Lineare Algebra für Elektrotechnik

Wintersemester 25/26 Prof. Dr. Volker Bach

M.Sc. Merten Mlinarzik

3. Übungsblatt

Ausgabe: 06.11.2025

Abgabe: 13.11.2025, 13:15 Uhr

Abgabe in den gelben Briefkästen vor PK 4.3 mit der Beschriftung "Linear Algebra für Elektrotechnik WiSe 25/26 – Übungsgruppe XX" Bitte versehen Sie Ihre Abgabe mit Namen, Matrikelnummer und Übungsgruppe

Aufgabe 3.1 (5 Punkte)

Es seien $z, w \in \mathbb{C}$ komplexe Zahlen mit $w \neq 0$. Zeigen Sie die folgenden Identitäten.

$$(i): \operatorname{Re}\{z\} = \frac{z + \overline{z}}{2}, \quad (ii): \operatorname{Im}\{z\} = \frac{z - \overline{z}}{2i}, \quad (iii): \overline{(z \cdot w)} = \overline{z} \cdot \overline{w},$$

$$(iii): \ \overline{(z \cdot w)} = \overline{z} \cdot \overline{w}$$

$$(iv): |z|^2 = z \cdot \overline{z}$$

$$(v): |z \cdot w| = |z| \cdot |w|,$$

$$(iv): |z|^2 = z \cdot \overline{z},$$
 $(v): |z \cdot w| = |z| \cdot |w|,$ $(vi): \frac{z}{w} = \frac{z \cdot \overline{w}}{|w|^2}.$

Aufgabe 3.2 (2+2+1 Punkte)

(a) Bestimmen Sie Real- und Imaginärteil der folgenden komplexen Zahlen.

$$(i): \quad 3e^{i\frac{\pi}{4}}\,, \quad (ii): \quad \frac{1}{1-i}\,, \quad (iii): \quad (2+i)(4-3i)\,, \quad (iv): \quad \frac{2-i}{1-i}\,.$$

(b) Geben Sie die folgenden komplexen Zahlen in Polardarstellung an.

$$(i): 3-4i, (ii): (1+i)e^{-i\frac{3\pi}{4}}, (iii): (-i)^{10}.$$

(c) Bestimmen Sie alle komplexen Lösungen der folgenden Gleichungen.

$$(i): \ z^8 = -1 \,, \quad (ii): \ z^2 - 2z + 5 = 0 \,.$$

Aufgabe 3.3 (5 Punkte)

Beweisen Sie Satz III.5, d.h. dass C ein Körper ist.

Aufgabe 3.4 (4+1 Punkte)

(a) Es seien $z,w\in\mathbb{C}$ komplexe Zahlen. Zeigen Sie die sogenannte Parallelogrammidentität

$$||z - w||^2 + ||z + w||^2 = 2(||z||^2 + ||w||^2).$$

(b) Begründen Sie anhand einer Skizze, warum die Identität aus Aufgabenteil (a) etwas mit einem Parallelogramm zu tun hat.

Aufgabe 3.5 (4 Bonuspunkte) (Komplexe Leistungsberechnung)

Ein Bauteil ist an eine Wechselspannungsquelle mit einer Spannung von $\underline{U}=140\,\mathrm{V}$ und einer Frequenz von angeschlossen. Das Bauteil hat einen Scheinwiderstand von $\underline{Z}=70.7\,\Omega\cdot e^{-j45^\circ}$ in Ohm. Geben Sie die Ergebnisse gerundet mit einer Nachkommastelle an.

- a) Berechnen Sie bitte den Strom mit Hilfe der Gleichung $\underline{I} = \underline{U}/\underline{z}$ und geben Sie diesen in Polarkoordinaten in A an.
- b) Welcher Phasenwinkel φ ergibt sich zwischen der Spannung und dem Strom? Bitte beachten: $\varphi = \varphi_U \varphi_I$ und den Phasenwinkel φ im Bogenmaß ($2\pi = 360^{\circ}$) angeben, am besten als Bruchteil von π .
- c) Ermitteln Sie bitte die Scheinleistung $\underline{S} = \underline{U} \cdot \underline{I}^*$ in V A und geben Sie das Ergebnis in Polarkoordinaten an. Beachten Sie den konjugiert komplexen Strom in der Rechenvorschrift.
- d) Bestimmen Sie bitte die Wirkleistung als Realteil der komplexen Scheinleistung $P = \text{Re}\{\underline{U} \cdot \underline{I}^*\}$ in Watt, die in Wärme umgesetzt wird.