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. Grundlagen, Konventionen und
Notationen

Dieses Kapitel stellt eine Ubersicht iiber in der Mathematik haufig gebrauchte Begriffe,
Konventionen und Notationen dar. Der Inhalt dieses Kapitels wird den Leser(inne)n
grofitenteils aus dem Schulunterricht geldufig sein. Die wenigen neu hinzukommenden
Begriffe sind so leicht zu lernen, dass es den Leser(inne)n iiberlassen ist, sich im Laufe
der ersten Woche diese anzueignen. In der Vorlesung Lineare Algebra fiir Elektrotechnik
wird dieses Kapitel nur schlaglichtartig beleuchtet und wir! werden seinen Inhalt ohne
weitere Erkldrung benutzen.

I.1. Quantoren und Logik

e Fine Aussage im mathematischen Sinne ist ein Wortgebilde, dem man entweder
den Wert wahr (w) oder falsch (f) zuordnen kann.

— , Es regnet jetzt®,  Braunschweig ist die schinste Stadt Deutschlands® oder
,1-1=4"sind jeweils Aussagen,

— ,,Grin®, ,, Finfzehn Mann auf des toten Mannes Kiste -Johoo, johoo, johoo-
und 'ne Buddel mit Rum!“ oder ,,15x 4 Ty sind jeweils keine Aussagen.

Dabei geht es nur um die prinzipielle Zuordnung von w und f und weder um die
praktische Nachpriifbarkeit der Aussage als Fakt noch um deren Objektivitiat noch
um die Frage, ob sie eine Wertung beinhaltet.

e Das Zeichen = bedeutet Gleichheit und ist in seiner Bedeutung evident. Das Zei-
chen := bedeutet, dass die linke Seite durch die rechte definiert wird, das Zeichen
=: bedeutet, dass die linke Seite durch die rechte (im Sinn einer Namensgebung)
abgekiirzt wird.

Beispiel:
a = f(0), f(1) =: b (L.1)
bedeutet

a wird als Wert der Funktion f bei 0 definiert, der Wert

der Funktion f bei 1 wird hingegen mit b bezeichnet. (1.2)

e Das Zeichen V bedeutet fiir alle (umgedrehtes A wie Alle).

n mathematischen Texten wird meistens die 1. Person Plural verwendet — selbst wenn es sich nur
um einen Autor handelt.



Kapitel I. Grundlagen, Konventionen und Notationen

Beispiel:
Ve,y>0: z-y>0 (1.3)
bedeutet
Fiir alle x > 0 und y > 0 gilt x -y > 0. (L.4)

e Das Zeichen 3 bedeutet es existiert (umgedrehtes E wie Existiert).
Beispiel:
Ve>03dy<0: z4+y =0 (L5)
bedeutet

Fiir jedes x groffer Null existiert ein y kleiner Null, so

dass x +y = 0 gilt. (Das gesuchte y ist natiirlich —zx.) (L.6)

e Man beachte, dass Quantoren im Allgemeinen nicht vertauscht werden diirfen.
Dazu betrachten wir folgende Beispiele:

VnelNdmeIN: m>n
bedeutet

Zu jeder natiirlichen Zahl n gibt es eine natiirliche Zahl
m so, dass m grofSer als n ist. (Diese Aussage ist wahr).

(L7)

dmelNVnelN: m>n
bedeutet

Es gibt eine natiirliche Zahl m, so dass alle natirlichen
Zahlen n kleiner sind als m. (Diese Aussage ist falsch).

(L.8)

e Das Zeichen = bedeutet impliziert.
Beispiel:
A= B (1.9)
bedeutet

Aussage A impliziert Aussage B, d.h.: Ist A wahr, (L.10)
so ist auch B wahr. .

e Wie oben gesagt, kann eine mathematische Aussage A ein Satz, eine Bedingung
oder auch eine Behauptung sein. In jedem Fall ist sie aber wahr oder falsch, A €

{w, f}.
Beispiel:

A := FEsregnet., B := Die Erde wird nass. (I.11)
Dann gilt die Implikation A = B, was gelesen werden muss als

(A=w) = (B=w).
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Dieses Beispiel wirkt etwas kiinstlich. Darum geben wir ein weiteres Beispiel, in
dem die Aussagen von Platzhaltern abhéngen:

) w, falls z > 5, J w, fallsy > 7, _J w, falls z > 33,
Alz) = { f, falls z < 5, Bly) = { f, falls y < 7, Cla) = { f, falls z < 33,

dann gilt die folgende Implikation (s. (I.18)—(1.19)):

(1.12)
A(z) AN B(y) = C(x-y).

e Das Zeichen <= bedeutet ist gleichwertig mit oder ist dquivalent zu, d.h.

A<= B (1.13)
bedeutet
A ist genau dann wahr, wenn B wahr ist. (I.14)

e Das Zeichen V ist ein logisches oder, d.h.

AV B (I.15)
ist wahr, falls A oder B oder beide wahr sind und falsch, (116
falls A und (gleichzeitig auch) B falsch sind. 16)
Beispiel:
{z-y=0} <= {(@@=0)V (y=0)}. (1.17)
e Das Zeichen A ist ein logisches und, d.h.
ANB (1.18)
ist wahr, falls A und (gleichzeitig auch) B wahr sind und
(1.19)
sonst falsch.
Beispiel 1:
{(@=0A(y=0} = {z+y=0} (1.20)
Beispiel 2:
A<= B ist gleichwertig mit (A= B)A (B = A) (I.21)
d.h. (um die Verwirrung komplett zu machen)
(A — B) — [(A = B) A (B = A)] (I1.22)
e Die logische Negation wird mit — bezeichnet, also
- A (1.23)
ist wahr, falls A falsch ist und falsch, falls A wahr ist. (1.24)

WS 2025/26, Seite 6



Kapitel I. Grundlagen, Konventionen und Notationen

e Fine wichtige Beobachtung ist die Kontraposition, d.h. dass
(A= B) <= (—~B=-A4). (1.25)
Dies versteht man intuitiv sofort an folgendem Beispiel:

Es regnet. = Die Erde wird nass.
ist gleichwertig mit

Die Erde ist nicht nass. = Es regnet nicht. (1.26)

e Es ist niitzlich, sich die Werte der Aussagen A, B, A= B, A< B, AVB, A\NB
und —A, in einer Wertetabelle zu verdeutlichen:

A B [ASB|[ASB|AVB|[AAB] -4 |
w w w w w w f
w f f f w f f (1.27)
f w w f w f w
f f w w f f w

Wir sehen, dass [A = B] < [(-A) V B] & [-(A A (=B))] gilt, da die Werte
von A = B und (—A) V B fiir alle vier moglichen Werte des Paars (A, B) €
{(w, w), (w, f), (f,w), (f, )} tibereinstimmen.

e Fiir logische Verkniipfungen gelten

das Kommutativgesetz: (1.28)
AV B = BVA,
ANB = BAA,

das Assoziativgesetz: (1.29)

Av(BVvC) = (AVB)VvC,
AN(BAC) = (AANB)AC,
das Distributivgesetz: (1.30)
AV (BAC) = (AVB)A(AVC),
AN(BVC) = (AANB)V (ANC).
sowie: (1.31)
~(AV B) = (=4) A (=B),
~(A A B) = (=A) V (=B).

1.2. Mengen

Mengen sind (endliche, abzdhlbare oder sogar iiberabziahlbare) Sammlungen mathema-
tischer Objekte.

WS 2025/26, Seite 7
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{1,5,9} ist die Menge, die die Zahlen 1,5 und 9 enthélt,

{r € N | x < 5} enthélt alle natiirlichen Zahlen, die kleiner als 5 sind
(also {z € N|z <5} = {1,2,3,4}).

Jedes Element einer Menge wird nur einmal aufgefiihrt, beispielsweise ist
{1,5,9,9,5} = {1,5,9}.

x € M heifit x ist Element der Menge M.
x & M heifit x ist nicht in der Menge M enthalten.

Die Anzahl der Elemente einer Menge M wird mit |M| oder auch #[M] be-
zeichnet. Beispielsweise ist |[{1,5,9}| = 3.

A C B bedeutet, dass die Menge A in der Menge B enthalten ist, also dass A
Teilmenge von B ist. Umgekehrt heifit A O B, dass die Menge A die Menge B
enthélt:

(ACB) <= (B2 A) < (rc€cA=>=z€B). (1.32)

) = { } ist die leere Menge, die kein Element enthélt.

Gleichheit von Mengen bedeutet elementweise Ubereinstimmung,

(A=B) <= (zreA<==z€eB). (1.33)

{z | E(z)} und {z}pg) bezeichnen die Menge aller x, die die Eigenschaft E(x)
besitzen.

Beispiel:
U :={n|3keN: n=2k-1} (1.34)
ist

die Menge aller n, fiir die es eine natiirliche Zahl k gibt,

so dassn =2k —1 gilt ) (1.35)
d.h.
U={2%-1|keN} = 2N—1 (1.36)

ist die Menge aller ungeraden Zahlen.

Die Eigenschaft F(z) kann auch durch eine Indexmenge 7 charakterisiert sein.
Beispiel: Mit Z := {1, 3,5, 7} ist

{z; 1€} = {xitiex = {71, 23,25, 27} (1.37)

Haben wir mehrere Mengen, etwa A;, Ay und As, so bildet M = {A;, Ay, A3}
wieder eine Menge — eine Menge von Mengen. Dies kann man so fortsetzen und
kommt zu Mengen von Mengen von Mengen u.s.w. Der Ubersichtlichkeit halber
hat sich deshalb im Sprachgebrauch bewéhrt, die iibergeordnete Menge M als

Familie, System, Kollektion oder auch Klasse zu bezeichnen. Somit ist M die
Familie der Mengen Ay, Ay und As.
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e Die Familie aller Teilmengen einer Menge M bezeichnet man als ihre Potenzmen-
ge P(M). Dabei zihlen auch die leere Menge () und M selbst als Teilmenge von
M. Fiir |M| < oo ist [B(M)| = 2HMH . (Warum?)

Beispiel:

M:={1,2,3} = PM)= {(Z),{1},{2},{3},{1,2},{2,3},{1,3},{1,2,3}&. |
.38

e Die Vereinigung, der Durchschnitt und die Differenz zweier Mengen A, B
werden wie folgt bezeichnet:

Vereinigung;: AUB = {z|(z € A)V (z € B)}, (1.39)
Durchschnitt: ANB = {z|(x € A)A(z € B)}, (1.40)
Differenz: A\ B = {z|(zr € A) N (z & B)}. (I.41)

e Ist A eine Teilmenge einer Obermenge M, d.h. A C M, so bezeichnet
A¢ = M\ A (1.42)

das Komplement von A beziiglich M. (Vorsicht, der Notation A¢ fiir das
Komplement sieht man die Grundmenge M, auf die sie sich bezieht nicht mehr
an!)

Beispiel: Seien A = {1,2,3}, B ={3,4,5}, M ={1,2,...,10}. Dann sind
AUB = {1,2,3,4,5}, AN B = {3}, (1.43)
A\B = {1,2}, A°={4,5,6,7,8,9,10}. (L44)

e Vereinigungen und Durchschnitte konnen auch iiber Familien {4;};cz von Mengen
A; gebildet werden, wobei i eine Indexmenge Z durchlauft.

Beispiel:

UAZ- = {l“ﬂiGZ: x €A}, (1.45)
i€z

ist
die Vereinigung der Mengen A;, d.h. die x, die in (min- (1.46)
destens) einer Menge A; mit i € T enthalten sind; )
(A = {z|Viel: ze€A}, (1.47)
i€T

ist
der Durchschnitt der Mengen A;, d.h. die x, die in allen (1.48)

Mengen A; mit i € T enthalten sind.

e Fiir Vereinigung, Durchschnitt und Komplementbildung von Mengen gelten Kom-
mutativ-, Assoziativ-, und Distributionsgesetze, analog zu den entsprechenden Ge-
setzen fiir die logischen Verkniipfungen V, A und —.

WS 2025/26, Seite 9
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e Sind A und B zwei nichtleere Mengen, so bezeichnet

AxB = {(a,b) |a€ A, be B} (1.49)
das kartesische Produkt von A und B, d.h. die Men-
ge aller Paare (a, b), die sich mit Elementen a aus A und (1.50)

b aus B bilden lasst.

Allgemeiner ist
Ap x Ay x oo x Ay = {(a1,as,.. ., a,) | a1 € Ay, L a, € Ay (L51)

das  (n-fache) kartesische Produkt der Mengen
Ay, Ay, A, dh.  die Menge aller n-Tupel
(ay,as,...,a,), die sich mit Elementen a; aus A;,
fir i € {1,2,...,n} bilden ldsst.

(L52)

Vorsicht! Oft wird A; x Ay x --- x A, mit Ay UA,U---UA, verwechselt.
Der Unterschied wird aber schon deutlich, wenn man die Zahl der Elemente
fur A := A; = A, betrachtet:

2
[Ax Al = (l4])", (1.53)
AU Al = |A|. (1.54)
e Sind ay, as, as, ... Zahlen, so bezeichnen wir (a,),en als Zahlenfolge. Man beachte
auch hier den Unterschied zwischen dem Tupel (a,)nenw und der Menge {a, }nen-
So ist beispielsweise fiir die Zahlenfolge a1 = ay = a3 = ... = 1, die konstant gleich

eins ist,
(an)nelN == (1, 1, g oo .), (155)

aber

{adwen = {1,1,1,...} = {1}. (1.56)

e Hiufig wiederkehrende Mengen haben in der Mathematik eine eigene Bezeichnung
bekommen. Wir listen die Symbole fiir die wichtigsten Zahlenmengen auf:

die natiirlichen Zahlen: W := {1,23,...}, (1.57)
die natiirlichen Zahlen mit Null: N, := {0,1,2,3,...}, (1.58)
die ganzen Zahlen: Z := {0,1,—1,2,-2,3,-3,...}, (1.59)

die rationalen Zahlen: Q := { b ‘ pEZ, q€ ]N}, (1.60)
q

die reellen Zahlen: R (I.61)

die komplexen Zahlen: C (1.62)

Die prézise Definition der reellen oder gar der komplexen Zahlen geht iiber den
ublichen Schulstoff hinaus. Wir werden dies in den kommenden Wochen in der
Vorlesung behandeln.
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e Weiterhin fithren wir fiir m,n € INy mit m < n noch die Bezeichnung
zZ: = {mm+1,m+2 ... ,n} (1.63)

fiir die natiirlichen Zahlen zwischen m und n ein.

1.3. Ordnungsrelationen

Die Zeichen <, >, <, > haben wir in verschiedenen Beispielen in den vorigen Abschnitten
wie selbstverstdandlich benutzt.

e a < b heiflt a ist kleiner als oder gleich b.
e a > b heifit a ist grofler als oder gleich b.

a < b heif}t a ist kleiner als b. Zur Unterscheidung dieser Relation von
a < b sagt man auch a ist echt kleiner als b oder a ist strikt kleiner als b.

a > b heiBt a ist (echt, strikt) gréfer als b.

e Offenbar gilt
a<b < b>a, (1.64)
a<b < (a<b)V(a=0D), (1.65)
a>b < (a>b)V(a=0D). (1.66)

Die Ordnungsrelation < ldsst sich aber auch auf andere Mengen, als den uns vertrau-
ten Zahlen iibertragen. Deshalb ist es zweckméfig, den Begriff einer geordneten Menge
prézise zu definieren.

Definition I.1. Eine Menge S # () heifit (total) geordnet beziiglich “<” :&

. Sind a,b € S, so gilt genau eine der drei Relationen

(i) _
a < b, a=>boder a>b.

(i) Siid a,b,c € S, und gilt a« < b und b < ¢, dann gilt auch (1.68)
a < c.

(1.67)

Das Symbol “<” heiffit Ordnungsrelation auf S.

Beispiele fiir total geordnete Mengen sind IN, Z, Q und R. Auf den komplexen Zahlen
gibt es keine (mit den Verkniipfungen vertrigliche) Ordnungsrelation. Ebenso gibt es
keine (mit den Verkniipfungen vertrigliche) Ordnungsrelation auf den Vektoren in R3.

Mit Hilfe der Ordnungsrelation kann man Intervalle in R definieren. Seien a,b € R und
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a < b. Dann heiflen

(@, b) = {reR|a<z<b} (1.69)

das offene Intervall von a nach b,

[a, b] = {zeR|a<z<b} (1.70)

das abgeschlossene Intervall von a nach b,

[a,b) = {reR|a<xz<b} (L.71)

das rechts halboffene Intervall von a nach b,

(a,b] = {zeR|a<z<b} (L.72)

das links halboffene Intervall von a nach b
und insbesondere

Rt = {zeR|z>0}, R = {z€eR]|z<0}, (1.73)
Ry = {zeR| x>0}, R, = {xeR |z <0} (1.74)

1.4. Funktionen

Funktionen, auch Abbildungen genannt, sind die wichtigsten Objekte der Mathema-
tik. Eine Funktion f ordnet jedem Element z seiner Definitionsmenge D genau ein
Element f(z) seiner Wertemenge W zu. Die symbolische Schreibweise dafiir ist

f:D—=>W, z— f(x). (1.75)

Dabei ist die Definitionsmenge zwar voll ausgeschopft, denn f(x) ist fiir jedes © € D
definiert. Fiir die Wertemenge muss das aber nicht der Fall sein. Sind D' € D und
W' C W Teilmengen von D bzw. W, so bezeichnen wir mit

f(D) = {fx)eW|zeD} (1.76)
die Bildmenge (oder das Bild) von D" und

W) = {zeD| flz) e W'} (L.77)
die Urbildmenge (oder das Urbild) von W' .
Es kann also f(D) C W durchaus eine echte Teilmenge des Wertebereichs sein. (Wir
sollten hier aber erwéhnen, dass diese Konvention nicht einheitlich akzeptiert ist. Manche

Autoren verlangen, dass fiir f : D — W auch stets f(D) = W gilt, andere fordern noch
nicht einmal, dass f~*(W) =D.)

Definition I.2. Seien D, W # () und f : D — W eine Abbildung.

[ heiBt surjektiv &  f(D) = W, (L.78)
f heiBt injektiv & V' € D: (f(z)=f(2') = (z=1), (1.79)
f heifit bijektiv < f ist surjektiv und injektiv. (1.80)
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Bemerkungen und Beispiele.

e cxp: R — R, x> €” ist nicht surjektiv, (wegen e* > 0) aber injektiv (wegen der
strengen Monotonie der Exponentialfunktion).

e sin: R — [—1,1], x — sinz ist surjektiv aber nicht injektiv.
e tan: (—7/2, 7/2) — R, x +— tanx ist bijektiv.

Definition 1.3. Fiir g : A — B und f : g(A) — C ist die Verkettung oder Kompo-
sition oder auch Hintereinanderschaltung f o g von g und f wie folgt definiert:

fog: A—C, 95»—>f(g(:v)). (1.81)

Satz 1.4. Seieng: A— B und f: B — C.
(i) Sind f und g surjektiv, so ist auch fog: A — C surjektiv.
(i1) Sind f und g injektiv, so ist auch fog: A — C injektiv.
(iii) Sind f und g bijektiv, so ist auch fog: A — C bijektiv.

Bewets.

Zu (i): Sei ¢ € C. Weil f surjektiv ist, gibt es ein b € B mit f(b) = c¢. Weil g surjektiv
ist, gibt es ein a € A mit g(a) = b. Also gilt (f o g)(a) = c.

Zu (ii): Seien a,a’ € A mit (fog)(a) = (fog)(a’). Weil f injektiv ist, folgt g(a) = g(a’).
Weil g injektiv ist, folgt dann auch a = d’.

Zu (iii): Folgt aus (i) und (i1). O

Wichtig ist also zu beachten, dass der Definitionsbereich von f mit dem Bildbereich von
g libereinstimmt. Man beachte auch die Reihenfolge: obwohl die Komposition fog heifit,
wird erst g auf x € A angewandt und danach f auf das Ergebnis g(x) € B.

Die Bedeutung der Bijektivitét liegt darin, dass sie die Existenz und Eindeutigkeit der
Umkehrfunktion sichert, wie der folgende Satz zeigt.

Satz 1.5. Seien A, B zwei nichtleere Mengen und f : A — B eine bijektive Abbildung.
Dann gibt es eine eindeutige Abbildung g : B — A so, dass go f =14 und fog=1p
gelten, d.h. dass

VeeA: glf(x))]=2 wund VYyeB: flgly)]=yvy (1.82)

gelten. In diesem Fall heifst g + B — A Umkehrabbildung zu f, und wir schreiben
g=:f1

Beweis. Sei y € B. Weil f surjektiv ist, gibt es ein € A so, dass y = f(z), und weil f
injektiv ist, ist « das einzige Element in A, fiir das y = f(z) ist. Also definiert g(y) := x
eine Abbildung g : B — A. Diese Abbildung hat die Eigenschaft, dass f[g(y)] = f(z) =y
fir alle y € B gilt. Ist umgekehrt x € A beliebig, so setzen wir y := f(x) und beobachten,
dass f(z) =y = flg(y)] = f(g[f(x)]) gilt. Aus der Injektivitéit von f folgt nun jedoch

x = glf(x)]. N
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Eine wichtige Klasse von Funktionen ist die der charakteristischen Funktionen, auch
Indikatorfunktionen genannt. Ist D eine nichtleere Menge und A C D eine Teilmenge,
so ist die charakteristische Funktion von A gegeben als

1 fallsz € A,

0 fallsx ¢ A. (1.83)

14 : D—{0,1}, xr—>{

Mit anderen Worten: 1 4[x] ist genau dann gleich 1, wenn z in A liegt und anderenfalls
gleich 0.

1.5. Beweistechniken

1.5.1. Volistandige Induktion

Eine haufig verwendete Beweistechnik ist die vollstdndige Induktion. Zunéchst stellen
wir das Verfahren abstrakt vor. Nehmen wir an, wir wollten Aussagen A(1), A(2), A(3),. ..
beweisen. Dann kénnen wir folgende Tatsache verwenden.

Satz 1.6. Gibt es ein ng € IN, so dass A(ng) wahr ist, und gilt die Implikation
An) = An+1), (1.84)
fir jedes n > ng, n € N, so ist A(m) wahr, fir jedes m > ng, m € N.

Beweis. Wendet man (1.84) (m — ng)-mal an, so erhdlt man
A(ng) = Anp+1) = Ang+2) = --- = A(m — 1) = A(m). (1.85)
[l

Der Beweis durch vollstédndige Induktion wird an einem Beispiel am deutlichsten. Wir
wollen fiir n € IN die Summe

F(n):=14+24---4n (1.86)

berechnen, und wir haben die Vermutung, dass F(n) = G(n), wobei

G(n) = w (1.87)
Nun gilt es, die Aussage
An) = w & F(n)=G(n) (1.88)

fiir alle n € IN zu beweisen.
e Induktionsanfang: Wihle ng := 1. Dann ist

1(1+1)

Flno) = F(1) = 1 = ——

— G(1) = G(n), (1.89)

und A(ng) = A(1) = w.
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e Induktionsannahme: Seien n > 1 und gelte A(n) = w, also F(n) = G(n).

e Induktionsschritt: Wir zeigen, dass aus A(n) = w auch A(n+1) = w folgt. Dazu
beobachten wir, dass unter Verwendung von F'(n) = G(n) auch

n(n+1)

Fn+1) =n+14F(n) = n+1+Gn) = n+1+ 5
IUESVLES IR (190

gilt, dass somit also A(n + 1) = w richtig ist.
Nach Satz 1.6 ist damit A(n) = w fiir alle n € IN bewiesen.

1.5.2. Beweis durch Kontraposition

Neben der vollstiandigen Induktion ist auch der Beweis durch Kontraposition eine haufig
verwendete Methode, die auf (1.25) beruht,

(A= B) & (-B=-A). (1.91)

Wir illustrieren dies wieder mit einem Beispiel: Seien die Aussagen A und B definiert
durch

A= w & V2 eq, (1.92)
B =w:= 3dpqeN, ggl(pg) =1: 2¢* = p? (1.93)

wobei ggT'(a,b) € N den grofiten gemeinsamen Teiler zweier natiirlichen Zahlen a,b € IN
bezeichne.

Ist nun A = w, so gibt es Zahlen p/,¢ € N so, dass v2 = ‘;i: gilt. Enthalten p’ und ¢’
einen gemeinsamen ganzzahligen Faktor » € IN, sodass also p’ = pr und ¢’ = ¢r gelten,
so kénnen wir r herauskiirzen und erhalten /2 = § mit teilerfremden p und ¢, d.h.
ggT(p,q) = 1. Damit ist auch B = w, und wir erhalten

A= B. (1.94)

Die Aussage B ist jedoch stets falsch, weil dann der Primfaktor 2 in 2¢* in ungerader
Anzahl und in p? in gerader Anzahl auftreten miisste.

(B=f}={-B=uw}={-A=w}=>{V2 ¢ Q. (1.95)

Wir bemerken, dass der Beweis durch Kontraposition sehr dhnlich zur Methode des
Widerspruchsbeweises ist, letzterer beruht auf [A = B] = (=A) V B = -[A A (=B)].

1.6. Notationen

Seien m,n € Z mit m < n und

A = {am, Gmi1, Gmio, .- a0} (1.96)
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eine Menge von Zahlen. Dann ist das Summenzeichen wie folgt definiert,

Z a; = G+ Qg1 + Qpao + ...+ ay. (1.97)

i=m

Wir bemerken, dass der Summationsinder ¢ durch irgend einen anderen Buchstaben
auler m oder n ersetzt werden kann,

Zai = Z ar = Z aj. (1.98)
i=m k=m j=m

Fir m >n wird Y a; := 0 definiert.

Mit Z := {m,m+1,...,n} und A wird die Summe auch oft noch anders geschrieben:
Z a; = Z a; = Z a. (1.99)
i=m ieT acA
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1.7. Erganzungen

1.7.1. Aquivalenzrelationen

Héufig lasst sich eine Menge in eine Familie disjunkter Teilmengen zerlegen, deren Ele-
mente jeweils dhnliche Eigenschaften haben. Beispiel:
Wir zerlegen Z in Z. = Ay U A; U Ay, wobei

Ay =37 = {3k|k €7}, (1.100)
A =3Z+1 = {3k+1|ke Z}, (1.101)
Ay =3Z+2 = {3k+2|keZ}. (1.102)

Offensichtlich sind AgN Ay = A3 N Ay = Ag N Ay = (. Die Elemente in A; (7 =0,1,2)
lassen sich dadurch charakterisieren, dass sie einen Rest j beim Teilen durch 3 ergeben.

Wir formalisieren nun diese Uberlegungen.

Definition 1.7. Sei A eine Menge. Eine Abbildung R : A x A — {w, f} heifit Relation
auf A. Fiir R(a,b) = w schreiben wir auch a ~ b.

Definition 1.8. Eine Relation R : A x A — {w, f} auf einer Menge A, mit R(a,b) =
w < a ~ b heifit Aquivalenzrelation, falls folgende drei Eigenschaften gelten:

Reflexivitit Va e A: an~a, (1.103)
Symmetrie Va,be A: a~bsb~a, (1.104)
Transitivitit Va,b,c€ A: (a~bAb~c)= (a~c). (1.105)

Satz 1.9. Eine Aquivalenzrelation auf einer Menge A bewirkt eine Zerlequng von A in
disjunkte Teilmengen. Dabei sind zwei Elemente aus A genau dann dquivalent, wenn sie
derselben Teilmenge angehdren.

Beweis. Zu a € A definieren wir

la]. ={r € Ala~ z}. (1.106)

Wegen a € [a].. ist [a]~ nicht leer. Wir zeigen nun fiir a,b € A, dass
entweder [a]l. N [b]. = 0 (1.107)
oder la]. = [b]~ (L.108)

gilt. (Wegen [a]. # 0 kénnen (1.107) und (I.108) nicht gleichzeitig gelten.)

Sei [a]. N [b]~ # 0. Dann gibt es also ein gemeinsames Element ¢ € [a]. , ¢ € [b]. . Damit
gelten a ~ cund ¢ ~ b, also auch a ~ b. Ist nun = € [a]., dann gilt  ~ ¢ und mit a ~ b
auch x ~ b, also = € [b].. Es folgt, dass [a]. C [b].. Genauso erhdlt man [b]. C [a].,
also [a]. = [b]~. Damit ist (I.107)—(1.108) gezeigt.

Schreiben wir jetzt

A= Jla], (1.109)

folgt die Aussage unmittelbar durch Zusammenfassen gleicher [a]... O
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Definition I.10. Die Teilmengen [a]. heifien Aquivalenzklassen. Die Familie der
Aquivalenzklassen bezeichnet man mit

A/ ~  (sprich: ” A modulo ~ "). (I.110)
Liegt a in einer Aquivalenzklasse, so heifit « Reprisentant der Klasse.

Bemerkungen und Beispiele.
Sind A := Z die ganzen Zahlen und p € N eine natiirliche Zahl, so sind

m~n & JkeZ: m—n = kp. (L.111)
= 7Z = [0]~U[l].U...U[p—1]., (L.112)
Ul = {kp+3lke€Z}. (1.113)

7,/ ~ bezeichnet man auch mit Z/pZ oder Z, und [j]~ =: [j] mod p-

Definition I.11. Sei ~ eine Aquivalenzrelation auf einer Menge A. Eine Teilmenge
S C A heifit ein vollstindiges Repridsentantensystem zu ~, falls folgende zwei
Eigenschaften gelten:

(i) Jedes Element aus A ist zu einem Element aus S dquivalent.

(ii) Die Elemente aus S sind paarweise nicht dquivalent.

Bemerkungen und Beispiele.

A = {g CR?| gist eine Gerade}, (I.114)

g1 ~ g2 i< g1 und gs sind parallel.

= S = {ge A| gn{0} ={0}} (1.115)
ist ein vollstdndiges Représentantensystem. (L.116)

1.7.2. Das griechische Alphabet

Das griechische Alphabet wird in der Mathematik haufig verwendet. Zum Abschluss ge-
ben wir noch eine Liste der gebrauchlichsten griechischen Buchstaben:
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KLEIN

a alpha £ beta v gamma | 0 delta € epsilon

e epsilon | ( zeta n eta 6 theta ¥ theta

L jota k kappa | A lambda | © mii v ni

¢ xi 0o o T pi @ phi p rtho

o rho o sigma | ¢ sigma T tau v upsilon

¢ phi ¢ phi X chi Y psi w omega
GROSS

I' Gamma | A Delta | © Theta | A Lambda | = Xi

IT Pi > Sigma | T Upsilon | & Phi U Psi

Q2 Omega
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Il. Gruppen, Ringe und Korper

Im vorigen Kapitel I wurden die wichtigsten Zahlenmengen bereits genannt:

die natiirlichen Zahlen,

N = {1,2,3,...}, (IL.1)
die ganzen Zahlen,
Z = {0,+1,—-1,42,-2,...}, (I1.2)
die rationalen Zahlen,
Q::{g‘pEZQEN} (I1.3)

sowie die reellen und die komplexen Zahlen,

R und C. (IL.4)

Wir wenden uns zunéchst IN, Z und Q zu. Fiir a,b € N ist auch a+b € IN. Diese Tatsache
bezeichnet man als Abgeschlossenheit oder Stabilitdt von IN beziiglich Addition.

LLA. gilt a — b € N jedoch nicht. Dafiir geht man von IN zu Z {iber; fiir a,b € Z sind
a+bund a — b € Z. Insbesondere ist 0 das neutrale Element beziiglich Addition in Z:
a+ 0 =0+ a = a. Man sagt, dass Z beziiglich der Addition + eine Gruppe bildet.

Weiterhin ist Z auch beziiglich Multiplikation abgeschlossen, d.h. fiir a,b € Z ist auch
a-b € Z,und es gilt das Distributivgesetz, a(b+ ¢) = ab+ be. Somit ist Z beziiglich der
Addition 4+ und der Multiplikation (-) ein Ring.

Schliefllich gelangt man von Z zu Q durch die Forderung, dass auch Abgeschlossenheit
beziiglich Division gelten soll: Fiir a,b € Q sind a +b,a —b,a-b € Q und § € Q, falls
b # 0. Diese Eigenschaften von  stehen auch exemplarisch fiir die allgemeine Definition
eines Korpers.

11.1. Gruppen

Definition II.1. Eine Menge G heifit Gruppe :&
Auf G ist eine Verkniipfung o : G x G — G definiert, die die folgenden Eigenschaften
besitzt:

(G1) Ya,b,ceG: (aob)oc = ao(boc), (IL.5)
(G2) deeGVaeG: aoe = eoa = a, (IL.6)
(G3) VaeGIa'elG: aoa! =a'loa = e (IL.7)
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Dabei bezeichnet man (G;) als Assoziativitiit, e als das neutrale Element und ™!

als das zu a inverse Element. Die Anzahl |G| der Elemente in G bezeichnet man als
Ordnung von G.
Gilt auBlerdem noch

(G4) Ya,beG: aob = boa (Kommutativitit), (IT.8)

so nennt man G kommutativ oder abelsch.

Bemerkungen und Beispiele.

e Hiufig wird das Verkniipfungszeichen weg gelassen, und man schreibt

aob =: ab. (IL.9)

e Die Assoziativitat erlaubt es uns, Klammern bei der Gruppenverkniipfung einfach
wegzulassen oder bei Bedarf einzufiigen,

(ab)c = a(bec) =: abe. (I1.10)

e Das neutrale Element e einer Gruppe ist eindeutig. Ist némlich ¢’ irgendein (mogli-
cherweise von e verschiedenes) Element von G, das die Eigenschaft (G3) besitzt,
so folgt ¢ =ee’ =e.

e Sind G eine Gruppe, a € G und b € G ein (moglicherweise von a~! verschiedenes)

zu a inverses Element, also ab = ba = e, so folgt dass b = (e~ a)b = a'(ab) = a™*,
und das zu a inverse Element, o=}, ist eindeutig.

e Aus der Eindeutigkeit des inversen Elements folgen dann auch

(@™ =a und (ab)™' = btat, (I1.11)

letzteres wegen abbta™! = aea™! = aa! = e.

e Fiir abelsche Gruppen G schreibt man die Verkniipfung “o” héufig als Addition
+: G x G — G, und die Eigenschaften (G1)—(G4) nehmen folgende Gestalt an:

(G1) VabceG: (a+b)+c = a+ (b+0¢), (I1.12)
(Gy) 30eGVaed: a+0 = 0+a = a, (I1.13)
(Gs) YVaeGI —aeG: a+(—a) = (—a)+a = 0, (IT.14)
(G4) Va,beG: a+b = b+a. (11.15)

e Die Menge Z = {...,—-2,—1,0,1,2,...} der ganzen Zahlen ist beziiglich der Ad-
dition eine abelsche Gruppe mit 0 als neutralem Element und k! = —k als zu
k € 7 inversem Element.

e Die Menge Q\ {0} der rationalen Zahlen ohne Null ist beziiglich der Multiplikation
eine abelsche Gruppe mit 1 als neutralem Element und ¢=! = 1/q als zu ¢ € Q\ {0}
inversem Element.

e Die Menge G := R\ {1} bildet beziiglich a 0o b := a + b — ab eine Gruppe.
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11.1.1. Permutationen

Definition II.2. Zu vorgegebenem n € N sei Z7 := {1,2,...,n}. Die Menge der Per-
mutationen von n Elementen ist durch

S, = {n: 2} -7} | 7 ist bijektiv} (I1.16)
gegeben. Das Signum (—1)" € {—1, 1} von 7 ist definiert durch

(1) = H1§i<j§n7r(i)_7r(j)'

H1§i<j§n t—1J

(I1.17)

Die Permutationen schreibt man auch haufig als Schema

"= (W(ll) o WZ@)- (IL18)

Die Komposition von Bijektionen ist nach Satz 1.4 (iii) stets selbst bijektiv. Somit
bildet die Komposition zweier Permutationen eine Verkniipfung o : &, x &, — S,.
Die Komposition von Abbildungen ist stets assoziativ, deshalb gilt auch (G7). Weiterhin
agiert, wie in (Gy) gefordert,

(1 2 - n
gy = <1 S n) €S, (11.19)

als neutrales Element beziiglich o. Schliefflich ist mit 7 € §,, auch die Umkehrabbildung
7! € S, eine Permutation, und es gilt 7' om = 7w o7~ = 1z», also (Gs). Zusammen-
fassend stellen wir fest, dass die Permutationen S,, beziiglich der Komposition o eine
Gruppe bilden. Dabei ist die Ordnung gleich |S,,| = nl.

Bemerkungen und Beispiele.

e Beachte, dass

1 rG.J) = ﬁ(ﬁ F(z’,j)). (I1.20)

1<i<j<n i=1

e Fiir n = 2 sind |Sy| = 2! = 2 und

S, = {n:(} 3) a:@ f)} (I1.21)

mit (—1)! = +1 und (—1)° = —1.
e Fiir n = 3 sind |S;3| = 3! = 6 und

123 123 123

83 == {71'1:(1 9 3), 7T2:(3 1 2), 7T3:<2 3 1), (II22)
123 123 123

“:(1 3 2)’ 7T5:<3 2 1)’ 7Tf”:(z 1 3)} (11.23)

mit (—1)™ =(=1)™ =(-1)™ =+1und (=1)™ = (-1)™ = (—1)" = —1.
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e Fiir n = 3 sind m5(1) = 3, m5(2) = 2, 75(3) = 1 und somit

II -0 =0-2-01-3)-2-3) = (-1)-(-2)-(-1) = (-2)

1<i<j<n

und

H (m5(i) — m5(4)) = (m5(1) — m5(2)) - (mws(1) — 75(3)) - (75(2) — 75(3))

1<i<j<n

Also ist in der Tat

(_1)7r5 _ H1§i<j§n (7T5(i)—7T5(j)) _ i - 1 (1126)

H1§i<j§n(i ) —2

e Fiir n = 3 sind mg(1) = 2, m6(2) = 1, m6(3) = 3 sowie my(l) = 3, m(2) = 1,
mo(3) = 2. Also sind

[m6 0 ma|(1) = mg[ma(1)] = m6[3] = 3, (I1.27)
[6 0 m2|(2) = mg[m2(2)] = m6[1] = 2, (I1.28)
[m6 0 m2|(3) = mg[m2(3)] = me[2] = 1, (11.29)

und dementsprechend ist

e Analog erhilt man fiir n = 3
g OTlg = T4 7é Ty — Tig O T, (1131)

was zeigt, dass die Gruppe S3 der Permutationen nicht kommutativ ist. Dies gilt in
der Tat ganz allgemein fiir alle S,, mit n > 3. (Trivialerweise ist So kommutativ.)

e Das Signum von Permutationen ist multiplikativ, d.h. fiir n € N und 7,k € S, gilt
(=)™ = (=1)" - (=1)"~. (11.32)

Dies wird in Lemma I1.12 bewiesen.
e Die Permutationen der Form

o (1 =1 i di4+1 ... =173 j+1 ... n

1 o..oi—1 3§ i+1 ... j—11 j+1 ... n) € Sp, (IL33)

die nur zwei Elemente (hier: i <+ j) gegeneinander austauschen, heifen Transpo-
sitionen. Geméf Lemma II.11 gilt stets (—1)7 = —1.
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e Jede Permutation 7 € &, lasst sich als Komposition von Transpositionen schreiben,

d. h. es gibt Transpositionen oy, ...,0, € S,, so dass
T = 0,0090...00,,. (I1.34)
GeméB (I1.32) und (I1.62) gilt also
O Y e O (1135)

d.h. das Signum der Permutation 7 ist —1 hoch die Anzahl der Transpositionen,
deren Komposition 7 ergibt.

Weitere Details zu Permutationen findet man in Abschnitt 11.4.2.

I1.2. Ringe

Definition I1.3. Eine Menge R heifit Ring :&

Auf R sind zwei Verkniipfungen Addition + : R x R — R und Multiplikation (-) :

R x R — R definiert, die die folgenden Eigenschaften besitzen:
(Ry) R ist beziiglich der Addition + eine abelsche Gruppe, (I1.36)
(Ry) Va,b,ce R: (@-b)-c = a-(b-c), (I1.37)
(R3) Va,b,ceR: a-(b+c) =a-b+ta-c, (b+c)-a =b-a+c-a (IL38)

Dabei bezeichnet man (R3) als Distributivitét und vereinbart, dass Multiplikation vor
Addition ausgefiihrt wird (Punktrechnung vor Strichrechnung).

Bemerkungen und Beispiele.

Die Menge IN := {1,2,3,...} der natiirlichen Zahlen ist kein Ring.
Die Menge Z :={...,—2,—1,0,1,2,...} der ganzen Zahlen bildet einen Ring.
Die Menge 27 :={...,—4,—2,0,2,4,...} der geraden Zahlen bildet einen Ring.

Die Menge 27 + 1 := {...,=5,-3,—1,1,3,5,...} der ungeraden Zahlen ist ge-
geniiber Addition nicht abgeschlossen und deswegen auch kein Ring.

Q, R und C sind Ringe.

11.2.1. Die Restklassenringe Z, von Z modulo p

Fiir p € IN definieren wir die Restklassen modulo p durch
VkeZ: k], == k+pZ = {k+pn|neZ}. (11.39)

Wir beobachten, dass [k], = [{], gleichwertig mit (k — ¢) € pZ = {pn|n € Z} ist.
Offensichtlich gibt es genau p solcher Restklassen modulo p. Thre Menge bezeichnen wir
mit

Zy = {0y [y 2Dy s [P =1} (11.40)
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sie bilden eine paarweise disjunkte Zerlegung der ganzen Zahlen, Z = Kez, K. Defi-
nieren wir Addition und Multiplikation auf Z,, durch

[k]p + [g]p = [k+ E]p und [k]p . [E]p = [k- g]p, (11.41)
so bilden die Restklassen Z, modulo p mit den Verkniipfungen in (II.41) einen Ring,

den Restklassenring modulo p.

Um einzusehen, dass Z, einen Ring bildet, braucht man natiirlich nur die Ringaxio-
me nachzupriifen, was eine reine Fleiflaufgabe ist. Eine Subtilitéit liegt allerdings im
Beweis der Wohldefiniertheit der Verkniipfungen in (I1.41): Damit (I1.41) iiberhaupt
Verkniipfungen + : Z, x Z, — Z, und (-) : Z, X Z, — Z,, definiert, ist zu zeigen, dass
die Gleichungen in (I1.41) unabhéngig von den gewéhlten Repréasentanten k, ¢ € Z sind.
Seien dazu k, k', ¢, (' € Z und [k], = [K'], sowie [¢], = [¢],, es gibt also m,n € Z, sodass

K= k+mp und ¢ = (+np. (I1.42)
Dann sind aber auch
k+{, = [K+], uwd [k-(, = [k-], (I1.43)
denn
K4+l = (k+0)+m+n)p und K -0 = k-4 (kn+fm+mn)p,  (11.44)

also sind die Verkniipfungen in (I1.41) unabhéngig von den gewihlten Reprisentanten.
Eine Anwendung der Restklassenringe ist die Regel, dass eine Zahl n € IN genau dann
durch 9 teilbar ist, wenn ihre Quersumme durch 9 teilbar ist, denn es gilt
|:CL0+CL1'101 + a2-102 + ... + CLm'lOm]g
= [ao]g + [a1]9 . [10]9 + ... + [(lm]g : [10};1
= [ao]g + [a1]9 -+ [CLQ]Q + ... + [(lm]g
= [ao +a+ay+ ...+ am]g. (1145)

11.3. Korper

Definition II.4. Ein Ring I heifit Kérper! <
IF besitzt zu (Ry)—(R3) zusétzlich die folgenden Eigenschaften:

(K1) Va,belF: a-b =b-a, (I1.46)
(Ky) J1eF\{0} Vaeck: l-a =a-1 = a, (I1.47)
(K;) VacT\ {0} aé €T\ {0} : . % . (T1.48)

Bemerkungen und Beispiele.

lengl.: Field
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e Ist IF ein Ring, der die Eigenschaften (K3) und (K3), aber nicht (K;) besitzt, so
bezeichnet man I als Schiefkorper.

e Die Eigenschaften (R;)—-(R3) sowie (K;)—(K3) eines Korpers F implizieren, dass
I\ {0} beziiglich der Multiplikation eine abelsche Gruppe mit neutralem Element
1 ist. Man bezeichnet F* := I \ {0} als multiplikative Gruppe von F.

e Der Ring Z der ganzen Zahlen ist kein Korper.
e Die Menge Q := {p/q|p € Z,q € N} der rationalen Zahlen bilden einen Korper.

o Weitere Korper sind die Menge der reellen Zahlen R und die Menge der komplexen
Zahlen C. Diese Korper sind fiir diese Vorlesung am wichtigsten. Deshalb schreiben
wir K statt IF, falls F = R oder F = C.

e Ist p eine Primzahl, so bilden die Restklassen Z, modulo p einen Kérper (s. Ab-
schnitt I1.2.1).
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11.4. Ergdnzungen

11.4.1. Untergruppen
Definition I1.5. Sei (G, o) eine Gruppe. Eine Teilmenge U C G heifit Untergruppe

<= U ist beziiglich der Verkniipfung o in G selbst eine Gruppe. (11.49)

Lemma I1.6 (Untergruppenkriterium). Sei (G, o) eine Gruppe. Eine Teilmenge U C G
st eine Untergruppe, falls folgende drei Kriterien erfillt sind:

(i) e €U, (I1.50)
(i7) Va,beU: aobe U, (I1.51)
(i) Va €U : aleUl. (I11.52)

Beweis. Wegen (i) gilt o : U x U — U, d.h. U ist beziiglich o abgeschlossen. Da die
Verkniipfung auf G assoziativ ist, ist sie (erst recht) auch auf U C G assoziativ. (i)
sichert (G3) und (i) sichert (G3). O

Bemerkungen und Beispiele.

e {e},G C G sind stets Untergruppen — die trivialen Untergruppen.

e Die geraden Zahlen 27, C Z bilden beziiglich Addition eine Untergruppe.

e Die ungeraden Zahlen 27 + 1 C Z sind beziiglich Addition keine Untergruppe,
denn 0 € 27 + 1.

Definition I1.7. Sei (G, o) eine Gruppe. Das Zentrum Z(G) C G von G ist definiert
durch

Z(G):={aeG|VreG: ar = xa}. (I1.53)
Lemma I1.8. Z(G) ist eine abelsche Untergruppe von G.

Beweis. Zunichst weisen wir mit Hilfe des Untergruppenkriteriums, Lemma I1.6, nach,
dass Z(@G) eine Untergruppe von G ist.

(i) Wegen ex =z = ze ist e € Z(G).
(ii) Fir a,b € Z(G) und x € G ist abr = axb = zab, also ist ab € Z(G).
(iii) Fiir « € Z(G) und z € G ist x7'a = az™ und daher a7 'z = (z7'a)™! =
(az™')™' = za™'. Also ist mit a auch a™' € Z(G).

Es folgt, dass Z(G) eine Untergruppe ist. Weiterhin ist fiir a,b € Z(G) insbesondere
b € G und deshalb ist ab = ba. Also ist Z(G) abelsch. O
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11.4.2. Permutationen, Transpositionen, Zyklen und Signum

Definition IL.9. Sei 7 € S,, eine Permutation. Sind ki, ko, . .., k. € Z7 mit 7(ky) = ko,
(ko) = ks, ..., w(k,) = ky, also

s ks o ks o e s ks (I1.54)

so heifit (kq, ko, ..., k) Zyklus von 7 der Lénge r.

Bemerkungen und Beispiele.

e Die Permutation m € S,
= (

(1,5,3), (2,4,9), (6,8), (7) (11.56)

123456789
541938762)’ (11.55)

besitzt die Zyklen

(etwal — 5 +—— 3 +— 1). Jede Permutation ist offensichtlich durch ihre
Zyklen eindeutig bestimmt, und man schreibt

m:=(1,5,3) (2,4,9) (6,8). (I1.57)

(Zur Vereinfachung ldsst man Zyklen der Linge 1 weg.)

e Umgekehrt kann fiir n > r jeder Zyklus (ki, ks, ..., k.) als Permutation in S,
gelesen werden: (ky, ka, ..., k) lasst alle Elemente in Z7\ {k1, k2, . .., k,} invariant.
Mit dieser Lesart wird (I1.57) zu

7 = (1,5,3)0(2,4,9) 0 (6,8). (IL58)
e Auflerdem kommutieren disjunkte Zyklen miteinander, deshalb ist 7 = (1,5,3) o
(2,4,9) 0 (6,8) = (2,4,9) 0 (6,8) o (1,5,3).

e Ein Vergleich mit (I1.33) zeigt, dass Transpositionen genau die Zyklen der Lénge 2
sind, nédmlich

B I ... i—=114+1 ... 5—-1j j+1 ... n\ . .
7= ( Lo i1 i+l . -1 g41 o) = ) (159)
Satz 11.10. Sein > 2. Jede Permutation m € S,, kann als Komposition von Transposi-
tionen geschrieben werden, d.h. es gibt ay, by, as,ba, ..., Qp, by € 27, mit a; # b;, so
dass
7 = (a1,b1) o (ag,by) 0 -0 (A, by). (I1.60)
Beweis. Zunéchst stellen wir fest, dass es geniigt, fiir einen beliebigen Zyklus (aq, . . ., a,)

der Linge 2 < r < n Glg. (I1.60) zu zeigen. Es ist aber

(al, as, . .. ,ar) = (al, CLT) @) (CLl, aT,l) O-+-+0 (Cll, (12). (IIGl)

O
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Lemma I1.11. Sindn e N, n>2,1<i<j<nundo = (i,7) €S, eine Transpositi-
S0 1t

p=i; ¢>J

p<i; q=1

= —1 (11.63)
]
Lemma I1.12. Sind n € N, n > 2, und 7,k € S,, zwei Permutationen, so gilt
(=)™ = (=)™ - (=1~ (I1.64)
Beweis.
e - T MO - w6 gy [0 — 7 (s6)] - [+0) ~ w)]
( 1) - 1§Egn —J N 1§Z];!':Sn [R(Z) - (])] [ _]]
(11.65)
_ m(k(i) —7(k()) ) (1) — k()
(L) (I =)
m(i) = 7)) (1) — k()
- (1§E§n —J ) (1§g§n —J )
= (17 (1)
H
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Aus Lemmata I1.11 und I1.12 folgt nun Glg. (I1.35), die wir nochmal als Korollar for-
mulieren.

Korollar I1.13. Sindn € N und m = o0,0050...00,, €S, eine Permutation, die als
Komposition von m Transpositionen o1,09,...,0, € S, dargestellt werden kann, so ist

(-D)" = (=)™ (11.66)

Beweis. Nach Lemmata I1.11 und I1.12 ist
(=1)" = (=) (=17 (=) = (=)™ (11.67)
O]

11.4.3. Der Polynomring R[z] iiber einem kommutativen Ring R

Sei R ein kommutativer Ring. Wir betrachten Folgen a = (a,)%2, € RN, wobei nur
endlich viele Folgeglieder von 0 verschieden sind. D.h. es gibt ein m = m(a) € IN, so
dass

a = (ag,a1,as,...,0m,,0,0,...). (I1.68)

(Dabei hiangt m(a) im Allgemeinen von der betrachteten Folge a ab und ist nicht fiir
alle Folgen gleich.) Wir sammeln diese Folgen in

Rlz] = {g =(a,)y € RN [ IMmeNVYn>m: a, = O}. (I1.69)
R[z] wird zu einem kommutativen Ring beziiglich der Verkniipfungen
a+b = (ag+bo, ar + b1, ag+by,...) (I1.70)
und
a-b = ¢, wobel ¢, :=agb, + arb,_1+ -+ aybp. (I1.71)

Dies priift man durch Nachrechnen der Ringaxiome leicht nach.

Wir fithren nun z als formale Variable ein und identifizieren ¢ mit dem Polynom
a(z) = ap+ a1z + ar® + ...+ apr™. (I1.72)

Dann sieht man sofort, dass die Addition und Multiplikation in R[z] gerade der Addition
und Multiplikation der zugehorigen Polynome entspricht:

(a+0b)(x) = (ag+bo) + (a1 + b))z + ...+ (an + by)z"
= a(z) + b(z), (IL.73)

(Q . Z_))(.T) = CLDbO + (aobl + albo)[E + ...+ (aob]v + (Ile_l + ...+ aNb()).Q?N
= a(x) - b(x), (I1.74)

wobei N := m(a)+m(b). Daher bezeichnet man R[z] als Ring der Polynome (in x) iiber
R.
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11.4.4. Restklassenringe 7, modulo Primzahlen p sind Kérper

Definition I1.14. Seien a,b € Z.
(i) Eine Zahl g € Z heifit Teiler von a, falls es ein h € Z so gibt, dass a = gh gilt.
(ii) Fiir |a|] 4+ |b] > 0 ist der grofite gemeinsame Teiler ggT(a, b) € Z von a und b

die groite ganze Zahl, die ein Teiler sowohl von a als auch von b ist.

Bemerkungen und Beispiele.

e Da 0 = g-0fiir alle g € Z gilt, sind alle ganzen Zahlen Teiler von 0. Deshalb miissen
wir a = b = 0 bei der Definition des grofiten gemeinsamen Teiler ausschlieflen.

e Sind a,b € Z, so ist 1 stets ein Teiler sowohl von a als auch von b. Daher ist
ggT(a,b) > 1, d.h. der groBite gemeinsame Teiler von a € Z und b € Z, |a|+|b| > 0,
ist stets eine natiirliche Zahl.

Lemma I1.15. Sind a,b € Z mit |a| + |b| > 0, so gibt es k,{ € Z so, dass

geT(a,b) = ka+ (b (IL.75)

Beweis. Sei
M = {neN| 3kleZ: n=ka+(b}. (11.76)

Dann ist |a| + |b] € M, also M # (). Seien m € N die kleinste Zahl in M, m := min M,
und k, ¢ € Z so, dass m = ka + ¢b. Da d := ggT(a,b) sowohl a als auch b teilt, teilt d
auch m, also ist d < m.

Seien nun a = gm +r, mit ¢ € Z und 0 < r < m. Wére r > 1, so wére
r=a—qm = (1—qgk)a—qlb € M. (IL.77)

Da m die kleinste natiirliche Zahl in M ist, kann dies nicht richtig sein, und es folgt
r = 0, d.h. a = gm. Genauso erhélt man b = pm. Also teilt m sowohl a als auch b.
Damit ist m < ggT(a,b) = d.

Insgesamt folgt, dass

ggT(a,b) = m € M. (IL.78)

Satz I1.16. Z, ist ein Kdrper genau dann, wenn p € IN eine Primzahl ist.

Beweis.
Ist p € N keine Primzahl, so gibt es 1 < a < b < p mit p = ab. Dann sind [a],, [b], # [0],,
aber

[a]p ) [b]p = [ab]p = [O]P' (IL.79)
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Also ist Z, kein Korper.

Sind p eine Primzahl und 1 < a < p, so ist ggT(a,p) = 1. Nach Lemma II.15 gibt es
k,0 € 7 so, dass 1 = ka + ¢b. Also ist

[, = [klp-laly + [l - Pl = [Klp - lalp, (I1.80)

d.h. [k], ist das Inverse zu [a], beziiglich Multiplikation in Z,. O
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l1l. Reelle und komplexe Zahlen

Die detaillierte Einfithrung der reellen und der komplexen Zahlen ist traditionell Gegen-
stand der Einfithrungsvorlesung der Analysis. Wir geben hier nur ein paar Eckpunkte
wieder. Dabei setzen wir Begriffe wie Ordnungsrelationen, totale Ordnung, Beschrdnkt-
heit nach oben (von Teilmengen einer total geordneten Menge) und geordneter Korper
als bekannt voraus.

111.1. Reelle Zahlen

Definition III.1. Seien S # () eine total geordnete Menge und 7' C S eine nach oben
beschrénkte Teilmenge. Ein Element b € S heiflit Supremum von T :&

(4) VteT: t<b, (IIL.1)
(i1) Yae S, a<bIteT: a <t. (I11.2)

Bemerkungen und Beispiele.

e Besitzt eine Teilmenge T C S einer total geordneten Menge S ein Supremum
b € S, so ist dieses eindeutig und wir schreiben

b =: sup{T}, (IIL.3)

fiir das Supremum von 7.

e Sind S:=Qund T :={a € Q|a® < 2}, so ist S total geordnet und T nach oben
beschrénkt - z.B. 2 ist eine obere Schranke. Es existiert jedoch kein Supremum von
T in S: Man sieht némlich leicht ein, dass b* = 2 fiir das Supremum b = sup{7T'} €
S = @ gelten miisste, diese Gleichung jedoch keine rationale Losung besitzt.

Definition III.2. Eine total geordnete Menge S # () erfiillt das Supremumsaxiom
oder L.U.B.-Axiom!

;< Jede nach oben beschrénkte Teilmenge 7" C S besitzt ein Supremum, sup{7'} € S.

L« U.B.” steht fiir “least upper bound”. Solche einfallsreichen Namensgebungen werden uns noch
hiufiger begegnen.
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Satz I11.3. Es gibt einen eindeutigen geordneten Korper, in dem a + ¢ < b+ ¢ fir alle
a,b,c € F mit a < b gilt, in dem ab > 0 fiir alle a > 0 und b > 0 gilt, der Q enthdlt und
der das Supremumsaziom erfillt. Wir nennen diesen Korper die reellen Zahlen und
bezeichnen ihn mit R.

111.2. Komplexe Zahlen

Mit Hilfe der Erweiterung der rationalen Zahlen Q durch die reellen Zahlen R D Q
kénnen wir also die Losungen der Gleichung 22 = 2 in R finden. Wenn wir hingegen die
Losungen der Gleichung 22 = —2 suchen, werden wir erneut vor ein Problem gestellt:
Da Quadrate reeller Zahlen stets positiv oder null sind, kann 2?2 = —2 keine reelle
Losung haben. Die Frage nach einer abermaligen Erweiterung des Zahlenbereichs, um
auch Losungen von 22 = —2 finden, fiithrt uns von den reellen Zahlen R auf die komplexen

Zahlen C.

Definition IIT.4. Auf der Menge R? := R x R seien Addition und Multiplikation durch
(a,b) + (¢,d) = (a+¢, b+d), (I1L.4)
(a,b) - (¢,d) :=(a-c—b-d, b-c+a-d), (IIL.5)

definiert.

Satz IIL.5. Die Menge R?* := R x R bildet beziiglich der Addition (I11.4) und der
Multiplikation (111.5) einen Korper, den Korper C der komplexen Zahlen. Dabei sind
(0,0) das neutrale Element beziglich Addition und (1,0) das neutrale Element beziiglich
Multiplikation. Die inversen Elemente in C sind wie folgt gegeben,

—(a,b) = (—a,-b), (I11.6)
1 a —b
(a,b) - (a2+62’ a2+1)2>’ (IL7)
wobet zu beachten ist, dass
(a,b) # (0,0)] = [(a L0V b 0)] = [a2 B> o]. (IIL8)

Beweis. Der Beweis, dass C ein Korper ist, erfolgt durch Nachpriifen der Eigenschaften
(Ry) — (R3) und (K;) — (K3). O

Zu jeder komplexen Zahl z = (a,b) € C definieren wir

ihren Realteil Re{z} = a € R, (II1.9

ihren Imaginirteil Im{z} = b € R, (III.10

ihren Betrag 2] == Va2 + b2 € R{, (IIL.11

und die konjugiert komplexe Zahl z = (a,—b) € C. (T11.12

)
)
)
)
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Bemerkungen und Beispiele.
e Sind w = (2,1) und z = (—3,4), so sind
Re{w} = 2, Im{w} =1, und Re{z} = -3, Im{z} = 4, (III.13)
w| = V2 +12 = V5, und |z| = /(=3)2+42 = V25 = 5, (IIL14)

W = <_21) und Z = (:i) : (II1.15)

e Weiterhin sind mit w = (2,1) und z = (—3,4) auch

w4z = (—1,5), w—z = (5,-3), (I11.16)
w-z =(2-(=3)—1-4,2.441-(=3)) = (=10,5), (111.17)
1 -3 —4 3 4
- = <32+427 32+42) = (2—5,2—5> und (IT1.18)
Yowl= @) (g_;’g_:) (IIL.19)
2. (=3)—1-(—4) 1-(=3)+2-(—4) 2 11
:< 25 ’ 25 >:<_%’_%)'

e Die Definition (II1.5)
(a,b) - (¢,d) = (ac—bd, bc+ ad) (I11.20)

des Produkts komplexer Zahlen wirkt auf den ersten Blick merkwiirdig und un-
motiviert. Tatséchlich ergibt sie sich jedoch zwingend aus den Korperaxiomen
(Ry) — (R3) und (K;) — (K3) und der zusétzlichen Forderung, dass

1z =2z und |w-z| = |w|-|z| (TT1.21)

gelten moge: Das Produkt (I11.20) ist das einzige auf R?, mit dem R? die Korper-
axiome und (II1.21) erfiillt.

111.2.1. Imaginare Einheit i und R C C als Teilk6rper

Es ist bequem, die sogenannte imaginire Einheit i := (0, 1) einzufiihren. Identifizieren
wir weiterhin 1 := (1,0), so kann man jede komplexe Zahl (a,b) € C als (a,b) = a-1+0b-i
schreiben. Damit ist

z = Re{z} -1 + Im{z}-i. (T11.22)

Weiterhin sind mit dieser Schreibweise (II1.4) und (IIL.5) &dquivalent zu
(a-14+b-i) + (c-1+d-i) =(a+c)-1+ (b+d)-i, (I11.23)
(@-14b-3)-(c-1+d-i) = (ac—bd)-1 + (bc+ad) 1. (111.24)
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Insbesondere ist
= (0,1)-(0,1) = (-1,0) = 1, (I11.25)

d.h. die imagindre Einheit ist eine Quadratwurzel aus —1. Das ist auch die einzige
zusétzliche Rechenregel, die man beim Rechnen mit komplexen Zahlen im Vergleich zu
den reellen beachten muss.

Eine sehr niitzliche Beobachtung ist, dass die komplexen Zahlen mit verschwindendem
Imaginérteil mit den reellen Zahlen identifiziert werden kénnen. Dies rechtfertigt auch
den Namen “Realteil” fiir die erste Komponente einer komplexen Zahl. Definieren wir

ReC := {(a,0) = a-1€C|aecR}, (I11.26)

so sieht man leicht, dass Re C C C ein Teilkorper ist, d.h. Re C C C ist eine Teilmenge,
die selbst ein Korper ist. Aulerdem ist Re C C C isomorph (als Korper) zu R. Etwas
genauer formuliert, ist

J:R—ReC, a—a-1 (I11.27)

eine Bijektion, die die Korpereigenschaften erhélt, d.h. es gilt J(a + b) = J(a) + J(b)
und J(a - b) = J(a) - J(b). Mit (II1.27) konnen wir R und ReC = J[R] miteinan-
der identifizieren und die reellen Zahlen als Teilmenge der komplexen Zahlen auffassen.
Konkret geschieht diese Identifikation einfach durch das Weglassen von “1”, also indem
wir @ + b := a -1 + b - ¢ schreiben und Einsen 1 als Faktoren auslassen. Mit dieser
Identifikation wird dann auch

|2]> = Z-2, (I11.28)

fiir jede komplexe Zahl z € C, sowie
(a+1ib) + (c+id) = (a+c¢) + i(b+d), (I11.29)
(a+1ib) - (c+1id) = (ac—bd) + i(bc+ ad). (T11.30)

111.2.2. Polardarstellung, Potenzen und Wurzeln komplexer Zahlen

Von grofler Bedeutung ist die Polardarstellung fiir komplexe Zahlen. Fiir eine komplexe
Zahl z = a + ib # 0, die nicht null ist, definieren wir einen Winkel ¢ € R so, dass

a Re{z} , b Im{z}
cos = = und sin = = . (III.31
W = Ve T R W = vEe T T
gelten. Mit diesem Winkel wird dann
z = |z| (cos(p) + isin(p)). (I11.32)

Wegen der Periodizitét cos(¢ + 2m) = cos(yp) der Kosinusfunktion und der Periodizitét
sin(p + 27m) = sin(y) der Sinusfunktion &ndert sich die Zahl z in (III.32) nicht, wenn
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man 27 zu ¢ hinzuaddiert. Daher kann der Winkel ¢ stets zwischen 0 und 27 gewahlt
werden,

0 < ¢ < 2m, (111.33)

und man bezeichnet ¢ in diesem Zusammenhang als Argument der Zahl z oder als
eine Phase. Die oben genannte Periodizitét ist auch in der (Gaufischen) Zahlenebene C
klar erkennbar: Eine Addition von 7 zu ¢ bedeutet geometrisch ein Schwenken des zu z
gehorigen Vektors genau um einen geschlossenen Kreis 360° = 27 um den Ursprung.

Ist nun Z = |Z|[{cos(¢)) + isin(¢))} eine weitere komplexe Zahl mit zugehoriger Phase
¥ € R, so erhalten wir aus den Additionstheoremen fiir Sinus und Kosinus,

cos(a + ) = cos(a)cos() — sin(a)sin(f), (I11.34)
sin(a + 3) = sin(a) cos(5) + cos(a)sin(f), (I11.35)
die fiir beliebige Winkel o, 8 € R gelten, dass

z-Z =|z| |2 - {cos(p) + i sin(p)} - { cos(¥) + i sin(y) }
= |z| |2] { [ cos(p) cos(¥) — sin(y)sin(¥)] + i [sin(p) cos(v) + cos(y)sin(y)] }
= |2||Z| { cos(p + ¥) + isin(p + )} (I11.36)

Die Multiplikation zweier komplexer Zahlen erfolgt also durch Multiplikation ihrer Be-
trage und Addition der Phasen, und es gelten sogar

e = cos(p) + isin(p) und z = |z]- €, (I11.37)
sodass (I11.36) nur das Potenzgesetz e”e? = etV widerspiegelt.
22 = (2] €%) - (2] - €") = |2] ]3] (e €™) = |z]-|z]- @) (IIL38)

Glg. (II1.37) lésst sich durch Entwicklungen der Exponential-, der Kosinus- und der
Sinusfunktion in Potenzreihen mathematisch streng begriinden — dies ist jedoch Gegen-
stand der Analysis und wird in dieser Vorlesung nicht behandelt.

Mit r := |z| wird (II1.37) zur Polardarstellung
z = r-e. (II1.39)

der komplexen Zahl z. (Diese ist auch fiir z = 0 giiltig, da in diesem Fall » = 0 ist und
die Phase ¢ beliebig gewéhlt werden kann.)

Bemerkungen und Beispiele.

e In der Polardarstellung haben dann Addition und Multiplikation zweier komplexer
Zahlen jeweils folgende grafische Interpretation.

e Die Addition zweier komplexer Zahlen z; = a+ib = (a,b) und z5 = c+id = (¢, d)
erfolgt komponentenweise, wie bei Vektoren in der Ebene R?,

242 = (a,b)+(c,d) = (a+c, b+d) = (a+c)+i(b+d). (II1.40)
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e Die Multiplikation zweier in Polardarstellung gegebener komplexer Zahlen z; =
r1- et und zy = ry - €92 erfolgt durch Multiplikation ihrer Betrige und Addition
ihrer Phasen,

22 = (1 €1) - (rge¥?) = ryryelPrter), (I11.41)

e Die Division zweier in Polardarstellung gegebener komplexer Zahlen z; = ry - €
und z, = ry - €2 #£ 0 erfolgt durch Division ihrer Betriige und Subtraktion ihrer
Phasen,

ip1 )
2Dt _ N iee), (111.42)

29 9 €192 Ty

e Wir belegen die obigen Aussagen mit einem Zahlenbeispiel. Sind w = 2 + ¢ und
z = —3—4i, so sind w = |w| - e und z = |z| - ¥ mit

2 1 '
w| = \/g7 cos(&x) = ——, sinla) = — = o~ O’ 46 = w =~ \/g . 61.(0746) 7

(T11.43)

— —4 .

|z| = 5, cos(B)= 5 sin(f) = 5 = [~4,07 =2z ~ 5.2,

(I11.44)

Andererseits kénnen wir direkt ausrechnen, dass w -z = |w - 2| - € mit
w-z = —2— 114, (I11.45)
w-z| = (=224 (=11)2 = V125 = 5-/5, (111.46)
() 2 () EELINN 4,53 (I11.47)

cos(y) = —, sin(y) =—— ~ 4, .
! V125 K 125 !

= w-z~x V1258 = /5. (040 5. ot (407), (I11.48)

Die wahre Stirke der Polardarstellung z = 7 - €? einer komplexen Zahl z liegt in der
Vereinfachung der Berechnung von Potenzen 2" und Wurzeln ¥z von z. Fiir eine nicht-
negative ganze Zahl n € INy ist ndmlich nach (II1.41)

2= (r-e®)" = " (e9)" = e (T11.49)
und fiir z # 0 gilt dies auch fiir negative n, also fiir alle ganzen Zahlen n € Z.

Bemerkungen und Beispiele.
Sind etwa z = 3 + 47 und n = 4, so kann man ausmultiplizieren und erhéalt

A= (3440 = (B3+4)?) = (3°+2-3-4i+ (4)%)° = (9+ 24i — 16)°
(I11.50)

= (=7+24i)* = (=7 +2-(=7)-24i + (244)* = 49 — 336i — 576 = —527 — 336i
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durch miihsame Rechnung. Schreibt man aber z in Polardarstellung, z ~ 5 - %927 so
erhdlt man mit (II1.41) ganz einfach
A (5 . ei-0,927)4 — 5. (ei-0,927)4 — 5t 40927 _ gor 0371 (I11.51)

Um die Ubereinstimmung der Ergebnisse zu iiberpriifen, beobachtet man, dass cos(3,71) ~
—0,843 und sin(3,71) ~ —0, 538 sind und daher

625 - e = 625 - cos(3,71) + 625 - sin(3,71)i ~ 625 - (—0,843) +i625 - (—0,538)
= — 526,875 — (336,25)i ~ —527 — 336i (I11.52)

gilt, wobei die Fehler nur durch das Runden von Sinus und Kosinus auf zwei signifikante
Stellen hinter dem Komma entstehen — und nicht durch falsche Rechnung.

Auch das Wurzelziehen ist bei komplexen Zahlen leicht und funktioniert vor allem immer.
Ist z = r- €' eine komplexe Zahl mit r > 0 und 0 < ¢ < 27, so sind die Quadratwurzeln
von z alle komplexen Zahlen w, fiir die w? = z gilt. In Polardarstellung w = s - ! muss
also

§2. e = .l (TI1.53)

gelten, wobei s > 0 und 0 < a < 27. Somit ist s = y/r > 0, und es muss e?* = ¢
gelten. Letztere Gleichung hat zwei Losungen im Intervall [0, 27), ndmlich

ap = 2 und ay = L T, (I11.54)
2 2
da e*™ = 1. AuBlerdem ist ¢™ = —1, und wir erhalten z = w? = w3 mit
wy = r-e®? und wy = TR = \frdT e =\ fr. e =
(II1.55)

wie gewohnt.

Auch das Ziehen der allgemeinen n. Wurzel ist nicht schwer: Sind 2z = r - € # 0 eine
komplexe und n > 2 eine natiirliche Zahl, wobei wir abermals » > 0 und 0 < ¢ < 27
annehmen konnen, so sind die n. Wurzeln von z alle komplexen Zahlen w, fiir die w™ = 2
gilt. In Polardarstellung w = s- ¢ mit s > 0 und 0 < o < 27 muss also wieder
s . e = p . e gelten, was auf s = /7 = /" > 0 und

e - S | (I11.56)

fithrt. Daher muss na — ¢ ein ganzzahliges Vielfaches von 27 sein, und die mdoglichen
Losungen haben die Gestalt
2w(k —1
o = £kl (IIL57)
n n
wobei k € Z eine ganze Zahl ist. Da wir auflerdem 0 < ay < 27 fordern, gibt es fiir «
genau n Losungen, ndmlich
© v 2 v 2m(n—1)

0 =P o= By, 22z (I11.58)
n n n n n
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Daher besitzt z genau die n. Wurzeln
i iy 2mi i
wlz{L/F-en, wgz{L/F-enJ“n, el wn:%-en+

Die obigen Uberlegungen zeigen, dass eine komplexe Zahl z # 0 stets n (voneinander
verschiedene) n. Wurzeln besitzt — im Gegensatz zu den reellen Zahlen, in denen etwa
—1 keine reelle Quadratwurzel besitzt (sondern nur die komplexen Wurzeln +i, wobei
wir dann aber schon wieder —1 als komplexe Zahl mit Imaginérteil null betrachten).
Diese bemerkenswerte Eigenschaft der komplexen Zahlen fiihrt letztendlich dazu, dass
jedes komplexe Polynom in Linearfaktoren zerfillt. Genauer gilt der folgende Satz.

2mwi(n—1)
n

(I11.59)

Satz II1.6 (Fundamentalsatz der Algebra). Firn € IN seien cg,c1,...,¢1 € C kom-
plexe Zahlen und p das Polynom

p(2) = 2"+t 4. ezt . (I11.60)
Dann gibt es komplexe Zahlen A1, Ao, ..., A, € C so, dass
p(z) = (z=X)-(z=X2) - (2= \n) (I11.61)

fir alle z € C gilt, d.h. A\, Aa, ..., A\, sind die (nicht notwendig voneinander verschiede-
nen) Nullstellen des Polynoms p.

Bemerkungen und Beispiele.

e Das reelle Polynom p(x) = x? + 1 besitzt keine reellen Nullstellen und lsst sich
nicht in der Form p(z) = (z — x1)(z — x2) mit z1, x2 € R zerlegen. Der Fundamen-
talsatz der Algebra ist fiir reelle Zahlen also falsch.

e Das komplexe Polynom p(z) = 22 +1 (mit 1 =1+ 0-4 als komplexe Zahl) besitzt
die komplexen Nullstellen £ und zerfallt zu p(z) = (2 —i)(z+14) in Linearfaktoren,
wie es der Fundamentalsatz der Algebra behauptet.

e Der Fundamentalsatz der Algebra, Satz IIL.6, sichert zwar fiir jedes Polynom
p(z) = 2"+, 12"+ ...+ 12 + ¢o vom Grad n die Existenz von n Nullstellen
A1, Az, ...y Ay € C, beinhaltet aber keine Losungsformel oder ein anderes Verfahren
zu ihrer Bestimmung.

e Fiir Grad n = 1ist p(2) = z+c¢, und offensichtlich gilt die Losungsformel \; = —cy.
e Fiir Grad n = 2 ist p(z) = 2% + 12 + ¢, und \; und A\ kénnen mit Hilfe der

p-q-Formel bestimmt werden, \; = —5 + \/% —cound Ay = —% — % — Co.
e Fiir Grad n = 3,4 gibt es gibt es allgemeine Losungsformeln fiir die Nullstellen.
Sie sind jedoch zu kompliziert um wirklich niitzlich zu sein.

e n > 5: Vor etwa zweihundert Jahren haben die zwei (leider jung verstorbenen)
Mathematiker Niels Henrik Abel (1802-1829) und Evariste Galois (1811-1832) die
bemerkenswerte Tatsache bewiesen, dass es Losungsformeln fiir die Bestimmung
der Nullstellen von Polynomen vom Grad n > 5 prinzipiell nicht geben kann! Dies
werden wir hier nicht behandeln, sondern ist Gegenstand einer Vorlesung iiber
Galoistheorie.
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1IVV. Vektorraume

Wir beginnen diesen Abschnitt mit der allgemeinen Definition eines Vektorraums. Wir
notieren im Folgenden mit K den Korper R der reellen Zahlen oder den Koérper C der
komplexen Zahlen, d.h. es ist (durchgehend) IX = R oder (durchgehend) K = C.

Die Theorie der Vektorraume lédsst sich weitgehend auch genauso fiir einen allgemeinen
Korper IF entwickeln. Beispielsweise wiirden wir mit I = @ auch Vektorrdume iiber den
rationalen Zahlen oder mit I' = Z, Vektorrdume iiber den Restklassenring 7, erhalten,
falls p € IN eine Primzahl und somit Z, ein Korper sind.

IV.1. Definition eines Vektorraums

Definition IV.1. Eine Menge X heiit Vektorraum iiber KK oder K-Vektorraum
=

Auf X sind Addition + : X x X — X und Multiplikation mit einem Skalar (-) : Kx X —
X definiert, die die folgenden Eigenschaften besitzen:

(i) Va,b,éeX: a+b = b+d, (@+b0)+¢ = d+(b+2), (IV.1)
(1)) WeXVvieX: @=a+0 = 0+4a, (IV.2)
(i) Vae X I(—a)e X: d+(-d) = (-a)+ad = 0, (IV.3)
: o7 ' a-(@+b) = a-d+a-b,

() Va,be X, a,f e K: {(a—i—ﬁ)-d’ 0-@+8- 3 (IV.4)
(v) VaeX, a,f€eK: 1-d = d, a(fa) = (ap)a. (IV.5)

Die Elemente von X heiflen Vektoren, 0 € X ist der Nullvektor. Vektorrdume iiber
R bezeichnet man auch als reelle Vektorridume, Vektorrdume iiber C als komplexe
Vektorraume.

Bemerkungen und Beispiele.

e Gleichungen (IV.1), (IV.2) und (IV.3) besagen zusammen, dass X beziiglich der
Addition + eine abelsche Gruppe bildet.
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o Multiplikation mit einem Skalar und Skalarprodukt ist nicht dasselbe.
e IK ist ein Vektorraum iiber K. (Dieses Beispiel ist allerdings etwas kiinstlich.)

e Sei N € IN. Schreiben wir
AV = AxAx . x A, (IV.6)

~
N Faktoren

fir die Menge aller N-Tupel in A [s. (I.51)], so wird

€

x
KY = dz=| " || 21,20,....an € K (IV.7)

TN
beziiglich komponentenweiser Addition und Multiplikation mit einem Skalar,
1 Y1 Yx1 + Y1
v : + : = : (IV.8)
TN YN YN + YN
zu einem Vektorraum iiber K. Dabei sind

0 T —I
und — | = : . (IV.9)

0 N —IN

=1
Il

e Fiir N =1,2 3 gewinnt man durch Zeichnungen eine gewisse Vorstellung von den
Vektoren in RY.

e Schriankt man bei den komplexen Zahlen die Multiplikation auf die reellen Ele-
mente ein, so ist C = R? ein Vektorraum iiber R (mit Dimension 2, s.u.).

e Ein weiteres Beispiel eines Vektorraums ist die Menge der reellen Funktionen auf

[, 6], a, € R, a < 3,

F = {f:|a,f] = R} (IV.10)
Mit f,g € F und v € R wird F durch
Vo ela, Bl (f+7-9)@) = fl@)+7-g(x) (IV.11)

zum reellen Vektorraum. Diese Festlegung wird auch als punktweise Addition und
Multiplikation mit einem Skalar bezeichnet. Dabei sind

Ve ela,fl: 0x(z) := Or, (—f)x) = —f(x). (IV.12)
Fiir diesen Vektorraum F liefert eine Zeichnung eine gewisse Anschauung.

e Das obige Beispiel lisst sich noch wie folgt verallgemeinern. Sind A # () eine Menge
und X ein Vektorraum iiber KK, so wird durch punktweise Addition und punktweise
Multiplikation mit einem Skalar wie in (IV.11) auch der Funktionenraum

Fo={f:A— X} (IV.13)

zum Vektorraum iiber K.
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e Insbesondere ist F' fiir A := ZY und X := K! = K gleich (genauer: isomorph zu)
K¥,

KY = {f:7zV - K}. (IV.14)

1IV.2. Unterraume

Definition IV.2. Sei X ein K-Vektorraum. Eine Teilmenge Y C X, die selbst ein
K-Vektorraum ist, heifit Unterraum oder Teilraum.

Lemma IV.3 (Unterraumkritgrium). Seien X ein K-Vektorraum und Y C X eine
Teilmenge. Dann gilt folgende Aquivalenz:

{Y ist ein Unterraum von X} (IV.15)
& 0eY und {VaE]KVf,yJEY: (& + o) ey}.

Beweis.
=>: ist trivial.

<: Setzen wir a = 1, so folgt mit #,7 € Y auch Z+ 7 € Y. Wegen 0 € Y ist
weiterhin mit @ € IK und ¥ € Y auch aZ = 0+ af € Y. Schlieflich ist mit ¥ € Y
auch —Z = (—1)Z € Y. Die anderen Vektorraumeigenschaften iibertragen sich von X
auf Y. =

Bemerkungen und Beispiele.

o Ist X ein KK-Vektorraum, so sind {6} C X und X selbst Unterrdume von X, die
man als triviale Unterrdume bezeichnet.

e Sind X ein K-Vektorraum und 7 € X, so definiert

K-7:= {aZ|acK} (IV.16)
einen Unterraum von X.
e Sind K ein Kérper und @ := (ay,...,ax)’ € KV, so definiert
Yz = {:E: (z1,29,...,25)" € KN | 171 + sy + ... FanTy :O} c KV
(IV.17)

einen Unterraum. Dabel notieren wir fiir
x
X2
(z1,29,...,25)" = . (IV.18)

TN

den zum Spaltenvektor jeweils gehorigen Zeilenvektor. (Der Superskript “T” be-
deutet Transposition, was spater noch eingefiihrt wird.)
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e Sei F = {f : [a,8] — R} der in (IV.10) definierte R-Vektorraum der reellen
Funktionen auf [«, 5], dann bilden die Mengen der auf [« 8] stetigen Funktionen
oder der auf [«, ] stetigen und auf (o, 8) differenzierbaren Funktionen in F jeweils
einen Unterraum.

Lemma IV.4. Sei X ein K- Vektorraum.

(i) Sind I # 0 eine Indexmenge und {Y;}ie; eine Familie von Unterrdumen von X,
so ist auch ihr Durchschnitt (,.; Y; wieder ein Unterraum von X.

(ii) Sind N € N und {Y,}_, eine endliche Familie von Unterridumen von X, so ist
auch thre Summe

Yi+Yo+.. .+ Yy = (IV.19)
{?71+?12+-~+?]N ?7165/1,?7265/2,~~~7CJN€YN}
wieder ein Unterraum von X.

Beweis. Das Lemma ist eine einfache Folgerung aus dem Unterraumkriterium. [

Bemerkungen und Beispiele.

e Sind 61, 62, o ,C_L'M e KV mit Efl = (am, a2y - - ,ai,N)T, so definiert
Yaray = Yo N...NYz, (IV.20)

nach Lemma IV .4 (i) einen Unterraum in KV, der durch die Losungen
7= (z1,...,7x)7 des Gleichungssystems

a1,1%1 + a12T2 + ...+ a1, NTN = O,

2121 + A2 99 + ...+ Q2 NTN = 0,

(IV.21)

api®i + a2z + ... +aynry =0

gegeben ist.

e Sind X ein K-Vektorraum und 77, ..., 2y € X, so definiert
]Kfl—i-—f—]KfM = {Oélfl—i‘...—i‘OéMfM Oél,...7OéM€K} (IV22)

nach Lemma IV.4 (i7) einen Unterraum in X.

Definition IV.5. Sei X ein K-Vektorraum.
(i) Ist S C X eine Teilmenge in X, so heifit der durch

span(S) = ﬂ {y ‘ SCY C X, Y ist ein Unterraum} (IV.23)

definierte Unterraum lineare Hiille von S oder der von S erzeugte Unter-
raum.
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(ii) Sind Y € X ein Unterraum, S C X eine Teilmenge in X und Y = span(5), so
heifit S Erzeugendensystem von Y.

Bemerkungen und Beispiele.

e span(S) C X ist der kleinste Unterraum in X, der S enthélt. D.h. ist Y C X ein
Unterraum mit Y O S, so ist auch Y D span(S).

e Sind X ein K-Vektorraum und 7, ..., Zy € X, so ist

Span<{fl,...,fM}> = K 7+ ...+ K- T (IV.24)

IV.3. Lineare Unabhdngigkeit und Basen

Definition IV.6. Seien X ein K-Vektorraum und {Z,...,Zy} € X eine endliche
Teilmenge.

(i) Sind oy, ...,ay € K, so heiit die Summe a7 + . .. + ap @y € X Linearkombi-
nation (der Vektoren 7, ..., Z)). Speziell bezeichnet man 07, +...4+0-Zy =0
als triviale Linearkombination.

(ii) Die endliche Teilmenge {Z1,..., 7y} C X heifit linear unabhingig <

Der Nullvektor lasst sich nur als triviale Linearkombination der #y,...,Zy; dar-
stellen, d.h.
Vag,...,ay € K: {041:?1—1—...—1—041\4171\4 = 5} = {alz...:aM:O}.
(IV.25)

Die leere Menge () definieren wir als linear unabhéngig.

(iii) Eine (nicht notwendig endliche) Teilmenge S C X heifit linear unabhingig
<< Jede endliche Teilmenge von S ist linear unabhéingig.

—

(iv) Ist {Z,..., @y} nicht linear unabhéingig, so sagt man, die Menge {Z1,..., %y}
oder die Vektoren ¥1,...,Z,s seien linear abhingig.

Bemerkungen und Beispiele.

e Die lineare Abhéngigkeit zweier Vektoren 7,7y € X ist gleichwertig mit ihrer
Parallelitéit, d.h. es gibt ein a € K, so dass 1 = ai’s oder dass ¥y = ax; gilt.

e Die lineare Abhéngigkeit dreier Vektoren ¥y, Zo, ¥'3 € X ist gleichwertig mit ihrer
Planaritdt, d.h. es gibt Zahlen o, € K, so dass ¥y = aZy + (%3, dass Ty =
ai's + [ oder dass 73 = aZy + P2 gilt.

o Ist {#1,...,Zy} linear unabhéngig, so gilt #; # 0, fiir alle ¢ = 1,..., M. Wire
namlich z.B. 7; = 0, dann gélte o177 + ... + ayZy = 0 mit ; = 1 und oy =

...:Oéi_leéi_H:...:OéM:O.
e Sei X = R?. Es soll festgestellt werden, ob die Vektoren
1 1 0
¥ = |0],%4 = |2],2d3 = |1 (IV.26)
0 1 1
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linear unabhéngig sind. Ist oy ¥ +@aTs+ a3ty = 0 eine Darstellung des Nullvektors
als Linearkombination dieser Vektoren, so muss

1 1 0 a1 + oy 0
(6%} 0] + Qo 21+ Q3 1 = 20[2 + a3 =0 = 0 (IVQ?)
0 1 1 Qo + ag 0

gelten, d.h. es miissen

(Z) . a1+ g = 0 (Z’l) - (Z’ZZ) : Qg — 0
(13) : 200+ a3 =0 , = (1): a1 =—ay (IV.28)
(2di) : as+az =0 (171) : ag = —ag

gelten. Also sind a1 = ay = a3 = 0, und damit ist {Z1, ¥2, Z3} linear unabhéngig.

e Mit {7,...,Zy} sind auch alle ihre Teilmengen linear unabhéngig. Sind z.B. 1 <
E < M und ay@; + ... + apZp = 0, so ist mit apq = ... = aypr = 0 auch
a1+ ...+ ay®y =0, und daraus folgt dann oy = ... = a; = 0.

e Sei ¥ € span{7,...,Zy} C X. Dann lésst sich & als Linearkombination

T = o% + ...+ ayZy (IV29)
darstellen. Ist {1, ..., 2} linear unabhéngig, so sind die Koeffizienten «; eindeu-
tig. Ist namlich ¥ = 5177 + ... + BT, so folgt aus

(n = P0) & + ... + (am — Bu) Fur = 0, (Iv.30)
dass ] = 51,0./2 = 62,...,0(]\4 = BM

o Ist {Z,..., &} linear abhéngig, so gibt es in (IV.29) mehrere verschiedene Line-

arkombinationen, die Z darstellen.

e Es gilt folgende Aquivalenz:
{Z,..., %)} ist linear abhéngig (IV.31)
s JieZ¥, Bi,...,Bic1, Bist, -5 B
T = ¥+ .+ BiaTio + BT + -+ By
e Aus dieser Aquivalenz ergibt sich unmittelbar die folgende Aquivalenz:

{Zy,..., 2y} ist linear abhéngig < (IV.32)
Ji € 7 . span({fl, e T, Ty, - ,JT:M}> = span({fl, . ,i”M}).

Definition IV.7. Sei X ein K-Vektorraum. Eine Teilmenge S C X heifit Basis von
X

< S ist linear unabhéngig und X = span(.S).

Satz IV.8. Seien X ein K-Vektorraum und Y = span(S) C X ein endlich erzeugter
Unterraum, |S| < co. Dann gibt es eine Teilmenge S C S, die eine Basis von Y bildet.
Jede andere Basis von'Y hat dieselbe Elementzahl.
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Beweis. Nach dem Ergéanzungssatz IV.12 kann M = () mit Vektoren aus S zu einer Basis
S von Y ergédnzt werden.

Ist T eine andere Basis von Y, so folgt wegen YV = Span(f) nach Satz IV.13, dass
|T| > |S|. Genauso folgt natiirlich umgekehrt |S| > |T'|, also

IT| = |S]. (IV.33)

]

IV.4. Dimension

Definition IV.9. Seien X ein K-Vektorraum und Y C X ein Unterraum.

(i) Sind Y endlich erzeugt und S eine Basis von Y, so setzen wir
dim(Y) = |S| < oc. (IV.34)
(ii) Ist Y nicht endlich erzeugt, so setzen wir
dim(Y) = oo. (IV.35)
Die Zahl dim(Y") bezeichnet man als Dimension von Y (iiber K).

Bemerkungen und Beispiele.

e Es ist span(()) der Durchschnitt aller Unterrdume, die () enthalten.
Also ist span(f)) = {0}, und somit

dim ({0}) = 0. (IV.36)
¢ Die kanonischen Basisvektoren ¢}, ...,éy € KV,
1 0 0
- 0 - 1 ~ 0
€1 = |, é o= o, e o= s (IV.37)
0 0 1
bilden eine Basis in K”, die so genannte Standardbasis €y := {€},...,éx}. Also
ist
dim (KV) = N. (IV.38)

e Der Vektorraum F der reellen Funktionen auf [a, b] ist unendlichdimensional,
dim F = oo. (IV.39)

So sind z.B. mit fi(z) := 1, fo(z) := 2!, f3(z) := 22, fa(x) := 2?, ... die Mengen
{f1,..., fx} linear unabhéngig fiir jedes (noch so grofie) K € IN.
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Seien Y'Y C X zwei endlich erzeugte Unterrdume eines K-Vektorraums X und
Y’ C Y. Aus dem Ergidnzungssatz folgt sofort, dass

dim(Y") < dim(Y). (IV..40)

Gelten hingegen Y/ C Y und dim(Y”’) = dim(Y") < oo, so folgt umgekehrt

Y =Y. (IV.41)

Sind Y = span(S) endlich erzeugt und |[S| > dim(Y"), so ist S linear abhéngig.

Ist umgekehrt S C Y eine linear unabhéngige Teilmenge und |S| = dim(Y’), so ist
S eine Basis von Y.

Ist dim(X) = oo, so gibt es in X linear unabhéngige Teilmengen mit beliebig
grofler Elementzahl.

Sind dim(X) = co und S C X eine Basis, so ist

X = {alfl+'~~+oszN|N€]N,oq,...,ozNE]K, fl,...,fNES}. (IV42)

D.h. X enthéilt alle (endlichen) Linearkombinationen von Vektoren aus S. Unend-
liche Linearkombinationen sind (zunéchst) nicht definiert.

Satz IV.10. Jeder Vektorraum besitzt eine Basis.

Beweis. Anwendung des Zornschen Lemmas bzw. des Auswahlaxioms. O

Bemerkungen und Beispiele.

e Satz IV.10 gilt auch fiir Vektorrdume, die nicht endlich erzeugt sind.

Satz IV.11 (Dimensionsformel). SeienY,Y’ C X zwei Unterraume eines K- Vektorraums
X. Dann gilt die Dimenstonsformel

dim(Y) + dim(Y’) = dim(Y NY’) + dim(Y + Y”). (IV.43)

(Wobei auf beiden Seiten oo steht, falls dim(Y') = oo oder dim(Y’) = o0.)
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IV.5. Erganzungen

IV.5.1. Ergdanzungssatz und Austauschsatz von Steinitz

Der Beweis von Satz IV.8 benutzt die beiden folgenden wichtigen Aussagen:

Lemma IV.12 (Ergénzungssatz). Seien K ein Kéorper, X ein K-Vektorraum und Y C
X ein Unterraum. Seien weiterhin M = {Zy,..., %} C Y eine endliche, linear un-
abhingige (mdglicherweise leere) Teilmenge und S = {i,...,y.} C Y ein endliches
Erzeugendensystem, Y = span(S). Dann gibt es eine Teilmenge S C S, so dass M U S
eine Basis von Y bildet.

Beweis. Betrachte das System von Teilmengen
T :={TCMUS|T2M, Y =span(T)}. (IV.44)

Wegen M U S € T ist T # (). Weiterhin gilt offensichtlich k¥ < |T| < k + n fiir jedes
T € T.8Seinun T € T eine Menge mit minimaler Elementzahl. Dann erzeugt T den
Unterraum Y. Zeigen wir nun noch, dass 7" linear unabhéngig ist, so bildet 7" eine Basis
von Y. Seien also ¥i,...,ys € S so, dass T = {&1,..., Tk, Y1,...,Ye}. Seien weiterhin
at, ...k, B, ..., Be € K, so dass

Ty 4.+ aTe + Biti+ ...+ By = 0. (IV.45)

Wire etwa 3 # 0, so lieBe sich §; als Linearkombination der Vektoren in T := T\ {7}
darstellen. Dann wire aber span(7) = span(T) = Y und somit 7 € T. Andererseits
wire dann |T| < |T)|, und weil die Zahl der Elemente von T minimal ist, folgte auch
IT| > |T|. Widerspruch. Es folgt also, dass

pr =02 = ... =0 =0, (IV.46)
was dann
o+ .. A, =0 (IV.47)
impliziert. Aus der linearen Unabhéngigkeit von M erhalten wir dann auch noch
ap = g = ... = qp = 0. (IV.48)

Somit ist 7" linear unabhéngig. O

Satz IV.13 (Austauschsatz von Steinitz). Seien K ein Kdorper, X ein K-Vektorraum
und Y C X ein Unterraum mit Basis {¥,...,Zx} C Y. Sei weiterhin S C Y ein
Erzeugendensystem von Y = span(S). Dann gibt es einen Vektor § € S, so dass auch
{y, %o, ..., T} eine Basis von Y bildet.

Beweis. Setzen wir M := {Z5,...,Zx}, so ist M C Y linear unabhingig und kann
nach Lemma IV.12 mit S € S zu einer Basis erginzt werden. Dabei ist S # (), da
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71 ¢ span(M). Nehmen wir an, S enthielte mindestens zwei Vektoren 7,7 # 0, 7 # 7.

Weil {#, ..., 7} eine Basis in Y ist, gébe es eindeutige «; und 3; so, dass
g = fl + ...+ o fk, (IV49)
7 =B/T + ... + BrTh. (IV.50)

Da ¢,z ¢ span(M), wiren «q, 51 # 0. Damit wére

B + 7 + (Bras — a1 fBa)Ts + ... + (Brag — a1B)T = 0, (IV.51)
und aus der linearen Unabhéngigkeit von {7, Z, 75, . . ., 1 } folgte, dass alle Koeffizienten
verschwinden und insbesondere auch 8; = a; = 0 gélte, was in Widerspruch zu oy, 81 # 0
stiinde. Also enthélt S genau ein Element. [

1IV.5.2. Beweis der Dimensionsformel

Beweis. In dieser Ergidnzung fiihren wir den Beweis von Satz IV.11, d.h. wir beweisen die
Dimensionsformel (IV.43). Dazu kénnen wir 0.B.d.A. dim(Y'), dim(Y”’) < co annehmen.
Dann sind auch

dim(Y NY’") < dim(Y) < oo, (IV.52)
dim(Y +Y’) < dim (Span({YUY’})) < dim(Y) +dim(Y') < co.  (IV.53)

Sei nun {Z1,...,Z,} eine Basis von Y NY’. Nach dem Ergénzungssatz IV.12 gibt es

Vektoren 41,...,9m € Y und 21,...,2, € Y’ so dass {Z1,..., %, ¥1,...,Un} eine Basis
von Y und {#y,...,%,, 21, ..., 2,} eine Basis von Y’ bilden. Offenbar ist dann auch
Y +Y' = span{Z,.... %, G-, G, Z1se e Zn ) (IV.54)
Wir zeigen, dass diese Menge linear unabhéngig ist. Seien aq,...,a,,B1,...,0m € K,
sowie Y1, ...,7, € K, so dass
T+ ...+ o+ B+ B 121+ Wz, = 0, (IV.55)
bzw.
W= — (i1 + -+ Bnlin) = F1+ ...+ T+ N2+ .+ Yz (IV.56)

Aus der ersten Gleichung in (IV.56) folgt, dass @ € Y, und aus der zweiten, dass o € Y.
Also ist W = — (6191 + ... + BmUm) € Y NY’ und kann als Linearkombination der &;
dargestellt werden, d.h. es gibt aq,...,a, € K, so dass

Gith + ...+ Bl + 171 + ...+ &%, = 0. (IV.57)

Da {#1,...,Ym, Z1,...,%,} eine Basis in Y ist, folgt daraus jedoch, dass @; = -+ =
&, = 0 und insbesondere

pr =0 = "=p0n=0 (IV.58)
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sowie
0 = o = o+ . ol 2+ Y2 (IV.59)
Da aber {#,...,Z,, 21, ..., 2, } eine Basis von Y’ bilden, folgt daraus, dass auch
= =-=a, =7 ===, =0. (IV.60)

Alsoist {Z1,..., %, Y1, ., Ym, 21, .-, 2n) €ine Basis von Y +Y”’ und (IV.43) ergibt sich
nun durch Abzéhlen aus

dim(YNnY’) = r, dim(Y +Y’) = r+m+n, (IV.61)
dim(Y) = r+m, dim(Y') = r+n. (IV.62)
[l
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V. Lineare Abbildungen

V.1l. Definitionen

Definition V.1. Seien X und Y zwei K-Vektorrdume. Eine Abbildung ® : X — YV
heilt linear oder Homomorphismus

S ViygeX, aeK: oaf+7y) = ad(@) + D(y). (V.1)

Die Menge der linearen Abbildungen X — Y bezeichnen wir mit £(X;Y). Ist Y = X,
so schreiben wir £(X) := L(X; X)

Bemerkungen und Beispiele.

e Durch vollstdndige Induktion erhélt man aus (V.1) leicht, dass

@(ia@}) = iaiq)(fi), (V.2)

fir alle Z1,..., 7, € X und ay, ..., € K.
e &(0) = ®(0-0) = 0-®(0) = 0.
e Sind #1,...,7x € X linear abhingig, so sind auch ®(Z),...,®(¥;) € Y linear

abhéngig, denn

k k
’ i=1 i=1

e Ist U C X ein Unterraum, so ist auch ®(U) C Y ein Unterraum.

o Ist U = span{#,...,Zx}, so ist ®(U) = span{®(¥y),...,P(7)}, denn fir § €
®(U) gibt es ein & € U, so dass § = ®(&). Weiterhin ist ¥ = a1 + .. . + T, fir
geeignete oy, ..., q € K. Damit ist dann aber

7 = @(Zai@> = Y () € span{®(#),..., B(F)}. (V.4)

i=1
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Letzteres ergibt auch sofort dim[®(U)] < dim[U].

Sind X und Y zwei K-Vektorrdume, so bildet die Menge £(X;Y’) der linearen
Abbildungen selbst einen IK-Vektorraum beziiglich punktweiser Operationen, d.h.
fira e Kund ©,V € L(X;Y) ist (a® + V) € L(X;Y) definiert durch

VieX: (a®+U)(@) = ad(@) + V(7). (V.5)

Sind X, Y, Z drei K-Vektorraume und ® € £(X;Y') sowie ¥ € L(Y; Z), so ist auch
deren Komposition linear, (¥ o ®) € L(X; 7).

Insbesondere ist fur , ¥ € L£(X) auch (Vo @) € L(X).

Satz V.2. Seien X und Y zwei K-Vektorrdume. Sind {Zy,...,Zy} C X eine Basis
und {y1,...,yn} C Y eine Teilmenge, dann gibt es genau eine lineare Abbildung ® €
L(X;Y) so, dass

(I)(fl> - 3717 (I)(fg) — ]jg, ey q)(fN) - 37]\[. (V6)
Beweis. Existenz: Fiir ¥ = oy 71 + ... + anyZy definieren wir
CI)(ZE) = 041]71 + ...+ OCNgN. (V?)

Wegen der linearen Unabhéngigkeit von {#1,...,Zx} C X sind die Koeffizienten
ay,...,ay € Kin (V.7) eindeutig, und & ist wohldefiniert. Weiterhin erfiillt ® offen-
sichtlich die Gleichungen (V.6).

Seien nun 7,7’ € X und € K. Dann gibt es ay,...,ay, of,...,a)y € K, so dass
— — — — !/ = /] -
T = a1+ +anyiy, T = a7 +...+dyTN. (V.8)

Daher gilt auch

Bf—f—fiy = (ﬁal"f_a,l)fl_’_-"—i_(BQN—i_O/]V)fN- (V9)
Also ist
N
OBz +7) = 3 (Bay+al) <Zazyl> (Zazyz) — BO() + B(T),
i=1
(V.10)

und @ ist linear.

Eindeutigkeit: Sei ® € £(X;Y) mit ®(7) = 71,...,D(Zy) = §y. Ist £ € X, so gibt es
eindeutige a1,...,ay € K so, dass ¥ = a1 7; + ... + ayZy. Wegen der Linearitit von
sowohl @ als auch ® ist dann

= Zag = O(2). (V.11)

Dies gilt fiir alle ¥ € X, also ist & = . m
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Bemerkungen und Beispiele.

e Satz V.2 besagt, dass jede lineare Abbildung ® durch die Bilder ®(Z;) der Basis-
vektoren 7; eindeutig bestimmt ist.

e K =R, X = R?® mit Standardbasis {€}, &, ez} C X,

1 0 0
51 = 0 s 52 = 1 s 53 = 0 3 (V12)
0 0 1

Y = R? und

by i— @ by e G) by = (3) (V.13)

Fithren wir z,y,2z € R als Koordinaten (statt aj, as, as) ein, so wird die lineare

Abbildung ® € £L(X;Y), fiir die ®(¢;) = b gilt, zu

v 20 +y+=z
o y = O(zé) + yés + 263) = xby +yby + 2by = ( ety )
2

(V.14)

V.2. Kern und Bild

Definition V.3. Seien X und Y zwei K-Vektorrdume und ® € L£(X;Y) eine lineare
Abbildung. Dann heiflen

Ker[®] = {Z € X | (%) =0} (V.15)
der Kern von ® und
Ran[®] = ®(X) = {geV | ITeX:§j=2(2)} (V.16)
das Bild von ®'.

Als einfache Anwendung des Unterraumkriteriums ergibt sich sofort

Lemma V.4. Seien X und Y zwei K-Vektorrdaume und ® € L(X;Y) eine lineare
Abbildung. Dann sind Ker[®] C X und Ran[®] CY Unterrdume.

Satz V.5. Seien X undY zwei IK-Vektorrdume und ® € L(X;Y) eine lineare Abbildung.
Dann gilt

dim (Ker[®]) + dim (Ran[®]) = dim(X). (V.17)

'Ker steht fiir "kernel”, Ran steht fiir "range”.
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Beweis. Wir zeigen (V.17) nur fiir dim(X) = N < oo. Ist {Z,..., 7} C Ker[®] eine
Basis, so konnen wir diese durch {Zx.1,...,Zx} € X zu einer Basis von X ergénzen.
Wegen

@(iaii’}) - iaicp(@) - i a,®(Z;) (V.18)

i=k+1

ist Ran[®] = span{®(Zy1),...,P(Zn)}. Sind nun agiq, ..., an € K Koeffizienten, so-
dass a1 P(Try1) + ... + an®(Zn) = 0, so folgt 0 = P(py1Tk1 + ... + anZy). Also
ist

OékJrlkarl + ...+ anZy € Ker[(ID] (V19)

Somit gibt es a,...,a; € K, so dass
Oék+1fk+1 + ...+ OéNl_"N = Oélfl + ...+ Oé]gf]g. (V20)
Wegen der linearen Unabhéngigkeit von {71, ..., ¥y} ergibt sich daraus oy = g = - -+ =
ay = 0. Insbesondere verschwinden a1 = -+ = ay = 0. Damit ist jedoch die Menge
{®(Zh11), .-, 2(¥n)} € Ran|®P| eine Basis, und (V.17) folgt trivial. O

Bemerkungen und Beispiele.
e Seien wieder X = R?, Y = R? und CD[(x,y,z)T} = 2z +y+ 2,2+ y)l, wie in
(V.14).
— Fiir b = (81, $2)T € R? ist dann b = ®[7] € Ran[®] mit Z = (0, s, 81 — £a)7.
Da b € R? beliebig gewihlt werden kann, folgt daraus

Ran[®] = R* (V.21)

— Ist @ = (a1, e, a3)T € Ker[®], so gelten 2a; + as + a3 = 0 und ay + ap = 0.
Wihlen wir v =: a1 € R beliebig, so folgt dass s = —a; = —7y und dass
a3 = —2a; — ap = —, d.h. dass @ = (v, -7, —)T. Da v € R frei gewiihlt
werden kann, ergibt sich daraus, dass

1
Ker[@] = R-|—-1]. (V.22)
1

— Wie in Satz V.5 behauptet, sind dim Ker[®] + dimRan[®] = 1+ 2 = 3 =
dim(RR3).
e Seien K=R, X =R3, Y = R?,

1 0 4

fl = 1 N fg = 2 y fg = 0 y (V23)
0 1 1
2 4 2

o= (1], %= (0|, = [-1], (V.24)
0 4 4
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und @ € L(R3; R?) mit

@(fl) = gl, q)(fg) = 372, @(.’1?3) = gg. (V25)
Wir wollen
(631
O ||az ||, Ker[®], und Ran[®] (V.26)
Qg

fiir beliebige aq, ag, ag € R berechnen. Dazu bestimmen wir zunéchst 1y, 75,73 € R
so, dass €1 = m T + 1eZs + 1373, d.h. wir 16sen

1 m + 0+ dng
ol = m + 200 + 0 . (V.27)
0 0 + n + 13

Dies fithrt auf 71 = —2ny = 2n3 und 1 = ny + 4n3 = 3y, also 1 = 3, 2 = — und
N3 = %. Somit ist

Genauso erhalten wir
o 2, 1, 1,
€y = 5331 + 6{,52 — 61’3, (V29)
4 2 1
53 - - .fl + —.fg -+ —fg. (VBO)

3 3

3
Somit sind X = span({é, &, 5}) C span({Zi,Z>,73}) € X und insbesondere
span({Zy, To, ¥3}) = X. Aus |{&, T2, 5} = 3 folgt dann, dass {Z1, 75, 73} C X
eine Basis ist.

Gleichungen (V.28)-(V.30) setzen wir ein, nutzen die Linearitit von ® aus und

erhalten
(651
(0] (6%) = <I>(oz1€1 + 01252 + 05353) (V?)l)
a3

= (5on+ faz = 5a5) 2(21) + (= §au + Gas + 5ag) ©(7)

+ (301 — pag + a3) ©(T3)

WS 2025/26, Seite 56



Kapitel V. Lineare Abbildungen

also
(03] 2 4
d [6%) = (%(1/1 + %O&g — %Oég) 1 + ( - %Oél + %Ozg + %&3) 0 (V32)
Q3 0 4
2
(o — s + o) [ 1
4
%Oél + gOég + %()43
= éOél + %042 - %043
40&3
Weiterhin sehen wir, dass
oy %Ozl + %Oéz + %ag 0
T = || € Kert[®] & ta+3as— 23| = |0, (V.33)
s dag 0
woraus ag = 0 und ay = —%al folgen. Da keine weiteren Einschrankungen vorlie-
gen, gilt somit
aq aq
T = lay| € Ker[®] & & = —%al , aj € R beliebig wihlbar, d.h.
asg
(V.34)
)
Ker[®] =R-[—-1], dim(Ker[®]) = 1. (V.35)
0

Nach Satz V.5 ist damit dim (Ran[®]) = 2 und daher muss {71, %>, J3} C R® linear
abhéngig sein. In der Tat sieht man leicht, dass y3 = yo — %; und somit ist

Ran[®] = Span({gla o, 373}) = Span({ﬂi;ﬁz}) (V.36)
2061 + 453,
= {Bii1 + Boio| Br, B2 € R} = b1 B1,B2 € R
43

Weiterhin muss {#i, 9>} C Ran[®] wegen dim (Ran[®]) = 2 auch eine Basis und
insbesondere linear unabhéngig sein.

e Satz V.5 ist auch fiir dim(X') = oo richtig, d.h. fiir dim(X) = oo gilt dim(Ker[®]) =
oo oder dim(Ran[®]) = oo (oder beides).

e Wir beobachten, dass fiir ® € £(X;Y)

O(T) = () e d(F-1) = 0, (V.37)
i=7e i—i =0 (V.38)
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Daher gilt

(cpeL(X;Y) ist injektiv> = (Ker[@]z{ﬁ}). (V.39)

e Offensichtlich gilt auflerdem

(cb € L(X;Y) ist surjektiv) = (Ran[cb] _ Y). (V.40)

Satz V.6. Seien X und Y zwei K-Vektorriume mit dim(X) = dim(Y) < oo und
¢ € L(X;Y). Dann gilt

(CD 15t injektiv) & <<I> 15t surjektiv) & <CI> 15t bijektiv). (V.41)

Beweis. Es reicht, die erste Aquivalenz zu zeigen. Seien dazu

Ny :=dim(Ker[®]), N, :=dim(Ran[®]), N :=dim(X) = dim(Y). (V.42)
Dann gelten

(cp ist injektiv) = (Ker[cb] - {6}) = <N1 - o), (V.43)

(cI> ist surjektiv) = (Ran[cb] - Y) = <N2 - N). (V.44)

Nach Satz V.5 ist N1 + Ny = N, was sofort die Gleichwertigkeit der Injektivitit und der
Surjektivitit von ® nach sich zieht. n

Bemerkungen und Beispiele.

e Fiir dim(X) = oo gilt (V.41) im Allgemeinen nicht. Ist etwa X = Clz| der C-
Vektorraum der Polynome in z iiber C,

Clz] = {ao+aiz+...+ 2" | neN, a, ..., € C}, (V.45)
mit Vektorraumstruktur definiert durch
Yo+ x4+ ...+ az™) + (Bo+ Sz + ...+ Bnx™) (V.46)
= (yao + Bo) + (yeu + Bi)z + .o+ (Yamin + Bngn) 2™,
wobei v € Cund ay, 11 i =+ = Qpim = Bimsr1 =+ = Ban =0, s0 ist
dim(Clz]) = oo, (V.47)

denn fiir jedes n € IN ist die Menge {1,z,2?,...,2"} C C[z] linear unabhingig.
Seien weiterhin ®, ¥ € L(C|x]; C[z]), wobei
Plag + arr + ...+ apa™) = oz +ar? + ..+ o™t (V.48)
U(ag + oz + ... +apaz™) == ap +Foapr+ ...+ az™ (V.49)
Dann gelten:
Ran[®] #1 = & ist injektiv, aber nicht surjektiv, (V.50)
Ker[V] 51 = W ist surjektiv, aber nicht injektiv. (V.51)
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Definition V.7. Seien X und Y zwei K-Vektorrdume. Eine lineare Abbildung & €
L(X;Y) heiBt Isomorphismus, falls ¢ bijektiv ist. Existiert ein Isomorphismus ® €
L(X;Y), so heiflen X und Y zueinander isomorph.

Bemerkungen und Beispiele.

e Isomorphie zwischen K-Vektorrdumen definiert eine Aquivalenzrelation. (Den Nach-
weis fithrt man durch Nachpriifen der drei Eigenschaften Reflexivitdt, Symmetrie
und Transitivitét.)

Satz V.8. Fiir N € N ist jeder N-dimensionale Vektorraum tiber K isomorph zu KN,
Beweis. Sind X ein N-dimensionaler IK-Vektorraum mit Basis {Z,...,Zx} C X, und

ist {€1,...,ex} C K die Standardbasis, so kann man leicht zeigen, dass ® € L(X;KV),
mit

aq

- o N 5 Qo
(I)(Oéll'l—f—...—l—O{N[EN) = e +...+tayey = . s (V52)

an
surjektiv ist und somit nach Satz V.6 einen Isomorphismus definiert. O]

Korollar V.9. Seien X und Y zwei K- Vektorrdume.
(i) Sind X undY isomorph, so gilt dim(X) = dim(Y).
(i7) Gilt dim(X) = dim(Y) < oo, so sind X und Y isomorph.

Beweis. (i): Ist ® € L(X;Y') ein Isomorphismus, so sind Ker[®] = {0} und Ran[®] =Y.
Nach Satz V.5 gilt also

dim(X) = dim (Ker[®]) + dim ((Ran[®]) = dim(Y). (V.53)

(ii): Seien dim(X) = dim(Y) = N < cound {Z4,...,Zn} C X, {#1,...,yn} C Y Basen
in X bzw. in Y. Dann definieren wir ® € £(X;Y) durch

(I)(Oélfl + ...+ oszN) = ozm]l + ...+ CJ,/N’JN. (V54)

Offensichtlich ist ® surjektiv und nach Satz V.6 wegen N < oo auch bijektiv. O

Bemerkungen und Beispiele.

e Satz V.8 garantiert also, dass wir einen abstrakten IK-Vektorraum X der Dimension
N stets 0.B.d.A. durch K¥ ersetzen diirfen.

e Letzteres bedeutet aber nicht, dass sich auch andere Strukturen, aufler der Vek-
torraumstruktur, die X besitzt, ohne Weiteres auf K iibertragen lassen. So ist
beispielsweise C als reeller Vektorraum isomorph zu R2?, aber die Multiplikation
komplexer Zahlen ist eine zusétzliche Struktur auf C.
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V1. Matrizen

VI.1. Definitionen

Definition VI.1. Seien M, N € N und K der Korper R der reellen Zahlen oder C der
komplexen Zahlen.

(i) KV = {(ar)

definiert die Menge der N x M-Matrizen iiber K. Dabei ist (a; ;) i-1...~ eine
=1,

ai; € K} (VL1)

abkiirzende Schreibweise fiir eine Tabelle von Zahlen,

aia 12 ... Q1M
0,271 Q22 ... Q2 M
a; ;) i=1,..N = . VI.2
( Z’]);’:1 ,,,,, M ( )
a1 Aang2 ... aNM

(ii) Seien X und Y zwei K-Vektorrdume mit dim(X) = M, dim(Y) = N und X =
{Z1,..., 24} € X, Y :={¥1,...,yn} C Y Basen in X bzw. in Y. Ist nun & €
L(X;Y) mit

(I)(fj> = al,jgjl + ag’jgjz 4+ ...+ CLN,ijN? (VI?))
fiir j € Z, so heifit
i1 ... a1 M
yMy|®] = : : e KV (VL4)
anNi ... aN,M

Matrixdarstellung von ® beziiglich der Basen X = {#;}}, C X und
Y={g}LcY.
(iii) Fiir ® € £(X) = L(X; X) schreiben wir My [®] := x M [D].

(iv) Sind X = K” und Y = K" mit Standardbasen & = {€i,...,éxn} € X und
En ={é1,...,en} C Y, so bezeichnet

M[(I)] = 5NM5M [(p] (VI5)
die Matrixdarstellung von ® € L£L(KM;K") beziiglich der Standardbasen.
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Bemerkungen und Beispiele.
e K=R, M =3 N=2X={&,7, 73}, Y ={th, %=}, € L(X;Y) mit

(I)(f1> = 2:1.71, @(fz) = 371 - gz, q)(fg) = —2?72, (VIG)
2 1 0
= el = (51 9). (VL7)

e Seien X = KM, Y = K¥ mit Standardbasen & = {¢\°, .., H]Ef)} C KM und
Ex ={eY), .,V C KN und & € £(KM; KY) mit

Q.
@(:(X)) = al,ié‘l(y) 4+ ...+ CLN,ié}(VY) = s (VI8)
an,;
fire=1,...,M. Dann ist
a11  A12 Qa1,Mm
M[(I)] = 5NM5M [(I)] =
an1 Aanz2 anN M
- <CI>(61( ), (&) >),...,<1><e§4>)), (VL)

d.h. die Matrixdarstellung von ® bzgl. der Standardbasis erhélt man durch Anein-
anderreihung der Bilder ®(¢)),... (¢ ]Ej( )Y (als Spaltenvektoren) der Basisvek-

toren 51(X), e ,é'](\f).

Lemma VI1.2. Seien M, N € N und X,Y zwei K-Vektorraume mit Dimensionen M =
dim(X), N =dim(Y) und Basen X C X und Y C Y.

(i) KN*M st ein K-Vektorraum der Dimension dim[KN*M] = M - N beziiglich

ag ... Q1M by ... bium
Y + : =
an,1 aN. M by by v
(var1+bi1) ... (vaim + biw)
: : (VI.10)
(vany +bna) . (Yanar + bnoar)

(ii) yMy : L(X;Y) — KN*M st ein Isomorphismus.
Beweis. (i) ist trivial.
(ii): Seien X = {Z,...,Zy} und Y = {§i,...,yn}. Zu festen m € ZM und n € Z¥
definieren wir ©,,,, € L(X;Y) durch

@mm(fj) = Ojm gn (VI]_l)
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Ist nun eine lineare Abbildung ® € £(X;Y') durch die Bilder ®(Z;) = a1 ;41 +. . .+an jUn
der Basisvektoren in X’ gegeben, so ist

N
Zzanm nm Zzanm jmyn Zlan7jgn - (I)(fj)7 (VI12)

m=1 n=1 m=1 n=1

fiir alle j € ZM. Also ist

M N
= > ) tumOum, (VI.13)

m=1 n=1
d.h. jede lineare Abbildung in £(X;Y’) kann als Linearkombination der O, ,, dargestellt
werden, £(X;Y) =span({O,, |m € Z}',n € Z'}).
Um die lineare Unabhéngigkeit der ©,, ,,, zu zeigen, nehmen wir die an, die Nullabbildung
sei als Linearkombination der ©,,,, dargestellt, an\le ZnN:1 Yrym Onm = Oz(x;yy, d.h.

M N
VEEX: D> D YumOum(@) =0 (VI.14)

m=1 n=1

gilt, was dquivalent zu

N
VJGZ]lV[ _) ZZ'Vnm n,m 1'] ZZ'Vnm ]myn Z'Vn,jy_)n (VI15)

m=1 n=1 m=1 n=1 n=1

ist. Weil {#1,...,9n} C Y eine Basis ist, folgt daraus v, ; = 72, = -+ = Y, = 0, fiir
alle j € Z3. Also verschwinden alle 7, ,,, und {0,,,, |m € ZM n € Z\} C L(X;Y) ist
eine Basis.

Damit sind dim[K¥*™] = M N = dim[£(X;Y)] < oo, und KN*M und £(X;Y) sind
geméf Korollar V.9(%i) zueinander isomorph. Die zugehorigen Matrixdarstellungen

0 0
0
Evm = yMx[Onm| = o 001 0 --- | < n. Zeile
0
0 : 0
/]\
m. Spalte (VI.16)

bezeichnet man als Matrixeinheiten. Die Menge der Matrixeinheiten {E,,, | m €
ZM . n e 7Y} C KV*M bildet eine Basis. O

Bemerkungen und Beispiele.
e Seien K =R, M =3, N =2, so ist z.B.

s(123Y), (2 -1 1) _
10 2 3 2 1)°

(3-1+2) (3-2—1) 3-3—1)\ _ (5 5 8
((3-1+3) (3-0+2) (3-2+1)) - ( ) (VL17)

WS 2025/26, Seite 62



Kapitel VI. Matrizen

VI.2. Matrixmultiplikation

Definition VI.3. Seien L, M, N € IN. Das Matrixprodukt ist eine Verkniipfung

() KNVM o RMXE - KV (VL.18)
al,l e al,M b171 N bl,L 6171 N Cl,L
o : — | Cof o (VE19)
aNi ... AaN,M bM71 bM,L CN1 --- CNL
wobei
M
Cnt = > G Dins- (VI.20)
m=1

Bemerkungen und Beispiele.

e Zunéchst ein Zahlenbeispiel:

(2 3 0) ; (1) 2.143-240-0 2-04+3-140-1
711 0o 1/) \7-1+1-241.0 7-04+1-1+1-1

_ (S g) (V1.21)

e Zur Berechnung des Matrixproduktes ist folgendes Schema hilfreich:

bl 1 bl,( bl L

bM,l ij bM,L
aix - Gm ca | a . (V1.22)
Qnp,1 ? An M - ? Cne
a’N,l .« .. G/N,M CN71 PR PR CN,L

e Auch Vektoren lassen sich als Matrizen auffassen. Es sind KM KM*1 ynd KM
isomorph, denn sie haben alle Dimension M. Identifiziert man K mit K™*! d.h.

liest man die Vektoren

X1 X1

T = : ceKY +— M7 = : e KMx! (V1.23)

Ty Tpm
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als (M x 1)-Matrix, so ldsst sich die Anwendung von ® € L(K;K") auch als
Matrixmultiplikation schreiben. Ist ndmlich

a1 ... aim
M[D] = : : , (VI.24)
anNi --.- AaN,M
so ist M[®(7)] € KV*! mit
M[P(Z)] = M[P] - M|[7] (VI.25)
a1l -e- G1M 1 a11r1 +-o+ aMTym
ani --- AaNM TM aN1Ty +:-+ aNMTuM

Wegen dieser Interpretation der Anwendung von ® auf 7 als Matrixmultiplikation
lasst man haufig die Argumentsklammern weg und schreibt

o7 = D(7). (VI.26)

Der folgende Satz zeigt nun, dass die Matrixmultiplikation genau der Komposition von
linearen Abbildungen entspricht.

Satz VI.4. Seien X,Y,Z drei K-Vektorrdume mit Basen X := {Z}l, C X, YV =
(G}, CY, Z:={Z.}N., C Z, wobei L, M, N € N. Sind weiterhin ® € L(X;Y)
und U € L(Y; Z), so gilt
My [V o] = My[¥] - yMy[P]. (VI.27)
Beweis. Sind
vm € 73 U(Gm) = 1n 21+ -+ AN 2N, (VI.28)
AN/ O(Zy) = brgh + ..+ bare Y, (VI.29)
so ist, fiir jedes ¢ € Z1,
(W o ®)(Z) = V(breih + -+ bareiu)
— DU (F)) + -+ bar e () (VL30)

= 6174 . (a17121 + ...+ CLNylgN) + ...+ ij . (al,Mgl + ...+ aNVMZN)
= (al,lbl,é +ajobry+ ...+ al,MbM,é) 21+
A (aN,lbl,K + GN72b27g + ...+ CLN7MbM7g) gN.

Die Behauptung ergibt sich nun sofort durch den Vergleich von (VI.30), (VI.20) und
(VL3). O

WS 2025/26, Seite 64



Kapitel VI. Matrizen

VI.3. Der Matrixring IKV*V

Definition VI.5. Sei X ein K-Vektorraum.

(i) Man bezeichnet die linearen Abbildungen X — X als Endomorphismen und
schreibt

LX) = L(X;X). (VL.31)

(ii) Die bijektiven Elemente in £(X) bilden die Familie der Automorphismen, '

GL(X) := {® € L(X)| ® ist bijektiv}. (VI1.32)

Lemma VI1.6. Sei X ein K- Vektorraum.

(i) Die Endomorphismen L(X) bilden einen Ring beziiglich punktweiser Addition und
Komposition als Multiplikation, d.h. fir ®,¥,0 € L(X) ist (Po ¥ +0) € L(X)
definiert durch

(PoV+0)(&) = &(V(D)) + O(F). (VL.33)
Die Identitit 1x € L(X), 1x(Z) = &, operiert als Einselement.

(ii) Die Automorphismen GL(X) C L(X) bilden eine Gruppe beziglich Multiplikation
(d.h. Komposition).

Beweis.
(4) erhélt man durch Nachpriifen der Ringaxiome.

(17) Mit &, ¥ € L(X) bijektiv ist auch ® o ¥ bijektiv, also ist o : GL(X) x GL(X) —
GL(X). Die Komposition von Abbildungen ist auch assoziativ, und es gilt (G1). Die
Identitatsabbildung 1x ist offensichtlich auch ein Automorphismus, also gilt (G2). Es
verbleibt die Existenz des Inversen, (G3), nachzupriifen. Seien dazu & € GL(X) und
®~1: X — X die inverse Abbildung, d.h.

VZeX: (Pod® ')(@) = (2'0®)(@) = T (VI.34)
Sind nun 7,y € X und a € K, so gibt es @, 2 € X mit ¥ = ®(w), ¥ = ®(Z). Somit ist
> af+7) =0 ' (a®(@) + D(2) = ¢ (Pl +2)) = aw+ 7
= a® 1(Z)+ 27 (¥), (V1.35)
und @' ist linear. Offensichtlich ist @' auch bijektiv, also @' € GL(X). O

]

Satz VI.7. Seien N € N und X ein K-Vektorraum mit Basis X = {Zy,...,Zn} C X.

(i) KN*N st ein Ring (beziiglich komponentenweiser Addition und Matrizmultiplika-
tion) mit Finselement

1 = - , (VL.36)

der Einheitsmatriz.

LGL steht fiir ”general linear group”
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(ii) My : L(X) — KN*N st ein Ringisomorphismus, d.h. My ist bijektiv und erhlt
die Ringeigenschaften,

VO, T,0 € L(X): My[@ol+0] = My[d] My[T] + My[0]. (VL37)

Beweis. (i) erhélt man wieder durch Nachpriifen der Ringaxiome, und (i) ergibt sich

trivial aus Satz VI.4 und Lemma VI.6. ]

Bemerkungen und Beispiele.

o KV*N ist nicht kommutativ fiir N > 2, etwa

11 11 2 1 1 2 11 11
(0 1>'(1 0)2(1 0)%(1 1):(1 0)'(0 1)‘ (VL.38)
e Fiir & € GL(X) erhélt man aus (VI.37) sofort, dass

My[@7Y] = (My[@]) " (VL.39)

Die Berechnung der inversen Matrix auf der rechten Seite in (VI.39) ist allerdings
nicht ganz einfach. (Siehe Satz VIL.8.)

e Wir withlen N =2, K = R, X = R? und Basen

) SO P )

(VI.40)

und eine lineare Abbildung ® € £(IR?) mit

() = <g>, D (i) = (g) (V1.41)

Dann sind ®(7) = 27 + 075 und ®(¥y) = 07 + 37, also ist

M) = ((2) g) (V1.42)

Andererseits sind

- 1 - . 0 - -
— <O) — %[L‘I’ 61 — (1> = I‘Q—lxl, (VI43)

_.
|
I\

B(7) = L0(7) = %(3) _ <(2)) — 2, (V1.44)
() = () — 10(7) = (g) —§<g> _ @) _ 16,435, (VL45)

also ist
Mg[@] = (g ;) £ My[®]. (VI46)
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VI1.4. Transformation von Matrizen bei Basiswechsel

Seien X und Y zwei K-Vektorrdume mit dim(X) = M, dim(Y) = N und Basen
X = {7,...., 2y} € X, Y = {y1,...,yn} C Y. Die Matrixdarstellung My »[P]
einer linearen Abbildung ® € £(X;Y) beziiglich dieser Basen ist basisabhéngig, so wie
die Koordinaten eines Vektors basisabhingig sind. Sind W := {u;, ..., @y} € X und
Z :={Z,...,Zy} €Y auch Basen von X bzw. Y, so stellt sich die Frage, wie man
yMx[®] in zMyy[®] umrechnet.

Dazu bemerken wir, dass es nach Satz V.2 eindeutige lineare Abbildungen = € £(X),
© € L(Y) gibt, mit

E(f1> = Wy, Z(.fg) = u72, cey E(fM) = 117M, (VI47)
O@) =z, O) = 2, ..., O@n) = v (VL.48)

= und O sind beide surjektiv, also nach Satz V.6 bijektiv und somit Automorphismen,
=€ GL(X), ©® € GL(Y). Die inversen Abbildungen sind damit ebenfalls Automorphis-
men =7' € GL(X), ©7! € GL(Y) und besitzen die Eigenschaften

—

ENw) = &1, W) = &, ..., = @u) = Tu, (V1.49)
O Z) = i, O YE) = b ..., O'(EN) = i (VL50)

Die linearen Abbildungen =, ©, =1, ©~! bezeichnet man als Basistransformationen.

Satz VI.8. Seien M, N € N, X undY zwei K- Vektorriume mit Basen X := {Z,,}M_, C
X, Y ={g,CY, W= {0}, C X, Z:={Z,}_, CY und zugehirigen Ba-
sistransformationen = € L(X), © € L(Y) mit 2(Z,,) = Wy, und O(y,) = Z,. Dann gilt
fiir jede lineare Abbildung ® € L(X;Y), dass

sMw[®] = yMx[O 1o doZ]. (VL.51)

Beweis. Seien a,, ,, € K so gegeben, dass

vmeZY: ®(W,) = armZ + ...+ aymZy, (V1.52)
d.h.
1 - QM
sMp[®] = : : : (V1.53)
ani '+ OGNM

Dann ist, fiir alle m € Z,

D(Z(Tm)) = P(Wn) = armO@) + ...+ anmO(Yn)
= @(angl + ...+ aN7m?jN)~ (VI54)

Durch Anwendung von ©~! erhalten wir dann

Vm e Zi\/[ : (@_1 odo E) (fm) = aLm?jl + ...+ G,N7mgN, (VI55)
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d.h.
air - aim
yMx[@ oo E] = : : : (VL56)
ani - aNM
O
Korollar VI1.9. Gelten die Voraussetzungen wie in Satz VI.§, so ist
Mw[®] = (My[B]) - yM[0] - My[E]. (VI.57)
Beweis. Ergibt sich sofort aus Satz VI.4 und (VI.39). O

Korollar VI.10. Seien N € N, X ein K- Vektorraum mit Basen X = {Z,}N_|, W =
{0, N, € X und zugehériger Basistransformation = € GL(X), mit =(%,) = w,. Fir

alle ® € L(X) gilt

My[®] = (Mx[E]) - M[@] - Mx[Z]. (VL58)

Bemerkungen und Beispiele.

e Zur Berechnung der inversen Matrix braucht man die Determinante. Diese ist

Gegenstand des nédchsten Kapitels. Erst wenn wir Matrizen invertieren koénnen,
sind (VL.57) und (VI.58) zu etwas niitze.

e Wir illustrieren Korollar VI.10 durch ein Beispiel und kommen dazu nochmal auf
(VI.40)-(V1.46) zuriick, wihlen also N = 2, K = R, X = R? und Basen

- (am Q) 5~ fom(an () o

(VL59)

Der Basis £ entspricht nun also X in Korollar VI.10 und X" in (VI.59) entspricht
W in Korollar VI.10.

Wir berechnen nun die Matrixdarstellungen Mg[=], (Mg[E])fl = M= €

K?*2 zur Basistransformation 2 € GL(X), Z(é;) = 71, Z(€) = T, und ihrer
Inversen =~! € GL(X), 271(#) = €1, =~ 1(Z2) = &. Dazu beobachten wir, dass

=) = & = (g) _ 2, (VL60)
—_— = — 1 — —
E(ey) = Ty = (1> = €] + €y, (VL.61)
und
& = ZN&) =227 (e) = E7'(&) = i&, (VI62)
& = ZN@) = N6 +8) = lEa+E7YE) = 27YE) = & - la.
(VL.63)
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Somit sind

MelE] = (g D und  Me[E7Y] = (

Nun iiberpriifen wir (./\/lg[E])f1 = M¢[=7'] durch Matrixmultiplikation. In der

Tat sind
L1 10
2 2| — —
VG- e e

MeE]- Me[E] = (é _1%> - (g D _ (é (1’) _ (VL.66)

Wir kommen nun auf die in (VI.41) definierte lineare Abbildung ® € £(R?) zuriick,
die geméf (VI.42) und (VI.46) die Matrixdarstellungen

1 1
2 2
2 ) . (VL.64)

[\
—_

Me[E]- Me[E7Y = (

e}

Me[d] = (?) ;) und Mo [®] = ((2) g) (VL67)

besitzt. Durch Matrixmultiplikation erhalten wir nun sofort, dass
1 1
MeE) el Motz = (5 7)) (5 5) (01) v

N <é _31)(3 i) = (3 3) = My[9),

wie in Korollar VI.10 behauptet.
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VIl. Determinanten

VIl.1. Der Leibnizsche Entwicklungssatz

Definition VII.1. Fiir N € N sei det : KN*N — K definiert durch

det[A] = Z (—1)7r aﬂ(l)J . aﬂ(g)’g cee aw(N),N;
TeESN
fir
11 - Q1N
A = : : e KXV,
ani '+ QNN

(VIL1)

(VIL.2)

det[A] heit Determinante von A. Die Formel (VIL.1) heifit Leibnizscher Entwick-

lungssatz.

Bemerkungen und Beispiele.

e In (VIL.1) ist (—1)" das Signum der Permutation 7; ist 7 das Produkt von ¢

Transpositionen, so ist (—1)™ = (—1)*. (Siehe Kapitel II.)
e Sei N =2. Dann ist S = {1, 0}, mit

1 = G ;) o = G i) = (-)'=+1, (-1)7=-1.

Also ist

Q21 A22 oy
2

= (+1) Ca1(1),1 * 41(2),2 + (—1) *Qg(1),1 * 00(2),2

= a1 022 —az1 - A12.
Merkregel:
a b
det W = ad — bc.
c d

(VIL3)

(VILA)

(VIL5)
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e Sei N = 3. Dann ist § = {m, m, ..

. ,’/T6} mit

1 2 3 1 2 3 2 3
7T1—]l—(1 23>, 7T2.—(23 1), 7T3—( 1 2), (VIIG)
1 2 3 1 2 3 2 3
Ty = (2 ] 3>, 5 = <3 5 1>, e —< 3 2>, (VILT)
und
((D7 = ((D7 = ((D® = 4L ()T = ()T = ()" = -1
(VIL8)
Somit wird
11 QAir2 a3
det Q21 Q22 Aa23 (VIIQ)
a3 dasg2 ass
= + a11-G22-033 + Gg1-032-A13 + 31 Q12" A23
m he ms
- 92,1 ca12 - CLB,?; — Q310422 " al,:i - Ell,l cazo - a2,§-
7 s he
Merkregel (Sarrussche Regel): \ = +1, ,//= —1.
aia 1,2 1,3 ai,1 a2
N\ W W v
21 a2 92 a23 az1 a2 .2
v W W hV
as; as,2 3,3 as,1 as,2
e So sind beispielsweise
21
det =2-0-1-1 —1 (VH.lO)

und
3 2
det 1 01
1 2 2
= 3-0
= —bh.
e L ist

10

-2+3-1-1+2-1-2-3-1-2-2:-0-1—-3-1-2

(VIL.11)

(VIL.12)
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wobei das Kroneckersymbol §; ; definiert ist als

N 1 falls i =y,
VZ,j S Zl : 51"]' = (VIIL?))
0 falls 7 # j.

Beachte nun, dass fiir 7 € Sy

{0r)1 - 0r@) 2 Ouyn 0} & {7(1)=1,...,.7(N) =N} < {x=1}.
(VIL14)

Also ist

det[1] = Z(—l)”éﬂ(l)7l...5ﬂ(N)7N = 011 O0yn = L. (VIL.15)

TESN

Wichtig ist auch, dass man die Determinante auch aus drei sie determinierenden Eigen-
schaften gewinnt, wie der folgende Satz behauptet.

Satz VIL.2. Fir N € N besitzt die Abbildung det : KN*N — K folgende drei Figen-
schaften (i)—(iii) und ist durch sie eindeutig bestimmt. Seien dazu v € K und

) bl,i
VieZY: % = : : g = : e K" (VIL.16)

anN; bN,i
(i) Die Determinante ist linear in jeder Spalte, d.h. fiir jedes i € Z.Y gilt
det [(fl, e ,fi_l, ’Yfz + g;', fi-i—lu e 75}\7)} (VIIl?)

= 7" det [(fl, Ce 7fi—17~fi7fi+1a c. ,fN):| —|—d€‘t [(fl, Ce ,fi_l,:lj;,fi+1, c. ,fN)].

(i1) Sind zwei Spalten gleich, so verschwindet die Determinante, d.h. gibt es ein Paar
i,j €ZY, i +# j, so dass Z:=T; = T}, so gilt

det [(Z1,...,%,...2,....%,)] = 0. (VIL18)

(111)
det[1] = 1. (VIIL.19)
Beweis. S. Ergdnzung im Abschnitt VIL.5.1. O]

Eine weitere wichtige Eigenschaft von Determinanten ist ihre Multiplikativitat.

Satz VIL.3. Seien N € N und A, B € KN*N. Dann gilt

det[A- B] = det[A] - det[B]. (VIL.20)
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Beweis. Seien A =: (a;;);;—1, B =: (bij);—, und A- B =: (7;;)_,, also

N

Vig = Zai,k by j- (VIL.21)
k=1

Sei k € Sy fest gewihlt. Dann ist, fiir alle 7 € Sy,
Ar(1),1 """ Ax(N),N = Q(mor)(1),k(1) " * " Q(mor)(N),k(N)- (VIL22)

Also ist, mit n := 7o &,

det[A] - det[B] = Z (=)™ (=1)" aray1 - @r(n),N = by, - Ou(vy), N

T,KESN

— (_1)71'011

= Z { Z (—=1)™" Qron(1)m(1) * * * Gron(N)m(N) (1)1 * * * by v

KESN TESN

= D D (D) ay)m01) - Ay For() - Dy n

KESN T)ESN

= Z det [(fn(l); c. wfm(N))] : b,ﬁ(l)’l ce b,‘i(N),N7 (V1123)
KESN
wobei
3N
VieZY: F= : : (VIL24)
anN.e

In (VI1.23) ist s € Sy, also ist k : ZY — ZY eine bijektive Abbildung. Ist s : ZY — Z¥
nicht bijektiv, so gibt es i,j € ZY mit k(i) = x(j), und dann ist

det [(Zar)s - - s Tu(iys - - - » Tuii)s - - - Tuvy) | = 0. (VIL.25)
Also ist
Z det [(Ze)s - - - i)+ by -+ by
KESN

= Z det [(Zu1)s - - -, Tuv)) ] - bray1 * - bu(v),v

K:Z{V%Z{V,
Kk bijektiv

= > det [(Fuys o Tuv)] - Do) - beqy

N N
K2y =14

= Z det [(fﬁ(l), ce ,f,{(N))} . 55(1)71 R bn(N),N- (V1126)
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Damit wird

N
det[A]-det[B] = Y > (=1 an()n(1) " r(n)n (V) bi(1)1 by

TESN k(1)=1 K(N)=1
= ) (=D)™ea ey = det[A- BJ. (VII1.27)
TESN

VII.2. Das Inverse einer Matrix

Definition VIL.4. Sei A = (a;;)iczy jezv € KN*M eine N x M-Matrix, dann heifit
AT = (bij)iezy jezy € KMV mit b; ; := a;;, die zu A transponierte Matrix,

a1 Qi2 -+ a1,M 11 A21 -+ AN
ag1 QA2 -+ Q2 M 12 A22 -+ QGN2

A= , _ ) = Al = _ _ _ : (VIL.28)
ani1 ang2 -+ AaNMm im0 Ao pm 0 AN M

Bemerkungen und Beispiele.

e Man erhilt AT aus A durch Spiegelung an der Diagonalen.
e Zum Beispiel ist
8 3
A=1[79|= ar = (8T 1Y) (VIL.29)
3 9 2
1 2
e Sind A € KNM*M ynd B € KM*E, 50 ist
(A-B)Y = BT. AT (VIL30)
(Beachte vertauschte Reihenfolge!)
Ty
o Ist ¥ = : € KV ein Spaltenvektor, den wir als N x 1-Matrix der Form
TN
a1
M(Z) = : € K¥*! auffassen, so entspricht die zu M(Z) transponierte
TN
Matrix
M@ = (21,...,2n5) € KN (VIL.31)

gerade der Darstellung von 7 als Zeilenvektor.
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Lemma VIL5. Ist A € KN*N | so gilt
det[A] = det[AT]. (VIL.32)
Beweis. S. Ergénzung im Abschnitt VIIL.5.2. O]

Definition VIL.6. Seien N € N und A = (a;;))._; € K"V, Definiere die Matrix

1,j=1
Aminor = (bij)ij=1 € KV*N der Minoren b; ; durch

bij = > (=1 )1 (1)1 Gr(ian) g1 Gr(v) - (VIL33)

TeESN,
w(j)=i

Bemerkungen und Beispiele.
e Man erhilt b;; als b;; = (—1)"7 - det [A®)] wobei A) ¢ KW=UX(N=1 gogehen

ist durch
(25 75 B ay,j—1 Q1,5 aij+1 ai,N
a;—1,1 - Qi—1,45-1 Qi—15 QAi—1,541 - Qi1 N
J) _—
AGD) = Qi Q-1 Q;,j Aij+1 T ai, N )
Qit11 0 @ip15-1 i1y Qip1541 0 Gip,N
an,a - aN,j—1 anN,;j anN,j+1 -+ QNN
(VH.34)
also aus A durch Streichen der i. Zeile und der j. Spalte hervorgeht.
o Fir
i1 Aair2 a3 51,1 b1,2 b1,3
A = Q21 QAz2 0Aa23 ) Aminor = b2,1 52,2 52,3 (VH-35)
azi asz ass bS,l b3,2 53,3
sind beispielsweise
1,1 Q12 Aais a a
_ 142 _ 2,1 a23
61,2 = (—1) - det az71 a2 Q23 = —det |:< a a ):| s
3,1 433
| \ 43,1 432 asg3
(VH.36)

aia Q12 G133
_ 3+3
b3,3 = (—1) . det a271 a,2,2 a273

= det [( 11 912 )} . (VIL37)
Q21 A22

az1 as2 as3

e Ein konkretes Zahlenbeispiel:

(VIL38)

I

I
)
N O W
N = DN
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Dann sind
by = (—1)%-det <(2) ;) = (+1)-(0-2) = -2, (VIL.39)
bio = (—1)*-det G ;) = (-1)-2-1) = -1, (VIL.40)
big = (—1)*-det G g): = (+1)-(2-0) = 2, (VIL.41)
by = (—1)*-det @ ;) = (-1)-(6—-4) = -2, (VIL.42)
boo = (—1)*-det G ;) = (+1)-(6—-2) = 4, (VIL.43)
bos = (—1)°-det G ;’) = (-1)-(6-3) = -3, (VI1.44)
b3y = (—1)*-det :<g ?) = (+1)-(3-0) = 3, (VIL.45)
bso = (—1)°-det G ?) = (-1)-3-2) = -1, (VIL.46)
bss = (—1)°-det G g>: = (+1)-(0-3) = -3, (VIL.47)
und somit ist
-2 —1 2
Apinr = | =2 4 =3, (VIL48)
3 -1 -3

o Fiir N = 2 kann Ao sofort direkt angegeben werden, da die Determinante einer
1 x 1-Matrix die Zahl selbst ist:

a b d —c
A - <C d> = Aminor - (—b a > . (VII49)
Satz VILT. Seien N € N und A = (a;;);;—; € K"V, Dann ist
A- Aﬁinor = Az;nnor A = det[A] - 1. (VII50)

Der Beweis des Satzes VII.7 dhnelt dem Beweis des Satzes VII.3, s. die Ergénzung VII.5.3.
Wir ziehen hier nur die wichtigen Folgerungen.

Satz VIL.8. Fiir N € N und A € KN*N gelten folgende Aussagen:
(i) A ist genau dann invertibel, wenn det[A] # 0 ist;

(ii) Ist A invertibel und bezeichnet A4 € KN>*N mit A- A~ = A7 A =1 die 2u A
wmverse Matrix, so gilt

Aflz;_AT

or- VIL51
det[A] minor ( )
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Beweis. Sei det[A] # 0. Dann setzen wir A := (det[A])™ - AZ.  und erhalten
AA=A.A=1 (VIL52)

aus Satz VIL.7. Somit ist A invertibel und A~! = A.
Sei umgekehrt det[A] = 0. Wire A invertibel mit Inverser A~ € KV*V so wire nach
Satz VIIL.3

1 = det[l] = det[A- A7) = det[A] - det[A™] = 0, (VIL53)
~——

was einen Widerspruch ergibt. O]

Bemerkungen und Beispiele.
ab

e Seien N = 2 und a,b,¢,d € K, so dass ad — bec # 0. Mit A := (c d) ist also
det[A] # 0, und A ist invertibel mit

_ 1 d —b
ATt = R (_C " ) (VIL.54)

e Die Bestimmung der Inversen einer 3 x 3-Matrix ist schon aufwéndiger. Dazu
miissen wir ihre Determinante und 9 Minoren (Determinanten von 2 x 2-Matrizen)
berechnen. Beispielsweise sind nach (VII.11) und (VII.38)—(VII.48)

33 2 -2 -1 2
A= 1101 =  det[d] = =5, Aminor = |2 4 3| (VIL55)
122 3 -1 -3
2 2 _3
L [~2 -2 3 5 5 5
= Al =—-_|-1 4 1| =]+ -3 1
2 -3 -3 _2 3 3
5 5 5

e Die Menge der invertiblen N x N-Matrizen iiber KK bezeichnen wir mit

GL(N,K) = {Ae K" | det[A] # 0}. (VIL56)

VIIL.3. Lineare Gleichungssysteme

Eine wichtige Anwendung von Matrizen und ihrer Inversen sind lineare Gleichungs-
systeme (LGS). Sind A = (a;;)7;-;, € K"V eine N x N-Matrix iiber K und § =
()X, € KN 2 KV*! ¢in Spaltenvektor, so betrachten wir das LGS

1121 + a12T2 + ...+ G NTN = Y1,

a2 177 + A22T2 + ...+ A2 NTN = Y2,

aN1T1 +anNTe + ... + AN NTN = YN-
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Wir mochten Bedingungen finden, wann das LGS (VIL.57)-(VIL.60) eine Losung & =
()X, € K¥ besitzt und ggf. Aussagen iiber die Lésungsmenge machen. Offensichtlich
ist das LGS (VIL.57)-(VIL.60) dquivalent zur Vektorgleichung

AT = g (VIL.61)
Satz VII.9.
(i) Homogene LGS (§=0):
{det[A] =0} & {3FeKV\{0}: A¥=0}. (VIL62)
(ii) Inhomogene LGS:
{det[A] #£0, AT=y} = {T=A""y}. (VIL63)

Beweis.
(1) folgt trivial aus Satz VIL.8. Um (i) zu beweisen, nehmen wir zunéchst det[A] # 0

an. Dann ist A invertibel und # = A~'0 = 0 die eindeutige Losung von A7 = 0. Also
gibt es keine nichttriviale Losung von A% = 0.

Ist umgekehrt det[A] = 0, so ist A nicht invertibel. Nun ist M : L(KY) — K¥*V gemif
Satz VI.7, (i7) ein Ringisomorphismus, und es gibt eine eindeutige lineare Abbildung
® € LKY), so dass A = M[®]. Weil A nicht invertibel ist, ist @ nicht bijektiv und
somit auch nicht injektiv. Es gibt also #, &’ € KV, ¥ # &', so dass AT = AZ’. Damit ist
(Z— &) # 0 eine Losung: A(Z — ') = 0. O

VIl.4. Determinante und Spur einer linearen Abbildung

In den vorigen Abschnitten dieses Kapitels haben wir die Determinante det[A] einer
N x N-Matrix A kennengelernt. Wir haben gesehen, dass A genau dann invertibel ist,
wenn det[A] # 0 gilt. Wir wollen den Zusammenhang zwischen einer linearen Abbildung
¢ € £(X) und der Determinante ihrer Matrixdarstellung bezgl. einer Basis bestimmen.
Doch zuvor fithren wir den Begriff der Spur einer Matrix ein.

Definition VII.10. Fiir N € N sei Tr : KN*¥ — K definiert durch

N ajqp - 1N
Tr{A} =) a;; fir A = : : e KNV, (VIL64)
=1

ani -°* QNN

Tr{A} heifit Spur von A.

Lemma VII.11 (Zyklizitdt der Spur). Fir N € N seien Gy, Go, ..., G € KNV, Dann
15t

TI'{Gl GQ cee Gk} = Tr{Gk Gl G2 s Gk_1} (VII65)
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Beweis. Sei zunéchst £ = 2, also etwa

ayy1 -+ Q1N bl,l bl,N

angi -+ AanNN byvi -0 by
Dann ist
N N N N
Tr{A-B} = ) (Z aiﬁjbﬂ) => (Z bj,iai,j> = Tr{B-A}.  (VIL67)
i=1 j=1 j=1 i=1

Setzt man A := G1Gy---Gg_1 und B := Gy, so folgt (VIL.65) fiir & > 2 direkt aus
(VIL67). O

Satz VII.12. Seien N € IN und X ein N-dimensionaler Vektorraum iber IK mit Basen
X ={#,..., v} C X und W = {w,..., 0y} C X. Ist & € L(X) eine lineare
Abbildung, so sind
det [My[®]] = det [M[®]], (VIL68)
Tr{Mx[®]} = Tr{M[®]}. (VIL69)

Beweis. Ist = € L£(X) die Basistransformation zwischen X und W, also =(&;) = j;, fiir
alle i =1,..., N, so gilt nach (VI.58)

A = H'AH, (VIL.70)
wobei A := My[®], A := My[®] und H := Mx[Z]. Nach Satz VIL3 ist dann
det[A] = det|H']- det[A] - det[H] = det|H 'H]-det[A] = det[4].  (VIL71)
Ahnlich erhalten wir mit Lemma VII.11
Tr{A} = Tt{H "AH} = Tr{HH ' A} = Tr{A}. (VIL72)
0

Wir sehen also, dass Determinante und Spur einer Matrix nicht durch Basistransforma-
tionen beeinflusst werden.

Definition VII.13. Fir N € NN sei X ein N-dimensionaler Vektorraum iiber K. Defi-
niere die Abbildungen det, Tr : £(X) — K durch

det[®] := det [Mx[P]], (VIL.73)
Tr{®} = Tr{Mx[®]}, (VIL.74)

wobei X := {Z},...,Zx} C X (irgend)eine Basis von X ist.

Bemerkungen und Beispiele.
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e Satz VII.12 sichert die Wohldefiniertheit (Basisunabhingigkeit) der Abbildungen
det : L(X) — Kund Tr: £(X) — K.

e Man sagt auch, Determinante und Spur seien invariant (unter Basistransformatio-
nen).

e Hs ist

Tr = 34042 = 5. (VILT75)

— = o
N O W
N — DO
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VIL.5. Erganzungen

VIL.5.1. Die drei determinierenden Eigenschaften der Determinante
Beweis. Wir zeigen nur, dass det die Eigenschaften (i)—(izi) aus Satz VIL.2 besitzt, aber
nicht, dass sie die einzige Abbildung mit diesen Eigenschaften ist.

@ . ergibt sich sofort aus der Definition,

Z ( 1) Ar(1),1 (’VCLW (%), + b ) *Qn(N),N

TeSN

= ( D ()T ar) 1 i 'awuv),N)

TESN

TESN
(VIL.76)
(i74): haben wir schon in (VIL.15) gezeigt.
(7): Sei ¥ = ¥, etwa fiir (4, j) mit 1 <4 < j < N. Dann ist, mit A := (74,...,7n) €
]KN><N7
N
det[4] = Z (—D”H%(z)e
7'&'681\7 =1
= Z (_1> (2),i (5 H Qr(e
TESN £(#1,7)
= > (D% ] amwe (VIL77)
TESN L(#1,5)

wobei vg := ag; = ag; und “[], 4 ;)7 das Produkt iiber alle £ € 7Y\ {i, j} notiert. Sei
nun o € Sy die Transposition (i, ), d.h.

o 12 ...4¢4 ... j ... N
7= (1 2 . j i N)' (VILTS)
Dann sind (—1)™7 = —(—1)" und
V(woo) (i) V(moo) (5 H A(roc)(0),t = Vr(5) * Vn( H Are),e = Vr(i) Vr(4) H Qr(0),6-
0(#i,9) (#4,5) L(#1,9)
(VIL.79)
Daher ist
det[A] = = > (=1 Yro)® Yror)) 1] Atromione
TeESN £(#4,5)
= = > V"o me 1] asoe
KESN 0(F#£1,5)
= — det[A], (VIL.80)
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wobei wir k := mo o als neue Summationsvariable einfiithren und benutzen, dass Sy eine
Gruppe ist und insbesondere Sy = Sy o o gilt. Also ist det[A] = — det[A] = 0. O

VI1.5.2. Erhaltung der Determinante unter Transposition

Beweis. (Beweis von Lemma VII.5): Sei A = (a;;)Y._;. Dann erhalten wir durch Um-

ij=1-
sortieren des Produkts, dass
Ar(1),1 " An(2),2 " Aa(N),N = Qr(1),7=1(n(1)) * Dn(2),m~ 1 (x(2)) """ Am(N), 7L (m(N))
= A1q-1(1) " A2,r-1(2) "  ANx—1(N)- (VIL.81)

Weil (—1)" = (—1)”71, und weil Sy eine Gruppe ist, erhalten wir, mit x := 77! als neue
Summationsvariable, dass

det[A] = D> (D)™ ayr)anaeiy) = D Gre()canewy = det[AT].

TESN KESN
(VIIL.82)
]
VI1.5.3. Beweis von Satz VII.7
Bezeichnen wir die Produktmatrizen mit
(’Yi,j)f’?/jzl = Aglinor +A und (’?Z’J)Z]'szl =A- Aﬁinor? (VIISS)
d.h.
N N
rYi,j = Z bk,i a;w- und ’%J = Z ai,k bj,k; (VII84)
k=1 k=1

so ist also zu zeigen, dass 7, ; = ;; = det[A] - §; ;. Wir zeigen nur v; ; = det[A] - §; ;.

Setzen wir (VIL.33) ein, so erhalten wir fiir festes i, € Z{

N N
= bp, = 17
Yig = Ak, jOk,i = Qf,j (— ) Ar(1),1° " Qr(i—1),i—1 " Ar(i+1),i+1 " An(N),N
k=1 k=1 TESN,
7(i)=k

N
= Z Z 57r(i),k(_1)7raﬂ'(l),l ©tQr(i-1)i—1 " Gk Qr(it1),i+1 """ Qn(N),N
~—~

k=1 weSy =an(i),j
N

= Z {(—1)%%(1),1 © o Qr(i-1) -1 " Ar(i),5 ° Ax(i+1),i+1 " " Ax(N),N ( Z 57r(i),k> }

TESN k=1

=1

= Z (_1)7ra7r(1),1 ©Qr(i—1),i—1 " Ar(i),j * Qr(id1),i+1 " " An(N),N

TESN
= det [(fl, ce ,fi_l, fj, fi-}—la ce ,fj, ce ,fN)] 5 (VII85)
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wobei

VeezZl: 7 = : : (VIL86)
any
Fiir i # j sind dann zwei Spalten in (VIL.85) gleich, und aus Satz VII.2 (i), folgt 7, ; = 0.
Fiir 4 = j ist aber v, ; = det[4], also
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VIll. Der GauB3-Algorithmus

Zur Berechnung von Determinanten und von inversen Matrizen ist der Gauf-Algorithmus
viel praktischer als der Leibnizsche Entwicklungssatz und die Matrix der Minoren. Er
basiert auf der Multiplikativitdt der Determinante und dem sogenannten Kdstchensatz.

Satz VIIIL.1 (Késtchensatz). Seien N =ny+no+...+np € N mit ny,ns,...,ny € N.
Seien weiterhin gy, € K™ "™ und

911 | 91,2 g1,L
A= | B2 e KNV, (VIIL1)
gra | - grL,L
Sind gre =0, falls k > ¢, also
g1 912 | 1L
A= | Ule2l L 2] (VIIL2)
: R =Y
0 |---] 0 grs
oder sind gpe = 0, falls k <, also
gia| O e 0
A= | B2rlS2] - | - | (VIIL3)
gra | - | 9L,L-1 | 9L,L
so gilt in beiden F'dllen
det[A] = det[g11] - det[gaso] - - - det]gr L] (VIIL.4)

Beweis. Es geniigt, die Aussage fiir L = 2 zu zeigen. Fiir L > 2 folgt sie dann leicht per
vollstéandiger Induktion.
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Seien also A = (ai7j)fyj:1, 911 = (i )i =1, Go2 = (aiyj)%:nﬂ und a;; =0, fallsi > n+1
und j < n. D.h.

a1 0 Qip A1nt+1 0 Q1N
Qp1 " Qpnp Apn+1 *°° QpN
A = (VIIL5)
0 T 0 Apnyin+1 " Optl N
0 0 ANpt1 0 ANN

Seien nun m € Sy eine Permutation und j < n. Ist 7(j) > n + 1, so ist ar(j),; = 0 und
somit auch

(—1)7ra7r(1),1 “anny,N = 0. (VIIL6)

Also tragen nur die Permutationen 7 € Sy zu det[A] bei, die die Mengen {1,...,n}
und {n + 1,..., N} jeweils auf sich abbilden. Diese sind aber gerade die Produkte aus
Permutationen von {1,...,n} und {n+1,..., N},

T = Ko, (VIIL.7)

wobei k € S, und n € Sy_,, (auf {n+1,..., N} wirkend). Also ist

det[A] = Z (_1)7Ta7r(1),1 © 2 Qr(n)mn  Qr(n+1),n+1 " Ax(N),N

TESN

KO
= > (1) a1y Gy Gyt AN N
/{ESn,’VZGSN,n

= det[gl,l] . det[gm]. (VIII8)
O
Ein Spezialfall des Késtchensatzes ist L = N und nqy = ny = ... = ny = 1, d.h. wenn

A eine rechte obere Dreiecksmatriz oder eine linke untere Dreiecksmatriz ist. In diesem
Fall ist die Determinante durch das Produkt der Matrixelemente auf der Diagonalen
gegeben.

Korollar VII1.2. Sei N € IN. Ist

11 A1z Aa13 ce a1, N
0 G22 A3 ce a2, N
0 0 as,;s s a3 N
A4 = : : - : c KNV, (VIIL.9)
0 - 0 an—in-1 an—1nN
0 cee 0 0 QN N
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eine rechte obere Dreiecksmatrix oder

ara 0 0 .. o 0
az a2 2 0
A = as,1 a3,2 as,3 : e : e KVXN, (VIIL.10)
an-11 aN-12 GN-13 -+ an—inN—1 O
an1 an 2 anN ;3 T AN N-1 QN N

eine linke untere Dreiecksmatrix, so gilt in beiden Fillen

det[A] = Qaj,1°Aa22'**ANN- (VIIIll)

VIIl.1. Elementare Zeilen- und Spaltenoperationen

Der spéter vorgestellte Gaufl-Algorithmus besteht aus sukzessiven Anwendungen von
elementaren Zeilenoperationen auf eine zu untersuchende Matrix A € K¥*V | die ihre
Determinante bis auf ihr Vorzeichen unverédndert lassen.

Definition VIIL.3. Sei N € N und A € KV*¥ eine N x N-Matrix.
(Z) Als elementare Zeilenoperationen bezeichnet man
— das Vertauschen der k. Zeile mit der ¢. Zeile in A und
— das Addieren des n-fachen der k. Zeile zur £. Zeile in A,
fiir alle k, ¢ € Z& mit k # ¢ und n € K.
(S) Als elementare Spaltenoperationen bezeichnet man
— das Vertauschen der k. Spalte mit der £. Spalte in A und
— das Addieren des n-fachen der k. Spalte zur £. Spalte in A,
fiir alle k,¢ € Z& mit k # ¢ und n € K.

Bemerkungen und Beispiele.
e Sind A = (a;;)};—; € KMV eine N x N-Matrix und k,¢ € Z{' mit k # £ und
n € K, so bewirken die elementaren Zeilenoperationen, dass

a1 -+ Q1N
a1 - AN
A = : : (VIIL.12)
Qg1 -+ QN
ani '+ QNN
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iibergeht in

a1 -0 AN a1 T ai,N
aer -t N ak,1 T ag,N
(kL) (b+nk) . _
AT = ;AT =
g1 QN ag1+nagy o AN +NagN
ani -+ AanN\N an,1 T an,N
(VIIL.13)

e Sind A = (a;;)N_, € KV eine N x N-Matrix und k,¢ € ZY mit k # ¢ und

ij=1
n € K, so bewirken die elementaren Spaltenoperationen, dass

a171 DY a‘l,k ... a,17€ ... al,N
A = : : : : (VIIL.14)
a/N,l DY a/N,k .« .. afN,f ... G/N,N
iibergeht in
a171 .. a17£ DR a’l,k DRI a/l,N
(k&) . . . . .
Ag™ = : : : : )
aN,l DY aN,@ DY aN,k .o .. aN,N
T Y S W /NS W S W\
l4nk . . . .
Ag+n ) = : : : : . (VIII]_5)
ani -+ aNg 0 angtnang - ANN

Elementare Zeilen- und Spaltenoperationen bewirken héchstens einen Vorzeichenwechsel
der Determinante der Matrix A, wie das folgende Lemma zeigt.

Lemma VIIL.4. Seien N € N, A € KNV eine N x N-Matriz und k,{ € Z mit k # ¢
sowie n € K.

(i) Gehen A(Zk’g) € KN qus A durch Vertauschen der k. und der (. Zeilen und
Agk’g) € KN qus A durch Vertauschen der k. und der £. Spalten hervor, so gilt

det [AFY] = det [ALY] = —det[A]. (VIIL16)

(i) Gehen A(Zan) € KN*N qus A durch Addieren des n-fachen der k. Zeile zur (. Zeile
und Ag”nk) € KN qus A durch Addieren des n-fachen der k. Spalte zur £. Spalte
Afgk’g) € KN*N hervor, so gilt

det [AST™] = det [A{™™] = det[A]. (VIIL.17)
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Beweis. Wir beweisen tatséchlich noch etwas allgemeinere Identitéaten als (VIII.16) und
(VIIL.17). Dazu fithren wir ein paar Rechnungen durch.

Seien 2,73, ..., € Kund A, G, H € KN*¥ gegeben durch

a1 0 AN
A = : . (VIIL.18)
an1 QN N
1 0 0
72 1 :
G=1~ 0 a0 (VIIL.19)
P 0
YN 0 0 1
L n 3 nN
0 1 0 0
H=|: " " . (VIII.20)
. - 0
0 0 O 1

Offensichtlich sind G eine linke untere bzw. H eine rechte obere Dreieckmatrix, und aus
Korollar VIII.2 folgt sofort, dass

det[G] = det[H] = 1. (VIIL21)

Durch Matrixmultiplikation erhalten wir auflerdem, dass G -G™! = G™' -G = 1 und
H-H'=H' H=1mit

1 0 0
-y 1 :
Gl =]y 0 . AP (VIIIL.22)
: R 0
—yy 0 - 0 1
I —na —m3 —71N
0o 1 0 0
H' = |+ 0 o (VIIL.23)
: 0
0 0o 0 1
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und weiterhin

a1 a1 2 ai,N
GoA — a1 +.’Yza1,1 a2 +.’Yza1,2 Qs N +‘72a1,N , (VIIL.24)
ani +YNG11 an2 + YNG12 an,N +YNa1,N
a1 Q12+ 1201 ai,N +Nnaq1
A H — &?,1 (22 +‘772a2,1 Qs N +.77Na2,1 (VITL25)
az;u an.2 +‘772QN,1 an,N +.77NCLN,1
Insbesondere sind
a1 ai,2 a1, N
det as1 +.72a1,1 s +.72a1,2 Qo N +.726L1,N — det][G- A] (VIIL26)
an,1 +'7N6L1,1 an,2 "‘"YNCLLQ an,N ‘f‘"YNal,N
11 0A12 ai N
— det[G] - det[A] = det[4] = det || T ®? N
an;1 AaN2 QN N
und
a1 Q12+ 72011 a1,N + 1Na1
dot | | 20 22RO R | (VIIL.27)
ani Gan2 +'7726LN,1 an,N + NQN 1
a1 ai2 a1, N
— det[A] - det[H] = det[A] = det || " " N
ani1 an;2 QN N

Wir definieren auch fiir 1 < i < j < N die Permutationsmatrix S/ € KNV durch

(59, =

1, fallsk=1/0¢{ij},
1, falls k= j und ¢ =1,
1, falls k=7 und ¢ =j,
0, sonst.

(VIIIL.28)

und setzen S := 1. Dann bewirkt die Multiplikation mit S®7) von links die Vertau-
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schung der 7. mit der j. Zeile von A,

a1 -+ Q1N 11 -+ Q1N
a1 ai; N ;1 Qi N
A = A B e , (VIIL.29)
51 a4 N ;1 a; N
aNi -+ QNN ani '+ GaNN

und die Multiplikation mit S®7) von rechts vertauscht die 4. mit der j. Spalte von A,

&171 DY a/l,Z e al,] PR a’l,N

A= : s : C (VIIL.30)
a/N,l DEREEY a‘N,’L .. aN,] DRI a’N,N
a/1’1 DEREY al,j ... al,l DY al,N

A5 — | : : . (VIIL31)
aN,l DY CLN7‘7 . .. aN,’L DY aN,N

Da S fiir § < j wie eine Transposition und fiir i = j wie die Identitét wirkt, ist
Vi<j: det [SO] = (—1)'7%, (VIIL.32)

wobei ¢; ; das Kroneckersymbol notiert.

Sind nun k, ¢ € ZY mit k # ¢ und 5 € K, so folgt (VIIL16) fiir A% sofort aus (VIIIL.32)
und ASY = §*0 . 4,

det [AGY] = det [S®D . A] = det [S®9]-det [A] = —det[A]  (VIIL33)

und natiirlich analog fiir Afgk’g).

Den Beweis von (VIII.17) fithren wir nur fiir den Fall, dass ¢ > 1 ist. Dann definieren
wir G wie in (VIII.18), wobei wir ; := fiir i € Z% \ {¢} und ~, := n wihlen, also

S R Y
0 1 :
0

G — . (VIIL34)
n 0 :
0
. S
0 0 1
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Ist nun k£ =1, so ist £ > 2, und wir erhalten aus (VIII.24), dass

11 ai 2 Tt a1 N
Ay—1,1 Ap—1.2 Tt Q¢—1,N (e4m1)
+n
G-A=|a1+na:1 ageg+nas -+ an+nan]| = Ay , (VIII.35)
Ar41,1 Ap41,2 T QAg41,N
anN1 an2 s QN N

was in diesem Fall (k,¢) = (1,¢) gerade die Behauptung ergibt,
det [ATT™] = det [G- A] = det [G] - det [A] = det [A]. (VIIL.36)

Ist k € ZY \ {¢}, so tauschen wir erst die k. Zeile in die erste Zeile, wenden dann
(VIIL.35) an und tauschen anschlieflend die erste Zeile mit der k. Zeile. Dann ist also
AR — gLk . G §R) . A und somit

det [AST™] = (det [SOP])? - det [G] - det [A] = det [A]. (VIIL37)

]

VIIl.2. Der GauB-Algorithmus fiir Determinanten

Wir kommen nun zur Beschreibung des Gaufl-Algorithmus’ zur Berechnung von Deter-
minanten. Seien N € IN, und

a1 - QN
A = : : e KV (VIIL.38)
ani -+ QNN
eine N x N-Matrix, deren Determinante wir berechnen wollen.

1. Wir betrachten zunéchst die erste Spalte (ay 1,...,an1) von A und unterscheiden
drei Falle:

1.1 Verschwindet die erste Spalte identisch, (ayy,...,an1) = (0,...,0), so gilt
nach dem Kistchensatz

0 ‘ ayrz -+ Q1N
0 a “ e a
det[A] = det 22 2
Olanz -+ annN
Q292 -+ Q2N
= 0-det : : = 0, (VIII.39)
a2 -+ AanNN

und wir sind fertig.
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1.2 Ist a;; # 0, so setzen wir j := 1 und B := A= StV . A,

1.3 Sind schlielich (ay;,..

.7CLN’1) 7é (07

,0), aber a;; = 0, so gibt es ein

j € 7}, sodass a;; # 0 (anderenfalls wiren wir im Fall 1.1). Nun vertauschen
wir die j. Zeile mit der 1. Zeile und nennen die resultierende Matrix wieder
B = S19). A Da det[S1)] = —1 ist, wechselt die Determinante von A dabei
nur das Vorzeichen, d.h. det[B] = — det[A].

Beachte, dass dieser Schritt gerade die Anwendung der elementaren Zeilen-
operation Vertauschung der 1. Zeile mit der j. Zeile ist.

Beide Félle 1.2 und 1.3 zusammenfassend stellen wir fest, dass danach b;; # 0

gilt, wobei

B = Stid. 4 =

b

und dass weiterhin

det[A] = (=1)'"° det[B]

gilt.

2. Wir setzen nun ny, := —by1 /b1, fir k =2,3, ...

1 0
ne 1
G=1|n 0
nv 0
und erhalten nach (VIII1.24)
b1 b2

bi1 b12
0 bao+mabig

0 bno2+nnbio

b1

ba1 +mebii boo 4 m2bio

by +nnbig bna + nnbio

b1 N
: (VIIL40)

b,

(VIIL41)

, N, multiplizieren B von links mit

0
0
, (VIII1.42)
0
0 1
b1
ba.N + 1201, N
by v + nnbi N
bin
ba.y + by (VIIL.43)
byn +nnbin

Wir bemerken, dass auch dieser Schritt als (N — 1)-mal ausgefithrte elementa-
ren Zeilenoperationen aufgefasst werden kann, nédmlich Addition des n;-fachen der

1. Zeile zur j. Zeile fir j = 2,3,..., N ist.

3. Nach dem Kistchensatz sind det[G] = 1 und

det[A] = (=1)"%9 det[B] = (—=1)'"%9 det[G - B] = (—1)""% by, det[A],

(VIIL44)
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wobei A € KW-DX(N=1) ¢ine (N — 1) x (N — 1)-Matrix ist, die durch

bao +mobio -+ ban +Mm2bin
A — . .

, : (VIII.45)
by +nnbia - byn +nnbin

gegeben ist.

4. Damit haben wir die Berechnung der Determinante der N x N-Matrix A auf die
Berechnung der Determinante der (N — 1) x (N — 1)-Matrix A zuriickgefiihrt.
Wenden wir dieses Verfahren N-mal hintereinander an, erhalten wir schliellich die
Determinante von A.

5. Zur Illustration ein Beispiel:

123 1 2 3 1 2 2
det || 4 5 6 =det|| 0 -3 —6 = det || 0 =3 —6
789 0 —6 —12 0 0 0

— 0. (VIILA46)

VIII1.3. Der GauB-Algorithmus zur Berechnung des
Inversen einer Matrix

Wir skizzieren nun noch den Gau-Algorithmus zur Berechnung der Inversen einer Ma-
trix. Seien N € IN, und

11 -+ A1N
A = : : e KMV (VIIL47)
ani -+ AanN,N

eine invertible N x N-Matrix, fiir die also det[A] # 0 gelten soll (was wir vorher z. B.
mit dem GaufB-Algorithmus zur Berechnung der Determinante iiberpriift haben).

e Wir setzen A := A und agg-) := a; ;. Wir wenden zunéchst dieselben Schritte wie
zur Berechnung der Determinanten mit dem Gauf-Algorithmus an und erhalten

AD = g . s . A0 (VIII.48)
wobei j; > 1,
aiy apn
an — | 0 “g'}% “;}J)V (VIIL49)
0l ol
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und
1 0 -+ - 0
o1 0
G o= a0 o] (VIIL50)
S e 0
o0 - 001

e Anschliefiend wiederholen wir das Verfahren fiir die rechte untere (N —1) x (N —1)-
Teilmatrix in A, Wir erhalten

AD = G, . 8W) . AL = @q,. M) G . gL . AO) (VIIL51)
wobei jo > 2,
2 2 2 2
e
2 2
0 ayy ayy oo agy
A — o 0 af) - af) (VIIL52)
0 0 aﬁ?g ag\Q,yN
und
1 0 - v o 0
0o 1 -
(2)
0 1
Gy = "’i&) (VIIL53)
0 ny 0
0 : : . .
0o7¢ 0o - 0 1

e Wenden wir dieses Verfahren (N — 1)-mal an, so erhalten wir eine rechte obere
Dreiecksmatrix

AN — gy, SW-Liv-D gy gD L AO)) (VIIL54)

wobei j, > k, fiir alle k € ZY 1,

N-1 N-1 N-1

A
0 a7V oGNSt

AN = . 22 N (VIIL55)
0 0 afyy”
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und
1 0 0
0
: 1 0
0 0 1 0
G = | " (VIIL56)
Meyr 10
k
771(c+)2 0
0 - 0 o 0. 0 1
e Um die Notation iibersichtlich zu halten, schreiben wir D = (dij)Niey = AW,
also
dig dig - din
~ 0 d e d
D = AW-n — [ 7 T2 TR (VIIL57)
0 - 0 dyy
und beobachten, dass
VijezZY: dij # 0, (VIIL58)

~

da sich det[D] und det[A] héchstens im Vorzeichen unterscheiden und wir eingangs
det[A] # 0 vorausgesetzt hatten (da A anderenfalls ohnehin nicht invertibel wére).

e Nun wenden wir das analoge Verfahren zum eben durchgefiihrten an, diesmal aber
zur Elimination der Spalten oberhalb der Diagonalen von D. Wegen der rechten
oberen Dreiecksstruktur und (VIIL.58) sind Zeilenvertauschungen nicht mehr not-

wendig.
e Auch die Definition der Matrizen zur Zeilenaddition ist einfach: Im ersten Schritt
setzen wir ﬁZ(N) = —d; y/dy y und
1 0 - 0 /M
0 . ) :
Gy = | .. 0 ) (VIIL.59)
0 - N,
0 0 0 1

Multiplizieren wir eine Matrix A von links mit G ~N, so wird das ﬁi(N)—faChe der
N. Zeile zur i. Zeile von A hinzuaddiert.

Hier multiplizieren wir D von links mit @N und_erreichen dadurch, dass die
N. Spalte oberhalb der Diagonalen eliminiert und D sonst aber unverdndert ge-
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lassen wird,

dig dig -+ dina 0
0 dap -+ dan-1 :
Gy-D = Lo, : : : (VIIL.60)
: dyv_in—1 O
o - 0 0 dn.n
e Allgemein gehen wir k € ZY genauso vor: Wir definieren 775’“’ = —d; /dy und
1 0 - 0 A 0o ... 0
0 - IR : : :
: (k
L0 n;(gjz
~ : - 1 A% : :
Ge = |- ' M1 ' (VIIL61)
: " 1 0o -~ 0
] :
: o0
0 e N (|
und beobachten, dass wieder det[G)] = 1 und
. (k
10 - 0 =™ 0 -0
0 . : : ) :
: . (k
L0 —U/(g—)z
—~ : .. 1 — A (k) : :
G:l= |- ' M1 ' (VIIL62)
: . 1 0O --- 0
1
: w0
0 e e e 01
e Multiplizieren wir sukzessiv die Matrizen G N, G Nels.-. ,@2 von links an 13, SO
erhalten wir die Diagonalmatrix
di; 0 - 0
~ ~ ~ ~ O d2 2 -
D =Gy -Gs---Gy-D = ’ . (VIIL.63)
I |
0 - 0 dyn
Diese Matrix lasst sich jedoch leicht invertieren, nédmlich
dﬂ o -~ 0
—1 .
pt= |0 , (VIIL.64)
I |
0O --- 0 dz_v,ljv
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wobei (VIIL.58) sicherstellt, dass die Kehrwerte dj_]l € K existieren. Insgesamt ist
also

1 =D'D = D 'Gy---GyD = D 'Gy---Gy AND
— D_l /G\z e @N GN—l S(N_lvjN—l) “ e G]. 5(17]1) A(O)
— D1 @2 o (A;N Gn_1 SWN=Lijn-1) ... G, S (L) A, (VHI.65)
und das Matrixprodukt links von A ist die gesuchte inverse Matrix,

AN =D Gy Gy Gy SNHIN-) Gy SNV -Liv-) gy i) (VIILG6)

e Zur konkreten Durchfiihrung der oben beschriebenen Schritte gibt es ein prak-
tisches Schema, das aus der Matrix A und rechts daneben der Einheitsmatrix

besteht,
a11 aio - aiy |1 0 - 0
(A1 = | %0 22 0 a2y |0 . (VIIL6T)
: 0
ani angz -+ anny |0 --- 01

Nun wird die erste Multiplikation von links mit S"71) beider Seiten durchgefiihrt,
d.h. man berechnet

| SWi) . A | SO . 1| = | SWi) A | S |, (VIIL.68)

Dies ist leicht durchzufiihren, denn wir wissen, dass S(11) nur die Vertauschung
der 1. mit der j;. Zeile bewirkt. Wir fithren also diese Vertauschung sowohl fiir A
auf der linken als auch fiir die Einheitsmatrix 1 auf der rechten Seite durch.

Danach multiplizieren wir beide Matrizen mit G,
| Gy SUD A | Gy ST | (VIIL69)

Dadurch werden die nj(l)—fachen der ersten auf die j. Zeile addiert, wir brauchen
also auch hier keine Matrixmultiplikationen vorzunehmen.

So fahren wir fort und erhalten mit S := SV schlieBlich

‘ Dila2"'@NGN—ISN—1"'GlslA DilG\Q"'aNGN—ISN—I"'GISI ‘
= 1AM (VIIL70)

Durch die sukzessive Anwendung geschickt gewéhlter Zeilenoperationen haben wir
also die linke Seite des Schemas von A in 1 und die rechte Seite von 1 in A~ um-
gewandelt, und wir kénnen die inverse Matrix auf der rechten Seite direkt ablesen.
Man kann sich rechts auch die einzelnen Schritte notieren - dies bewahrt einem
vor fehlerhaften Berechnungen.
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e Ein konkretes Beispiel: K = R, N = 3 und

A = e R¥3.

N = O

1
1
3

U=

Das Schema sieht zu Beginn so aus,

01 4[1 0 0] (i)
AT =|111/0 1 0] (i)
2 35|00 1] (i)

Wir schreiben ab jetzt nur noch die Schemata auf. Mit j; = 2 wird

11 1|0 1 0] (@)=

— 0 1 4|1 0 0| (i), = (i)

2 3 5|0 0 1| (ii)y = (4ii)g

11 1]0 1 0] (i)=()
(ii)2 = (id)s

0 1 3[0 =2 1| (idi)y = (dii)y —2- (i)

l
o
—_
S
—_
(@)
=)

11 1] 0 1 0] (i)5=/(i)
— {01 4| 1 0 0] (ii)3=(ii)s
00 —1|-1 =2 1| (iid); = (idi)s — (i1)y

11 0|=1 =1 1| (d)a=(i)s+ (iid)s
— |01 0|=3 =8 4| (ii)g=(id)3+4- (iii)s
00 —1|—1 —2 1| (iid)y = (iii)s

10 0 2 7 =3| (i)s=(i)s— ()4
— 01 0[=3 =8 4| (i)s=(ii)
00 —1|—-1 =2 1| (iii)s= (iii)s

1 00 2 7 =3 (1) = (7)5
— |01 0|=3 =8 4| (i) = (ii)s ,
00 1] 1 2 —1| (ii)s = (iid)s/(~1)

also ist
2 7 -3
At = | -3 -8 4
1 2 —1

(VIILT1)

(VIIL72)

(VIIL73)

(VIIL74)

(VIILT75)

(VIIL76)

(VIILTT)

(VIILT78)

(VIIL79)
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IX. Skalarprodukte

In diesem Kapitel wollen wir wie schon zuvor voraussetzen, dass der zugrunde liegende
Korper K der Kérper R der reellen Zahlen oder der Kérper C der komplexen Zahlen
ist. In den vorigen Kapiteln war diese Voraussetzung jedoch entbehrlich, und die dort
bewiesenen Resultate wiirde ihre Giiltigkeit behalten, wenn K irgendein Korper wére.
Im Gegensatz dazu ist in diesem und den folgenden Kapiteln die Annahme, dass K = R
oder K = C gilt, wesentlich.

IX.1. Quadratische Formen und Skalarprodukte

Definition IX.1. Sei X ein K-Vektorraum.
(i) Eine Abbildung @ : X x X — K heifit quadratische Form (auf X)

= Va,fek, 7,y,w,ze X :
Q(aZ + i, B + 2) (IX.1)
| aBQ(F W) + aQ(T, 2) + BQ(Y, W) + Q(7,7), falls K =R,
B { apQ(,w) + aQ(7, 2) + BQ(Y, W) + Q(7, 2), falls K = C.
(I

w
Fir K = R bezeichnet man die Eigenschaft (IX.1) als Bilinearitit, fir K = C
heifit (IX.1) Sesquilinearitiit.

(ii) Eine quadratische Form @ : X x X — K heift symmetrisch
Qy, %), falls K=R,

s VEiyge X QM y) = - IX.2
Y (9) { Q(y,7), falls K =C. ( )

(iii) Eine symmetrische quadratische Form Q : X x X — K, fiir die fiir alle # € X \ {0}

Q(Z,%) > 0 gilt, heiBit positiv definit, (IX.3)
Q(Z,Z) > 0 gilt, heiBft positiv semidefinit, (IX.4)
Q(Z,Z) < 0 gilt, heit negativ definit, (IX.5)
Q(z,7) < 0 gilt, heifit negativ semidefinit. (IX.6)
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Gibt es Vektoren Z,7 € X so, dass Q(Z,Z) > 0 und Q(7,y) < 0 gelten, so heifit
Q@ : X x X — K indefinit.

(iv) Eine Abbildung (-|-) : X x X — K heifit Skalarprodukt (auf X)

< (+]) : X x X — K ist eine positiv definite symmetrische quadratische Form.
(IX.7)

Bemerkungen und Beispiele.

e Quadratische Formen auf R-Vektorrdumen heiflen auch Bilinearformen.

e Quadratische Formen auf C-Vektorrdumen heiflen auch Sesquilinearformen. Die
Eigenschaft Q(aZ,y) = @Q(Z, ¥) nennt man auch Antilinearitét.

e Die hier eingefiithrte Terminologie ist in der Literatur nicht ganz einheitlich. Haufig
werden bilineare bzw. sesquilineare Abbildungen als Skalarprodukte bezeichnet,
und Definitheit ist eine zusétzliche Eigenschaft.

e Aus (i7) folgt, dass fiir eine symmetrische quadratische Form Q(Z, 7) € R stets reell
ist (auch fur K = C). Es gilt also stets Q(Z,Z) > 0, Q(Z, %) < 0 oder Q(Z,Z) = 0.

e Fiir d € N und (ay,...,aq)", (B,..., 587 € R ist

Qg B
< > = 05151 + 06262 4+ ...+ Oédﬁd (IXS)
Qg Ba
das euklidische Skalarprodukt auf R
e Fiird € N und (ay,...,aq)", (B,...,B8s)7 € C4ist

aq B
< : > = 0_6151 + 0_4252 4+ ...+ O_édﬂd (IX9)

Qg Ba
das unitéire Skalarprodukt auf C¢.

e Identifiziert man R? mit (Re C)¢ durch

RS (ag,...,00)" = (g +140,. .., 04 +i0)" € C%, (IX.10)

so fallen euklidisches und unitéres Skalarprodukt zusammen. Wir kénnen also stets
R? als reellen Teilraum von C? betrachten, auf dem das unitdre Skalarprodukt
(IX.9) die Form (IX.8) des euklidischen annimmt.

e Auf R* ist durch

Qo Bo
Q@ Z; ) g; = apfy — a1 — asfh — azfs (IX.11)
a3 B3

eine indefinite quadratische Form definiert, wobei (g, a1, as, a3)’ € R* und
(Bo, B, Ba, B3)T € R Glg. (IX.11) wird auch als Minkowski-Skalarprodukt be-
zeichnet (obwohl es indefinit und somit kein Skalarprodukt ist); R* nennt man in
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diesem Zusammenhang auch den Minkowskiraum und schreibt IM* oder R statt
R*.

e Sei X = Clz| der C-Vektorraum der Polynome in = mit komplexen Koeffizienten.
Fiir p, g € Clz| definiert

(plg) = /_Oo p(x) q(x) f/;_ﬁ d (IX.12)

ein Skalarprodukt auf C[z].

Satz IX.2 (Cauchy-Schwarzsche Ungleichung). Sei X ein K- Vektorraum mit einer po-
sitiv semidefiniten symmetrischen quadratische Form Q) : X x X — K. Dann gilt

Vi jeX: Q@ < VOED VT (1X.13)

Beweis. Wir fithren den Beweis nur fir K = C. Fir Q(7,y) = 0 gilt (IX.13) trivia-
lerweise, und wir kénnen im Folgenden Q(Z,¥y) # 0 annehmen. Fiir jedes A € K ist
dann

0 <SQMT+7, AT+79) = AQ(Z,Z) + Q(7.9) + AQ(Z,9) + AQ(y, )

=\ Q(7,7) + Q(7.9) + 2Re{AQ(Z,9)} . (IX.14)
Wir setzen
Q(Z,9)
A= —r- TS o s IX15)
Q) (
wobei r > 0 spéater gewéahlt wird. Dann sind || = r und
o HQ@@P} .
2Re{\Q(Z,7)} = 2Re{ — 5% = =2r|Q(Z,v)]| . IX.16
{AQ(7,9)} Q5 Q(T, 7] (IX.16)
Damit folgt aus (IX.14)
N L o I
vreRg:  rlQE Y < 5 QET) + 5Q1.9). (IX.17)

Wire nun Q(Z, Z) = 0, so erhielten wir durch die Wahl r := Q(v, ) |Q(Z, )|~ die Aus-
sage |Q(¥,9)| < |QY,¥)]/2, was |Q(¥,y)| = 0 impliziert. Damit wéren also Q(Z, %) =
|IQ(7,7)] = 0, und aus (IX.17) wiirde 7 |Q(Z,7)] < 0 fir jedes r > 0 folgen. So-
mit wire auch |Q(Z,y)| = 0, was in Widerspruch zur anfangs gemachten Annahme
Q(Z,7) # 0 stiinde. Es muss also Q(Z,Z) > 0 gelten. Durch die somit definierte Wahl
r = Q¥,9)?Q(#,¥)""/? € R{ erhalten wir die behauptete Ungleichung (IX.13). [

Korollar IX.3 (Cauchy-Schwarzsche Ungleichung). Sei X ein IK-Vektorraum mit Ska-
larprodukt (-|-) : X x X — K. Dann gilt

vi,ge X [(@ZP] < VI(TlZ) - V(glY). (IX.18)
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Bemerkungen und Beispiele.

e Satz IX.2 unterscheidet sich von Korollar IX.3 nur durch die etwas schwachere
Annahme der positiven Semidefinitheit.

e Dieser Unterschied ist jedoch von grofler Bedeutung fiir verschiedene Beweise in
der Mathematik, da die positive Semidefinitheit in vielen Situation einfach zu
gewinnen ist, die positive Definitheit aber nicht.

e Ein prominentes Beispiel ist die GNS-Konstruktion (Gelfand, Naimark, Segal) der
Theorie der C*-Algebren.

I1X.2. Skalarprodukte und Normen

Definition IX.4. Eine Abbildung || - || : X — R¢ auf einem K-Vektorraum X heifit
Norm, falls folgende drei Eigenschaften erfiillt sind,
() viex: (l@l=0) « (7=0), (TX.19)
(i1) VaeK, 7€ X: laZ|| = |af-[|Z|], (IX.20)
(i) vEge X [Z+g] < 2] +[l7], (IX.21)
und in diesem Fall heift (X, ]| - ||) normierter Vektorraum.

Satz IX.5. Sei X ein K-Vektorraum mit Skalarprodukt (-|-) : X x X — K. Dann wird
X ewn normierter Vektorraum mit

VeeX: |7 = /@) (IX.22)

Beweis. Eigenschaft (IX.19) folgt aus der positiven Definitheit (#|Z) > 0, fiir Z # 0.
(Natiirlich gilt (0|0) = (0|0 - 0) = 0(0|0) = 0.) Die Homogenitét (I1X.20) folgt direkt aus
der Bilinearitéit bzw. Sesquilinearitéit, etwa

VaZad) = Va- a@D) = |a|- /(@) (IX.23)

fir K = C. Die Dreiecksungleichung (IX.21) resultiert aus der Cauchy-Schwarzschen
Ungleichung (IX.13), denn

<
<
< (@7) + (715 + 2/ (@) - V(1)
(V@7 + V@), (IX.24)
und man erhélt (IX.21) durch Wurzelziehen. O
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Bemerkungen und Beispiele.

e Fiir X = R?mit d € N induziert das euklidische Skalarprodukt die euklidische Norm,

aq

Vi = | ¢ | €R": | Fem = V@T) = \Ja2+...+a2  (IX.25)
Qq
und wir erhalten mit || - ||eus den tiblichen Abstandsbegriff,

dist(Z,7) = ||1Z — ¥lew- (IX.26)

e Analog findet man einen Abstandsbegriff auf C? durch || — || uuit, wobei

aq 51
ol og= s 1= Gl = Ve =B+ A+ aa — Bal
% ﬁd

81
I

(IX.27)

e Es gibt aber auch Normen, die nicht durch ein Skalarprodukt induziert werden.
Fiir d € N und X = C¢ sind, mit ¥ = (a4, ..., aq)T € CY,

1Z[i = |aa| + ...+ |ad|, 7]l = max {|au],..., ||} (IX.28)
und allgemeiner
N 1/p
Vi<p<oo: |7, = (|a1\p o ...+ yad|p) (IX.29)

alles Normen auf X. Aufler fiir p = 2 (|| - [[2 = || - |lunit) ist keine dieser Normen
durch ein Skalarprodukt erzeugt.

I1X.3. Orthogonalitit und Orthonormalbasen

Definition IX.6. Sei X ein K-Vektorraum mit Skalarprodukt (-]-) : X x X — K.

(i) Zwei Vektoren 7,y € X heiflen orthogonal oder senkrecht zueinander, & | 3
= (@) = 0. (IX.30)

(ii) Ist A C X eine Teilmenge, so heifit
At = {feX‘VJeA: (@) :o} (IX.31)

das orthogonale Komplement zu A.

(iii) Eine Teilmenge A C X heifit orthonormal

o VIGEA 47 (@D = @9 = 1, @p = 0. (IX.32)
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(iv) Eine Teilmenge A C X heifit Orthonormalbasis (ONB)

&< A ist orthonormal und eine Basis in X. (IX.33)

Bemerkungen und Beispiele.

e Fiir jede Teilmenge A C X ist At ein Unterraum in X, denn offensichtlich ist
0€ AL, und mit Z, 47 € At und a € K ist

VaeA: (dlai+i) = ofdd) + @y = 0. (IX.34)

(Anwendung des Unterraumkriteriums.)

e Sind A C X und # € AN AL, so gilt |Z||> = (£|Z) = 0 und somit # = 0. Also ist
stets

AnAt c {0}. (IX.35)

e Fir AC BC X ist A- D B*.

e Fiir A C X ist At = (span(A))*, denn einerseits ist At D (span(A))* wegen
A C (span(A)). Sind andererseits ¥ € A+ und @ = 1d@; + ... + aydy € span(A)
mit o; € K und @; € A, so gilt

0

N
(@z) = Y a; (@l = o, (IX.36)
=1
also ist auch 7 € (span(4))+.

e Seien X = R? mit dem euklidschen Skalarprodukt und A := {@} C B := {a,b}
sowie ¥ € X, mit

1 . 0 T
i= 1. b=[1], &= ] (IX.37)
0 0 I3
Dann sind (@|Z) = z1 + 22 und (b|7) = z5. Somit gelten
T e 14L <& To = —I7, T e BL <~ Top = —T1, Tog = O, (IX38)
also
Q@ 1 0
At = —a ||l a,feR ) = span —-11, 10 (IX.39)
g 0 1
0 0
D 0]l eR ), = span 0 = Bt
6} 1
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e Eine orthonormale Teilmenge A C X ist stets linear unabhéngig. Ist namlich eine
endliche Teilmenge von A gegeben durch {dy,...,dy} C A, so gilt nach (IX.32)

Vi, jeZy : (ald;) = 6 (IX.40)
Sind nun aq,...,ay € K so, dass aqd; + ... + aydy = 6, dann folgt fiir jedes
i € ZY, dass
N
0 = (@[0) = (@load + ... +oandy) = Y o (@) = o (IX.41)
= ——
5
Also sind oy = --- = ay =0, und {a@,...,dy} ist linear unabhéngig.

e Die Standardbasis {é1,...,ex} C RY, mit

1 0 0

~ 0 ~ 1 ~ 0

1= . , €2 = . y .., EN = : s (IX.42)
0 0 1

ist eine ONB beziiglich des euklidischen /unitiren Skalarproduktes in K% .

Satz IX.7. Seien X ein Vektorraum der Dimension N < oo mit Skalarprodukt (-|-) :
X x X — K und Orthonormalbasis A = {d,...,dn} C X.
(i) Fir alle ¥ € X ist
N

Jj=1

(ii) Ist & € L(X) eine lineare Abbildung, so ist ihre Matrizdarstellung bzgl. A gegeben

durch
@l0d) (@] @) - (@)
M) = | @I0T) @l0m) o (@fod) X
(anl®d) (an|0dy) - (an|Pay)

Beweis. (i): Da A eine Basis ist, besitzt der Vektor & € X eine eindeutige Darstellung
= ol +oode+...+aydy € X als Linearkombination der Basisvektoren in A. Bilden
wir das Skalarprodukt mit @;, so erhalten wir

N N
(@;|7) = Zaz‘ (ajld;) = Zai(si,j = Qy, (IX.45)
i=1 i—1

fiir j € Z&, und wir erhalten (3).
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(i1): Ist Mu[®] = (a;;)N;—; € KNV, so gilt

N
i=1
Also ist, fiir alle k, j € ZV,
N
(@|Pd;) = > aiy (G@ld) = ar;. (IX.47)
i—1 ——
=0k,
O

Definition IX.8. Seien N € N und A = (ag;;)i -, € KV*V. Die zu A adjungierte
Matrix ist durch

o i1 Qo an,1
A = (A) = | @z @ aNg (IX.48)
ai,N G N an,N
definiert.
Bemerkungen und Beispiele.
e Es sind
N : 12 3\° 1 47
(1;)” 22_ZZ> = <1__2; 2i> 15 6| =25 8. (1x49)
! 789 369

o Fiir A € RV*V ist A* = AT,

Korollar IX.9. Seien X ein K-Vektorraum der Dimension N < oo mit Skalarprodukt
(]): X x X = K.

(i) Zu jeder linearen Abbildung ® € L(X) existiert genau eine lineare Abbildung ®* €
L(X), so dass

VI, FEX: (Tog) = (@T|P. (IX.50)

Dabei heifit ®* die zu ® adjungierte lineare Abbildung.
(i1) Ist A= {dy,ds,...,dn} € X eine ONB, so gilt

Mu[®] = (Ma[])", (IX.51)
fiir jede lineare Abbildung ® € L(X).

Beweis. Wir fiihren den Beweis unter der Annahme, dass wir iiber eine ONB A =
{dy,ds,...,dy} C X verfiigen, was wir erst spiter mit den Schmidtschen Orthonormie-
rungverfahren rechtfertigen.
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Seien @ € L(X) eine lineare Abbildung mit Matrixdarstellung M = (ka){XFI = M4 [D]
beziiglich der ONB A. Nach Satz IX.7 (ii) ist dann

Vk,jeEZY 1 my; = {(a|®d;). (IX.52)

Wir definieren nun eine lineare Abbildung ®* € L£(X) durch ihre Matrixdarstellung
My [DF] = (W)N = M". Kraft dieser Definition erfiillt M 4[@*] damit (IX.51).

k.j
AuBerdem gilt fiir alle k, j € ZY, dass

xo | = VT VRN =1 - -
(®*ay |a;) = (a;| P*ar) = (M )j’k = my; = (dx|Pd;). (IX.53)

Somit gilt (IX.50) fiir alle Paare d@j,d; € A von Basisvektoren und wegen der Sesquili-
nearitit des Skalarprodukts damit auch fiir alle Paare Z, i € X. H

IX.4. Das Schmidtsche Orthonormierungsverfahren

Zur Vorbereitung des unten beschriebenen Schmidtschen Orthonormierungsverfahrens
definieren wir noch orthogonale Projektionen und formulieren eine allgemeine Version
des Satzes von Pythagoras. Seien dazu X ein IK-Vektorraum mit Skalarprodukt (-|-),
A ={di,...,dn} C X eine orthonormale Teilmenge und Y := span(.A). Wir definieren
lineare Abbildungen P, P+ € £(X) durch P+ :=1 — P und

N
Vi€ X: PTi= ) (,|7)d, (IX.54)
n=1
Dann ist
N
Vm € Zy i Phy Y (Gn|dm) Gy = G (IX.55)
=l
Also ist fiir alle ¥y = aqd; + ...+ ayay € Y
N N
Pj = > a,Pd, = Y ani, = §. (IX.56)
n=1 n=1

Weiterhin ist fiir alle ¥ € X

N N N
P’¢ = P(P7) = P(Z(&’n|f> an) = Y (G,|@) Pd, = Y (@.|%d, = Pi,

d.h. es gilt

P> =P (IX.58)
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und daher auch (P+)? = (1-P)? =1-2P+P? =1—P = Pt sowie PP+ = P(1-P) =
P—P:=0und PP =(1-P)P =P — P?=0, also insgesamt

P2 = P, (PH?=P, PP =0, P'P=0. (IX.59)
SchlieBlich ist fiir alle ¥, 27 € X

@p = (3 S aina) = Sl e = (S,

7Y = (i),

n=1 n=1 n=1
(IX.60)
und wir erhalten fiir alle ¥ € X
|17 = (#]7) = (PZ+ P 7P+ P-i) (IX.61)

= (PZ|PZ) + (P*+i|P%) + (PZ|P+%) + (P+#| P*7)
= ||PZ|? + (PP*Z|7) + (F|PP+%) + || P7|?
= ||PZ|* + | P2

P heifit orthogonale Projektion (auf Y') und (IX.61) ist eine Verallgemeinerung des
Satzes von Pythagoras.

Satz IX.10 (Schmidtsches Orthonormierungsverfahren). Ist X ein K- Vektorraum mit
einem Skalarprodukt (-|-) : X — K und einer abzihlbaren Basis {b;}]_,, wobei J € N
oder J = 00, so besitzt X auch eine abzihlbare Orthonormalbasis {dj}le.

Beweis. Wir fiithren den Beweis nur fiir K = € und dim(X) = oo. Der Fall dimg (X) <
oo geht analog. Fir N € N seien {d,...,dn} C X eine orthonormale und

{d,... ,EL’N,ENH} C X eine linear unabhéngige Teilmenge. Wie in (IX.54) definieren
wir die orthogonale Projektion Py € £(X) durch

PyE =Y (d@|E)dn, (IX.62)

n=1

und verwenden nun (IX.56)—(IX.61). Weil {@1, ..., a@x,by11} € X linear unabhéingig ist,
1st

N
Pybyy1 = byyr — Y (@ulbyii)dn # O, (IX.63)
n=1
und daher konnen wir
Pib,
iy = (IX.64)
[P oxa |
bilden. Beachte, dass dyy1 € span({(il, ..., an, 5N+1})- Wegen
N
bni1 = Pubyyi+ Pybyin = Y (dnlbysr) @ + || Py || Gy (IX.65)
n=1
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gilt umgekehrt auch EN+1 € Span({ﬁl, oo, anN, JNH}). Mit Yy, := span({&l, e ,CYNH})
ist also

YN+1 = Span({d'l, ce ,C_iN, 6N+1}) = span({c?l, Ce 75N7 5N+1})' (IX66)
Offensichtlich ist ||@n 41| = 1. Weiterhin sind @y, = Pydy41 und a@, = Pyay, fiir alle

k € ZY, und deshalb
(@ |dn1) = (Pnay | Pydns1) = (@ | PvPyans) = 0, (IX.67)
da PyPi = 0. Also ist
Vi, jeZyt o (a@la;) = 6y, (IX.68)

und {d@y,...,dy+1} € Yy ist eine Orthonormalbasis von Y. Sei nun {b,}>° ;| eine
Basis in X. Wir setzen @; := b1/||b1]| und fiir N € N definieren wir rekursiv

Pib byt — SN {@e|bysr)a
nis = ]jf__)N-H _ HN+1 ZI;V:1<C_L;k|HN+1>C_L'k ’ (IX.69)
| Prba]| HbNJrl = D k1 @k |ON 1)
XN—H == span({l;l, 52, e 75N+1})~ (IX?O)
Wir behaupten, dass
Fiir N = 0 ist (IX.71) trivial, denn X; = Kby = K- ||by]| - @ = K - @ = ;.
Fiir N > 1 folgt (IX.71) mit (IX.66) induktiv aus derselben Behauptung fiir N,
XN+1 = span(XN U {gN—i—l}) == span(YN U {EN-l—l}) == YN+1. (IX?Q)

Daher gilt (IX.71) fiir alle N € IN. Nach (IX.68) ist die durch (IX.69) definierte Folge
{@,}22, orthonormal und damit auch linear unabhéngig. Sie erzeugt aber auch X, denn
wenn I € X, so gibt es ein N € IN und Zahlen aq,as,...,ay € K, so dass ¥ =
04151 + ...+ ozNI;N, d.h. Z € Xy. (X enthélt nur endliche Linearkombinationen der

Basisvektoren {b,}2°,, siehe (IV.35))). Wegen (IX.71) ist dann jedoch

T €Yy = span({dy, a@,...,dn}). (IX.73)
Also ist {@,}°; C X eine Basis. O
Korollar IX.11. Sei X ein K-Vektorraum mit Skalarprodukt (-|-) : X x X — K.

(i) Sind dimg(X) = N € N und {@,}_, C X eine Orthonormalbasis, so gilt

N
VEIEX: = (G|)ian (IX.74)
n=1
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(i) Sind dimk (X) = oo und {@,}>>, C X eine abzihlbare Orthonormalbasis, so gilt

N
VIEX: &= Y (iT)d,, (IX.75)
n=1

wobei N € IN gentigend grof8 ist, sodass T € span({dl, - ,6N}).

Beweis. Ist ¥ = a@yd; + -+ - + dndp, SO ist

(@l7) = > g (@aldr) = an. (IX.76)

O
Bemerkungen und Beispiele.
e Seien K = R, X = R3 mit dem euklidschen Skalarprodukt und
1 0 1
bhp = (1], b, = (1], bs = [1]. (IX.77)
0 2 1
Wir wenden das Schmidtsche Orthonormierungsverfahren auf die Basis {51, 52, 53}
von X an.
Dann ist ||b1]| = 1/ (b1]b1) = v/2 und somit
. L
b V2
i = —— = | % (IX.78)
B\
Also ist
1 1
PR S Ca TR E:
Prby =by— Piby = by —(@i|by)ay = (1] — 2 1 2
2 0 2 0
1
(1) ! ? (1) % _1% (IX.79)
2 V2 0 2 0 2
was || Pbs|| = Viti4+4d= \% nach sich zieht. Also ist
S 1 1
12| 2 2v2
3
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Dann berechnen wir schlie3lich

Pirby = by — Poby = bs — (@1]bs)d@; — (a@a|b3)ao (IX.81)

L 1 — 1
1 AN e V3 i\ | (1 3
- (1] = € 1 11 = 1 1 1
- V2 V2 3v2 3v2
VANTARAN

1

1 1
[ AN

—_
—_

—_
S

also || P-bs|| = \/37 + & + 57 = 5 und daher

Pyb.
C_I:3 = 21__,3 = 3 —
1P bs |

OIN

Rel| )

—21. (IX.82)

1
9

1X.5. Diskrete Fourier-Transformation und Diskrete
Kosinustransformation

1X.5.1. Diskrete Fourier-Transformation

Seien L € IN und Z der Restklassenring modulo L mit vollstdndigem Représentanten-
system {0,1,2,...,L — 1} (siche Abschnitt I1.2.1). Wir betrachten den C-Vektorraum
X :={Z;, — C} der komplexwertigen Abbildungen auf Z. Schreiben wir die Werte
von f € X als Zeilenvektor,

f = (f0), r(1), f(2), ..., f(L=1)) € X (IX.83)

auf, so ist klar, dass X isomorph zu C' ist. Das unitéire Skalarprodukt auf C* wird somit
zum Skalarprodukt auf X durch

L—

VigeX: (flg) == Y f(@)g(x), (IX.84)

=0

[asy

und die Standardbasis {do, d1,...,0r-1} C X ist gegeben durch 6,(z) := 0, ,, wobei J,
das Kroneckersymbol notiert.

Zu & € 7y, definieren wir nun Vektoren ¢, € X durch

Vo € Zy . we(z) = % exp [2¢x] . (IX.85)
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Lemma IX.12. Die Menge {¢¢ | € € Z1} C X ist eine ONB.

Beweis. Zur Berechnung der Skalarprodukte (y¢|p,) bendtigen wir die geometrische
Summe. Ist « € C\ {1}, so ist

L—-1 L-1 L—-1
(1 —&)(Za””) =Y a"=> o™ = 1-a", (IX.86)

z=0 2=0 =0
also
< 1—af
YaeC\{1}: xzzooﬁ = T (IX.87)
Sind nun &, € Zy, so ist
1 L-1 1 L—1
(pelen) = ZZGXD[ 2er] exp [Fnr] = ZZeXp [Zi(n—&z] . (IX.88)
2=0 z=0

Fiir £ = n ist exp[2(n — )z] = 1, fiir alle z € Z;, und aus (IX.88) folgt sofort, dass

(elpe) = (ylepn) = 1. Ist umgekehrt £ #n, soist n —& € Z, \ {0} = {1,2,...,L —1}.
Dann sind

exp2mi(n —€)] = 0 und exp [2mi(%E2)] # 0, (IX.89)

und (IX.87) und (IX.88) implizieren, dass

~
—

1

(eelen) = 7 (exp [ - 9]) = %izi[g;fg;?}] — 0. (IX.90)

i
o

Somit ist die Menge {¢¢|€ € Z1} C X orthonormal und insbesondere linear unabhéngig.
Weiterhin ist [{p¢ | £ € Z1}| = L = dim(X), und deshalb ist {p, | £ € Z1} eine ONB
von X. O

Geméf (IX.43) ist damit f = ., (@elf)pe, fiir jedes f € X, d.h.

271'7,&-1,
Yz € 7y = Y fe S (IX.91)

ez,

wobel

_@g

\/_

Die Basistransformation von der durch die Standardbasis {0,|z € Z.} gegebenen ONB
auf die ONB {¢|¢ € Z[} von X bezeichnet man als diskrete Fourier-Transformation
(DFT). Zu gegebenem f : Zj, — C bezeichnet man die durch (IX.92) gegebene Funktion
f: 7, — C als ihre (diskrete) Fourier-Transformierte. Die Glg. (IX.91) wird auch
als inverse diskrete Fourier-Transformation bezeichnet, da man mit ihrer Hilfe f
aus f zuriickgewinnen kann.

veeZy: f(6) = (pdf) = Y ° (IX.92)

TE€Zy,
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1X.5.2. Diskrete Kosinustransformation

Analog zu (IX.85) definieren wir nun zu § € I'y, := {0,1,2,..., L — 1} Vektoren ¢ €

Y :={I'y, = C} durch

VeeT,: the(z) = \@ cos [F&(x+3)],  falls £ #£0,
E falls £ = 0.

=

Lemma IX.13. Die Menge {¢¢ |{ € 'L} C Y ist eine ONB.

Beweis. Wir definieren zunéchst 1;5 € Y durch

Ve el : 1/;5(m) = cos [Z&(z + 3],

sodass 1 = \/}zo und ¢ = \@1;5, fiir & 0.

Sind nun &,n € ', so ist

(Deltn) = D cos [F&(x + 3)] cos [Fn(x + 3)]

[(exp [+ 1] + exp [~ Be( + 1))

(esp [5inta+ )] + esp [~ gt + 1))}

o+ 1)z +3)]

@
4

o]

|2

Wir unterscheiden jetzt drei Fille.

(IX.93)

(IX.94)

(a) n # & Da £ und n nichtnegativ sind, muss 1 < £ + 71 < 2L — 2 fiir 7 = 1 gelten.

Aulerdem ist & + 7y =& —n # 0 fiir 7 = —1. Also ist
Vre{-1,1}: exp [ZH(E+Tn)] # 1,
und weiterhin ist

exp [m’(g + 7'7])] = (=1)5,

(IX.96)

(IX.97)
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Zur Berechnung der Skalarprodukte (¢ |, verwenden wir wieder die geometrische
Summe (IX.87) und erhalten

(etdn) = gRe{ 3 exp [g5(6 + mn)) ;i TN
T==+1 L

_ Re{i 3 1 - (—1)“7”)]} ~ 0, (IX.98)

2 &, sin[—37 (£ + 71

da die Zahl in geschweiften Klammern, deren Realteil genommen wird, rein ima-
gindr ist. Daher gilt

VE&nely, £#n: (Veliby) = 0. (IX.99)

(b) Ist n =¢ >0, s0 ist {4+ 7n = 0, fiir 7 = —1. Eine Rechnung wie in (IX.96)-(IX.98)
zeigt, dass dann der Summand fiir 7 = 1 abermals verschwindet, und wir erhalten

(elre) = %Re{il} = g (IX.100)

=0

Somit folgt

(c) Ist n =& =0, so folgt direkt

~
[y

1

(oltre) = 7> 1 =1. (1X.102)

i
o

Gemaf (1X.43) ist damit f =3 . (Ve|f)ve, fiir jedes f €Y, d.h.

Veelp: f(x) = D[fL](O) + ~ 2DL/(E) coS [%f(x—f—%)}, (IX.103)
e=1
wobei
VEeT,: DIfI(§) = Y cos[F(x+3)] f(z). (IX.104)

Analog zur diskreten Fouriertransformation bezeichnet man die Basistransformation von
der durch die Standardbasis {6,|z € 'L} gegebenen ONB auf die ONB {¢¢ | £ € '}
von Y als diskrete Kosinustransformation (DCT). Zu gegebenem f : I', — C
bezeichnet man die durch (IX.92) gegebene Funktion D[f] : I'y — C als ihre diskre-
te Kosinustransformierte. Die Glg. (IX.91) wird auch als inverse diskrete Kosi-
nustransformation bezeichnet, da man mit ihrer Hilfe f aus D[f] zuriickgewinnen
kann.
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Die DCT spielt in der Signalverarbeitung und vor allem in der Bildverarbeitung eine
wichtige Rolle. In digitalen Bildern (Fotos, Videos) sind die RGB- bzw. YUV-Farbwerte
der Pixel durch reelle Zahlen représentiert. Zur Vereinfachung gehen wir von einem
Schwarz-Wei3-Bild aus, in dem fiir jeden der ca. 1000 x 1000 Pixel ein reeller Grauwert
angegeben ist. [Tatsdchlich ist der Grauwert eine ganze Zahl zwischen 0 (schwarz) und
255 (weif}).] Das heifit also, dass jedes Bild eines Schwarz-Weil-Videos durch 1.000.000
reelle Zahlen -die Grauwerte der Pixel- gegeben ist. Bei 50 Frames pro Sekunde kommen
50.000.000 reelle Zahlen zusammen, die pro Sekunde iibertragen werden miissen. Sind
noch weitere Signale zu {ibertragen, beriicksichtigen wir die Farben der Pixel und bau-
en wir auch zur Vorbeugung von Ubertragungsfehlern Redundanz ein, so wird die pro
Sekunde zu iibertragende Datenmenge zu grof§ fiir ein Streaming in Echtzeit.

Um dieses Problem zu 16sen, macht man sich zunutze, dass sich in den meisten Bilden die
Grauwerte benachbarter Pixel kaum unterscheiden. Um dies mathematisch zu formulie-
ren, fassen wir ein Bild als reellwertige Funktion f : AXA — Rmit A ={0,1,2,...,999}
auf. Fir x1, 25 € A ist dann f(z1,25) € R der Grauwert am Pixel mit den Koordinaten
(x1,22) € Ax A. Die langsame Variation der Grauwerte benachbarter Bildpunkte kénnte
man quantitativ durch

V(Jfl,l’g), (y17y2) €A x A7 ||<l’1,l’2> - (y17y2)||00 <L: (IX105)

e = flynge)l < e Y 1f(z2)]

(z1,22)EAXA

ausdriicken, wobei 0 < ¢ < 1 ist. In der Praxis wird L = 8 gewdihlt. Nun bildet
man die DCT D][f] auf jeder Kachel mit L x L Pixel. Die langsame Variation von
f manifestiert sich nun darin, dass die DCT D[f](&,&) nur fiir kleine &;,& € T'p
nicht verschwindend klein ist und man deshalb beispielsweise nur D[f](0,0), D[f](0, 1),
DI[f](1,0) und D[f](1, 1) iibertragt und die 60 Werte von D[f](&1, &) fiir max(&;, &) > 2
schlicht ignoriert. Ein solches Verfahren bezeichnet man in der Signalverarbeitung als
verlustbehaftete Kompression.

Dies beschreibt das Vorgehen bei Anwendung des JPEG-Standards, der seit Mitte der
90er Jahren der maflgebliche Bildstandard fiir digitale Fotos und Videos ist. Das un-
geiibte menschliche Auge kann trotzdem praktisch keinen Unterschied erkennen, und
die zu iibertragende Datenmenge wurde um den Faktor 64/4 = 16 reduziert. Mit etwas
Ubung kann man manchmal die einzelnen Kacheln auf Bildern als Artefakte erkennen.
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I1X.6. Erganzungen

1X.6.1. Aquivalenz von Normen

Sei X ein K-Vektorraum. Zwei Normen | - ||, | - || : X — R{ heiflen dquivalent, falls
es Konstanten 0 < ¢ < C' < oo gibt, sodass

vieX: c|Fll < @ < O (IX.106)

gilt. Die in Glg. (IX.29) definierten Normen sind alle paarweise dquivalent, da K? ein
Vektorraum endlicher Dimension d = dim[[K¢] = d € NN ist.

Allgemein gilt, dass Normen auf X zueinander dquivalent sind, falls X ein K-Vektorraum
endlicher Dimension ist. Fiir d € N und X = C? bedeutet dies, dass es zu 1 < p,q < 00
Konstanten 0 < ¢q;4 < Cqpq < 00 so gibt, dass

VEEX: capgllEly < 17, < Cupa 2, (IX.107)

gilt.

Die Aquivalenz zweier Normen ist wichtig fiir die Analysis, denn sie sichert, dass die
mit ihnen formulierten Konvergenzbegriffe zusammenfallen. Eine wichtige Beobachtung,
die wir hier ohne Beweis formulieren, ist die Tatsache, dass je zwei Normen auf einem
K-Vektorraum X stets dquivalent sind. Um Unterschiede im Konvergenzbegriff sehen zu
konnen, muss der zugrunde Vektorraum also notwendig unendlichdimensional sein. Dies
kann man als Ausgangspunkt des mathematischen Teilgebiets der Funktionalanalysis
betrachten.
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X. Eigenwerte und Diagonalisierbarkeit

In diesem Kapitel wollen wir IK = C annehmen. Eine analoge Theorie lésst sich auch fiir
K = R entwickeln, ist aber aufwindiger und letztendlich auch weniger wichtig.

X.1. Eigenwerte

Definition X.1. Seien X ein C-Vektorraum und ® € £(X) eine lineare Abbildung.

(i) Die Resolventenmenge von @ ist definiert durch
p(®) = {AeC|(®— X 1)ist bijektiv}. (X.1)
(ii) Das Spektrum von ® ist definiert als
o(®) = {Ae C|®—A-1ist nicht bijektiv} = C\ p(®). (X.2)
(iii) Eine Zahl A € C heifit Eigenwert von ®
= JFe X\ {0}: OF = \Z (X.3)
Ist ®F = \¥ mit & # 0, so heifit ¥ Eigenvektor von ® (zum Eigenwert \).

Satz X.2. Sind X ein endlich-dimensionaler C-Vektorraum und ® € L(X) eine lineare
Abbildung, so gilt

o(®) = {\ € C| X\ ist Eigenwert von ®}
={AeC| det[® -\ 1] =0} # 0. (X.4)

Beweis. Die Gleichheit der drei Mengen folgt aus der Gleichwertigkeit der folgenden
Aussagen,

(Ker{CID - A1} = {6}) = <(¢> —A-1)ist injektiv)

& ((cp ~A-1) st bijektiv) = (det[CD A1) £ o). (X.5)
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Die letzten beiden Aquivalenzen ergeben sich aus Satz V.6 und Satz VILS, (1), die beide
nur fiir endlich-dimensionale Vektorrdume giiltig sind. Ist nun Mx[®] = (a;;);,—; €
CN*N eine Matrixdarstellung von ®, mit N = dim(X), so ist das charakteristische
Polynom von &,

det[® —A-1] = (=D)V(W +eyo AV L+ ad+ o) (X.6)

ein Polynom N. Grades in A mit komplexen Koeffizienten (deren genauer Wert von
den Matrixelementen a; ; abhéngt). Nach dem Fundamentalsatz der Algebra, Satz IIL.6,
zerfallt somit det[® — A - 1] in Linearfaktoren, d.h. es gibt L € IN, A\y,..., A\ € C und

Ni,...,n, € N, mit ny +...+ny = N so, dass
det[® —A-1] = (=D = A)™ - (A= Xg)" -+ (A — Ap)"E. (X.7)
Damit ist
o(®) = { A, A, ..., AL} #0. (X.8)
O
Bemerkungen und Beispiele.
e Seien X = C? und ® € £(X) eine lineare Abbildung mit Matrixdarstellung
A= M@®) = (‘21 :1))) | (X.9)
1. Wir berechnen die Eigenwerte mit Hilfe des charakteristischen Polynoms
det [A — A1) = det K‘l? 3;)} U= N(B-A) -2
= A —7A+10 (X.10)

Die Eigenwerte o(®) von ® sind die Nullstellen des charakteristischen Poly-
noms, also o(®) = {\,, A\_} mit

A =5, A =2, (X.11)

wie man leicht mit Hilfe der p-g-Formel erhélt (was allerdings nur in Dimen-
sion dim(X) = 2 so geht; in héheren Dimensionen muss man die Eigenwerte
i.A. numerisch berechnen und erhélt sie somit nur ndherungsweise).

2. Wir berechnen die zu Ay gehorigen Eigenvektoren Zy = (a4, )7 € €2\ {0}.
Dazu 16sen wir jeweils das zugehorige LGS:

(8) —0 = (A—2l)Z = (4 ;Ai 3_1)\:|:> (gi) (X.12)

(4—A)ax + B+ = 0, (X.13)
201:‘: + (3 - )\:i:) 5:|: (X14)

also
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Fir Ay =5 liefert dies

—O + B_g. =0 . - 1
20{+—2ﬂ+ :0} = B+—Of+ = $+—t(1),t€C\{O},
(X.15)
und fiir A_ = 2 erhalten wir
2.+ - =0, _ _— 1
% + B 20.} & =20 & x_—t(_2>,t€C\{O},
(X.16)

e Ist X unendlichdimensional, aber mit einer geeigneten topologischen Struktur (z.B.
X ein Hilbertraum) versehen, so gilt auch allgemein o(®) # ). Die Punkte im
Spektrum sind aber nicht notwendig Eigenwerte, sondern es gilt nur

{\ € C| X ist Eigenwert von ®} C o(P). (X.17)

o Fir X = 2(Z) = {¢: Z = C| X" |va* < o0} und (®¢), 1= i1 + Vs
ist etwa o(P®) = [—2,2], aber & € L(X) besitzt gar keinen Eigenwert.

e Eigenvektoren zu verschiedenen Eigenwerten sind stets linear unabhéngig, wie das
folgende Lemma X.3 zeigt.

Lemma X.3. Seien X ein C-Vektorraum, ® € L(X) eine lineare Abbildung und

A1, gy, A € 0(P) paarweise verschiedene Figenwerte von ® mit zugehdorigen Eigen-
vektoren Ty, To, . .., 1, € X\{0}, also ®F, = \@y, fiir{ € ZF. Dann ist {Z, Ty, ..., 71} C
X linear unabhdingig.

Beweis. Siehe Abschnitt X.6.1. ]

X.2. Diagonalisierbarkeit

Definition X.4. Sei N € NN.
(i) Eine Matrix A € CV*" heifit diagonalisierbar
< JdH e GL(N,C) 3 A,....,. Ay €C:
A\ 0
. A2
H'AH = , . (X.18)
0 AN
(ii) Sei X ein N-dimensionaler Vektorraum iiber C. Eine lineare Abbildung ® € £(X)

heifit diagonalisierbar

= Es gibt eine Basis X C X, so dass My[®] € CNV*V diagonalisierbar ist.
(X.19)
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Lemma X.5. Seien N € N und X ein C-Vektorraum der Dimension N. Sei weiterhin
® € L(X) mit Matrivdarstellung A := Myy[®] € CY*N wobei W C X eine Basis ist.
Dann gilt folgende Aquivalenz:

{® ist diagonalisierbar} < {Myy|[®] ist diagonalisierbar}. (X.20)
Beweis. Gleichung (X.20) ist offensichtlich, wenn H = Myy[V] die Matrixdarstellung

einer Basistransformation ist, die die Basis W auf die Basis X transformiert, fiir die
(X.18) gilt. [

Satz X.6. Seien X ein N-dimensionaler Vektorraum tber C, mit N € N, und ® €
L(X).

{® ist diagonalisierbar} (X.21)

& {Es gibt eine Basis X = {Z1,...,Zn} C X aus Eigenvektoren von CD}.

Beweis. Sind ® diagonalisierbar und X = {#,...,Zx} C X eine Basis, so dass
A1 0
My[®] = , (X.22)
0 AN
so gilt ®xy = \7q,...,PENy = AyTn, und X ist die gesuchte Basis aus Eigenvektoren
von ®. Dies gilt offensichtlich auch umgekehrt. O]

Korollar X.7. Seien N € N und X ein C-Vektorraum der Dimension dim(X) = N
sowie & € L(X). Besitzt & N paarweise verschiedene Eigenwerte, so ist ® diagonali-
sierbar.

Beweis. Sind Aq,..., Ay C o(®) die Eigenwerte von ® mit zugehorigen Eigenvektoren
fl,fg, ... ,.fL e X \ {0}, also &%, = )\ga_f'g, fir ¢ € Z%, so ist {fl,fz, R ,fL} C X nach
Lemma X.3 linear unabhéingig und wegen dim(X) = N auch eine Basis. O

Bemerkungen und Beispiele.

e Nicht alle linearen Abbildungen bzw. Matrizen sind diagonalisierbar. Sei etwa

A= M@®) = (8 (1)) (X.23)
50 ist
det[A — \1] = det K—OA _&)} = A2 (X.24)

und A = 0 ist der einzige Eigenwert von ®. Die Eigenvektoren von ¢ sind dann
genau die nichtverschwindenden Vektoren im Kern von ®. Dieser ist jedoch eindi-
mensional und somit verschieden von C2?, denn

Ker[®] = {7 € C?| A7 =0} (X.25)
AG) =@ o) () - 6) = @) = 6)
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X.3. Diagonalisierbarkeit selbstadjungierter Matrizen
und der Spektralsatz
Zu Beginn dieses Abschnitts erinnern wir an den in Korollar IX.9 gebildeten Begriff der

Adjungierten ®* € £L(X) einer linearen Abbildung ® € £(X). Fiir einen C-Vektorraum
X mit Skalarprodukt (-|-) ist ®* definiert durch

Vi, gye X (ZFdy) = (P*7|y). (X.26)

Analog ist die adjungierte Matrix A* = (bm)fyj:l € CNV*N ciner gegebenen Matrix
A = (a;;)N_, € CY*N definiert durch

biJ' = Qj;. (X27)

Der Zusammenhang zwischen dem Adjungieren einer linearen Abbildung und der ad-
jungierten Matrix besteht in der Identitdt M 4[®*] = (M 4][P])*, die fir jede ONB A in
X gilt.

Definition X.8.
(i) Sei X ein endlich-dimensionaler C-Vektorraum mit Skalarprodukt (-|-) : X x X —
C. Eine lineare Abbildung ® € L£(X) heifit selbstadjungiert

s O o= o (X.28)

(ii) Eine Matrix A € CN*¥_ N € N heiit selbstadjungiert
= A= A" (X.29)

Bemerkungen und Beispiele.

e Der Begriff der Selbstadjungiertheit im Fall, dass ® ein unbeschrankter Operator
auf einem unendlichdimensionalen Hilbertraum X ist, ist erheblich subtiler. Aus
dem Satz vom abgeschlossenen Graphen (siehe Vorlesung Funktionalanalysis) folgt
némlich, dass ein linearer Operator ® € £(X), der (X.28) geniigt, notwendig auch
beschrénkt ist. Scheinbar gibt es also gar keine unbeschréankten, selbstadjungierten
linearen Operatoren.

e Die Auflosung dieses scheinbaren Widerspruchs gelang J. von Neumann: unbe-
schriankte Operatoren sind gar nicht auf ganz X definiert, sondern nur auf einem,
in X dichtem Unterraum dom(®) C X. Selbstadjungiertheit definiert man dann
durch dom(®*) = dom(®) und

V7,7 € dom(®):  (T]DF) = (O*F|7). (X.30)

e Sind dim(X) =: N <oound A= {d,...,dy} C X eine ONB, so gilt

{¢ = &} & {M[D] = M[D]'}. (X.31)
e Beispiele selbstadjungierter Matrizen in C**3 sind
1 2 9 2 4 84+ 3%
> 3 7 |, 4100 2 |, (X.32)
9 —-71 5 8—31 —21 12
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Definition X.9. Seien X eine Menge und ® : X — X eine Abbildung. Eine Teilmenge
B C X heifit unter ® invariant

s  ®(B) C B, dh.VzeB: ®&)€B. (X.33)

Lemma X.10. Seien X ein endlich-dimensionaler C-Vektorraum mit Skalarprodukt
(] : X x X = Cund & = &* € L(X) eine selbstadjungierte lineare Abbildung. Ist
Y C X ein unter ® invarianter Unterraum, so ist auch Y+ C X unter ® invariant,

PY)CY = d(YH)CY (X.34)

Beweis. Seien £ € Y+ und ¥ € Y. Mit ¥ € Y und der Invarianz von Y unter ® ist dann
auch ®*y = &y € Y, und deshalb gilt

(®F|F) = (FDF) = (F|DF) = 0. (X.35)
Weil i/ € Y beliebig ist, folgt &% € Y. O

Lemma X.11. Seien X ein endlich-dimensionaler C-Vektorraum mit Skalarprodukt
() : X x X = CundY C X ein Unterraum. Dann ist

X =Y+Y!t = vevh (X.36)

Beweis. Sei {dy,...,dy} C Y eine ONB in Y, die wir uns notigenfalls durch das
Schmidtsche Orthonormierungsverfahren beschafft haben. Wir definieren P € L£(X)
durch

PE = ) (@) d, (X.37)
und bemerken, dass Ran(P) = Y. Offenbar ist P = P* = P? die orthogonale Projektion
auf Y. Schreiben wir nun, fiir ¥ € X,

I = Pi+ Pz, (X.38)
so ist P¥ € Y. Fiir jedes ¥ € Y konnen wir wegen Y = Ran(P) ein Z’ finden, so dass
iy = PZ’. Damit ist

(7| P*7) = (P%'|P+%) = (Z'|PP+Z) = 0, (X.39)
da PP+ = 0. Es folgt, dass P*Z € Y+, O

Satz X.12 (Spektralsatz). Seien N € N und X ein N-dimensionaler C-Vektorraum
mit Skalarprodukt (-|-) : X x X — C und ® = &* € L(X) eine selbstadjungierte lineare
Abbildung. Dann gibt es eine Orthonormalbasis A = {d,,...,dn} € X wvon X aus
Eigenvektoren von ®.
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Bewers. Wir fithren den Beweis durch Induktion in N. Fiir N = 1 ist X = C - a; fiir
einen geeigneten normierten Vektor a; und wegen ®da; € C - a; gibt es ein \; € C so,
dass ®d; = \iay, d.h. a; ist trivialerweise ein Eigenvektor von ®.

Seien nun N > 2 und die Behauptung fiir N — 1 richtig. Nach Satz X.2 ist o(®) # 0,
und @ besitzt einen Eigenwert A € C. Es gibt also ein § € X \ {0}, so dass &y = \y.
Wir setzen nun

Y = C-¢ (X.40)

und stellen fest, dass ®(Y) = AY C Y. Weil & = &* selbstadjungiert ist, impliziert
Lemma X.10, dass ® auch Y invariant lisst. Nach Lemma X.11 ist dim(Y*) = N — 1,
und nach Induktionsannahme besitzt Y+ eine ONB Ay_; = {d@y,...,dy_1} C Y aus
Eigenvektoren von (der Restriktion auf Y+ von) ®. O

Bemerkungen und Beispiele.

e Sind & = ®* € L(X) und XA € C ein Eigenwert von ®, so ist A € R reell. Ist
namlich @) ein zugehoriger Eigenvektor, ®a, = \ad,, so folgt

May|dy) = (@) ®dy) = (Pax|dry) = Max|ay). (X.41)
e Eigenvektoren zu verschiedenen Eigenwerten von & = ®* € £(.X) sind automatisch

orthogonal. Sind etwa ®ay = Ady und ®a, = pd,, mit @y, a, # 0 und \ # p, so
folgt

Mauldy) = (@ulrdy) = (®auldy) = plduldy). (X.42)
Also ist (@,]d@y\) = += = 0.

A—p

X.4. lIsometrien, orthogonale und unitare Abbildungen

In diesem Abschnitt untersuchen wir Basistransformationen, die die Lénge der Basis-
vektoren und ihre Winkel zueinander erhalten.

Definition X.13. Sei X ein K-Vektorraum mit Skalarprodukt (-|-) : X x X — K. Eine
Abbildung ¢ : X — X heifit Isometrie

= VEye X ((@))e(y) = (@) (X.43)

Definition X.14. Sei N € IN.
(i) Eine Matrix D € R¥*Y heiit orthogonal

& D' = DT, (X.44)
O(N) :={D € RV | D ist orthogonal} , (X.45)
SO(N) :={D € O(N) | det[D] =1}. (X.46)

O(N) bezeichnet man als orthogonale Gruppe, SO(N) heifit eigentliche or-
thogonale Gruppe.
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ii) Eine Matrix U € CV*N heifit unitar
(ii)

= Ut = U (X.47)
U(N) = {U € ¢V | U ist unitér}, (X.48)
SU(N) :={U € U(N) | det[U] =1}. (X.49)

U(N) heifit unitire Gruppe, SU(N) heifit eigentliche unitire Gruppe.

Bemerkungen und Beispiele.

e Eine Isometrie erhilt die Lédngen von Vektoren,

le@N = Vie@le(@) = V{zlz) = |, (X.50)

und Orthogonalitét,

(@ =0) = (@@ = o). (X.51)

e Fiir N := dimg(X) < oo ist also mit A = {dy,...,dy} € X auch ¢(A) =
{¢(@1),...,¢(@x)} € X eine ONB.

e Fiir N := dimg(X) < oo ist jede Isometrie automatisch bijektiv und linear. Sind
ndmlich o € K, ¥, € X und A = {dy,...,dy} C X eine ONB, so ist, fiir alle
jEZY,

(¢(@))|¢(ad + ) —ad(Z) — ¢(¥)) (X.52)
= (0(d@;)[o(aZ + §)) — ad(d;)|d(2)) — (d(d;)|o(¥))
= (d@;|aZ + §) — (@] F) — (@|5) = (@)0) = 0.

Da ¢(A) eine ONB in X ist, folgt ¢(aZ + §) = ap(Z) + ¢(¥), und ¢ ist linear. Da
¢(A) eine ONB in X ist, ist ¢ surjektiv und daher auch bijektiv.

e Ist ¢ € L(X) als linear vorausgesetzt, so ist (X.43) sogar gleichwertig mit (X.50),
denn

@) = 5 (I6@ + DI~ 6@ - lo@I7), fir K=R,  (X3)

@@ = 5 (166 + DI + 166 — D7) ~ @I ~ 6@, fir K =€
(X.54)

e Ist U € U(N) unitir, so gilt

| = det[U"U] = det[U7] - det[U] = |det[U]]? (X.55)

d.h. die Determinante einer unitdren Matrix ist im Betrag gleich 1.
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e Dasselbe gilt fiir die Determinante einer orthogonalen Matrix D. Weil D eine reelle
Matrix ist, folgt auBlerdem

det[D] € {-1,+1}. (X.56)

Satz X.15. Seien X ein N-dimensionaler K- Vektorraum mit Skalarprodukt (-|-) : X x
X — K und Orthonormalbasis A = {ay,...,dn} C X.

(i) Fir K = R sind die Matrizdarstellungen beziglich A der Isometrien in L(X)
genau die orthogonalen Matrizen,

O(N) = {M[¢]|¢: X — X ist Isometrie}. (X.57)

(i1) Fir X = C sind die Matrizdarstellungen beziiglich A der Isometrien in L(X)
genau die unitiren Matrizen,

UN) = {M[¢]|¢: X — X ist Isometric}. (X.58)

Beweis. Wir beweisen nur (ii). Ist ¢ : X — X eine Isometrie, so ist ¢ automatisch linear
und bijektiv. Nach Korollar IX.9 ist U := M[¢] = (u”) _, € CN*N gegeben durch
w;j = (aG;lpa;). Mit U*U =: (fyi,j)%-:l und UU* =: ('Nym)m_1 Slnd also

N N
jo= D Uiy = Y (Gld;) (@|ed;)
k=1 k=1
N N
= Sl alon) = (o | Y (ao)a ) (X.50)
k=1 k=1

und analog

;yi,j - <

N
Z pay|d;) ¢ak> (X.60)
k=1

Nach (IX.43) sind jedoch

N

(@xlod;) dn = ¢d; und Y (drld;) ¢ar = dj, (X.61)

k=1

weil A = {dy,...,dy} und auch ¢pA = {¢dy,...,¢dy} ONB in X sind. Setzen wir dies
n (X.59) und (X.60) ein, so erhalten wir

= (ddi|od;) = d;; und iy = (eile;) = iy (X.62)

Das bedeutet aber nichts anderes als

1M

UU = UU* = 1, (X.63)
d.h. U € U(N). Somit ist
{M[¢] | ¢: X — X ist Isometrie} C U(N). (X.64)
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Ist umgekehrt U € U(N), also U € CV*N mit U~! = U*, und ist ® € L(X) die
eindeutige lineare Abbildung, so dass M|[®] = U, dann ist ! = &* weil M : L(X) —
CNV*N ein Ringisomorphismus ist. Fiir alle 7, € X gilt also

(Z|g) = (Z|o7'y) = (Z|®*Dy) = (T|DF). (X.65)
Also ist @ eine [sometrie, und damit gilt
U(N) C {M[¢]|¢: X — X ist Isometrie}. (X.66)

]

Bemerkungen und Beispiele.

e Schreibt man U = {0y, Wy, . .., iy} € KMV mit
Uy,1 U N
0 = L Uy = : e KV, (X.67)
UN,1 UN,N
so ist U genau dann unitéir (orthogonal), wenn {iy,..., iy} C K" eine ONB
darstellt,
{veumwy(eom)} & {vijezl: @la)=o,),  (X68)

wobei hier (-|-) das unitére (euklidische) Skalarprodukt notiert.

Korollar X.16. Seien N € N und A = A* € CV*V eine selbstadjungierte Matriz.
Dann ist A diagonalisierbar, und es gibt eine unitire Matriz U € U(N) und Eigenwerte
A, Ao, Ay € R, so dass

A

A2 0
UAU = ' . (X.69)

0 AN
Beweis. Sind € = {éy,...,ex} € CV die Standardbasis und ® € £L(CV) die eindeutige
lineare Abbildung, sodass A = M¢[®] die Matrixdarstellung von ® ist, so ist & = o*
selbstadjungiert. Nach dem Spektralsatz gibt es eine ONB W = {0y, ..., Wy} C CVN aus
Eigenvektoren von ® mit zugehorigen Eigenwerten A;, sodass also ®u; = A\;w;. Ist nun

© € L(CV) die Transformation von der ONB & auf die ONB W, d.h. gilt ©¢; = w;, so
ist U := Mg[O] € U(N) unitér, und es gilt

/\1 O
= Mp[®] = MO Mg[®] - Mg[0] = U*AU. (X.70)
0 Ay
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X.5. Anwendung des Spektralsatzes zur Lésung von
Systemen linearer Differenzialgleichungen
Zur Mlustration des Nutzens des Werkzeugs, das der Spektralsatz fiir Anwendungen

darstellt, wollen wir zeigen, wie man ein System gewohnlicher Differenzialgleichungen
mit ihm 16st. Ein solches System ist fiir V € IN durch N lineare Differenzialgleichungen

i’l (t) = al,lxl (t) + CLLQQ?Q(t) + ...+ CLLNI'N(t) s (X?l)
xg(t) = a271x1 (t) + agygxg(t) + ...+ CL27NLUN(t) s (X72)
i‘N(t) = CLNJJIl(t) + aNgI'Q(t) + ...+ aN7N$N(t) s (X73)
gegeben. Gesucht sind Losungen zy,29,...,2x : Ry — C, die 21(0) = ay,22(0) =
ag,...,on(0) = an geniigen, wobei oy, as,...,ay € C eine Anfangsbedingung definie-
ren. Mit
x1(t) ai1 Q2 Q1N 1
To(l a a eea a
o = |0 A | Tl owmd &= |,
: : a2 9 : :
n(t) ani angz - aNN an
(X.74)

kann man das Differenzialgleichungssystem (X.71)-(X.73) als eine einzige Differenzial-
gleichung

Vi>0: Z(t) = AZ({t), Z0) = 7, (X.75)

fiir eine differenzierbare vektorwertige Funktion # : Ry — CV und einen Anfangswert
%y € CV schreiben. Wir wollen dabei annehmen, dass die die Gleichung definierende
komplexe N x N-Matrix A := (a;;)),—; € CV*V selbstadjungiert ist, A = A*.

Bemerkungen und Beispiele.

e Vermutlich wéire die Bezeichung ,, Anfangsvektor,, fiir 7y treffender, ist aber nicht
iiblich.

e Die Beschrankung des obigen AWP auf selbstadjungierte Matrizen erfasst zwar
viele, aber nicht alle Beispielanwendungen. Tatséchlich kann man das AWP (X.75)
fiir allgemeine komplexe N x N-Matrizen dhnlich 16sen; wir kommen am Schluss
darauf zuriick.

e Auch die Festlegung, dass die Matrix A in (X.75) unabhéngig von der Variablen
t (die wir als Zeitvariable interpretieren) sein soll, ist eine der Kiirze der fiir die
Vorlesung zur Verfiigung stehenden Zeit geschuldete Vereinfachung - aber kein
prinzipielles mathematisches Hindernis.

e Im AWP (X.75) tritt die Zeitableitung einer vektorwertigen Funktion auf, die in
der Schule nicht behandelt wird.
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e Wir erinnern zunéachst an die Definition der Differenzierbarkeit einer reellen Funk-
tion, die fiir nichtnegative Zeiten definiert ist: Eine Funktion f : Ry — R heifit
differenzierbar bei t > 0, falls der Grenzwert

f(t) = lim{f<t+h}>l_f(t)} cR (X.76)

h—0

existiert. In diesem Fall nennen wir f(t) die Ableitung von f (bei t).

o Ist f differenzierbar bei ¢ fiir alle ¢t > 0, so heifit f differenzierbar auf R und die
Ableitung definiert eine Abbildung f : R* — R.

e Man beachte, dass die Ableitung bei ¢ = 0 nicht gebildet werden kann, weil die
Grenzwertbildung in (X.76) bedingt, dass man sich ¢ von links und von rechts
nahert.

e Die Definition der Differenzierbarbeit einer Funktion # : Ry — CV und ihrer
Ableitung ist die natiirliche Verallgemeinerung von (X.76): & : Ry — CV heifit
differenzierbar bei t > 0, falls der Grenzwert

I(t) = hm{f(Hh)_f(t)} c ¢V (X.77)

h—0 h

existiert. In diesem Fall nennen wir Z(t) die Ableitung von @ (bei t).

o Ist 7 differenzierbar bei ¢ fiir alle t > 0, so heifit & differenzierbar auf R* und die
Ableitung definiert eine Abbildung 7 : R* — C.

e Schreiben wir Z(t) = (z1(t),... ,xN(t))T mit x,(t) € C, so ist

x1(t + h) x1(t)
S : — : (X.78)
£L’N<t -+ h) I'N(t)

Re[z1 (t+h)]—Re[z1 (t)] -Im[zq (t+h)]—Im[z; (¢)]
1 ) 1 43 1 ) 1

F(t + h) — T(t)
h

o> =

Re[zn (t+h)]—Relzn (1)] ' Im[zy (t+h)]—Im[zy (1)]
N - N +i N - N

und es folgt sofort, dass die Ableitung der vektorwertigen Funktion ¢ — Z(t) auf
die iibliche Ableitungen reeller Funktionen, ndmlich der Real- und Imaginérteile
der Komponenten von Z(t), zuriickgefiihrt werden kann,

‘ Re[d(t)] + ilm[(1)] @1 (t)
Z(t) = : = : : (X.79)
Re[@n ()] + dIm[zn(t)] T (t)
Setzt man auf der rechten Seite die Gleichungen (X.71)-(X.73) ein, erhdlt man
sofort (X.75).
e Sind B € CV*¥ eine feste komplexe N x N-Matrix und () := BZ(t), so beob-

achten wir, dass

gt +h)—yt)  BI(t+h)— Bi(t) B (:E(t +h) — :f(t)) '

. = . = - (X.80)
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Im Limes h — 0 folgt, dass mit ¥ auch g differenzierbar ist und

y(t) = B(t). (X.81)

Zur Losung der Differenzialgleichung (X.75) wenden wir den Spektralsatz und genauer
Korollar X.16 auf die selbstadjungierte Matrix A an: Nach Korollar X.16 ist A diagona-
lisierbar, und es gibt eine unitdre Matrix U € U(N) und Eigenwerte Ay, Ao, ..., Ay € R,
so dass

U AU = A = ‘ (X.82)

gilt. Durch Multiplikation mit U von links und U* von rechts wird diese Gleichung
dquivalent iiberfiihrt in

A = UAU". (X.83)
Sei nun 7' : Ry — CV eine Losung der Differenzialgleichung (X.75). Wir definieren
Z(t) == U'Z(t) und Zzy := U*Zy (X.84)
und beobachten, dass Z(0) = 2, und fir ¢t > 0
Zt) = U*E(t) = U AZ(t) = UAUUZ(t) = AZ(1) (X.85)

gilt. Glg. (X.85) und die Anfangsbedingung Z(0) = zy =: (f,...,8n5)7 ist aber gleich-
wertig mit dem System folgender N Differenzialgleichungen,

Z1(t) = M z(t), 21(0) = B (X.86)
Zo(t) = A 2a(t), 29(0) = fo (X.87)
Zn(t) = Avan(t), zn(0) = Bn. (X.88)

Diese Differenzialgleichungen besitzen aber die eindeutigen Losungen
VneZY, t>0:z2,(t) = e B, (X.89)

bzw. in Vektorschreibweise
ez\lt
erzt 0
Vt>0:2(t) = exp[tA] 2, exp[tA] = N . (X.90)
0 | et

Damit erhalten wir fiir die urspriinglich gesuchte Vektorfunktion
Vt>0:2(t) = U exp[tA| U . (X.91)

Dies ist eine Losung der Differenzialgleichung (X.75) und weil die Lésungen z, : Rg — C
der Differenzialgleichungen z,(t) = A\, z,(t) mit Anfangswerten z,(0) = f, eindeutig sind,
ist (X.91) auch die einzige Losung von (X.75).
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X.6. Erganzungen

X.6.1. Beweis von Lemma X.3

Beweis. Fiir n € Z¥ definieren wir
An = {fl,fg,...,fn} (X92)

und beobachten, dass A; = {#1} wegen #; # 0 linear unabhéngig ist. Wir zeigen nun,
dass

Vn ezt (An ist linear unabh'atngig) = <An+1 ist linear unabhé’mgig) (X.93)
gilt. Dies liefert dann induktiv die lineare Unabhéngigkeit von Ay und somit die Be-
hauptung.

Um (X.93) zu zeigen, nehmen wir an, dass A, linear unabhéingig ist und A, linear
abhéngig wére und fithren diese Annahme zum Widerspruch. Die lineare Abhéngigkeit
von A, bedeutet, dass es (aq, ..., Q,, any1) 7 (0,...,0,0) so gibt, dass

Oélfl + ..+ Oén.f‘n + OénJrlfnJrl = 6 <X94)

Wiire nun «,, 1 = 0, so folgte aus der linearen Unabhéngigkeit von A,,, dass mit a7 +
oo+ ap@, = 0auch oy = -+ = a,, = 0 wéren, also (aq,...,an,an41) = (0,...,0,0)
gilte, was in Widerspruch zu (g, . .., @y, ape1) # (0,...,0,0) stiinde. Also ist a1 # 0.

Wir setzen nun f; := —ay/ay,+1 und erhalten

Wenden wir nun ® — \,;;1 auf (X.95) an, so erhalten wir

n

0 = (q) — )\n+11)fn+1 = Z Be (‘I) — Ant1 1)@ = Z Be (‘pfz — )\n+1f£)
—1 =1

=) Bl — Angr) T (X.96)
(=1

Da A, linear unabhéngig ist, impliziert dies, dass ;(A¢ — A1) = 0 fiir alle £ € Z7 sind.
Wegen der paarweisen Verschiedenheit der Eigenwerte sind auflerdem A\, — A\, 11 # 0,
und deshalb muss sogar 1 = --- = 3, = 0 gelten, d.h. es ist &, = 0. Widerspruch;
also ist A, 1 linear unabhéngig. O

X.6.2. Die Drehgruppe SO(N)

Bemerkungen und Beispiele.
o Ist D= (")) € SO(2), so gilt nach (VIL56) und mit det[D] = 1, dass

(_dc _ab) - D' = DT = <‘Z 2) , (X.97)
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also @ = d und b = —c. Aulerdem ist dann 1 = det[D] = a?® + b*. Wihlen wir
¢ € [0,27] so, dass
a . b
cos(p) = \/612:_”)2 = a und sin(yp) = \/a2:+b2 = b, (X.98)
dann ist also

_ | cos(p)  sin(yp)
b= (—sin(ap) cos(gp)) ' (X.99)

Betrachtet man D als Basistransformation, so dreht D das kartesische Koordina-
tensystem um ¢

e Ein typisches Element S € O(2) \ SO(2) ist

S = L0 . X.100
() o

Als Basistransformation spiegelt S die ds-Achse und lédsst die @;-Achse unberiihrt.
Die Spiegelungseigenschaft wird mathematisch durch S? = 1 ausgedriickt.

e Jede Matrix M € O(2) ist entweder eine Drehung, M € SO(2), oder das Produkt
einer Drehung D € SO(2) und einer Spiegelung S € O(2)\ SO(2), d.h. M =D-S.

e Weiterhin bilden O(N) C GL(N,R) eine Untergruppe der reellen, invertiblen
N x N-Matrizen und SO(N) C O(N) eine Untergruppe von O(N) beziiglich Ma-
trixmultiplikation, wie man leicht durch Nachpriifen der Gruppenaxiome einsieht.

e Man bezeichnet SO(N) auch als Drehgruppe.

e Tatséichlich lasst sich auch jedes D € SO(3) fiir geeignete a, 8,7 € [0,2n] als
D = Ds(«) - D1(B) - D3(y) schreiben, wobei

1 0 0 cos(aw)  sin(a) 0
Di(B) = |0 cos(B) sin(B) |, Ds(a) = [ —sin(a) cos(a) 0
0 —sin(n) cos(f) 0 0 1

(X.101)

Dabei sind «, 3,7 die eulerschen Winkel. Diese Parametrisierung spielt in der
Theorie des Kreisels eine wichtige Rolle. Jede Drehung in R? ist also die Kom-
position einer Drehung um die ds-Achse, dann einer weiteren um die @;-Achse und
anschlieBend nochmal eine um die ds-Achse.

e Natiirlich bilden auch SU(N) C U(N) C GL(N, C) Untergruppen der komplexen,
invertiblen (N x N)-Matrizen beziiglich Matrixmultiplikation.

X.6.3. Diagonalisierbarkeit normaler Operatoren

Definition X.17. Seien X ein endlich dimensionaler Vektorraum iiber C und ¢, ¥ €
L(X) zwei lineare Abbildungen. Der Kommutator von ® und W ist die lineare Ab-
bildung

[@,0] = &V — VU e L(X). (X.102)
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Satz X.18 (Kommutierende Observablen). Seien N € IN, X ein C-Vektorraum der
Dimension dim(X) = N mit Skalarprodukt (-]-) : X x X — C und &, = o7,y =
O, ..., &y = D} € L(X) selbstadjungierte lineare Abbildungen mit Eigenwerten o(®,) =
{AEZ) N, fir ¢ € ZY. Kommutieren [®),, ®/) = 0, fiir alle k,{ € Z¥, so gibt es eine ONB
A={d,...,dn} C X gemeinsamer Eigenvektoren aller ®1, Py, ..., Dy, d.h.

ViezZtvnezl . @a, = \a,. (X.103)
Beweis. Wir fithren den Beweis nur fiir L = 2 und genauer zwei selbstadjungierte linea-
ren Abbildungen ® = &* ¥ = U* € £(X), die kommutieren, ¥ = V.

Seien Ai, A9, ..., Ag € o(P) die paarweise verschiedenen Eigenwerte von ® und Y} :=
Ker[® — A\z1] die von den zugehorigen Eigenvektoren aufgespannten Unterrdume, die
Eigenrdume von ®. Da Eigenvektoren ® zu verschiedenen Eigenwerten zueinander
orthogonal sind, folgt

X =Y oY,®...0Yk. (X.104)
Seien nun k € Z¥ und 7 € Y}, also &7 = A, 7. Wegen
O(Vr) = U(PF) = A\ VT (X.105)
ist auch ¥x € Y}, d.h. die Eigenrdume Y}, sind auch unter ¥ invariant,
VkeZi¥: WY, C Y. (X.106)

Bezeichnen wir die Restriktion von U auf Y}, mit Uy, := ¥ 1y, € L(Y}), so iibertrigt sich
die Selbstadjungiertheit von ¥ auf ¥; und nach dem Spektralsatz gibt es eine ONB in
Y} aus Eigenvektoren von Wy, die auch alle Eigenvektoren von ® zum Eigenwert A\, sind.
Die Vereinigung dieser ONB iiber alle k € Z¥ ist dann die gesuchte ONB von X aus
gemeinsamen Eigenvektoren von ® und W. O

Definition X.19. Seien X ein endlich-dimensionaler Vektorraum iiber C mit Skalar-
produkt (-]-) : X x X — C. Eine lineare Abbildung ® € £(X) heifit normal

e DD = 0. (X.107)

Bemerkungen und Beispiele.
e Selbstadjungierte lineare Abbildungen sind normal, da ®®* = ®? = O*P.
e Unitére lineare Abbildungen sind normal, da UU* =1 = U*U.
e Zu jeder linearen Abbildung ® € £(X) bilden wir ihren Realteil

Re{@) = (Re[d})" = %(q>+q>*) e L(X), (X.108)
und ihren Imaginérteil
Im{®} = (Im{®})" = %(cp—@*) € L(X). (X.109)
Dann gilt
® = Re{®} + ilm{®}. (X.110)
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e Es gilt folgende Aquivalenz:
<q> € £(X) ist normal) = ([Re{(l)}, Im{®}] = o). (X.111)

Dies ergibt sich aus

Re(@}, Tm{®)] = - {(®+0%) (@ — @) — (B — ") (@ + 2}

1

=4 {@* — (9*)* 4+ ©*® — DD* — @* + (O*)* + ©*D — PD*}
1
1 * *

=5 {0*® — 9P*}. (X.112)

Aus Satz X.18 und der Aquivalenz (X.111) ergibt sich noch das folgende Korollar

Korollar X.20. Seien X ein endlich-dimensionaler Vektorraum iiber C mit Skalarpro-
dukt (-]) : X x X — C und & € L(X) eine normale lineare Abbildung. Dann gibt
es eine ONB A = {dy,...,dn} C X von X aus Eigenvektoren von ®. Somit ist
diagonalisierbar.
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