. Dann ist limg_,o7;(5) = 0 mit

ri(6) = yi(0) — Je;. (IL.6)

13



Sind nun ot, o2, ..., 0™ € R so gewihlt, dass
mo '
> ai(®) = 0. )
i=1

so gilt mit £ := 7" a’e; auch

m2
= =) a'ri(o), (I1.8)
=1
d.h.
mo '
= = o' T'ri(6). (11.9)
=1
Insbesondere ist

mzax(\oﬂ) < mZaX(|oz\ HJ 1H (ZHTJ > < mlax(\ai]), (I1.10)

falls 6 > 0 geniigend klein ist. Also gilt

al == .- =a™ =0 (I1.11)

und
{y1(5), . ,me(d)} C R™ (I1.12)
ist linear unabhéngig. Somit gilt m; > my. Genauso folgt umgekehrt msy > m;. O

Die Bedingung der Glattheit -oder wenigstens stetigen Differenzierbarkeit- der Abbildungen
@10, und ;0 ;" erleichtert den Beweis der Gleichheit von m; und m, enorm; tatsichlich
gilt m; = my auch, wenn nur die Stetigkeit von o1 0 05 und ¢, 0 ;! vorausgesetzt wird, wie
Brouwer 1910 gezeigt hat.

Satz II.3 (Brouwer). Seien my,my € N, Uy C R™, Uy C R™2 offen und f : Uy — U, ein
Homdoomorphismus. Dann ist m; = ms.

Die Subtilitédt dieser Aussage wird deutlich, wenn man den folgenden Satz von Peano von 1890
liest, der zeigt, dass die Bijektivitit von o1 0 o5 (und somit auch ¢, o ;) unverzichtbar ist.

Satz I1.4 (Peano). Es gibt eine stetige Abbildung f € C([0,1]; [0,1] x [0, 1]), die surjektiv ist,

f(0,1]) = [0,1] x [0, 1]. (I1.13)
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Beweis. Wir definieren f,, : [0, 1] — [0, 1] x [0, 1] fiir n € INy durch folgendes Bild:

[BILD]

Offenbar gilt dann fir alle n € N und ¢ € [0, 1], dass

| fn(t) = fara (D] < T (I1.14)
Vm>n, 0<k<3". f L = f h (I1.15)
- 9 = = . m 3n+1 - n 3n+1 . .
Insbesondere ist fiir N <n <m
- Fu)] < v2 3 gk = 2008 (1L16)
sup |[fm(t) — ()| < V2 3 = = — 0, I1.16
tel0.1 Mot V2(1-3)  2v2

fiir N = oo, d.h. (f,)5%, € (C([1,0]; [1,0] x [1,0]))]1\1O ist gleichméBig konvergent und konver-
giert deshalb gegen eine stetige Grenzfunktion

f= lim f, € C([1,0]; [1,0] x [1,0]). (I1.17)
Offenbar ist f([0,1]) C [0, 1] x [0, 1] dicht, d.h.

f([0,1]) = 10,1] x [0,1], (11.18)

und als Bild der kompakten Menge [0, 1] unter der stetigen Abbildung f ist f([0, 1]) auch selbst
kompakt und insbesondere abgeschlossen, d.h.

f(0,1]) = f([0,1]) = [0,1] < [0,1]. (I1.19)
[l

Definition I1.5. Sei (M, %) ein topologischer Raum.
(i) Eine Familie A = {C, = (Ua, ¢a) taez von Karten von M heifit Atlas von M :&

Va,€Z: C, und Cp sind vertréglich; (I1.20)
M < U (I1.21)

a€l
dmeNVael: ¢.(U,) € R™ ist offen. (I1.22)

(ii) Zwei Atlanten A, A" von M heiBlen vertriglich
= VOeA C'eA: Cund C sind vertriglich. (I1.23)

Bemerkungen und Beispiele.

e Trotz der Gleichheit der Dimensionen m; = msy von sich iiberlappenden Karten geméfl
Lemma II.2 miissen wir eine einheitliche Dimension m alle Karten gesondert in Defini-
tion II.5 fordern, da M nicht zusammenhé&ngend sein muss und es moglicherweise eine
Zerlegung M = U,UU, in zwei disjunkte offene Teilmengen U;NUs = () mit Dimension m,
auf U; und Dimension my # mq auf U, gibt.
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11.2. Mannigfaltigkeiten als Aquivalenzklassen vertriglicher
Atlanten

Lemma II.6. Sei (M, %) ein topologischer Raum. Dann definiert die Vertréiglichkeit von At-
lanten von M eine Aquivalenzrelation “~” auf dem System aller Atlanten von M.

Beweis. Reflexivitit A ~ A und Symmetrie A; ~ Ay & Ay ~ A; sind trivial, nur bei der
Transitivitit A; ~ Az, Ay ~ A3 = A; ~ A3 gibt es etwas zu beweisen. Seien dazu Aq, Ay, A3
drei Atlanten von M, gelte A; ~ Ay und Ay ~ Az und seien C; = (U, p1) € A und
= (U3, (,03) € As mit Uz :=U; NU; 7é 0.

Ist nun p € Uy, so gibt es eine Karte Cy = (U, pa) € Ay, fiir die Us > p gilt. Also ist
p € Uygz := Uy NU; N Uz gilt, da Aj ein Atlas von M ist. Daher gibt es eine offene Umgebung
Vi CR™ von & := ¢1(p), sodass auf V}

p3oprt = (pzopyt) o (paowr?) (I1.24)

gilt. Als Komposition der glatten Abbildungen s 0 ;! und 3 0 ;! ist @30 7" selbst glatt
auf V] 3 &. Weiterhin ist mit & := @o(p) nach der Kettenregel

det (J[ps 0 p1'](&1)) = det (Jps 0 5 '](&)) - det (w2 0 01 ](&1)) # 0. (11.25)

Genauso folgt die Glattheit von ¢; o 3" auf einer offenen Umgebung V3 von &3 := ¢3(p) und
det J[py 0 @3'](&3) # 0.
Da p € U;3 beliebig war, impliziert dies die Vertraglichkeit von C7 und Cj, also die Transitivitéat

43 7

von “~7. O

Fiir die nun folgende Definition einer (differenzierbaren) Mannigfaltigkeit wollen wir noch einige
zusétzliche Eigenschaften das topologischen Raums (M, ¥) fordern, um Pathologien auszuschlie-
Ben, die uns in die Irre fithren wiirden.

Definition IL.7. Seien (M, %) ein topologischer Raum, A ein Atlas von M und m € N die
Dimension der Bildbereiche der Karten in A.

(i) Die zu A gehorige Aquivalenzklasse beziiglich vertriiglicher Atlanten bezeichnen wir als
(differenzierbare) Mannigfaltigkeit M = (M, ¥, A).

(ii) Die Zahl m € IN nennen wir Dimension der Mannigfaltigkeit M.

Bemerkungen und Beispiele.

e Seien d € IN und M C R? Im Folgenden betrachten wir auf M immer die durch die
euklidsche Topologie auf R¢ induzierte relative Topologie T, auf M C R%. Zu M C R?
ist die Familie {M N B(q,27")},cqinen eine abzéhlbare Umgebungsbasis, deshalb ist
(M,%,) als topologischer Raum separabel.

e Beispielsweise ist zwar S! := {q € R?: ||q|| = 1} als Teilmenge von R? nicht offen, in der
relativen Topologie ist (S',T,¢) aber offen (und abgeschlossen und auch kompakt).
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e Seien d € N und M C R¢ ein nichtleere offene Teilmenge (etwa auch M = R?). Dann ist
C = (M,id) eine Karte von M, A = {C} ein Atlas und (M, Teuu, A) eine Mannigfaltig-
keit.

o 5! = (81, %, A) mit ST = {g € R? : |¢| = 1} C R? ist eine 1-dimensionale Mannig-
faltigkeit, wobei A = {C',C_} mit Cy = (Uy, px), Ux := S'\ {(0,£1)}, p+(Ux) = R

und
1 2 2q1
Vg=(q¢,q)€U,: wil(q) = T2 2 (11.26)
Va=(¢", ) elU_: ¢_(q) = 20 (I1.27)
) — - - . 1 T q2 . .

Die Karten Cy bezeichnet man als stereografische Projektionen.

Satz I1.8. Seien n,d € N mit n < d—1, A C R? offen und nichtleer und F' = (F*,... Fi ™) e
C>®(A;R4™) so, dass

. OF'(q) B
Vge N : rk{(a—qj) | = d—n, (I1.28)
d.h. die Jacobimatrix J[F](q) von F habe an jedem Punkt ¢ € N den maximalen Rang d — n,
wobei

N = {geA| F(q)=0}. (I1.29)

Dann definiert (N, ¥, ) eine Mannigfaltigkeit der Dimension n.

Beweis. Seien ¢ € N und J = (%)ij die Jacobimatrix von F' bei q. Nach geeigneter Um-
ordnung der Variablen ist J = (A|B), wobei A € Mg_n)x(d—n)(R) mit det(A) # 0 und
B € Mg-nyxn)(R), geméB (I11.28). Nach dem Satz iiber implizite Funktionen besitzt die Glei-
chung F(¢) = 0 in einer Umgebung von ¢ eine lokale Auflésung nach ¢',...,¢% ". Genauer
gibt es zwei offen Mengen U, C R¢, W, C R und h = (h',..., h% ™) € C®°(W;R%™) so, dass
q €V, = (R"™ x W,) NU, und dass

Vi=(y.8eVy:  F(y.§) =0 & y=hQ). (I.30)
Somit definiert (Vq, qg=(y,&) — f) eine Karte von N, die ¢ enthélt, und {(Vq, (y,z) — z) }qu
ist ein Atlas von N. O

Bemerkungen und Beispiele.
e Fiirn € Nist $" := {z € R"™': |z|eury = 1 } eine Mannigfaltigkeit der Dimension n.

e Firn € Nsei A := {A € Myn(R) | det(4) = 1} € R™. Dann definiert (A, Tye)
eine Mannigfaltigkeit der Dimension n? — 1. Um dies zu sehen, beobachten wir, dass fiir
A= (a;;)

n
ij=1>

det(A) = > (1) ar(1)1 - Gr(mym (I1.31)

7T€Sn
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und deshalb

0 det(A
—aw() = > (1) r(a)1 - Ar(Go1) o1 * Gn(i1) 41 - G (N) N (11.32)
%] TESn,
7 (j)=i

ist. Mit anderen Worten ist die Jacobimatrix J[det](A) der Determinante gleich der Matrix
Apinor der Minoren von A. Somit ist dann

det <J[det](A)> = det[Amined] = 1, (11.33)

fiir alle A € A, denn A-AT, = det(A)-1 = 1. Insbesondere gibt es ein (7,5) € {1,...,n}?

so, dass

0 det(4)
(‘Mi,j

(J[det](4)), , = £ 0, (I1.34)

und rk[J[det](4)] = 1.

Sind (M, %, A1) und (Ms, %5, As) zwei Mannigfaltigkeiten der Dimensionen m; bzw.
mg, so ist auch (My X My, Thxan, A12) eine Mannigfaltigkeit bzgl. der Produkttopologie
T axn,, wobei

A = { (U < U, (1,92) | (U1 01) € A1, (U, 02) € Ao (I1.35)

und die Dimension von (M; X Ms, Tarixu,, A12) gleich my + my ist.
Sind m,n € N, U C R™ offen und F' € C*(U;R"), so definiert der Graph

Gr = {le. F(O) e R

£ e U} g (11.36)

eine Mannigfaltigkeit der Dimension m, denn A = {(Gp, [, F(€)] — &)} ist ein Atlas
von Gp.

11.3. Zusammenhang und Wegzusammenhang von

Mannigfaltigkeiten

Als Néchstes beschreiben wir die allgemeine Gestalt von Mannigfaltigkeiten.

Lemma II.9. Sei (M, ¥, A) eine Mannigfaltigkeit.

(M, %) ist wegzusammenhéngend < (M, T) ist zusammenhéngend. (I1.37)

Beweis. Wir berufen auf Lemma [.15 und zeigen nur

(M, %) ist zusammenhdngend = (M, T) ist wegzusammenhéngend. (I1.38)
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Seien dazu g € M und

W = {q eM|3yeC([0,1;M): 7(0) =g, (1) :q}. (I1.39)

Es ist zu zeigen, dass W = M gilt. Dazu beweisen wir zuerst, dass W abgeschlossen ist. Sei
also p € M ein Haufungspunkt von W und C' = (U, ¢) € A eine Karte mit U > p. Dann gibt
es € > 0 so, dass B(¢(p),e) € ¢(U). Wir setzen V := ¢! [B(p(p),£)] C U. Dann ist V € T(p)
und wegzusammenhingend, denn zu p’, p” € V definiert

() = o tol) + (1 —1t) ") (I1.40)

einen stetigen Weg in V' von p’ nach p. Da V eine offene Umgebung des Haufungspunkts p ist,
gilt W NV # 0, und es gibt ein p' € W NV, d.h. es gibt einen stetigen Weg von ¢y nach p’
und auch von p’ nach p. Somit ist p € W, d.h. W enthélt alle ihre Hiufungspunkte, und nach
Lemma 1.6 sind W abgeschlossen und W¢ = M \ W offen.

Seien andererseits p € W und D = (V,¢) € A mit V 3 p. Dann gibt es abermals eine offene
Umgebung R C V| R € %(p), die wegzusammenhéngend ist. Mit p € W ist also auch R C W
und W ist somit offen.

Zusammenfassend erhalten wir:
M =WuUwes WWwWeeZ, W £I(. (I1.41)
weil M zusammenhingend ist, impliziert dies W¢ = () und dann auch W = M, wie behauptet.
O

Bemerkungen und Beispiele.

e Wir brauchen bei Mannigfaltigkeiten also zwischen zusammenhéngend und wegzusam-
menhéngend nicht unterscheiden.

e Sei (M, %) ein topologischer Raum. Fir ¢,p € M wird durch
g~p e 3y el([0,1;M): 1(0)=¢, (1) =p (I1.42)
offensichtlich eine Aquivalenzrelation auf M definiert. Die Aquivalenzklassen bezeichnen
wir als (Weg-) Zusammenhangskomponenten.
e Mit dieser Aquivalenzrelation erhalten wir folgenden Satz.

Satz I1.10. Ist (M, ¥, A) eine Mannigfaltigkeit, so gibt es eine disjunkte Familie {(M;, %;, A;) her
wegzusammenhédngender Mannigfaltigkeiten, so dass

M = M. (I1.43)
lel

11.4. Ausschopfungen und Partition der Eins

Satz I1.11. Ist (M, %, A) eine (weg-)zusammenhdngende Mannigfaltigkeit, so besitzt M eine
abzihlbare kompakte Ausschépfung, d.h. es gibt eine Folge (K,)°, € MY kompakter

n=1
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Teilmengen von M, sodass

Ki C Ky C Ky C - CK, CK,C K1 C- (11.44)
und
M = | K. (I1.45)
n=1

Zur Vorbereitung der néchsten Definition erinnern wir an den Begriff des Tragers

supp[f] = {p eM } f(p) > O} (11.46)

einer nichtnegativen stetigen Funktion f € C(M;Rg) auf einem topologischen Raum (M, %).
Es ist also supp[f] = f7![RT] € T als Urbild der offenen Menge R™ C R{ unter der stetigen
Abbildung f selbst offen.

Definition I1.12. Seien M = (M, %, A) eine zusammenhéngende Mannigfaltigkeit und {U; }iez C
¥ eine offene Uberdeckung von M. Eine Familie {x4}acs € C(M;]0, 1]) stetiger Abbildungen
heiBt (zu {U,}icz gehorige) Partition der Eins :&

(i) VaeJ JieZ: V,:=supp[xs C U;; (I1.47)
(i) VgeM IWeT(q): [aeT|VanW # 0} < oo; (I1.48)
(ii0) VgeM: ) xalg) = 1; (I1.49)
(iv) V(U,go)eA,aej,Vjeij;é@:

(Xao@™") € C®(p(VanU);[0,1]) . (I1.50)

Satz I1.13. Sind M = (M, %, A) eine zusammenhéingende Mannigfaltigkeit und {U;}iez € T
eine offene Uberdeckung von M, so gibt es eine zu {U;};cz gehorige, abziahlbare Partition
{xe}22, € C(M;]0,1]) der Eins.

Beweis. Nach Satz I1.11 gibt es eine kompakte Ausschopfung von M, d.h. eine Folge (K,,)32, €
PB(M)N kompakter Teilmengen, sodass K,, C K1, fiir alle n € N, und M =7, K,,.

Ist p € M, so gibt es aufgrund der Uberdeckungseigenschaften n € IN, i € Z und (Sp,p) € A
so, dass p € (K1 \ K,,) NU; NS, wobel wir Ky := () notieren. Fiir £, > 0 geniigend klein ist
dann auch

Vi(p) == ¢, ' [B(gp(p), 3e,)] C (IO(,LH \K,)NU;NS,. (I1.51)

Fiir n = 1 ist dann {V(p) |p € K} C ¥ eine offene Uberdeckung von K. Da K; kompakt ist,
gibt es L(1) € N und ¢, g2, . . . qr1) € K1 so, dass

K< | Vi, (I1.52)
(=L(0)+1
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wobei L(0) := 0 < L(1). Genauso gibt es L(2) € N, L(2) > L(1) und qr(1)41, - - - qriz) € Ko\ K1
so, dass

. L(2)
K\Kr € | Vi) (I1.53)
(=L(1)+1
usw. Allgemein folgt induktiv, dass es zu jedem n € N ein L(n+1) € N, L(n+1) > L(n) und
ALn)+15 - - - 1) € Kpgr \ K so gibt, dass

n+1

Ko \K, € |J V). (I1.54)
{=L(n)+1

Zusammengefiigt erhalten wir eine Folge (g,)72, € M™ von Punkten, sodass {V/(g/)}2, eine
offene Uberdeckung von M ist.

Sei weiterhin ¢ € IN. Dann gibt es ein m € Ny so, dass L(m) < ¢ < L(m + 1), und es sind
G € K1 \ Ky und V(qr) € Ky \ K geméf (I1.51). Insbesondere gilt

Vig) N (Kpi \ Kyn) = 0, (I1.55)

falls n + 1 < m, d.h. falls £ > L(n + 1), und ebenso falls n > m + 2, d.h. falls n > 2 und
¢ < L(n-—1).
Sind nun p € M und dann n(p) € Ny, i(p) € Z und (S,, ¢,) € A so, dass p € (Kpp)+1 \ Knp)) N
Uitp) NSy, so sind V(p) € T(p) und V(p) C Io(n(p)+2 \ Ky, geméaf (I1.51). AuBerdem folgt aus
(I1.55), dass

‘{é eN|V(g)NV(p) # @}‘ < Lin(p) + 1] — Lmax{n(p) — 1,0}] < oo. (I1.56)

Wir wiihlen nun eine Funktion f € C*(R{;[0,1]), fir die f =1 auf [0,1], f' <0 und f =0
auf [2,00) gilt. Fiir £ € N kiirzen wir (Vz, ¢¢) == (V(q0), ¢q,), & := @e(qe) und &4 := &4, ab und
definieren eine Funktion v, : M — [0, 1] durch

Vpe Vi = o' [B(&. 32)] 1 ulp) = f[(%z_&ﬂ (1L57)
und v, = 0 auf M \ V;. Offensichtlich ist
VEe Vi = B(&, 320)] : [wog,'](€) = f{(£ ;&Y} , (I1.58)

und somit ist y0p ™! = [yr00, ] o [prop™] € C(p[supp(ve) NU]), fiir jede Karte (U, ) € A
mit supp(v,) N U # 0.

Wir definieren schlielich x, : M — [0, 1] fiir p € M durch

(Eilw(p)yl-w(p) = ( L[n(i)ﬂ] w/(p))_l-w(p), (11.59)

¢'=L[max{n(p)—1,0}]
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so dass offensichtlich y,0¢™" € C™(p[supp(x¢)NU]), fiir jede Karte (U, ¢) € A mit supp(x,) N
U # () und

VpeM: D> xlp) =1 (I1.60)
=1
gelten. Offenbar ist {x,}72, eine zu {U,},er gehorige, abzéhlbare Partition der Eins. O

Bemerkungen und Beispiele.

e Die Eigenschaft einer zusammenhédngenden Mannigfaltigkeit, eine abzdhlbare und lokal
endliche Partition der Eins zu besitzen, wird fiir uns an Bedeutung gewinnen, wenn wir
Immersionen diskutieren und wenn wir Integrale iiber Mannigfaltigkeiten definieren.

e Zunichst wenden wir uns jedoch dem Begriff differenzierbarer Abbildungen zwischen
Mannigfaltigkeiten zu. Dazu erinnern wir an den Begriff der k-fach stetig differenzier-
baren Abbildungen, den wir von auf offenen Mengen 2 C R™ auf beliebige nichtleere
Teilmengen A C R™ wie folgt verallgemeinern.

e Seien m,n € N und k € Ny. Fiir ) # A C R™ heifit f : A — R"™ k-mal stetig
differenzierbar, f € C*(A;R")

TS 3QeTpm, QDA feCHQURY: f = fla. (IL.61)
Definition II.14. Seien M = (M,%, A) und N' = (N, &, B) zwei Mannigfaltigkeiten und
k € INo.
(i) Eine Abbildung f : M — N heiit k-mal stetig differenzierbar, f € C*(M; N)
s V(Up eA (Vio)eB, W=UnNfYV)#0:
(Wofop™) € CH(e(W);[wo fI(W)). (I1.62)
(ii) Sind a,b € R mit a < b und M = ((a,b), T, {idr}) =: (a,b), so heift f € C*((a,b); N)
C*-Kurve in N. Aulerdem schreiben wir C*(M) := C*(M; M).
(iii) Sind f : M — N bijektiv und f € C°°(M; N) sowie auch f~! € C°(N; M), so nennen
wir f einen Diffeomorphismus. In diesem Fall heilen M und N diffeomorph.

Bemerkungen und Beispiele.

e Der Begriff der k-fachen stetigen Differenzierbarkeit ist wohldefiniert, d.h. unabhéngig
von den zu Grunde liegenden Atlanten innerhalb der ihrer Aquivalenzklasse. In der Tat,
sind (U, ), (U, Z) zwei miteinander vertriagliche Karten von M und (V,v),(V,7) zwei

miteinander vertriigliche Karten von N so, dass W :=UNUN f~1{(V N V) £ 0, so ist
Gofoi™ = (Fovo(wofog)olpoi™) (1L63)

auf W, und wegen der Glattheit von o~ und p oz~ ist

(Gofoz™) e C*E(W);[go fIW)) & (o fop™t)eCMp(W); o fI(W)).
(11.64)
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e Wird M = (M, %, A) durch eine einzige Karte (M, ) dargestellt, d.h. ist A = {(M, ¢)},
so ist ¢ : M — (M) ein Diffeomorphismus, wobei wir (M) C R™ als Mannigfaltigkeit
mit Atlas {(p(M),idgn)} auffassen.

o Ist M; = (R, %R, A1) mit A; = {(R,9)} und ¢(z) = 23, so ist M; diffeomorph zu
M| = (R, Tg,idR)

e Sind My = M), = (R, TR, idR), so ist jedoch f: R — R, f(z) := z*, kein Diffeomorphis-
mus zwischen My und Mj, da

idg o floidg ¢ C®(Mag; M)). (11.65)

e Aus diesen, zunéchst verwirrenden Beispielen lernen wir, dass derselbe topologische Raum
(hier: (R,%¥Rr) verschiedene Mannigfaltigkeitsstrukturen tragen kann: Im vorletzten Bei-
spiel ist x — 2 die die Mannigfaltigkeit definierende Kartenabbildung. Wenngleich M
und M, dieselbe Topologien besitzen, sind in M; die Punkte um p = 0 unendlich stark
verdichtet.

Definition I1.15. Sei M = (M,%, A) eine Mannigfaltigkeit. Eine Mannigfaltigkeit M =
(M, %, A) heift Uberlagerungsmannigfaltigkeit (von M)

< Es gibt eine Abbildung 7 € COO(M\ ; M) mit den folgenden beiden Eigenschaften:
Vpe M: = '{p}] C M ist abzahlbar und (I1.66)
Vpe M3V eZ(p): = '[V]ist diffecomorph zu V x 7~ '[{p}]. (I1.67)

In diesem Fall nennt man © Projektion von M auf M.

Bemerkungen und Beispiele.
o Seien M = §! = (S, T, {C1}) und M = (R, Towq, idg). Wir stellen ST = {z € C :

|z| = 1} als komplexe Zahlen vom Betrag eins dar.

e Wir definieren die Projektion 7 : R — S! durch
VaeR:w(a) = ™. (I1.68)
und beobachten, dass

T {e*}] = B+ 27Z. (11.69)

e Weiterhin ist V := {e™|a € I5.} € T,a1(B) fiir € > 0 eine offene Umgebung von 3, wobei
Is. == (B —¢,B +¢). Ihr Urbild unter 7 ist gegeben durch

V] = I+ 277Z. (11.70)

o Fiir ¢ < mist Iz, + 277 eine nichtzusammenhéngende eindimensionale Mannigfaltigkeit.
Weiterhin gibt es dann zu jedem p € Iz, + 277Z genau ein «(p) € Iz, und genau ein
n(p) € Z so, dass p = a(p) + 2mn(p).
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e Man priift nun leicht nach, dass
Jilge+2n7 — Ige X7, D — (a(ﬁ), n(ﬁ)) (I1.71)

ein Diffeomorphismus ist.

e Folglich ist R eine Uberlagerungsmannigfaltigkeit von $' mit Projektion 7 von R auf S.

Definition I1.16. Sei M = (M, %, A) eine Mannigfaltigkeit der Dimensionen m. Eine Man-
nigfaltigkeit N = (N, &, B) heifit Teilmannigfaltigkeit (von M) der Dimensionen n. :&
n < m, N C M ist Teilmenge von M, die Topologie auf N ist die ¥ induzierte relative Topologie
S ={UNN|U € ¥}, und es gibt einen mit A vertréglichen Atlas A’ von M, sodass

(i) VU@ ed: UnNN={peU|¢*(p)=¢ @) = =¢"(p)=0}; (I172)

i) {(UNN, (' % 0M) ’ (U, ) € A’} ist ein mit B vertréiglicher Atlas von N.
(IL.73)

Aus Satz I1.8 erhalten wir mit diesen Begriffen sofort folgendes Korollar.

Korollar I1.17. Seien m,n € N, n < m —1, M = (M,%, A) eine Mannigfaltigkeit der
Dimension m, F' € C*°(M;R™ ™) und N := {p € M|F(p) = 0}. Ist rk[F] = m — n auf N,
so ist N = (N, &, B) eine Teilmannigfaltigkeit von M der Dimension n (beziiglich eines durch
lokale Auflésungen von F(p) = 0 gewonnenen Atlas B).

Bemerkungen und Beispiele.
o Seienm=2,n=1 M= (R?\ {0}, Teur, A) und

N = 8" = {qg=(a,b) e R* | |lglla = a® + 0" =1} C R*\ {0}, (IL.74)
wobei A = {D,,D_} mit Dy = (W, 1), We :=R?\ ({0} x RF) und

2a 9

Vg=(a,b) e We: i(q) = NZEw e I

(q) == a*>+b*—1. (I11.75)

e Dann sind
Wenst = {ge R\ {0} | pi(9) =0} = Us (IL.76)

und
A = {W,ynSheh), (VonShet)} = {Cy,0-} (IL.77)

ist gerade der in (I1.26)-(11.27) definierte Atlas der stereografischen Projektionen.

e Also ist $! eine eindimensionale Teilmannigfaltigkeit von R2.
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11.5. Erganzungen

11.5.1. Existenz kompakter Ausschépfungen - Beweis von Satz 11.11:

Seien ¢ € M und C, = (U, ¢,) € A eine Karte mit U > ¢. Fiir £, > 0 gentigend klein ist

B(pq(q):84) € q(Uy) (IL.78)

und mit
Vi = ¢, [B(eqq),eq)] (I1.79)

ist {V,},enr eine offene Uberdeckung von M, und als Bild einer kompakten Menge unter der
stetigen Abbildung go;l ist

VgeM: V, = ¢ [B(goq(q),eq)] kompakt. (I1.80)

Nach Voraussetzung ist (M, ¥) parakompakt, und es existiert eine lokal endliche Uberdeckung
{Wataes von M, wobei es fiir jedes ¢ € M ein solches a € J gibt, dass W, C V. Als
abgeschlossene Teilmenge der kompakten Menge V;, ist auch

Vae J: W, kompakt. (I1.81)

Da {W,}aecs lokal endlich ist, gibt es zu jedem p € M eine Umgebung S, € T(p), und eine
endliche Menge Z, C J, |Z,| < oo so, dass

Vae J\ZL,: W.nS, =0, (11.82)

d.h. nur endlich viele W, schneiden S,. Da {W, },c7 eine Uberdeckung von M ist, gilt natiirlich
auch S, € Upyer, Wa-

Sei nun K C M kompakt. Dann ist {S,},cx eine offene Uberdeckung von K, und daher gibt
es pi,...,pr € K,sodass K C S, US,, U---US,,. Mit Z(K) :=Z, U---UZ,, gilt dann aber

K C |J Wa, VaeJ\IK): WonK = 0. (11.83)
a€I(K)
Wegen
L
Z(K)| = |T,u--- UL, | < Y |T,| < oo (11.84)
=1

bedeutet (11.83), dass auch K nur von endlich vielen W, geschnitten wird.
Wir wihlen nun o € J so, dass W, # () und setzen

Ky =W, K= |J W (I1.85)

a€Z(Kq)
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und induktiv fir n € IN

Koo = |J W (11.86)
I(K

ac n)

Offenbar ist K kompakt. Sind K73, Ko, ..., K, kompakt, so schneiden nur endliche viele I,
mit jeweils kompaktem Abschluss W, die Menge K,,, und deshalb ist dann auch K, ; kompakt.
Durch Induktion erhalten wir die Kompaktheit aller K,,, fiir n € IN. Auflerdem ist

K. < |J WaC Kua, (I1.87)

OéEI(Kn)

da UaEZ( Kn) W, eine offene Teilmenge von K, 1 ist und somit in der gréfiten offenen Teilmenge

K, 1 C K, enthalten ist. Es verbleibt zu zeigen, dass

n=1
gilt. Wegen K, C K,,.1 C K11 ist
N = |JKun (I1.89)
n=1

als Vereinigung offener Mengen selbst offen.

Ist ¢ € N, so gibt es ein o € J mit W, 3 ¢, da {W,}acs cine offene Uberdeckung ist. Dann gilt
jedoch auch NNW, # 0, denn anderenfalls wire N \ W, D N eine echt groiere abgeschlossene
Menge als N, die N umfasst, was der Definition des Abschlusses von N widerspriche. Wegen
NNW, # 0 gibt es ein n € N so, dass W, N K,, # (. Aber dann gilt

g € Wo C Koy C N, (11.90)

geméf der Definition (I1.86) von K, ;. Also ist N auch abgeschlossen, und N¢ ist offen. Da
M = N U N¢ nach Voraussetzung zusammenhingend ist und N D W, # 0 gilt, muss N¢ = ()
sein, d.h. (IL.88) gilt.
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I1l. Immersionen und Einbettungen

I11.1. Immersionen als Abbildung vollen Ranges

Definition III.1. Seien M = (M,%, A) und N' = (N,S,B) zwei Mannigfaltigkeiten der
Dimensionen m = dim(M) bzw. n = dim(N') und f € C*(M;N).

(i) Sind p € M und (U, ¢) € A und (V,4) € B so, dass p € UN f~1(V), so heifit

tk[f(p) = tk[Jyosop1 (¢(0))] (IIL.1)

Rang von f bei p.
(ii) Die Funktion f heift Immersion (von M in N) :&

Vpe M :1k[f](p) = m. (I11.2)

(iii) Die Funktion f heift Einbettung (von M in N) :&
Die Funktion f ist eine injektive Immersion und f : (M, %) — (N, S) ist ein Homéomor-
phismus.

(iv) Die Funktion f heit Submersion (von M auf N) :&

Vpe M:rk[f](p) = n. (II1.3)

Bemerkungen und Beispiele.

e Wie iiblich ist der Rang von f bei p € M unabhéngig von den gewéhlten Karten (U, ¢) €
A und (V,9) € B und insofern wohldefiniert.

e Ist f € C'(M; N) eine Immersion, so ist m < n, da rk[f] < min{m,n}.
e Ist f € C'(M; N) eine Submersion, so ist m > n, abermals wegen rk[f] < min{m,n}.
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111.2. Matrizen festen Ranges

Im Folgenden seien m,n, k € IN mit k& < min{m,n}, und wir betrachten reelle n x m-Matrizen

iy -+ Qim
A = : : e R™™. (II1.4)
Ap1 - Opm
Zu Jedem Paar (1,.J) von Tellmengen I ={i(1),i(2),...,i(k)} C Z7, mit 1 <i(l) <i(2) <

i( i
<i(k) <mn,und J = {j(1),5(2),...,5(K)} C Z} bezelchnen wir mit A(I, J) € R¥* die
reelle k x k'-Matrix

@i(1),5(1) " Qi1),5(k)
Al J) = : : . (IIL.5)
Qi(k),g(1) =" Qik).5(k)

Lemma III.2. Seien m,n,k € N mit k¥ < min{m,n} und A = (a;;)iczy jezrm € R"™™ eine
reelle n x m-Matrix. Dann gilt

tk[A] >k & 3JICZY JCZT |I|=|J|=k: det[A(I,J)] # 0. (I11.6)
Beweis. =:Ist rk[A] > k, so ist insbesondere der Spaltenrang von A mindestens gleich k und es

gibt (mindestens) k linear unabhéngige Spaltenvektoren gj(l), gj@), . ,Z;j(k), wobei 1 < j(1) <
Jj(2) <...<j(k) <mund

ay,;

- a9 ;

b = | 7. (IIL.7)
an7.]

Dies ist gleichwertig mit der Aussage, dass die n x k-Matrix

arjay -0 A14k)
A(Z1,J) = : : (111.8)

Anga)y “° An(k)

vom Rang rk[A(Z}, J)] = k ist, wobei J = {j(1),7(2),...,5(k)} € Z7. Dies zieht jedoch die
Existenz einer solchen Menge I = {i(1),4(2),...,i(k)} € Z}, mit 1 < i(1) < i(2) < ... <
i(k) < n, nach sich, dass der Rang der k x k-Matrix A(I,J) gleich k£ und sie somit invertibel
ist, was det[A([, J)] # 0 impliziert.

<: Seien det[A(I,J)] # 0, wobei I = {i(1),i(2),...,i(k)} C Z, 1 <i(1) <i2) <...<
i(k) < n,und J = {j(1),5(2),...,5(k)} € Z7", 1 < j(1) < j(2) < ... < j(k) < m. Mit
der Notation aus Glg. (IIL.7) ist dann {gj(1)7gj(2),.. l; } € R" eine linear unabhéngige,
k-elementige Teilmenge von Spaltenvektoren in A und der Rang von A ist mindestens gleich

k. []
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Korollar III.3. Seien m,n,k € N mit & < min{m,n} und A = (a;;)iczr jezrm € R™™ eine
reelle n x m-Matrix. Dann sind folgende Aussagen dquivalent:
(i) tk[4] = k;
(i) Es gibt I C Z7 und J C Z7" mit |I| = |J| = k so, dass det[A(I,J)] # 0, und fiir alle
I'CZ7und J' C Zp mit |I') = |J'| = k + 1 gilt det[A(I", J')] = 0.
(iii) Es gibt I C Z} und J C Z7" mit |I| = |J| = k so, dass det[A; ;] # 0, und fiir alle
o€ Z? \ I und 5 € Z’ln \ J gilt det[Aju{a}7ju{ﬁ}] =0.

Beweis. Lemma I11.2 impliziert, dass (i) < (ii) und trivialerweise gilt auch (ii) = (iii). Die
Aussage folgt also, wenn wir (iii) = (i) zeigen. Dazu konnen wir k£ +1 < min{m, n} annehmen,
denn fiir £ = min{m, n} gibt es nichts zu beweisen.

Seien also I = {i(1),i(2),...,i(k)} C Z7, 1 < (1) < i(2) < ... < i(k) < n,und J =
{J(1),5(2),...,5(k)} CZ, 1 <j(1) <j2) <...<j(k) <m,so, dass det[A(], ])] # 0 sowie
g € Z7\ J. Nach geeigneter Zeilen- und Spaltenvertauschung kénnen wir 0.B.d.A. annehmen,
dass [ = J = Z} und 8 € Z}",, sind. Fiir ¢ € Z} setzen wir nun

G = (ain,..., aig, aig) € R"! (I11.9)
Dann ist det[A(Z}, Z})] # 0 und demgemé8 ist

11 - Q1 Q1 k41 C1
AZE, Zvu{p}) = | : : = | : (I11.10)
Qi1 - Okk Okk+1 Ck

eine Matrix vom Rang rk[A(Z},Z% U {8})] = k und deshalb C(Z}) = {é,...,c} C RF!
linear unabhéngig. Fiir o € Zj, ; folgt aus (iii), dass

y1 +++ Q1 Q1 C1

0 = det[A(ZF U {a},ZFU{B}) = : : : =11, (ITL.11)
ag1 - Ak Agp Ck
Qg1 ' Qak Qap 804

und deshalb ist C(Z}) U {¢,} linear abhingig. Es folgt, dass ¢, € span|[C(Z})]. Da o € Z},,
beliebig ist, erhalten wir, dass

Gy sy Chsrs. .., Gy € span[C(ZM)] (TI1.12)
und somit
VB EeZ, rk[A(Z?, 78 U{B})] = tk[A(Z}?,Z")] = k. (I11.13)
Setzen wir wieder
ap;j
b = af’j , (I11.14)
n;
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so sind A(Z7, ZF) = (by, ..., by) und wegen rk[A(Z7, Z¥)] = k die Menge B[Z¥] := {by, ..., bx} C
K" linear unabhingig. Weiterhin sind wegen rk[A(Z7}, Z¥ U {B})] = k die Menge B[ZY] U {bs}
linear abhéingig und deshalb by € B[Z*], fiir alle 3 € 73" .. Wir erhalten

bi,... be, brs1, ..., by € span[B(Z")] (II1.15)

und somit
rk[A] = tk[(b1,.. ., by, bgrrseno s b)) = K. (II1.16)
[l

Satz II1.4. Seien m,n, k € N mit £ < min{m,n} und
Ry = {AeR™™ | 1k[A] = k}, (I11.17)
Ry = {AeR™™| 1k[A] > k}. (I11.18)

Dann ist R}Y7 € R™™ offen und R € RYY ist eine Teilmannigfaltigkeit von R™ ™ der

Dimension k(m +n — k).

Beweis. Gemall Lemma II1.2 ist

RS = U E(I,J), wobei (I11.19)
ez, JCzy |1|=| )=k
EI,J) = {AeR™™| det[A(I,J)] # 0}. (I11.20)

Die Mengen £(1,J) € R™™ sind offen und damit auch R;Y; € R™™. Trivialerweise ist
]Rflg’; C R™™ eine Mannigfaltigkeit der Dimension n - m.
Weiterhin ist R “) = R Yy im Fall, dass k = min{m, n}, und wir kénnen 0.B.d.A. im Weiteren
k41 < min{m,n} annehmen. Nach Lemma II1.3 (iii) ist

RV — U L(I,.J), wobei (I11.21)

1CZy,JCZ |[1|=]J|=k

L(I,T) = {A e &(1,) ) VaeZ'\I, BeZm\ J: detlA(IU{a}, JU{B))] = o}.
(111.22)

Sind etwa I = J = Z¥, so definieren wir F, 5: R"*™ — R fiir a € Z},, und 8 € Z}*,; durch

11 - Q1 a1

Fug(A) = det/A(ZF Uk +a)}, ZEU{k+5))] = det || ° P (IIL.23)
Qg1 - Gk Qg
g1+ Qo Gap
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und weiterhin F : R™™ — R®=k)*(m=k) qurch

Fii(A) o Fimi(A)
F(A) = (Fo‘ﬁ(A))aEZ?’k,BeZT”“ = : : (I11.24)
Fn—k,l(A> e Fn—k,m—k(A)
Nach dem Leibnizschen Entwicklungssatz ist
Fop(A) = agp-det|A(ZF Z8)] + R(A) (I11.25)

wobei R(A) von Matrixelementen a;; abhéngt, fiir die (i < k) V (j < k) gilt. Fiir ¢, € Zj,
und j, 3 € Zj, | ist also

OF5(A)

Do Sia 05 det|A(ZY, 7)) . (I11.26)
Da det[A(Z%, 7)) # 0 auf E(Z%, Z%) ist, folgt daraus
VAcEZE7h - rk[Jp(A)] = (n—k)(m — k), (I11.27)
und dass Jp auf E(Z%, Z¥) somit maximalen Rang besitzt. Nach Korollar I11.17 ist damit
L(Zk, 78 = {A € £(ZF, 7% | tk[F(A)] = o} (IIL.28)

und entsprechend auch RE™Y = Uz sezm 112021 £, J) € R eine Teilmannigfaltigkeit

der Dimension
dim [RX7] = nm— (n—k)(m—k) = k(m+n—k). (I11.29)

]

111.3. Immersions- und Einbettungsatze

Lemma IIL.5. Seien m,n € N mit n > 2m, Q@ C R™ offen und nichtleer und f € C?*(Q;R").
Dann gibt es zu jedem € > 0 ein A = (a;)iczy jezr € R™™ mit maxiezr jezm |a; ;| < € so,
dass mit fa4(z) = f(x) + Az die Funktion f4 € C*(€2; R") eine Immersion ist.

Beweis. Wir fithren den Beweis nur fiir m > 2, der Fall m = 1 ist eine Ubungsaufgabe. Wir
bezeichnen mit J := J; die Jacobi-Matrix von f und mit J4 := J + A die Jacobi-Matrix von
A. Es ist zu zeigen, dass eine Matrix A = (a;;)iczr jezr» € R™™ existiert, sodass

VeeQ: rklJa(x)]=m und VieZi,jeZ": |a | <ce. (I11.30)
Wir fixieren k& € Z"~" und betrachten die Abbildung F, € C1(Q x RY%; R™™),

(z,B) — Fy(z,B) == B— J(z). (111.31)
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Dam — k > 1 ist, folgt
dim[R™™] — dim[Q x Ry = mn— {m+k(m+n—k)} = mn—m—km —kn+ k*
=n—km—-k)—m > 2m—k(m—-k)—m > (m+1)-1—-m = 1. (I11.32)

Da F}, stetig differenzierbar ist, ist das (nm)-dimensionale Lebesgue-Maf3 des Bildes von Fj,
gleich null, fiir alle k € Z™ !, und wir erhalten

m—1
precn [W] = 0, wobel W = | J Fu(2x R (T11.33)
k=1

In diese Aussage geht die stetige Differenzierbarkeit von Fj, in subtiler Weise ein, was wir jedoch
aus Zeitmangel nicht néher erldutern; wir erinnern aber an Satz I1.4, der zeigt, dass die blofle
Stetigkeit der Abbildung Fj, fiir (II11.33) nicht ausreichen wiirde.

Aus (II1.33) folgt insbesondere, dass W C R™*™ keine inneren Punkte enthélt, und wir kénnen
zu jedem ¢ > 0 ein A = (a;)iezr jezr € W mit maX;ezn jezm |a; ;| < € finden. Aus der
Definition (II1.33) von W folgt dann, dass

VkeZ ', 2€eQ, BERY™: A#B-J(), (I11.34)

was nach Auflésen zu Ja(z) = J(x) + A # B impliziert, dass

¢ |JRpo, also Ja(w) € R (IIL.35)
fir jedes = € Q gilt. Dies bedeutet jedoch, dass rk[F4] = m auf  ist. O

Lemma II1.6. Seien M = (M, T, A) eine Mannigfaltigkeit der Dimension m und f € C*'(M; R"*)
mit n > m + 1. Sind (U, p) € A, K C U kompakt und rk[f] = m auf K, so gibt es ein § > 0,
sodass

VheCHU;R™, maX”Jhmp (@], <d6: rk[f+h] =m auf K. (I11.36)

qgeK op

Beweis. Wir fithren die Notation J) = (Ji];))ieZ{L,jeZT = Jpop1 0 : U — R™™ ein und
bezeichnen mit Jl(f) = (Ji(,J;))ieI,jeZ’l” : U — R™, fiir jede Teilmenge I C Z} mit |I| = m.

Nach Voraussetzung ist rk[J¥)(¢)] = m und deshalb auch
D(q) = max{|det[J ()] | T CZ}, |I|=m} > 0, (111.37)

fiir alle ¢ € K. Die Abbildung D : U — R™ ist stetig und nimmt deshalb auf K ein positives
Minimum 25 = mingex D(q) > 0 an. Fiir jedes ¢ € K gibt es also ein I(q) C Z} mit |I(¢)| = m

und |det[ ( )]| > 2¢. Definieren wir nun

I(q)

= {peU : |det[J) ()] > ¢}, (I11.38)
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so ist {..1/(1}(16;( eine offene Uberdeckung von K, die wegen deren Kompaktheit eine endliche
offene Uberdeckung enthélt, d.h. es gibt L € IN und ¢(1),¢(2),...,q(L) € K so, dass

L
= [JKe. wobei K, = KNV, und |det[J}))]] > ¢ anf K, (I11.39)

(=1

mit [(¢) := I(q(¢)) gilt. Insbesondere erhalten wir, dass J I({Z)) auf dem Kompaktum K, invertibel
ist und

A= max{H(J;{g)(q))*Hop \ vezt qEKg} < . (I11.40)

Glg. (II1.40) kann beispielsweise direkt iber die Darstellung der Inversen einer m x m-Matrix
mit Hilfe der Matrix der Minoren gewonnen werden.

Ist nun b € CY(U; R™!) mit

1
maX{HJM) Mop | (eZy, q¢€ Kz} < b= A (II1.41)
so setzen wir
= ~1 —11k
= SV @) I @ (@) (I11.42)
k=0
und beobachten, dass diese Reihe in Norm konvergiert, da
- —1[ (h ~11%
1Bl < D |13 @) ™ [ @ - @) ]| (111.43)
k=0
< ZH (i0(@) " oy 170 @5, < AZz f =20 <o
AufBlerdem sieht man leicht, dass
Rila) - Tify" (@) = Rela) - Ti{)(a) + Re@) - Ty (@) = Lrn (I1L.44)
und analog JI{Z{ (q) - Ri(q) = 1gm, d.h.
Ri(g) = (I (@) (I1L.45)

und rk[f + h] = m auf K,. Fiigen wir dies fiir alle ¢ € Z¥ zusammen, erhalten wir rk[f +h] =
auf K. ]

Satz II1.7. Seien M = (M, ¥, A) eine zusammenhéngende Mannigfaltigkeit der Dimension m,
f € CHM;R™) mitn > 2mund D € C(M;R"). Dann existiert eine Immersion g € C*°(M;R")
von M in R" so, dass

Vge M: |f(q) —g(@l < D(q). (I11.46)
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Beweis. Nach Satz I1.11 gibt es kompakte Mengen K, C K,.; so, dass M = Uf’;l K,. Wir
vervenden im Weiteren den Beweis von Satz I1.13, dem gemé&fl es weiterhin eine Partition
Dk, © C=(M;[0,1]) der Eins, {a:}, € M, {e}=, € R und {(Up )}, C A, & =
©e(qe) so gibt, dass

xe = 1 auf V), mit V) = ¢, [B(&, )], (I11.47)
supplxe] C Vi = ;' [B(&, 3e0)], (I11.48)
o L(r+1) L(r+1)
Ea\K. ¢ |J Wec | wc KHQ\KT L. (I11.49)
(=L(r)+1 (=L(r)+1

Sei 97 > 0. Geméaf Lemma II1.5 existiert A; € R™™ mit || A/ < 1 so, dass
fri B&,sa) = R, fil€) = [ler"(©)] + Alg - &) (II1.50)
eine Immersion ist, rk[f;] = m. Dann setzen wir
file) = flal + xa(q) - Ailer(a) — &, (II1.51)
fiir ¢ € M und beobachten, dass f; = fi o ; auf V/ und daher
rk[fi] = tk[fiop] = m (I11.52)

auf V/. Fiir jedes ¢ € M ist weiterhin

— A (€ — 2 1
NG ¢ (IACONY 200 1 g,
D(q) ¢eB(&r3a1) [ Do (§)] mquWl{D(q)} 2
vorausgesetzt, wir wahlen
1
0 == —e; min{D(q)} > 0. (I11.54)
4 qeEW
Seien nun L € N und f;, € C*°(M;R") so definiert, dass
’ |/zla -
tk[fr] = m auf UW und  Vge M: L— Z (II1.55)

D(q) =

Zu 0741 > 0 existieren geméf Lemma I11.5 Ay € R™™ mit ||Azy1]|co < dpa1 S0, dass

I'k[fL+1] = m auf B(§L+173€L+1)a (11156)

wobel

fL+11 B(fL+1>35L+1) - R", fL+1(§) = fL[SOZ-lu(f)] + AL+1(5—5L+1)- (HI-57)

34



Mit
frri(e) = folal + xe+1(q) - Arvalprsi(a) — €l (II1.58)
ist dann fr1 = fr41 0 @ry1 auf V7| und deshalb
rk[fre1] = m auf V[, (I11.59)

d.h. fr4q1: Vi — R" ist eine Immersion.

Fiir alle ¢ € M ist weiterhin

L
| fraalal = Flall| < || frsald] = folal| + D(q)(Zﬂ) (111.60)
(=1
L L+1
<3eppdp-1fge W] + D(o)(D2) < Dla)(Do2).
/=1 /=1
vorausgesetzt, wir wahlen
Spii = 27T, min {D(q)} > 0. (ITL.61)
6 qEWL 41

Weiterhin ist fir ¢ € Wpq mit € := ¢r11(q) € B(&p41,3¢041)

J(fL+1)<q) — J(fL)(q) — J(fL+1*fL)(q) - JXL+1OSOZL[AL+1('S_£L+1> + Xrs1(q) - A
(I11.62)

und deshalb

HJ(fL+1)(q) _ J(fL)(Q)‘ < max {“JXL+IO¢Zi1 (f)”op} 6L+1 €r4+1 + 5L+1 . (III63)

o
P £€B(€r+1,3cL+41)

Nach Lemma II1.6 kann durch eine geniigend kleine Wahl vom 47,1 > 0 also gesichert werden,
dass

L
rk(frpa] = m auf | Wi, (I11.64)

(=1

Da {x/}?2, € C*(M;|0,1]) eine lokal endliche Partition der Eins ist, gibt es zu jedem ¢ € M
ein Ly € N und ein U, € %(q) so, dass

VL> Ly, ¢ €Uy:  fuld) = [fr,(d). (I11.65)

Es folgt, dass ¢ := limy_, f existiert, glatt ist und die gewiinschten Eigenschaften rk[g] = m
und ||f — g|| < ¥ besitzt. O

Wir stellen noch ohne Beweis den folgenden Staz von Whitney vor.
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Satz III.8 (Whitney). Ist M = (M, %, A) eine Mannigfaltigkeit der Dimension m, so gibt
es eine Einbettung f € C®(M;R*"™) von M in R**! und f(M) = f(M) C R*! ist
abgeschlossen.

Bemerkungen und Beispiele.

e Wir verzichten hier auf den Beweis des Whitneyschen Einbettungssatzes, Satz I11.8, und
geben uns mit Satz II1.7 zufrieden. Gleichwohl ldsst sich die Hinzunahme einer weiteren
Dimension von 2m nach 2m+ 1 beim Ubergang von einer Immersion zu einer Einbettung
an Beispielen plausibel machen.

e In den meisten konkreten Anwendungen haben wir es mit parametrisierten (Hyper-)Flichen
zu tun. Dies sind Mengen der Form

K
M = |Ju(Vi) € RY, (I11.66)
k=1

wobei Vi, € R™ nichtleere offene Mengen (Parameterbereiche) mit m < d und y, €
C>(Vi; R?) injektiv sind.

o Mit A= {(ys(Vi), y;") }szl wird (M, %q, A) zur m-dimensionalen, in RY immersierten
oder sogar eingebetteten Mannigfaltigkeit. Satz I11.8 sagt also, dass alle Mannigfaltigkei-
ten von dieser Form sind - oder wenigstens diffeomorph dazu, vorausgesetzt, wir nehmen
d>2m+1 an.
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IV. Tangential- und Kotangentialraum

IV.1. Tangentialraum

Definition IV.1. Seien M = (M, %, A) eine Mannigfaltigkeit, ¢ € M und

T, M) = {y€C'(a,b); M] | a<0<b, y(0)=q} (IV.1)

der Raum aller C'-Kurven v in M mit v(0) = q. Zwei Kurven 7,7 € T, 2| M| heiBen tangential,

=01l
i(v07)
t=0 at\" 7)o
Bemerkungen und Beispiele.
e Glg. (IV.2) ist kartenunabhéngig. Gilt (IV.2) und sind (U, ¢), (V,v¥) € Amit g€ UNV,
so ist

(IV.2)

FU,p) e A, Udq: %(¢07>

%{(@D O'V)L:O - (@ O:y> |t:0}

= Hlworhoteonle, - [Wor™) ooy}
= Jyog-1[p(q)] - {%(s@ov)\tzo — %(@O’y)]tzo} = 0. (IV.3)

Dabher ist Glg. (IV.2) gleichwertig mit

(IV.4)

o alee)

e Die Eigenschaft zweier C'-Kurven, bei ¢ € M tangential zu sein, definiert eine Aquiva-
lenzrelation.

d
V(U eA, Usq: %(QOOfy) o

Definition IV.2. Seien M = (M, %, A) eine Mannigfaltigkeit der Dimension m € IN und
qe M.
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(i) Die Familie
T,[M] = T,[M/[] = {[] | v € T,[M]} (IV.5)
der Aquivalenzklassen heifit Tangentialraum an q.

(ii) Ist C' = (U, ) € A mit U > ¢, so definieren wir

Ocy: TM] — R™, [4] i(@oy) (IV.6)

dt

=0
Bemerkungen und Beispiele.

e Die Abbildung ©¢, : T,[M] — R™ ist eine Bijektion, denn offensichtlich ist ©¢, nach
Glg. (IV.4) injektiv. Wahlen wir e > 0 geniigend klein und definieren zu v € R™ eine
Kurve v, € C'[(—¢,¢); M] durch

W(t) = o7 el +tv], (IV.7)
so ist v € Tq[M] und

= v, (IV.8)

- [e(q) + tv] .

t=0 dt

Oci] = %(om)

und O¢, ist damit auch surjektiv.

Definition IV.3. Seien M = (M, %, A) eine Mannigfaltigkeit der Dimension m € N, ¢ € M
und C' = (U, ¢) € Amit U > q. Wir definieren

(+) : T,[M] x T,[M] = T,[M] und (-):R xT,[M]— T,[M] (IV.9)
durch

1+ [ = 05, (Ocgh] + A-O0,ld]). (IV.10)

Lemma IV.4. Die Abbildungen (4) und (-) in Definition IV.3 sind wohldefiniert, und 7} [M|
ist beziiglich dieser Verkniipfungen ein reeller Vektorraum der Dimension m.

Beweis. Zunéchst bemerken wir, dass sich die Vektorraumeigenschaften fiir 7, [M] leicht aus den
entsprechenden Eigenschaften in R™ ergeben. Beispielsweise erhélt man die Kommutativitit
der Addition aus

M+ 01 = 0cy(Oca]+Ocdi) = Ocy(Ocalil +Ocyl]) = BI+h].  AIV.11)
Nicht so offensichtlich ist die Wohldefiniertheit der Verkniipfungen, d.h. die Kartenunabhéngig-
keit von (IV.10). Seien dazu v,5 € T,[M], A € R, und C = (U,¢),D = (V,¢) € A mit
g € UNV. Dann ist wegen der Linearitit der Ableitung von v o =1

d d
Opali]+A-Opli] = 2 (Vo) +A-Z(¥o7)

t=0

= Jyop-1[0(a)] - {%(w °7) ‘t:() +A- %(s@ °7)

= Jyop [p(@)] - (Ocali] + A+ O0,[31) (1V.12)
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Ist andererseits v € R™ und v, € T,[M] wieder durch (IV.7) definiert, wobei ¢ > 0 so klein
gewihlt wird, dass [¢(q) + (—¢,¢)]v C (V) gilt, so ist nach (IV.8)

Och) = ] = [¢ " (elq) + tv)] (IV.13)
und somit
[9D7q o Ga}q] (V) = 9D,qhv] - chw*l [SD(C])} ‘v, (IV14)
d.h. ©p 40 @E,lq € L(R™) und

004003, = Julpla] = (LD

) . (IV.15)
z=p(q)/ 4,j=1

Insbesondere ist auch

054 (Oab] + 2+ O,]) = O3l | Juoe[0(@)] - (Bcalr] + A+ 00, 7))

=00y (GC,qh] +A- @c,q[i]) : (IV.16)
und die in (IV.9)-(IV.10) definierten Verkiipfungen sind wohldefiniert. Nach Glg. (IV.10) gilt
Ocg(W+A-[7]) = Ocgl]+A-Ocyldl, (IV.17)

fiir alle v,5 € T,[M] und A € R, d.h. O¢, : T,[M] — R™ ist ein bijektiver Vektorraumisomor-
phismus, also ein Isomorphismus. O

Bemerkungen und Beispiele.
e Fir M = (R™, Tey, idgm) und g € R™ ist T,[R™] = R™.
e Seien V C R? offen und nichtleer und g € C*°(V; R?) injektiv, mit

x(r, s)
V(r,s)eV: g(rs) = ygr,sg . (IV.18)

Dann ist M = (M, %, {C}) mit M = g(V) und C = (M,g!) eine zweidimensionale
Mannigfaltigkeit. Ist nun ¢ = g(ro, so) € M, so betrachten wir

Y1(t) == g(ro+1t,s0), () = g(ro,so+1), (IV.19)
fir || < e < 1. Offenbar sind vy, v, € fq[M] und

9_1 © '71(75) = (TO +t, SO) ’ g_l © V?(t) = (T()? S0+ t) ) (IV20)

= (é) , (IV.21)

= ((1)) | (1V.22)

Also sind

d
Ocqln] = d_t(g_l 0 71)

d
Ocqlr] = %(971 ©72)
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Definition IV.5. Seien M = (M, %, A) eine Mannigfaltigkeit der Dimension m € N, ¢ € M
und C' = (U, ) € A mit U 35 ¢q. Wir definieren durch

Tra = {00, (V) | VCR™, Ve T} (IV.23)
eine Topologie auf T, [M].

Bemerkungen und Beispiele.

e Nach (IV.15) ist fir C = (U,¢),D = (V,¢) € A mit ¢ € UNV die Abbildung ©p, o
@5}(1 = Jypop-1[¢(q)] ein Iso- und deshalb auch ein Homéomorphismus. Daher ist (IV.23)
kartenunabhéngig.

o (T,[M],%r,a) und (R™, Teuw) sind homéomorph.

Definition IV.6. Seien M = (M,%, A) und N = (N, S, B) zwei Mannigfaltigkeiten, ¢ € M
und f € C'(M; N). Die Ableitung D,[f] von f bei q ist definiert als Abbildung

Dy[f]: T,[M] — Tpp[N], (IV.24)
Do[f] = @Z)?f(q) 0 Jypofop-1](q)] 0 Ocyg s (IV.25)
wobei C' = (U,p) € Aund D = (V,4) € Bmit UN f~1(V) 3 ¢.

Lemma IV.7. Die Ableitung D,[f] von f € C*(M;N) bei ¢ € M ist wohldefiniert, d.h.
kartenunabhéngig.

Beweis. Seien C' = (U, ¢),¢ = (U,2) € Aund D = (V,v),¢) = (‘A/,g) € B Paare von Karten
mit UNU N f~1(V N V) 3 q. Dann gilt mit (IV.25) und (IV.15)

~

Bl =07 o dppi@)] o0,
= 021 0 Ty [0 )@)] © Tyogop[p(@)] 0 oz 1 2(0)] O,
=650 © ©is@ ° Obisig) © Juwosoe— [P(@)] 0 oz 1[2(a)] 0 Ocg 0 O 0 6y,
= O () © Juosop1p(@)] 0©5, = Dylf]. (IV.26)
O

Lemma IV.8. Seien M = (M, %, A) und N = (N, S, B) zwei Mannigfaltigkeiten, ¢ € M und
f € CYM;N)und v € T,[M]. Dann ist

Dy[f1([]) = [fonl. (IV.27)

Beweis. Sind C = (U, p) € Aund D = (V,¢) € B Karten mit U N f~1(V) 2 ¢, so ist nach der
Kettenregel

d d
Jyosopr—1]@(q)] 0 @([s,q[ﬂ = Jyofop—11p(q)] - E((p o fy) ’t:() = E(@/J ofoploypo ’7) L:O
d
= Z(Wofoy)| = Onslforl. (IV.28)
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Also ist

Dy[fl([7]) = Opkg © Juereetlp(@)] 004,[7] = [fonrl]. (IV.29)

]

Definition IV.9. Seien M = (M,%T, A) eine Mannigfaltigkeit der Dimension m € IN und
U C M offen und nichtleer.

(i) Wir definieren die Mengen

T(M) = || T = ({q}qu[M]), (IV.30)

TU] = | |TM) = | ({q}qu[M]) c T[M]. (IV.31)

(i) Ist C' = (U, p) € A eine Karte, so definieren wir fiir vy € Tq[M]
Oc:T[U] — o(U)xR™, (a.[]) = (#(9),0cq0])- (IV.32)
(iii) Wir definieren auf T'[M] eine Topologie durch
Trg = {0 (V)| C=(Up)e A, VCpU)xR™ offen} . (IV.33)

Bemerkungen und Beispiele.

e Das System T[M] wird in der Literatur auch héufig etwas unprézise mit (U ¢, 7,[M]
bezeichnet. Diese ist jedoch etwas irrefiihrend, da alle Tangentialriume isomorph zu R™
sind und man sie alle identifizieren kénnte. Eine Alternative bietet noch die Bezeichnung

TM] = | | T,[M] = (Tq[MD (IV.34)

eM
qgeEM 4

:{UZM—> UTq[M]‘VQGM: UqGTq[M]}'

qeM

e Das System Tr C P(T'[M]) ist die kleinste Topologie auf T[M], sodass O¢ : T[U] —
e(U) x R™ fiir alle C = (U, ¢) € A Homéomorphismen sind.

Nachdem wir den Tangentialraum 7T'[M] topologisiert haben, wollen wir ihn auch als Manngi-
faltigkeit darstellen. Dazu definieren wir vertrégliche Karten.

Lemma IV.10. Seien M = (M, %, A) eine Mannigfaltigkeit der Dimension m € IN und C' =

(U,¢),D = (V,4) € A zwei mit A (und miteinander) vertrigliche Karten von M. Dann sind
(T[U],©¢) und (T[V],Op) zwei miteinander vertréigliche Karten von T[M].
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Beweis. Nach der obigen Bemerkung zu (IV.34) sind ©¢ : T[U] — ¢(U) x R™ und ©p :
TV] — (V) x R™ Homoomorphismen. Zum Nachpriifen der Vertriglichkeit kénnen wir
0.B.d.A. W :=UnNV # . Nach (IV.15) ist dann
V[e(g), vl € p(U) x R™ = ©5'([¢(q),V]) = [a, O, ()], (IV.35)
WOoraus wir
0006 (I(a),)) = 6nla. 8,(W)] = (v(a), (On,005,)M)
= (¢(0), Jyoplol@)]) - v) (IV.36)

erhalten. Fiir alle (£,v) € o(W) x R™ C R™ x R™ ist also

(epo (€] = ([Wow™I(€). Juoprlé]-v). (1V.37)

Mit (o p~ 1) € C®[p(W); ()] ist somit auch
Opo O € C®[p(W) x R™; (W) x R™]. (IV.38)
0

Unter Berufung auf Lemma IV.10 stellt das System
T[A] = {(T[U], Oc) \ C=(Uy) e A} (IV.39)
offenbar einen Atlas von T'[M] dar, das wir nun als Mannigfaltigkeit definieren.

Definition IV.11. Sei M = (M, %, A) eine Mannigfaltigkeit der Dimension m € IN. Die
Mannigfaltigkeit T[M] = (T[M], Tz, T[A]) der Dimension 2m bezeichnen wir als Tangen-
tenbiindel von M.

Bemerkungen und Beispiele.

e Seien M C R™ offen und {C = (M,idgm)} ein Atlas von M. Mit ¢ € M, v € R™ und
Y(t) :=q+tvist

Oc(q,[V]) = (¢, %{g+tv}imo) = (g,v). (TV.40)

Somit ist T[M] diffeomorph zu M x R™. Lokal hat das Tangentenbiindel stets diese
Produktform (innerhalb eines Kartenbereichs). Nicht alle Tangentenbiindel sind jedoch
auch global von dieser Form.

e Es ist z.B. T[$'] diffeomorph zu $* x R, aber T[S$?] ist nicht diffeomorph zu $? x R2.

e Eine Mannigfaltigkeit M = (M, %, A) der Dimension m, deren Tangentenbiindel T M|
diffeomorph zu M x R™ ist, nennt man parallelisierbar.

e Uber Produktkarten sicht man, dass T[M x N = T[M] x T[N] gilt.

42



IV.2. Kotangentialraum

Parallel zur Konstruktion des Tangentialraums und des Tangentenbiindels lauft die des Kotan-
gentialraums und des Kotangentenbiindels einer Mannigfaltigkeit.

Definition IV.12. Seien M = (M, %, A) eine Mannigfaltigkeit, ¢ € M und

;M) = |J C'(UR). (IV.41)
Uet(q)
Zwei reelle Funktionen f, f € T, ~[M] heilen kotangential bei g, [f]* = [ fl*

o AU €A Uq: Jpptlo(q)] = Jpopile(a)]- (IV.42)

Bemerkungen und Beispiele.

e Wie Glg. (IV.2) ist auch Glg. (IV.42) kartenunabhéngig und gleichwertig mit

V(U,p) €A Usq: Jppilp(@)] = Jp,ale(@)]- (IV.43)

e Die Eigenschaft zweier Funktionen f, f € Tq* [M], kotangential bei ¢ € M zu sein, ist eine
Aquivalenzrelation.

Definition IV.13. Seien M = (M, %, A) eine Mannigfaltigkeit der Dimension m € IN und
qe M.

(i) Die Menge

T, (M) = T MY = {7 ] f e Ty M)} (IV.44)

der Aquivalenzklassen heifit Kotangentialraum bei g.

(i) Ist C' = (U,¢) € A mit U > q, so definieren wir

00y TiIM] = R™, [fT" = Jpoprlp(a)]. (IV.45)

Bemerkungen und Beispiele.
e Die Abbildung O, ist offensichtlich injektiv definiert. Sind nun p € Z7" und " €

C>=(U : R) die p. Koordinate von ¢ = (!, 0% ... ¢™), so ist ot € T;[M], und mit
olq) =z = (2!, 22 ... 2™) ist

It o !)[x] (gt o 1) [a]
P = T [a(g)] = ( 2
! o 0t lomatq Oz _—
n n
Rl P— 0x™ | o)
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wobei e# den kanonischen Basisvektor in die p. Koordinatenrichtung notiert. Setzen wir
zuv = (v',...,v™) € R™ auch

foi=w' o' QW™ O™, (IV.47)

so ist nach (IV.46)
O ful” = ) w'- ¢ = w, (IV.48)
pn=1

und Of , ist auch surjektiv, also bijektiv.

Definition IV.14. Seien M = (M, %, A) eine Mannigfaltigkeit der Dimension m € N, ¢ € M
und C' = (U, ¢) € Amit U 5 ¢q. Wir definieren

(+) :T;[M] X T;[M] — T;[M] und  (+): R x Tq*[M] — T;[M] (IV.49)
durch

1+ A 1] = 05, (Ocg] + A-O0,ld]). (IV.50)

Lemma IV.15. Die Abbildungen (+) und (-) in Definition IV.14 sind wohldefiniert, und 7} [M]
ist beziiglich dieser Verkniipfungen ein reeller Vektorraum der Dimension m.

Wir verzichten auf den Beweis von Lemma IV.15, leiten aber die (IV.15) entsprechende Identitét
her. Seien C' = (U, ), D = (V,¢) € Amit ¢ € UNV. Aus (IV.47)-(IV.48) erhalten wir, dass
fiir alle w € R™

(07, ] = [fu]" = [iw“-w“]*' (IV.51)
Fiir p € Z7" ist also
(Oh©(O,) [u]) = (Ob,lful’), = (Trowi[0(@)), (IV.52)
([ wev@l, ) = S Gl

was gleichwertig ist mit

* * 71 o T o
00 (05,7 = Ty [0(@) = (T
wobei AT die zu A transponierte Matrix ist.

Definition IV.16. Seien M = (M, %, A) eine Mannigfaltigkeit der Dimension m € IN und
U C M offen und nichtleer.
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(i) Wir definieren die Mengen

M) = || M) = ({q}xT;[M]), (IV.54)
U] = | |1 = ({q}qu[M]> c T[M]. (IV.55)

(i) Ist C' = (U, ) € A eine Karte, so definieren wir fiir f € f; [M]
Oc : THU] = oU) xR™, (q,[f]) — (¢(a),Ocqlf]")- (IV.56)
(iii) Wir definieren auf 7*[M| eine Topologie durch

Trep = {(@g)*l(V) ‘ C=Ugp) e A, VCplU)xR" offen} . (IV.57)

Lemma IV.17. Seien M = (M, %, A) eine Mannigfaltigkeit der Dimension m € IN und C' =
(U,9),D = (V,¢) € A zwei miteinander vertréigliche Karten von M. Dann sind (7*[U], ©F)
und (7*[V],073,) zwei miteinander vertréigliche Karten von T [M].

Definition IV.18. Sei M = (M, %, A) eine Mannigfaltigkeit der Dimension m € IN. Die
Mannigfaltigkeit 7*[M] = (T*[M], Tr-a), T*[A]) der Dimension 2m bezeichnen wir als Ko-
tangentenbiindel von M, wobei

T*A] = {(T*[U], ox) ‘ C=(Up) € A}. (IV.58)

IV.3. Der Dualraum eines reellen Vektorraums

Wir erinnern als Néchstes an den Begriff des Dualraums eines reellen Vektorraums, wobei wir
den komplexen Fall nur deswegen nicht behandeln, weil er in dieser Vorlesung keine Rolle spielt
(und nicht, weil dieser Fall wére). Wir nehmen im Weiteren an, dass (E, || - [|) ein reeller
Banachraum ist, d.h. ein vollstédndiger normierter Vektorraum iiber R. Die nun eingefiihrten
Begriffe lassen sich auch fiir allgemeine topologischer Vektorrdume einfithren, worauf wir jedoch
verzichten.

Ist (E, | -||) ein reeller Banachraum, so nennen wir
E* = B(E;R) = {z*: E— R | 2" ist linear und stetig} (IV.59)

den (topologischen) Dualraum von E.

Bemerkungen und Beispiele.

e Es ist liblich, fir z* € E* und x € £
" (z) = (2", x) (IV.60)

zu schreiben.
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e Fiir endlich-dimensionale Vektorraume ist die Forderung der Stetigkeit an x* € E* obsolet,
denn in diesem Fall sind alle linearen Abbildungen stetig.

e Da FE ein normierter Raum ist, ist £* als Raum der beschrénkten linearen Operatoren
von F nach R selbst ein Banachraum mit Norm

|| = sup{|<x*,x>\: e E, ||z| 31}. (IV.61)

e Sind £ und F zwei reelle Banachraume und L € B(F; F'), so wird fiir festes y* € F* durch
xr — (x*, Lx) eine stetige lineare Abbildung £ — R definiert. Diese bezeichnet man als
zu L transponierte Abbildung LT : F* — E*, sodass

Vy e F*, ze E: (L'y", 2) = (y*, La). (IV.62)

e Sind weiterhin dim(E) = m € IN und {ej,es,...,e,} C FE eine Basis, so ist auch
dim(E*) = m, und es existiert eine eindeutige Basis {e}, €},..., e} C E* so, dass

\V/’L,] c ZT i <€;<,€j> = (51'73' . (IV63)

Dies ist leicht einzusehen:

— Jeder Vektor x € E besitzt eine eindeutige Darstellung © = aje; + ... + apép,. Wir
definieren ef € E* durch (e}, z) := ay, fiir ¢ € Z}*. Dann ist e offensichtlich linear,
und {ej,eh, ... el } C E* erfiillt (IV.63).
— Ist Bief + ... + Bmel, = 0, so folgt aus (IV.63) fiir jedes j € ZT*, dass 0 = (Sie] +
oo+ Bmel, ;) = B, und {ef, el ... e} C E* ist linear unabhéngig.
— SchlieBlich ist £* € E* eindeutig bestimmt durch die Bilder v, := (£*,e1),...,vm :=
(0*, en) der Basisvektoren e, €}, ..., e’ und wir erhalten ¢* = yie] + ... + el €
span[{ef,... e5}].
e SchlieBlich bemerken wir, dass ein Basiswechsel L € B(E; E), det[L] # 0, den Basiswechsel
(L~YHYT € B(E*; E*) in E* induziert.
— Sind nédmlich é; = Ley, ..., €, = Le,, und {€], ..., €}, } C E* die Basis mit (€}, é;) =
6i,j7 SO gllt
5i; = (e],e;) = (e, Lej) = (L"¢},¢;), (IV.64)
fir alle ¢, 5 € Z7".
— Daraus folgt, dass LTé; = e; bzw. & = (LT) le; = (L7H) ;.
o Fiir (E,|-]|) = (R™, || lewx1) mit der Standardbasis {e, ea, ..., e,} € R™ sind (R™)* =
R™ und <€,>;, > = <€i|'>eukl-

Definition IV.19. Seien M = (M, %, A) eine Mannigfaltigkeit der Dimension m € N, ¢ € M
und C' = (U,z) € A mit U > q. Sei weiterhin {ej,es,...,e,} € R™ die Standardbasis. Fiir
1,J € 27" setzen wir

B 0 L
ori 97 (q) 1= Oc,(e;) € Ty[M], (IV.65)
do' = da'(q) = (0,) ‘(&) € Ty[M]. (IV.66)
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Lemma IV.20.
(i) Die Teilmengen {32, ..., 5%} € T,[M] und {dz',... da™} C T;[M] sind Basen.

? O™

(i) Fur f € f;[M] und € T,[M] sei

(A1 1) = (Ol [ Ocal]) - (IV.67)
Dann ist
(T,[M])" = T,[M]", (IV.68)
und es gilt
Vi, jezm: <dxi, %> - (IV.69)

Beweis. (i): folgt sofort aus der Tatsache, dass O¢, : Ty[M] — R™ und Og,, : T,[M]* — R™
Isomorphismen sind.

ﬂ Die Linearitét von O¢, und O, sowie die Bilinearitit des euklidschen Skalarprodukts
auf R™ sichern, dass (IV.67) ein lineares Funktional auf 7,[M] definiert, d.h. es gelten [f]* €

(T,[M])" und deshalb auch T,[M]* C (T,[M])". Da beide Vektorraume Dimension m haben,
miissen sie gleich sein, und es folgt (IV.68).

Glg. (IV.69) ergibt sich aus

i 0 * O\ — _
(da', =) = ((0,)7 (), Ogh(e) = (eileshena = 8y (IV.70)
0
Bemerkungen und Beispiele.
o Mit f € T/[M], v € T,[M] und C' = (U, ) € Amit U > g ist
* * * d
(1 01 = (OaldT [ Ocall) = (Jropiliol@)] | 5 (00 |isy)
Ao d _d
N ; 85# Lg@(q) % (QD ° fy) ‘t:0>eukl N E (f ° 7) ’tZO ’ (IV71)
nach der Kettenregel. In (IV.71) ist die Kartenunabhéngigkeit manifest.
e Sind C = (U,p),D = (V,¢) € Amit ¢ € UNV, so ist, fiir alle j € Z"
9, ~ _ _ _
o0 Opgles] = Oc,0 (Ocq00p,)es] = Ogy(Joop— [(a)])[e)]
u . =0l (y)]) 0
= o1 O e] = —_— —. V.72
(Jso ¥ [wW)])“ 90,(1[6 ] Z Oy y=u(q) O (IV.72)

i=1 i=1
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e Genauso erhalten wir
dy'(a) = (Oh,) [e] = (8,) 0 06,0 (0h,) ' |le]l = (05,) " (Juep 1 [p(@)) e

dz? (q) . (IV.73)

e Die Definitionen der Basisvektoren BIJL((]) € T,[M] und dz'(q) € T;[M] stellen also gleich-

zeitig eine Merkregel fiir ihre Transformation unter Kartenwechsel dar.

48



V. Vektorfelder und Lie-Ableitung

V.1. Vektorfelder und Vektorbiindel

Im vorigen Kapitel haben wir gesehen, dass das Tangentenbiindel T'[M] -ebenso wie das Ko-
tangentenbiindel 7*[M]- eine Mannigfaltigkeit bildet; dabei sind der Ausgangspunkt die Man-
nigfaltigkeit M = (M, %, A) und

T(M) = | J{a} x (M) wnd U] = | J{q} x T3 (M) (V.1)

qeM qeM

Sei nun C' = (U, ) € A eine Karte von M. Fiir jeden Punkt ¢ € U ist v, € T,[M] mit ,(t) = ¢
(konstante Funktion) und O¢ ,[v,] = 0, d.h. [v,] = 0 € T,[M]. Wir setzen

—

M= {(a.h) | g€ M} < TIM). (V2)

Dann ist

—

MuTv] = {(a.1) | Oc(a () = (@.0)}. (V.3)

und M ist eine Teilmannigfaltigkeit von T[M]. AuBerdem ist M > g — (g, [V4]) € M ein
Diffeomorphismus. Daher ist M (diffeomorph zu) eine Teilmannigfaltigkeit von T'[M)].

Wir identifizieren M und M und erhalten die Pro jektion

w: T[M]— M, (q, M) —q. (V.4)

Definition V.1. Eine Mannigfaltigkeit M = (M, ¥, A) der Dimension m € IN heifit paralle-
lisierbar

= T[M] ist diffeomorph zu M x R™. (V.5)

Definition V.2. Seien M = (M, %, A) eine Mannigfaltigkeit, N C M eine Teilmannigfaltig-
keit, 7 : M — N eine Surjektion und F' ein reeller Vektorraum.
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(i) (M,%, A, N, 7, F) heifit Vektorbiindel :&
Vge N3U €%[ql: 7 Y(UUN) ist diffeomorph zu (U U N) x R™. (V.6)

In diesem Fall nennt man N die Basis und 77*({¢}) die Faser.

(ii) Ist M diffeomorph zu N x F', so heifit das Vektorbiindel (M, %, A, N, 7, F') trivialisier-
bar.

Bemerkungen und Beispiele.

e Seien M = R™ x R*", N = R™, F = R", n(z,y) := « € R™, fiir (z,y) € R™ x R™
Offenbar ist M = N x F' trivialisierbar.

e Seien M = (M, T, A) eine Mannigfaltigkeit der Dimension m, F' = R™ und 7 : T[M]| —
M, m(q,v) = ¢q. Dann ist das Tangentenbiindel 7' M] ein Vektorbiindel (T[M], T, TIA], M, T, R™)
mit Basis M und Faser 7—!({¢q}) = T,[M]. Offensichtlich gilt

(T[M], Trag, TIA], M, 7w, R™) ist trivialisierhar < T[M] ist parallelisierbar. (V.7)

e Seien Uy = (0,27) x (=1,1), Uy = ([0,7) U (7, 27)) x (—1,1) und

prla) = (a0), (V.8)
. (a,z), falls o € [0, 7),
Pa(ar) 1= { (= 2m,—x), falls a € (m,2m). (V.9)

Die Mannigfaltigkeit M = U; U Uy mit Atlas A = {(Uy, ¢1), (U1, ¢1)} heifit Mobiusband.
Sie ist nicht trivialisierbar, denn sie ist nicht orientierbar - ein Begriff, den wir spéter noch
kennenlernen werden.

Definition V.3. Sei M = (M, T, A) eine Mannigfaltigkeit.
(i) Eine Abbildung X € C*°(M;T[M]) mit m o X = idy heift (glattes) Vektorfeld (auf
M). Die Menge der glatten Vektorfelder auf M bezeichnen wir mit T7[M].
(ii) Eine Abbildung w € C*(M;T*[M]) mit 7 ow = idys heift (glattes) Differenzialform
(auf M). Die Menge der glatten Differenzialformen auf M bezeichnen wir mit Ty [M].

Bemerkungen und Beispiele.
e Die Bedingung 7 o X = id, stellt sicher, dass Vektorfelder X € TP[M| Abbildungen der
Form X (q) = (¢,v,) mit ¢ = ¢ und daher v, € T;[M] = T,[M] sind. Es ist deshalb iiblich
(und ungeféhrlich), den ersten Teil ¢ des Bildes (g, v,) wegzulassen und X (¢) mit v zu
identifizieren, d.h. man nimmt o0.B.d.A. an, dass X (q) € T,[M].

e Analog nimmt man fiir eine Differenzialform w € Tg[M] an, dass w(q) € T;[M] liegt, da
auch hier m o w = idy; sichert, dass w(q) im zu ¢ gehorigen Kotangentialraum liegt.

20



Satz V.4. Sei M = (M, %, A) eine Mannigfaltigkeit der Dimension m € IN. Dann sind folgende
Aussagen gleichwertig:

T[M] ist parallelisierbar (V.10)
& 33X, Xe,..., X €TVM]: X1, Xs,..., X, sind linear unabhingig (V.11)
e 3X, Xy, .., X €TYM], Vg M :

{X1(q), Xa2(q), ..., Xin(q)} € T,[M] ist linear unabhéngig.

Beweis. — muss noch eingegeben werden — O]

Definition V.5. Sei M = (M, %, A) eine Mannigfaltigkeit und X € T?[M] ein Vektorfeld. Die
X zugeordnete Lie-Ableitung

Lx: C*(M;R) — C*(M;R) (V.12)
ist definiert durch
[Lxfl(@) = DfI(X(@) = Jrop-1le(a)] © Ocq[X(a)], (V.13)
wobei C' = (U, ¢) € A so gewéhlt ist, dass U > g.
Bemerkungen und Beispiele.

e Natiirlich ist (V.13) kartenunabhéngig.

e Aus (V.13) erhalten wir sofort die Linearitdt von Ly, ndmlich

[Lxf](q) + a[Lxg|(q) = Dglf1(X(q)) + aDylgl(X(q)) = Dolf+ agl(X(q))
= [Lx(f +ag)](a)- (V.14)

e Wir beobachten weiterhin, dass
[(F-9) o7 ](©) = fle7 O] gle™ 1)) = [foe ' [(€) [gov '](€)  (V.15)
und daher die Lie-Ableitung der Leibniz-Regel (Produktregel) geniigt,
[Lx(f-9)](@) = Jipop—1)1goe-11[0(@)] © Ocq[ X (q)]

= [f o7 1(#(a)) - Jgop—1 [9()] © Ocg[X (q)] (V.16)
+ (9007 1(¢() - Jrop-1le(9)] 0 Oc,g[X ()]

= f(a) - [Lxg](q) + g(a) - [Lx[f](q)-
e Somit gilt fiir alle f,g € C*°(M;R) und « € R, dass

Lx(f+ag) = Lx(f)+aLy(g), (V.17)
Lx(f-g9) = Lx(f)-g+ f-La(g). (V.18)
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e Mit Hilfe von (IV.45) und (IV.71) erkennen wir, dass

[Lxfl(@) = Jrop1le(a)] 0 Ocy[X(@)] = ([f];. X(a)), (V.19)

wobei (, ) : Ty [M] x T;[M] — R die Dualitatsklammer bezeichnet.

e Wir erinnern daran, dass f € C*°(M;R) gleichwertig mit der Aussage ist, dass fop™! €
C>=(p(U); R), fiir jede Karte C' = (U, ) € A von M.

e Sind M C R™ offen und A = {(M,idy)}, so stimmt die Definition von C*°(M;R) mit
der aus der Analysisvorlesung bekannten iiberein. In diesem Fall ist

TYM] = {X € C®(M;M xR™) | mo X = idy}, (V.20)
und fiir X € TP[M] und ¢ € M ist X(q) = (Xl(q),XQ(q),...,Xm(q))T e R™. (Wir
konnen wieder die erste Komponente g von X (q) ignorieren.)

Ist nun f € C*°(M;R), so ist mit ¢ =idy und ¢ € M
. 0f(q) 9f(q) 9f(q)
= 1 = [ —= .. — 21
1y = Irelola] = (T, 200 O (v.21)
und somit
— 9f(q
Lxfla) = {[fl;. X(@)) = > _ a(l) X (V.22)
pn=1

Am Punkt g € M ist [Ly f](q) also die Richtungsableitung in Richtung des Vektors X (q).

e Seien d > m+1,U C R™ offen und h € C*°(U; R?) eine Einbettung von M := h(U) C RY,
d.h. £ ist injektiv und rk[J,] = m auf U. Auerdem sind {H = (M, h ')} ein Atlas und

TYIM] = C=(M;T[M]), (V.23)
da M parallelisierbar mit Diffeomorphismus O : T[M] — M x R™ ist. Beachte, dass
_ 1 d T _ (el m\T
M= {1, ... h )" [ €= (€....em" e U} (V.24)

Sind ¢ = h(€) € M und 7, (t) := h(€ + te¥), fiir v € Z7, so ist v, € T,[M] und

Ongln] = (i(h ! 1/)

= e". (V.25)

t=0

Ist weiterhin f € C*°(R%; R), so erhalten wir f € C*°(M;R) durch Restriktion von f aus
M (die wir mit demselben Buchstaben bezeichnen). Fiir X € T?[M] mit Oy ,[X(¢)] =

T .
(ve,...,v")" € R™ ist dann

[Lxfi(@) = (Tron(€) | V) pa = Z a[f;—g@ Vg - (V.26)
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e Sind (f,)22, € C°(M;R)N und f € C*(M;R), so heifit
(fn o 1 konvergent gegen f, f, — f

& Vge M, C=U¢)eA U>q, ac (INy)™: (V.27)
Tim {02067 (w(0) } = 2[F o] ((a)

1

¢ al . . . . .. . .
wobei O := 8 mit a = (a',...,a™) die iibliche Multiindexnotation ist.

oo
ToaEheT AT
e Eine Abbildung L : C*(M;R) — C*(M;R) heifit stetig :<

V(fa)ois € C¥(M;R)Y, fo — f € C®(M;R): L(fa) = L(f). (V.28)
e Sind X € TY[M] ein Vektorefeld, ¢ € M und C = (U, ) € A mit U > ¢, so beobachten
wir, dass mit X(q) =3 ", x”(q)&’%@ auch
OclX(@) = 30 0ca| 5| = o @) . va)
Mit (f,)22, € C°(M;R)N und f € C®(M;R) so, dass f,, — f, ist fiir ¢ € M also
m P o 1
(Exsow)©) = Do (ee) At 18, (V30
v=1
m a o 1
(xn)ew)©) = Do) 2o 1E, (va1)
v=1

Da & — z¥ (07 (€)) glatt ist, folgt sofort, dass (Lx f,) — (Lx [). Also ist
Lyx: C®(M;R) — C®(M;R) stetig. (V.32)

Satz V.6. Seien M = (M, %, A) eine Mannigfaltigkeit und L : C*°(M;R) — C*°(M;R) eine
stetige Abbildung, die linear ist und die Leibniz-Regel erfiillt, d.h. fiir die

L(f +ag) = L(f) +aL(g), (V.33)
L(f-g9) =L(f)-g+ f-L(g) (V.34)

fiir alle f,g € C°(M;R) und a € R gilt. Dann existiert genau ein Vektorfeld X € T?[M] so,
dass L = Lx die zugehorige Lie-Ableitung ist.

Beweis. Wir definieren
L = {L:C®(M;R)— C*(M;R) | L ist stetig ud erfiillt (V.33) und (V.34) }. (V.35)

Ist X € TP[M] ein Vektorfeld, so besitzt die Lie-Ableitung Ly gemafl (V.17), (V.18) und (V.32)
die geforderten Eigenschaften und daher ist Lx € £, d.h.

Loy TYM] — £, X Ly (V.36)
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definiert eine Abbildung, deren Bijektivitdt behauptet wird.
Injektivitit: Seien X,Y € TP[M] und Lx = Ly. Sind ¢ € M, C' = (U, ) € A mit U 5 ¢q und

X(q) = ZxZ 8g0?(q) und  Y(q qu 6(,0 (V.37)

v=1 v=1
so ist mit f € C°°(M;R), supp[f] C U und f = ¢* in einer Umgebung von g,

m

@) o
[Lx f](q ZxZ af a@y ](5) _ 37’; und  [Ly fl(q Z af a@y (§) _ yg.
3 £=¢(q) = 3 £=p(q)
(V.38)
Somit ist zf' =y, fiir alle ¢ € M und alle p € Z7", d.h.
X =Y. (V.39)

Surjektivitdt: Sei L € £. Wir setzen 1 € C*°(M;R), ¢ — 1, d.h. 1 ist identisch gleich eins auf
M. Aus der Linearitdt von L und der Leibniz-Regel erhalten wir zunéchst

L(1) = L(1-1) = L(1)-1+1-L(1) = 2L(1) (V.40)

und deshalb L(1) = 0 und somit auch
VaeR: L(al) = 0. (V.41)
Seien nun f € C*°(M;R), g0 € M und C = (U, ¢) € Amit U > go. Mit §, = p(qo) ist dann fir

alle £ € B(&p,¢) und € > 0 geniigend klein nach Taylor

Fop €)= [fop &) + (& —&) 8“(.;’;5““

+ Z ) (€~ &) Fuulé: &, (V.42)
wobei
Fuplé &) = /0 (1- t){a o (;géa;(l _t>£0>}dt. (V.43)

Mit g = ¢~ 1(&) ist also

@) = fla) + Y (¢"(a) - >@D”+§](§)
+ Y (¢"(a) = &) (¢"(a) = &) Fuvle(a)s; &l (v 44)
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Mit (V.41), der Leibniz-Regel und der Linearitét erhalten wir daraus, dass

2 = el A28 (V.45
ns {[qu) (0"(@) — &) Fuulpl0): &) (V.16)
£ (@) - &) [Le)(@) Fulipla)s &) (v.47)

(0 -8) (0 - ) LB b)) (v

Fiir ¢ = qo verschwinden die Terme (V.46) und (V.47) und wegen der Stetigkeit von L auch
(V.48), und wir erhalten

L) = Sz la) 22 (V.49
Wir setzen nun
X(q0) = Ogh, [ (L&' (@), [L¢'] (@), -, [L™](a0))"] (V.50)

und bemerken, dass diese Definition kartenunabhéngig ist (was wir hier nicht nachpriifen) und
somit auf M ein Vektorfeld global definiert, d.h. es ist X € TY[M]. AuBerdem ist

m L0 1
Lxfl(a0) = 3 (O X W = [Lf)(a)- (V.51)
v=1
Damit ist Ly : TP[M] — £ auch surjektiv. O

Definition V.7. Seien M = (M,%, A) und N = (N, S, B) zwei Mannigfaltigkeiten und & :
M — N ein Diffeomorphismus. Dann definieren wir

®,: Tj)[M] — Ty[N], X + D[®oXod . (V.52)

Konkret ist fir X & Tl[]\/[] und ¢ € M, ¢ = ®(q) € N, C = (U,¢)) € Amit U 5 ¢ und
C=(U,¢)eBmitU>§

[©.X)@) = (©7} © Jenoy: (@) © Ocu[X ()]

iy = 065 © Jenoyr [0 27D 0 Ocy [X (27
(V.53)
Die Wirkung von ®, wird klarer, wenn man die Lie-Ableitung betrachtet.

Lemma V.8. Seien M; = (M;,%;, A;) fir i = 1,2,3 drei Mannigfaltigkeiten, ® : M; — M,
und ¥ : My — Mj Diffeomorphismen, X € T} [M;] und f € C*°(Ma; R). Dann gelten

Lx(fo®) =[Lo.x(f)]o®, (V.54)
U,0h, = (Vod),, (V.55)
(@71), = (27" (V.56)
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Beweis. Seien q; € M, g3 := ®(q1) € My, q3 = V(g2) € M3 und C; = (U;,m;) € A;, fiir
i=1,2,3. Fir f € C®°(My;R) ist

[Lo.x(N(@2) = Jpo-1[n2(a2)] © Ocy g [P X (g2)]
= Jpons 1 [m2(@2)] © T, yopon-1 M (@1)] © Ocy g, [X (q1)]
= Jpopont M(@1)] 0 Ocy g [X(@1)] = [Lx(f o ®)l(ar), (V.57)

was (V.54) beweist.
Ist weiterhin g € C'*°(M3; R), so ist nach (V.54)

[Lwor),x(g)]oVo® =Lx(goVo®) = [Ly,x(goV)]o® = [Ly,ce.x(g)]oPoV.
(V.58)

Da g beliebig gewihlt werden kann, ist L(yos),x = Lw,0s,x, und aus Satz V.6 erhalten wir
damit (¥ o @),[X] = ¥, o ,[X], und da auch X ein beliebiges Vektorfeld ist, folgt (V.55).

Glg. (V.56) ergibt sich aus (V.55) als Spezialfall M3 = M; und ¥ = &1, O
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VI. Tensoranalysis

VI.1. Tensorprodukte

Definition VI.1. Seien n € IN und Ey, Fs, ..., E, Vektorrdume iiber R der Dimensionen

m; = dim[E;] € IN, wobei j € Z}.

(i) Eine Abbildung ¢ : x!", E; — R heifit multilinear :&

VkeZ}, ()i € Xj_1Ej, yr,2x € B, a €R: (VL1)
0@y, 1, Yk + Q2 Thi1y -y Tn) = L(T1y e oo X1y Yky Thot 1y - - - 5 Tny)
+a'é(xla'"7xk7172k‘>xk+1>"'7xn)'

(ii) Das Tensorprodukt von Ej,..., E, ist definiert durch
E\@E,®--0F, = QE = A", (VL2)
j=1

d.h. als Dualraum des Vektorraums
A= {l:x]|E; > R } ¢ ist multilinear} . (VL3)
Bemerkungen und Beispiele.
e Seien 'W* € Ef, 2y* € B}, ..., ")* € E*. Dann definiert '¢* ® ... @ "* : X1 B — R,
M@ ... @™ (21, .., @n)) = (" aq) - (M ) (VI.4)

offensichtlich eine multilineare Abbildung.

Lemma VI.2. Seien {egj),eéj),...,e%)} C E; Basen und {egj)*,egj)*,...,e%*} C E7 die

J

zugehorigen dualen Basen, <e(j)*, e,(f)> = i, fiir j € Z}. Dann ist

2

£ = {e,(jl’* el @... @el)

kleZ’{“,...,kneZT”}gA (VL5)

eine Basis.
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Beweis. Nach obiger Bemerkung ist £ C A und damit auch spanf* C A. Seien weiterhin

alky, ..., k,) € R, fiir k; € Z}”, und

V=30 N al b)) @@
Fir ky € Z7, ...k, € Z]" ist dann

0= <)\* <ek1 . .,e,(::l)>>

mi mn
:Z...Za(ll,...,ln)<el(ll) R . ®e(n) (e}j}@...

= 0. (VL6)

® eé:)>>

l1 1 ln_l
n (VLT)
SOOI SPTAA) | (),
=1 1\‘,_/
=01k,
= Oé(k?l, ey kn)
Also ist £ linear unabhéngig. Ist nun \* € A, so setzen wir
o= Z A (el(ll), . ,el(:)> el(ll)* ®...Q el:)* (VL)
Uyl
und beobachten, dass (wie in (VI.7)) fur alle kq, ..., k,,
PN (egl) e,&n)> = Z A* (el(ll), e ,el(n)> <€l(11)* ®X...Q0 el(n) (6,(:1), . e,(;z)>>
I yeln 4
=H§L:1 Otk (VL9)
=\ (e,(fll),. ,e,(fz))
Da sowohl \* als auch A* multilinear sind, gilt somit auch
mi mn
A= \* (Z <61(11) ,x1> el(ll), cee Z <el(:) ,xn> el(:)>
=1 ln=1
3 S (T )3 ()
h=1  l.=1 \j=1 (VL.10)
mi Mn n
= Z e (H <e(j]) ,xj>) A* (el(ll), ,el(:)>
Lh=1  l,=1 \j=1
=\ Ty, yLn ),
fiir alle (z1,...,7,) € x}_, Ej, d.h.
A* = \* € span&”. (VI.11)
[
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Korollar VI.3. Fiir j € Z7 seien E; reelle Vektorrdume der Dimensionen m; € IN,
{e(lj)’ . ,e%@} C E; Basen und {egj)*, . ,e%g*} C E; die zugehorigen dualen Basen. Dann
ist

und

(e e odkezr,  kezil cQE, (VL13)
j=1
ist eines Basis, wobei

el e.. 0 = (e,(jl)* ®...® e,(c”)) : (VL.14)

d.h.
<6l(11) ® e ® 61(:) ,6,(;1) ® e ® 6,(:1)> = (5(11 77777 ln),(kl ..... kn) = H (5[]./?7.. (V115)

j=1

Definition VI.4. Fiir j € Z7 seien E;, F; reellen Vektorrdume endlicher Dimension und L; €
B(E;; F}). Dannist (L ® Ly® ... ® L,) € B (@?:1 Ei; Q- Fj> definiert durch (die lineare

Fortsetzung von)

(Li@Le.. oL () @ o) = (L) ..o L) (VL.16)

VI1.2. Tensorfelder, Metriken und Riemannsche
Mannigfaltigkeiten
Definition VI.5. Seien (M, T, A) eine m-dimensionale Mannigfaltigkeit, ¢ € M und r, s € IN.

Der Vektorraum T, 7[M] der Tensoren, die kovariant r. Stufe und kontravariant s.
Stufe sind, ist gegeben durch

T,7[M] = (@ T;[M]) ® (@Tq[M]) . (VL17)

Bemerkungen und Beispiele.

e Offenbar gilt:

{L1 ®..®L,: Q) E; — Q) Fj ist bijektiv}

J=1 Jj=1

(VL1S)
& {Vj €2} L;: By — F ist bijektiv}.
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e Sei C' = (U, ¢) € A eine Karte einer Mannigfaltigkeit (M, %, A) und ¢ € U. Mit (VI.18)
ist somit

<®@*c,q> (@90q> Jo[M] — R (V1.19)

ein Isomorphismus.

e Wir definieren nun 7'%[U] := quU{Q} x T,7[M] und durch
(é@?)) ® <®90> :THUl — ¢(U) x R )
<(®@*c> <®90)> <Q777T®---®77:®/€1®...®/£5) (VI.20)

), 0L ® ... 2 05[] ®Oclk] ®...® @c[ms])

eine Karte von

= (J{a} x 7,5 [M). (VL.21)

qeEM

e Sind C = (U, ) und C = (U, @) zwei miteinander vertrigliche Karten von M so sind auch
(T7[U], (R 0%) @ (Q°O¢)) und (T[U], (RQ" 0%) ® (Q° Og)) miteinander vertréiglich.

Definition VI.6. Sei (M, %, A) eine Mannigfaltigkeit.
(i) Die Mannigfaltigkeit (T'7[M], x" 5%, A"), mit Atlas

AT = {(T;[U], ((é)@g) ® ((é)%)) =

heiit Biindel der r-fach kovarianten und s-fach kontravarianten Tensoren.

(ii) Eine Abbildung t € C*®°(M;T"[M]) mit t o 7 = idy; heiit r-fach kovariantes und
s-fach kontravariantes Tensorfeld oder kurz r — s—Tensorfeld. Die Menge der r —
s—Tensorfelder bezeichnen wir mit 7 7[M]. Lokal kann man ¢ schreiben als

p) € A} (VI1.22)

opi(q) —  Opjs(q)
(V1.23)

t(q) = Z Z ait T (q)dei (9) © ... ®@ dip;, () ©

.....

Definition VI.7. Seien (M, %, A) eine m-dimensionale Mannigfaltigkeit und g € 7 3[M] ein
2—0—Tensorfeld, da lokal bei ¢ € M als g(q) = >2",_; 9" (q) dwi(q) ®dp;(q) geschrieben werden
kann.
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(i) Das Tensorfeld g heit Metrik (auf M)

& VgeM: g"(q) = ¢"(¢q) und alle Eigenwerte von (g7(¢));"—; € Mpmum(R)

sind strikt positiv.

(VI.24)
In diesem Fall heifit (M, ¥, A, g) Riemannsche Mannigfaltigkeit.
(ii) (M, T,A,g) heit pseudo-Riemannsche Mannigfaltigkeit
= VqeM: g7 (q) = g¢"(q), detlg(q)] # 0, und g(q) ist indefinit. (VI.25)

Bemerkungen und Beispiele.

e Die einfach kontravarianten Tensorfelder sind genau die Vektorfelder, die einfach kovari-
anten Tensorfelder die Kovektorfelder.

e Eine Metrik g € T 3[M] auf M definiert zu ¢ € M ein (positiv definites) Skalarprodukt
auf T,[M] durch

(-|-) - T,[M] x T,[M] = R, (VI.26)

<8:(q) )a¢?(q)> =9"(a), (VI1.27)

falls g lokal durch g(q) = >°7"._, 97 (q)dipi(q) ® dp;(q) gegeben ist. (Selbstverstandlich ist
hier nachzupriifen, dass (:|-) wohldefiniert - also kartenunabhéngig - ist.)

e Sind umgekehrt (-|-), : T,[M] x T,[M] — R Skalarprodukte und ¢ (q) := (%]%)

fiir alle 4,5 € Z7" glatt in g, so definiert g(q) = >°"._, 97 (q)dpi(q) ® dp;(q) eine Metrik
auf M. Die Metriken auf M stehen also mit Skalarprodukten auf 7,[M] in Bijektion.

Satz VI.8. Sei (M,%, A) eine m-dimensionale Mannigfaltigkeit. Dann gibt es eine Metrik
g € T3[M] auf M.

Beweis. Nach Satz I11.8 kann M C R*™*! eingebettet werden und (R*" " Tram+1, (R*™id))
ist eine Riemannsche Mannigfaltigkeit beziiglich der Metrik g(x) = ZJQT:”;F ! dr; ® dx; (also die
vom euklidischen Skalarprodukt auf T, [R*™*!] = R?™*! induzierte). Fiir eine Teilmannigfal-
tigkeit N C N gilt jedoch in kanonischer Weise T,[N] C T, q[ﬁ | und daher induziert das von
T,[R*™+1 auf T,[M] restringierte Skalarprodukt ein Skalarprodukt auf T,[M] und somit eine

Metrik auf M. O

Bemerkungen und Beispiele.

e Seien M = {q € R"||l¢g| = r},r >0, U := Mn{q = (z,y,2) € Ry > 0} und

¥ U— (_%a%) X (Oaﬂ-)a

7+ cost - cos o
o '(9,a) = |r-cosd-sina |. (VI.28)
r-sind
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Auflosen nach den Koordinaten liefert

¢1(q) = J(q) = arcsin ( m> : (VI.29)

©v2(q) = a(q) := arccos (ﬁ) . (VI.30)
Wir setzen C' := (U, ¢). Wegen M C R? ist zu ¢ € M C R?
T,(M) = {y € C((a, b): M)|a < 0 < b,7(0) = g}
C {y € C'(a,b);R*)|a < 0 < b,7(0) = ¢} (VL.31)
- Tq(RB)a
und insofern erwarten wir, dass auch T,(M) C T,(R?) gilt. Dies ist in der tat richtig; wir

miissen aber vorsichtig vorgehen. Verwenden wir die Karte C' von M, so ergibt sich nach
Definition 1V.19

0 g I e
00~ Ocqler): 52 ol O (e2). (VI.32)

Aus dieser Gleichung kénnen wir nicht die gewiinschte Inklusion ablesen. Betrachten wir
jedoch die Karte (R?,id) von R3, so ist

®(R3,id),q - id]R3 (VI33)
und mit
Yeo(t) = (W +t,a), Ygalt) = (0, a+1), (V1.34)
d —7r - sind - cos
E(’Yqﬂg)«)) = | —r-sind-sina |, (VIL.35)
r - cosv
d —r-cost - sin«
a(’yq,a)(O) = | r-cos?-cosa |. (VI.36)
0
Mit (VI.33) erhalten wir also
o —r -sin? - cos « P —7r - cost - sin «
—— = | —r-sin?d-sina |, = r-cosd-cosa | € T,[R? (VI.37)
99(q) r-cosv dalq) 0
Wie im Beweis von Satz V1.8 vorgegeben, bilden wir nun
0 0
9" (q) = <319—()‘819—()> 0= r?(sin? ¥ - cos® o + sin® ¥ - sin® o + cos® V) = r?, (VI.38)
q q)/ eu
0
9 (q) = <8a(q) 8oiq)> L r? cos® ¥ - (sin® a + cos? @) = r?, (VI.39)
0 0
ad _ Y —
'@ = "0 = {5207 507 (VL40)

=r%.sin?d - cos¥ - (sina - cosa —sina - cosa) = 0,
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und erhalten die Metrik (¢ = ¢~ (¥, a))
g(q) = r’d¥(q) ® di(q) + r* - cos ¥ da(q) ® da(q). (VI.41)

Fiir die nichste Definition machen wir eine Vorbetrachtung. Sind (M, ¥,.A) und (N, &, B) zwei
m-dimensionale Mannigfaltigkeiten und ® : M — N eine Diffeomorphismus, so definiert die
Ableitung Dy [®] : To[M] — Toq)[N],

Dy[®] = O, 0 Jpotap1(#(0)) © Ocyg (V1.42)

einen Isomorphismus. Wir wollen nun einen Isomorphismus Dy[®] : T;[M] — 1§ [N] so
definieren, dass fiir alle v* € T;)[M] und w € Ty[M]

(D;[®@]v Plw), = (v* (VI1.43)
Mit (IV.63), d.h. (LTy*|z) = (y*|Lz), folgt dann
(v* = (D;[@v*| Dy [®]w) \, = (Dy[®]" Dy[®]"v* (V1.44)
Da v* und w alle Vektoren in T;[M] bzw. T,[M] durchlaufen, folgt daraus, dass
. T -1
D;[@] = (D))" = (D,fo]") " (VL45)

Definition VI.9. Secien (M, %, A) und (N, S, B) Mannigfaltigkeiten der Dimension m und
® € C*°(M, N) ein Diffeomorphismus.

(i) Wir definieren

(8] T(M] = T*N], - D*[8](g,0) = (®(a), (D,[8]") '(v7)).  (VL4G)

(ii) Weiterhin induziert ® einen Diffeomorphismus

O, TLIM] — TLN], &.t:= (® D[P ® ®D[<I>]> otod L (VI.47)

Satz VI.10. Seien (M, %, A) und (N, &, B) zwei m-dimensionale Mannigfaltigkeiten,
® € (C(M;N) ein Diffeomorphismus, f € C°(M;R) und df € T j[M] das lokal durch

1

df(q) =72, X fgfj ls=p(q) - dj(q) gegebene Vektorfeld. Dann ist

O*(df) = d(f o @7 1). (V1.48)
Beweis. Mit p = (I>(q) € N, qge M ist fur alle v € T,[N]

(d(fo@ ") (p)|v)y = “(v) = Do) [f] 0 Dy[27](v)
= <df (p)!Dp oy, = (Dy[@ " o df (@ ")(p)|v),  (VI.49)
= (@.(df)(p)|v) -
0
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VI1.3. Differenzialformen

Als Néchstes wenden wir uns den antisymmetrischen Differentialformen, den p-Formen,
= 0,1,...,m, zu. Dazu betrachten wir einen m-dimensionalen Vektorraum FE mit Basis
{e1,€9,...,en} C E. Dann bilden die Vektoren

p p
{en e, ®.. e VjeZli;eZy CQRE=QRE (VL50)

eine Basis. Wir vereinbaren auflerdem, dass " E := R = R - 1 (2 konst. Funktionen). Fiir
p € N definieren wir nun A, € B[Q" E; Q" E] durch lineare Fortsetzung von

A1 @ g ... ®Yy) = ,Z . ® Yngy) (VL51)

p: TES)

wobel 91,92, ..., 1, € E. Auerdem setzen wir Ay := idgo . Beachte, dass (m:=nok)

A1 ® ... @) = ol Z Ap(Ve() ® - - @ Vi)
p: KESp
6 )2
=\ 7 (=1)"(=1) VYnor(1) @ - - & Vor(p)
p! MZE;SP (VL52)
1\2
- (7) D U ) ® . ® Yngy)
p: n,mESp
=AU ®...® 1Y),
d.h.
AZ =A, (VL.53)
ist eine Projektion. Wir setzen
A1 @Y ® ... @1y) =11 Aa A Ay (V1.54)
Offensichtlich gelten
1/J7r(1) A %(2) VANIRVAN 1/)7r(p) = (—1)W’¢1 VANPIVAN 1/Jp, (VI55)
und daher
wie bei Determinanten. Insbesondere ist
V(il, R 7ip) S (Zrln)p rep Neg AU A €i, = 0, (VI57)

falls p > m, da in diesem Fall stets (mindestens) zwei Indizes i, = 4;, | < k, iibereinstimmen.
Daher ist

Vp>m+1:A4,=0, (VI.58)

und wir konnen im Weiteren oB.d.A. 0 < p < m annehmen.
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Definition VI.11. Seien p € NJ und E ein m-dimensionaler Vektorraum iiber R. Den Teilraum

p p
NE=4,|QRE

bezeichnet man als das (p-fache) antisymmetrische Tensorprodukt von E.

(VL.59)

Lemma VI.12. Sei p € Z{' und E ein m-dimensionaer Vektorraum iiber R. Die Menge

p
Ly={eqg New A Aeg|l<iy<iy<...<iy<m}C N\E (VIL.60)

ist eine Basis, und A’ E hat die Dimension

dimp, ( ;\ E) - @) (VL61)

Beweis. Nach (VL.55) und (VI.57) gilt

p
span(L,) = /\E, (VI.62)
und es verbleibt die Unabhéingigkeit zu zeigen. Wir verzichten darauf. O]

Wir wollen nun zwischen antisymmetrischen Tensorprodukten verschiedenen Grades hin- und
herspringen kénnen und definieren dazu das Keilprodukt.

Definition VI.13. Seien p,p € IN. Dann ist das Keilprodukt
P P ptp
A (/\E) X (/\E>—>/\E (VL.63)
durch
wy A wp = Apiplwp, ® wp (VI.64)
definiert.

Bemerkungen und Beispiele.
e Essindstets \A"F=R-1und \'E=Q'E=E.
e Fiir £ = R? sind also

/O\E:]R-l, /1\E:]R, /Q\E:R'{(é)@)(?)_(?)@(é)}/ (VL65)

(.
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Fiir £ = R? sind

0 1
E=R-1, E = span{ey, €9, e3},
A A (VL.66)

2 3
/\E:span{eg/\eg,el/\63,61/\62}, /\E:]R~61/\62/\63.

Offensichtlich sind (wegen der gleichen Dimension) A” E und A" " E isomorph.
Das Keilprodukt fiigt sich konsistent in die Definition (VI.54) ein, denn (VI.64) ist dqui-
valent zu
(1#1 AR A¢p) A (¢p+1 ARERNA ¢p+1’5) = Ap—&-ﬁ((q/}l ARERNA %) ® (¢p+1 ARERRA wp—s-ﬁ))
:wl/\...A¢pAwp+lA.../\wp+5,

(VI.67)
d.h. das Keilprodukt ist assoziativ.
Nach (VI.67) ist dann auch
(LA AU AL A Aps) =LA AP AL A A5
= (—1)POL AL A AP APa A A @y
: (VI.68)
= (=1)PPp Ao A A AL AL Ay
= (=D"P(er A A ) AL A A Yy).
Durch Linearitét tibertriigt sich dies auf A’ E x A’ E, und wir erhalten
wy ATy = (—1)PP @5 A w, (VL.69)

fiir w, € A’ E und &y € A’ E.
Die Hodge-Abbildung *) : A’ E — A™ 7P E ist durch die lineare Fortsetzung von
. Uy e e ey lpy J1y oy Jme
(e Ao e = sgn(L N ,pz:p—i— 1’“',”5) ey NooNE,, ) (VI.70)

definiert, wobei 1 <141 < iy < ... <ip, <mund 1 < j; < jo < ... < Jm—p < m, so dass
{J1s- s dmp} = Z7\ {i1, ... iy} (VL.71)

Sind p € Z" und w € E*, so ist die Kontraktion v, : A"E — A’"' E durch lineare
Fortsetzung von

P

Lo(P1 A N py) = Z(—l)j+1(w|g0j> O1A . AP ANQI A NP (VL.72)
j=1

und ¢, : A\°E = A E, 1, = 0, definiert.
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Definition VI.14. Sei F ein m-dimensionaler Vektorraum. Die direkte Summe

§i(E) = \E = é </p\ E) (VL.73)

p=0

der VR der p-fach antisymm. Tensorprodukte nenn man fermionischer Fockraum iiber FE.

Definition VI.15. Seien p € Z{* und (M,%, A) eine m-dimensionale Mannigfaltigkeit. Das
Vektorbiindel mit Basis M und Faser A" T [M] ist

AT M) = | J{a} x \T;[M]; (VL.74)

qeM
die antisymmetrischen Tensorfelder
A1) = {u, € (0, ;\T*[M]) [ ow, =i} € TH(M) (VL75)
bezeichnen wir als p-Formen (auf M),
AIM] = {w € = (M; \ T*[M)) (w ow= idM}, (VL.76)
ist der Raum der Differentialformen.
Bemerkungen und Beispiele.
A" =c=onm), AV =T (VL77)

VI1.4. Die auBere Ableitung

Definition VI.16. Sei (M, T,.A) eine m-dimensionale Mannigfaltigkeit, ¢ € M und
C=(Uyp)e A sodassqeU.

(i) Die &uBere Ableitung d: A [M] — A"W[M] ist definiert durch

—(fop™)
d, = _ ~dyi(q). VI.78
f(q) ; i ML C) (VL78)
(ii) Fiir p € Z7"~" ist die duBere Ableitung d : \® [M] — AP [M] durch lineare Fortsetzung
von
d(f - i Ao N, )(q) = df (@) Adgi (q) A A depi,(q) (VL.79)
definiert.
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(iii) Die &uBere Ableitung d : A[M] — A[M] ist durch

d (@ Wp) (q) == @dwp(Q) (VI.80)

definiert. (Insbesondere ist d(A"™[M]) = 0.)

Lemma VI.17. Seien p,p € Zg', (M, ¥, A) eine m-dimensionale Mannigfaltigkeit. Dann besitzt
die dulere Ableitung folgende Eigenschaften:

()WVw,& € \[M], a € R: d(w+ o) = dw + add, (VI.81)
(i) Ve, € NV M), B3 € N7 M) dlwy ABp) = duy AT+ (—1)up AdBp,  (VLS2)
(ii))Vw e \[M]: d°w = d(dw) = 0. (VI.83)

Beweis. (i) ist trivial.
(ii) erhalten wir durch lineare Fortsetzung aus d(fg) = g - df + f - dg und

d|(fdpi A dgi,) A (gdii Ao Adgy,,)]

—d|(fg)dgi, A -..dpi, Ndpiy . Ay, ]
=d(fg) Ndpi, A...dp;, Ndp;, ., Ao Ndgi
=g-df Ndpiy N...dpi, Ndpi, , N Ndp;
+ fodg Ndpi, A odpi, Ndpi, N N dp; (VI.84)
= (alf/\ahpi1 /\...dgoz-p) A (g-alcp,-p+1 /\.../\dgpip+5)
+ (—1)p(f ~dpi, A ..dgpip) A (dg/\dgpip+1 AL, Adgoip+§)
= (d[f - dgi A ]) A (90 dpiyn A N i)
+(=1) (f i A .. .dgoip) A (d[g cdips A A dgol-pﬂ;]).

(iii) ergibt sich aus:

d2(f : dg@zl N nglp) = d[df VAN dg&ll AR .dQOZ'p}
m -1
S {(Mw> s A dis A,.,d%]
0:17j

j=1
m 82 o1
=2 (—éf agp‘ : 090) ~dpp Ndp; Ndpiy N dpi, (VI.85)
kjm1 TOL
~ (P(fop!
(5 (22 ) ) ),
kj=1 k&g
=0
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denn

— (P(foe™) _ N (Pfoe™)
z:: ( &Ekﬁm] OQO) Hdop Ndpj = Z ( Oz ;j0xy, OQO) w

j’k:]-\ ~~ - :—dcpk/\dgo]-
—(Zaeg o) (VL.86)
O*(fop™)
- _ dop A de;.
z( i ¢) o N do,

k,j=1
[

Lemma VI.18. Sei (M, %, A) eine m-dimensionale Mannigfaltigkeit. Dann ist die &uflere Ablei-
tung durch ihre Wirkung auf A”) = C*°(M; R) und die Eigenschaften (V1.81)-(V1.83) cindeutig

bestimmt.

Beweis. Sei d : A[M] — A[M] eine weitere Abbildung, so dass Cﬂ/\“”[M] = d‘/\(‘))[M] und d die
Eigenschaften (VI.81) - (VI.83) besitzt. Dann ist
d[f-doi, A ... de; | = df Adegs, A ... dg;
f - dei, pi,] = df Adyp i,
=df
(VL8T7)

—l—Z Y f - dos, A ...Agiv(dgpij)A...Adgoip.

Fir ¢ € Z7" ist jedoch dy; = d(p;), wobei ¢ € C*(U;R) die i. Koordinatenfunktion der
Kartenabbildung ist. Also ist dy; = d(¢;) und d(d;) = d(d(;)) = 0. Damit ist aber

d[f -dpi, A dpy] = df Ndpi, A .. dpy, = d[f -dpi, A...de;)]. (VI.88)

]

Korollar VI.19. Die #uflere Ableitung d : A[M] — A[M] ist wohldefiniert, also kartenun-
abhéngig.

Beweis. Wire d bei q € M mit einer anderen Karte C = (ﬁ ,®) mit g € U definiert, so beséfle
d die Eigenschaften (VI.81) - (VI.83) und wiirde auf C*°(M;R) mit d tibereinstimmen. Nach
Lemma VI.18 ist also d = d. []
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VII. Integrale und der Satz von Stokes

VIl.1. Name

Bei der Definition des Integrals auf einer m-dimensionalen Mannigfaltigkeit M = (M, T, A)
spielen die m-Formen (p = m) eine grofie Rolle. Wir erinnern uns zunéchst auf die Tatsache, dass
lokal A" [U] ~ A9[U] = C*(U, R) in einen Kartengebiet U C M einer Karte C' = (U, ¢) € A
gilt,

A" = {f dp' Ndg® A -+ A dg™ feCOo(U,]R)} (VIL1)

Lemma VII.1. Seien C' = (U, 0),C = ((7, $) € Amit V. =UnN U +# ). Dann gilt fiir alle
qeVv

d@'(q) NdP*(q) A+ ANdg™(q) = det[J(q)] dp'(q) Nd*(q) A--- Nde™(q),  (VIL2)
wobei
AP’ o '](§) )
J(q) = Json = —‘ . VIL3
@ i= Jeenleta)] = (2551 o (VIL3)
Beweis. Auf V' gilt
dp' = Y Jinde”, (VIL4)
r=1
also
—1)"
dp* A+ Ndp™ = Z ( ') dp™ @ dp™® @ - - - @ dpT™ (VIL5)
m!
TESM
(=17 - 7 7 J doF D dom)
=D, ol D T w) T Tty A" @ @ dp
TESm T k(1),..,k(m)=1
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Definieren wir,

Jia J1m
vy = : e Uy = : e R™, (VIL.6)
Jm 1 Jm,m
so erkennen wir, dass
Z (—1)7r Jﬂ(l)’,{(l) cee Jﬂ(m)’ﬁ(m) = det(’U,{(l), ’U,{(Q), Ce ,Uﬁ(m)) (VH.?)
ﬂ'ES'm
0, falls {x(1),...,k(m)} # Z",
| (=D)Fdet(d),  falls {x(1),...,k(m)} =Z",

wobei (—1)* das Signum der Permutation x : Z7* — Z7* ist. Also ist

—1)~
AP A - Ndp™ = Z (=1 det(.J) do™V @ .- @ dptm™

KESM m!
= det(J) dp' A+ Adp™. (VIL.8)
[
Definition VII.2. Eine m-dimensionale Mannigfaltigkeit (A, ¥, .A) heifit orientierbar
= 30€ /\(m)[M} Vge M: Q(q) #£ 0. (VIL9)

Lemma VIIL.3. Sei M = (M, %, A) eine zusammenhéngende m-dimensionale Mannigfaltigkeit
und m > 2. Dann ist M = (M, %, A) genau dann orientierbar, wenn es einen mit A vertrigli-
chen Atlas A = {Cu}aes von M so gibt, dass fiir alle Cy = (Ua, ¢a), Cs = (Us, $3) € A mit
U, N Uz # 0 auch

VgeUsNUg:detJ, . —1[pa(q)] > 0 (VIIL.10)

gilt.

Beweis. =: Seien M = (M, %, A) orientierbar und Q # 0 eine nirgends verschwindende m-
Form. Ist C' = (U, ¢) € A, so ist

VqeU: Qq) =g(q) de'(q) A--- Adp™(q), (VIL11)
wobei g(q) # 0 ist. Wegen der Stetigkeit von ¢ und g ist entweder
(i)VgeU: g(q) >0 oder (i) VgeU: g(q) <O. (VIL.12)

Im Fall (i) setzen wir C[C] = C, im Fall (ii) vertauschen wir die Koordinaten §' = ¢'(q) und
&% = v*(q), d.h. wir setzen C[C] := (U, @) mit U := U und

(@4 Q% % ..., 0™) = (%95 ¢%, .., 0"). (VIL13)
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So erhalten wir einen Atlas
A = {ClC) | Ce A}, (VIL.14)
sodass
VO =(U,¢) €A qelU: Qq) = glq) dd'(q) A--- AdF™(q), gq) > 0. (VIL15)
Seien ¢ = (U, %), ¢ = (U, #) mit UNU # 0 und ¢ € U NU. Danach ist
Qa) =3g(a) dg'(g) A~ AdE™(q), g(q) > 0. (VIL16)
Qq) = =glq) dophi'(q) A--- Adiphi™(q), §(q) > 0. (VIL17)
Nach Lemma VII.1 ist dann

9(q) = 9(q) det (Jzoz-1(Z(q))) , (VIL18)
d.h.
(i = 9@
det (Jies (#(a)) = 0" (VIL19)

< : Seien A = {¢q = (Ua, o) faes ein Atlas von M mit det (J(a’ﬁ)) > 0 auf U, N Up, wobei

T q) =y 01 (25(0) (VIL.20)

xaox

und {x,}acs eine lokal endliche Partition der Eins, d.h. fiir alle ¢ € M und « € J gilt

0< xa <1, suppyxa C Uy, Zxa(q) =1, (VIL.21)
acJ
#{LeJ|U,nNUs# 0} < oco. (VIL.22)
Wir wihlen nun (unter Verwendung des Auswahlaxioms) eine Abbildung ag : M — J, sodass
Vg € M : Xagg(q) > 0. (VIIL.23)
Wir setzen nun fiir ¢ € M

Z Xa(q) dzaq( N dxam(q) (VIIL.24)

acl

wobel die Summe auf der rechten Seite nur endlich viele Summanden enthélt. Dann ist €2 €
A™[M] und fiir alle ¢ € M ist

Qq) = 9(q) dTag(g)1(q) N+ A dZogq)m(q), (VIL.25)

wobei geméfl Lemma VII.1

=) " Xa() det (S (g)) > Xay(q)(g) > 0. (VIL.26)

aeJ
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Bemerkungen und Beispiele.
o Fiir M C R™ offen mit der Karte (M, idy,) ist

Vee M: Q(x) :=dxy A+ Ndx, #0, (VIL.27)

und M ist orientierbar.

e Das Mobiusband ist nicht orientierbar, da sich die lokal gegebene 2-Form dx A dy nicht
stetig zu einer globalen 2-Form zusammensetzen lasst.

Definition VII.4. Sei (M, %, A) eine orientierbare Mannigfaltigkeit der Dimension m € IN
und m-Form Q) € /\(m) [M] und Atlas {¢o = (U, Ta) }acJ, sodass

Vae J,geU,: Qq) = 0galq) drai A Ndxam(q), ¢galq) > 0. (VIIL.28)

Sei weiterhin {xa}acs €ine lokal endliche Partition der Eins. Fiir f € Cy(M,R) eine stetige
Funktion auf M mit kompaktem Trager ist das Integral von f - ) iiber M definiert durch

| 1090 =% [ (- 1-00)((e0) @) da™ (VI1.29)

acJ

Bemerkungen und Beispiele.
e Das Integral (VII.29) ist kartenunabhéngig.

e Im Folgenden verwenden wir den Halbraum H™ und seinen Rand OH™ :

H" :=Rf x R™' = {(z1,...,2) € R™ | 21 > 0}, (VIL30)

OH™ := {0} x R™ ' = {(a1,...,2m) € R™ | 21 = 0}. (VIL.31)

Definition VIL.5. Seien (M, T) ein metrisierbarer, separabler topologischer Raum und m € IN.

(i) SindU e Tund 2 : U — x(U) C H™ ein Homedmorphismus, so bezeichnen wir ¢ = (U, z)
als berandete Karte (von M).

(ii) Zwei berandete Karten ¢ = (U, z), ¢ = (U, %) heifien vertriglich : <=
{v =UNU£0= (VIL32)
tox™t € C%(x(V),2(V))
zoile C™(E(V), I(V)).}

(iii) Eine Familie A berandeter Karten heifit berandeter Atlas (von M) : <—

Vé, 6 € A: ¢ und ¢ sind vertriiglich (VIL.33)
M= |J U (VIL.34)
(Ux)eA
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(iv) Zwei berandete Atlanten A, A von M heifien vertriiglich : <=
Vo e A deA: ¢und sind vertriiglich (VIL.35)

(v) Ist A ein berandeter Atlas von M, so nennt man die Aquivalenzklasse (M, T, A) beziiglich
vertriaglichen berandeter Atlanten eine berandete Mannigfaltigkeit

(vi) Ist (M, %, A) eine berandete Mannigfaltigkeit so nennen wir
oM == | J 27 (x(U)noH™) (VIL.36)
(Ux)eA

den Rand von M.

Bemerkungen und Beispiele.
o Ist M ={(z,y,2) e R® | 2 + y* + 2 = 1, 2z > 0} die Nordhalbkugel, so wihlen wir
Ui o= {(07) € M| 2 >1/2),
Uri={(z,y,2) € M | x < —1/2},
y+ ={(z,y,2) e M | y>1/2}, (VIL.37)
={(z,y,2) e M | y < —1/2},

8
UZ::{(x,y, )€M|x + 42 <E}

Tea(x,y, 2) = (2,y), xya(z,y,2)=(22), z.(z,y,2):=(,vy). (VIL.38)

e Ist (M,%, A) eine berandete, m-dimensionale Mannigfaltigkeit m > 2, so ist M eine
randlose Mannigfaltigkeit der Dimension m — 1, denn dM resultiert aus M durch Ein-
schriankung der Kartenabbildungen z auf z;'(0) und die Bildbereiche (wzy,--- ,,,) der
Karten vom M sind nicht auf den Halbraum H™~! beschrinkt.

Lemma VII.6. Sei (M, ¥, A) eine berandete und orientierbare Mannigfaltigkeit der Dimension
m > 2. Dann ist auch OM orientierbar.

Beweis. Seien ¢ = (U, x), b= (U,i) zwei berandete Karten von M, ¢ € UNU NOM und
det J(q) > 0, (VIL39)
wobei J = Jzo,-1 0 2, d.h.

Ok o2~ )(y)
8xl

Jri(q) = (VIL.40)

y=2(q)’

die Jacobi-Matrix von # o 7! ist. Wir kénnen O.B.d.A. Z(¢) = z(q) annehmen. Mit y =
(Y1, -+, Ym) is dann nach dem Satz von Taylor

Froa ' (y) = Jul@u + O (VIL41)
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Fiir y; = 0 und ||y||? geniigend klein ist z7*(y) € M also
0=z (0)] =Y Juulg)u + o(y?). (VIL.42)

Mit y =¢e-¢, 1 € Z5 und |e| << 1 folgt daraus

J12(q) = J13(q) = - = Jim(q) = 0. (VIL.43)
Fir y; >0, yo = -+ =y, = 0, y? << 1 ist andererseits 7' (y) € M \ OM, also
0 <z (y)] = Jia(g)y +OyD), (VIL44)
woraus wir
Jia(q) > 0 (VIL45)

erhalten. Daher nimmt J(q) die folgende Blockform an

Jialgg>0] 0 .- 0
J(g) = 2,1:(61 J2,2:(Q) JZ,W:(Q) | (VI1.46)
Jud(@) | Tna(@) - Tle)
und mit
B J2,2(q) J2,m(q)
J(q) = : : : (VILAT)
Jm,2(q) T m (q)
folgt, dass
det J(q) = djelt’l‘]((qf > 0. (VIL48)

Da M orientierbar ist, existiert ein Atlas so dass det Jyo,-1 > 0 fiir alle ¢ = (U, z), ¢ =
(U,z) € Amit UNU # (). Damit gilt det J;_.—, > 0 auch fiir den Atlas von M, den wir durch
Projektion von z und x auf die 2-m Komponenten gewinnen, und 0M ist ebenfalls orientierbar.

]

Satz VIL.7 (Stokes). Seien m > 2, (M, %, A) eine berandete, orientierbare Mannigfaltigkeit
der Dimension m und w € /\(m_l)[M ] eine (m — 1)- Form mit kompaktem Tréger. Dann gilt

/ d — /BM (VTL49)
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Beweis. Seien zunéchst supp(w) C U und ¢ = (U,z) € A eine berandete Karte von M. Mit
T1 = To, Tog := X3,...,Tm_1 := Ty und U :=UNOM ist dann gzﬁ (U z) die entsprechend
induzierte Karte von 8M . Seien weiterhin w; € C*(U; R), sodass fir ¢ € U

Z w;i(q) dx1(q “ANdzi—1(q) Ndxjia(q) A+ A day(q). (VIL.50)
Damit ist
dw(q) = Z dw;(q) Ndxz1(q) A -+ Ndzj—1(q) Ndxji1(q) A -+ A dzy(q)
j=1
™ Ow; ozt
= Z . ) drg(q@) N -+ Ndxj_1(q) Ndxj1(q) N -+ N dry(q)
Py Oy, y=2(q)
- LOw; oz (y)
=) (=1) dzxi(q) A+ Ndxpy(q) (VIL.51)
= 0z y=x(q)

und wir erhalten

S i Owjoz™!) = °° > 0w ox™)(y)
dw = —1]1/ /A dm :/ d / dm{/ d
/U JZI( ) ST (y) d™y e | dym | e U1
m [e'e) [e'e] [ee] a Wi 0 [E_l
+Z/ dyl/ dys -+ dyj1dyjs1 - dym {/ & o )(y)dyj}
j=2 70 —o0 <’z J y

o0

TV
=wjor = (Y1, ,yj =400, Ym)—wjor " (y1, - ,y;=—00, ,ym)=0

= / dyz -+ dyp, w1 0 xq(o’y% s 7ym> = / wl(Q) di’l(Q) ARERNA di’mq(Q)
_ OMNU

o0

- / w, (VIL52)
oMnNU

da
w(g)|  =wi(q) dir(q) A+ AdEpa(q). (VIL53)

[]
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