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IX.6.1.Äquivalenz von Normen . . . . . . . . . . . . . . . . . . . . . . . . . 116

X. Eigenwerte und Diagonalisierbarkeit 117
X.1. Eigenwerte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
X.2. Diagonalisierbarkeit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
X.3. Diagonalisierbarkeit selbstadjungierter Matrizen und der Spektralsatz . . . 121
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I. Grundlagen, Konventionen und
Notationen

Dieses Kapitel stellt eine Übersicht über in der Mathematik häufig gebrauchte Begriffe,
Konventionen und Notationen dar. Der Inhalt dieses Kapitels wird den Leser(inne)n
größtenteils aus dem Schulunterricht geläufig sein. Die wenigen neu hinzukommenden
Begriffe sind so leicht zu lernen, dass es den Leser(inne)n überlassen ist, sich im Laufe
der ersten Woche diese anzueignen. In der Vorlesung Lineare Algebra für Elektrotechnik
wird dieses Kapitel nur schlaglichtartig beleuchtet und wir1 werden seinen Inhalt ohne
weitere Erklärung benutzen.

I.1. Quantoren und Logik

• Eine Aussage im mathematischen Sinne ist ein Wortgebilde, dem man entweder
den Wert wahr (w) oder falsch (f) zuordnen kann.

–
”
Es regnet jetzt“,

”
Braunschweig ist die schönste Stadt Deutschlands“ oder

”
1 · 1 = 4“ sind jeweils Aussagen,

–
”
Grün“,

”
Fünfzehn Mann auf des toten Mannes Kiste -Johoo, johoo, johoo-

und ’ne Buddel mit Rum!“ oder
”
15x+ 7y“ sind jeweils keine Aussagen.

Dabei geht es nur um die prinzipielle Zuordnung von w und f und weder um die
praktische Nachprüfbarkeit der Aussage als Fakt noch um deren Objektivität noch
um die Frage, ob sie eine Wertung beinhaltet.

• Das Zeichen = bedeutet Gleichheit und ist in seiner Bedeutung evident. Das Zei-
chen := bedeutet, dass die linke Seite durch die rechte definiert wird, das Zeichen
=: bedeutet, dass die linke Seite durch die rechte (im Sinn einer Namensgebung)
abgekürzt wird.

Beispiel:

a := f(0), f(1) =: b. (I.1)

bedeutet

a wird als Wert der Funktion f bei 0 definiert, der Wert
der Funktion f bei 1 wird hingegen mit b bezeichnet.

(I.2)

• Das Zeichen ∀ bedeutet für alle (umgedrehtes A wie Alle).

1In mathematischen Texten wird meistens die 1. Person Plural verwendet – selbst wenn es sich nur
um einen Autor handelt.
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Kapitel I. Grundlagen, Konventionen und Notationen

Beispiel:

∀x, y > 0 : x · y > 0 (I.3)

bedeutet

Für alle x > 0 und y > 0 gilt x · y > 0. (I.4)

• Das Zeichen ∃ bedeutet es existiert (umgedrehtes E wie Existiert).

Beispiel:

∀x > 0 ∃ y < 0 : x+ y = 0 (I.5)

bedeutet

Für jedes x größer Null existiert ein y kleiner Null, so
dass x+ y = 0 gilt. (Das gesuchte y ist natürlich −x.) (I.6)

• Man beachte, dass Quantoren im Allgemeinen nicht vertauscht werden dürfen.
Dazu betrachten wir folgende Beispiele:

∀n ∈ N ∃m ∈ N : m > n

bedeutet

Zu jeder natürlichen Zahl n gibt es eine natürliche Zahl
m so, dass m größer als n ist. (Diese Aussage ist wahr).

(I.7)

∃m ∈ N ∀n ∈ N : m > n

bedeutet

Es gibt eine natürliche Zahl m, so dass alle natürlichen
Zahlen n kleiner sind als m. (Diese Aussage ist falsch).

(I.8)

• Das Zeichen ⇒ bedeutet impliziert.

Beispiel:

A ⇒ B (I.9)

bedeutet

Aussage A impliziert Aussage B, d.h.: Ist A wahr,
so ist auch B wahr.

(I.10)

• Wie oben gesagt, kann eine mathematische Aussage A ein Satz, eine Bedingung
oder auch eine Behauptung sein. In jedem Fall ist sie aber wahr oder falsch, A ∈
{w, f}.
Beispiel:

A := Es regnet. , B := Die Erde wird nass. (I.11)

Dann gilt die Implikation A⇒ B, was gelesen werden muss als

(A = w) ⇒ (B = w).
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Kapitel I. Grundlagen, Konventionen und Notationen

Dieses Beispiel wirkt etwas künstlich. Darum geben wir ein weiteres Beispiel, in
dem die Aussagen von Platzhaltern abhängen:

A(x) :=

{
w, falls x ≥ 5,
f, falls x < 5,

B(y) :=

{
w, falls y ≥ 7,
f, falls y < 7,

C(z) :=

{
w, falls z ≥ 33,
f, falls z < 33,

dann gilt die folgende Implikation (s. (I.18)–(I.19)):

A(x) ∧B(y) ⇒ C(x · y).
(I.12)

• Das Zeichen ⇐⇒ bedeutet ist gleichwertig mit oder ist äquivalent zu, d.h.

A ⇐⇒ B (I.13)

bedeutet

A ist genau dann wahr, wenn B wahr ist. (I.14)

• Das Zeichen ∨ ist ein logisches oder, d.h.

A ∨ B (I.15)

ist wahr, falls A oder B oder beide wahr sind und falsch,
falls A und (gleichzeitig auch) B falsch sind.

(I.16)

Beispiel:

{ x · y = 0 } ⇐⇒
{
(x = 0) ∨ (y = 0)

}
. (I.17)

• Das Zeichen ∧ ist ein logisches und, d.h.

A ∧ B (I.18)

ist wahr, falls A und (gleichzeitig auch) B wahr sind und
sonst falsch.

(I.19)

Beispiel 1: {
(x = 0) ∧ (y = 0)

}
⇒ { x+ y = 0 }. (I.20)

Beispiel 2:

A⇐⇒ B ist gleichwertig mit (A⇒ B) ∧ (B ⇒ A) (I.21)

d.h. (um die Verwirrung komplett zu machen)(
A⇐⇒ B

)
⇐⇒

[(
A⇒ B

)
∧
(
B ⇒ A

)]
. (I.22)

• Die logische Negation wird mit ¬ bezeichnet, also

¬ A (I.23)

ist wahr, falls A falsch ist und falsch, falls A wahr ist. (I.24)
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• Eine wichtige Beobachtung ist die Kontraposition, d.h. dass

(A⇒ B) ⇐⇒ (¬B ⇒ ¬A). (I.25)

Dies versteht man intuitiv sofort an folgendem Beispiel:

Es regnet. ⇒ Die Erde wird nass.

ist gleichwertig mit

Die Erde ist nicht nass. ⇒ Es regnet nicht. (I.26)

• Es ist nützlich, sich die Werte der Aussagen A, B, A⇒ B, A⇔ B, A∨B, A∧B
und ¬A, in einer Wertetabelle zu verdeutlichen:

A B A⇒ B A⇔ B A ∨B A ∧B ¬A
w w w w w w f
w f f f w f f
f w w f w f w
f f w w f f w

(I.27)

Wir sehen, dass [A ⇒ B] ⇔ [(¬A) ∨ B] ⇔ [¬(A ∧ (¬B))] gilt, da die Werte
von A ⇒ B und (¬A) ∨ B für alle vier möglichen Werte des Paars (A,B) ∈
{(w,w), (w, f), (f, w), (f, f)} übereinstimmen.

• Für logische Verknüpfungen gelten

das Kommutativgesetz: (I.28)

A ∨B = B ∨ A,
A ∧B = B ∧ A,

das Assoziativgesetz: (I.29)

A ∨
(
B ∨ C

)
=
(
A ∨B

)
∨ C,

A ∧
(
B ∧ C

)
=
(
A ∧B

)
∧ C,

das Distributivgesetz: (I.30)

A ∨
(
B ∧ C

)
=
(
A ∨B

)
∧
(
A ∨ C

)
,

A ∧
(
B ∨ C

)
=
(
A ∧B

)
∨
(
A ∧ C

)
.

sowie: (I.31)

¬ (A ∨ B) = (¬A) ∧ (¬B),

¬ (A ∧ B) = (¬A) ∨ (¬B).

I.2. Mengen

Mengen sind (endliche, abzählbare oder sogar überabzählbare) Sammlungen mathema-
tischer Objekte.
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• {1, 5, 9} ist die Menge, die die Zahlen 1,5 und 9 enthält,

• {x ∈ N | x < 5} enthält alle natürlichen Zahlen, die kleiner als 5 sind
(also {x ∈ N | x < 5} = {1, 2, 3, 4}).

• Jedes Element einer Menge wird nur einmal aufgeführt, beispielsweise ist
{1, 5, 9, 9, 5} = {1, 5, 9}.

• x ∈M heißt x ist Element der Menge M .

• x ̸∈M heißt x ist nicht in der Menge M enthalten.

• Die Anzahl der Elemente einer Menge M wird mit |M | oder auch #[M ] be-
zeichnet. Beispielsweise ist |{1, 5, 9}| = 3.

• A ⊆ B bedeutet, dass die Menge A in der Menge B enthalten ist, also dass A
Teilmenge von B ist. Umgekehrt heißt A ⊇ B, dass die Menge A die Menge B
enthält: (

A ⊆ B
)
⇐⇒

(
B ⊇ A

)
⇐⇒ (x ∈ A⇒ x ∈ B). (I.32)

• ∅ = { } ist die leere Menge, die kein Element enthält.

• Gleichheit von Mengen bedeutet elementweise Übereinstimmung,(
A = B

)
⇐⇒

(
x ∈ A⇐⇒ x ∈ B

)
. (I.33)

• {x | E(x)} und {x}E(x) bezeichnen die Menge aller x, die die Eigenschaft E(x)
besitzen.

Beispiel:

U := {n | ∃ k ∈ N : n = 2k − 1} (I.34)

ist

die Menge aller n, für die es eine natürliche Zahl k gibt,
so dass n = 2k − 1 gilt

, (I.35)

d.h.

U = {2k − 1 | k ∈ N} = 2N− 1 (I.36)

ist die Menge aller ungeraden Zahlen.

Die Eigenschaft E(x) kann auch durch eine Indexmenge I charakterisiert sein.
Beispiel: Mit I := {1, 3, 5, 7} ist

{xi | i ∈ I} = {xi}i∈I = {x1, x3, x5, x7}. (I.37)

• Haben wir mehrere Mengen, etwa A1, A2 und A3, so bildet M = {A1, A2, A3}
wieder eine Menge – eine Menge von Mengen. Dies kann man so fortsetzen und
kommt zu Mengen von Mengen von Mengen u.s.w. Der Übersichtlichkeit halber
hat sich deshalb im Sprachgebrauch bewährt, die übergeordnete Menge M als
Familie, System, Kollektion oder auch Klasse zu bezeichnen. Somit ist M die
Familie der Mengen A1, A2 und A3.
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• Die Familie aller Teilmengen einer MengeM bezeichnet man als ihre Potenzmen-
ge P(M). Dabei zählen auch die leere Menge ∅ und M selbst als Teilmenge von
M . Für |M | <∞ ist |P(M)| = 2|{M}|. (Warum?)
Beispiel:

M := {1, 2, 3} ⇒ P(M) =
{
∅, {1}, {2}, {3}, {1, 2}, {2, 3}, {1, 3}, {1, 2, 3}

}
.

(I.38)

• Die Vereinigung, der Durchschnitt und die Differenz zweier Mengen A,B
werden wie folgt bezeichnet:

Vereinigung: A ∪B = {x | (x ∈ A) ∨ (x ∈ B)}, (I.39)

Durchschnitt: A ∩B = {x | (x ∈ A) ∧ (x ∈ B)}, (I.40)

Differenz: A \B = {x | (x ∈ A) ∧ (x ̸∈ B)}. (I.41)

• Ist A eine Teilmenge einer Obermenge M , d.h. A ⊆M , so bezeichnet

Ac := M \ A (I.42)

das Komplement von A bezüglich M . (Vorsicht, der Notation Ac für das
Komplement sieht man die Grundmenge M , auf die sie sich bezieht nicht mehr
an!)

Beispiel: Seien A = {1, 2, 3}, B = {3, 4, 5}, M = {1, 2, . . . , 10}. Dann sind

A ∪B = {1, 2, 3, 4, 5}, A ∩B = {3}, (I.43)

A \B = {1, 2}, Ac = {4, 5, 6, 7, 8, 9, 10}. (I.44)

• Vereinigungen und Durchschnitte können auch über Familien {Ai}i∈I von Mengen
Ai gebildet werden, wobei i eine Indexmenge I durchläuft.

Beispiel: ⋃
i∈I

Ai :=
{
x
∣∣ ∃ i ∈ I : x ∈ Ai

}
, (I.45)

ist

die Vereinigung der Mengen Ai, d.h. die x, die in (min-
destens) einer Menge Ai mit i ∈ I enthalten sind;

(I.46)⋂
i∈I

Ai :=
{
x
∣∣ ∀ i ∈ I : x ∈ Ai

}
, (I.47)

ist

der Durchschnitt der Mengen Ai, d.h. die x, die in allen
Mengen Ai mit i ∈ I enthalten sind.

(I.48)

• Für Vereinigung, Durchschnitt und Komplementbildung von Mengen gelten Kom-
mutativ-, Assoziativ-, und Distributionsgesetze, analog zu den entsprechenden Ge-
setzen für die logischen Verknüpfungen ∨, ∧ und ¬.
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• Sind A und B zwei nichtleere Mengen, so bezeichnet

A×B =
{
(a, b)

∣∣ a ∈ A , b ∈ B
}

(I.49)

das kartesische Produkt von A und B, d.h. die Men-
ge aller Paare (a, b), die sich mit Elementen a aus A und
b aus B bilden lässt.

(I.50)

Allgemeiner ist

A1 × A2 × · · · × An =
{
(a1, a2, . . . , an)

∣∣ a1 ∈ A1, . . . , an ∈ An
}

(I.51)

das (n-fache) kartesische Produkt der Mengen
A1, A2, . . . , An, d.h. die Menge aller n-Tupel
(a1, a2, . . . , an), die sich mit Elementen ai aus Ai,
für i ∈ {1, 2, . . . , n} bilden lässt.

(I.52)

Vorsicht! Oft wird A1 × A2 × · · · × An mit A1 ∪ A2 ∪ · · · ∪ An verwechselt.
Der Unterschied wird aber schon deutlich, wenn man die Zahl der Elemente
für A := A1 = A2 betrachtet:

|A× A| =
(
|A|
)2
, (I.53)

|A ∪ A| = |A| . (I.54)

• Sind a1, a2, a3, . . . Zahlen, so bezeichnen wir (an)n∈N als Zahlenfolge. Man beachte
auch hier den Unterschied zwischen dem Tupel (an)n∈N und der Menge {an}n∈N.
So ist beispielsweise für die Zahlenfolge a1 = a2 = a3 = . . . = 1, die konstant gleich
eins ist,

(an)n∈N = (1, 1, 1, . . .), (I.55)

aber

{an}n∈N = {1, 1, 1, . . .} = {1}. (I.56)

• Häufig wiederkehrende Mengen haben in der Mathematik eine eigene Bezeichnung
bekommen. Wir listen die Symbole für die wichtigsten Zahlenmengen auf:

die natürlichen Zahlen: N := {1, 2, 3, . . .}, (I.57)

die natürlichen Zahlen mit Null: N0 := {0, 1, 2, 3, . . .}, (I.58)

die ganzen Zahlen: Z := {0, 1,−1, 2,−2, 3,−3, . . .}, (I.59)

die rationalen Zahlen: Q :=
{ p

q

∣∣∣ p ∈ Z, q ∈ N}, (I.60)

die reellen Zahlen: R (I.61)

die komplexen Zahlen: C (I.62)

Die präzise Definition der reellen oder gar der komplexen Zahlen geht über den
üblichen Schulstoff hinaus. Wir werden dies in den kommenden Wochen in der
Vorlesung behandeln.
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• Weiterhin führen wir für m,n ∈ N0 mit m ≤ n noch die Bezeichnung

Znm := {m,m+ 1,m+ 2, . . . , n} (I.63)

für die natürlichen Zahlen zwischen m und n ein.

I.3. Ordnungsrelationen

Die Zeichen <, >,≤,≥ haben wir in verschiedenen Beispielen in den vorigen Abschnitten
wie selbstverständlich benutzt.

• a ≤ b heißt a ist kleiner als oder gleich b.

• a ≥ b heißt a ist größer als oder gleich b.

• a < b heißt a ist kleiner als b. Zur Unterscheidung dieser Relation von
a ≤ b sagt man auch a ist echt kleiner als b oder a ist strikt kleiner als b.

• a > b heißt a ist (echt, strikt) größer als b.

• Offenbar gilt

a < b ⇐⇒ b > a, (I.64)

a ≤ b ⇐⇒ (a < b) ∨ (a = b), (I.65)

a ≥ b ⇐⇒ (a > b) ∨ (a = b). (I.66)

Die Ordnungsrelation < lässt sich aber auch auf andere Mengen, als den uns vertrau-
ten Zahlen übertragen. Deshalb ist es zweckmäßig, den Begriff einer geordneten Menge
präzise zu definieren.

Definition I.1. Eine Menge S ̸= ∅ heißt (total) geordnet bezüglich “<” :⇔

(i)
Sind a, b ∈ S, so gilt genau eine der drei Relationen
a < b, a = b oder a > b.

(I.67)

(ii)
Sind a, b, c ∈ S, und gilt a < b und b < c, dann gilt auch
a < c.

(I.68)

Das Symbol “<” heißt Ordnungsrelation auf S.

Beispiele für total geordnete Mengen sind N, Z, Q und R. Auf den komplexen Zahlen
gibt es keine (mit den Verknüpfungen verträgliche) Ordnungsrelation. Ebenso gibt es
keine (mit den Verknüpfungen verträgliche) Ordnungsrelation auf den Vektoren in R3.

Mit Hilfe der Ordnungsrelation kann man Intervalle in R definieren. Seien a, b ∈ R und
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a ≤ b. Dann heißen

(a , b) := {x ∈ R | a < x < b} (I.69)

das offene Intervall von a nach b,

[a , b] := {x ∈ R | a ≤ x ≤ b} (I.70)

das abgeschlossene Intervall von a nach b,

[a , b) := {x ∈ R | a ≤ x < b} (I.71)

das rechts halboffene Intervall von a nach b,

(a , b] := {x ∈ R | a < x ≤ b} (I.72)

das links halboffene Intervall von a nach b

und insbesondere

R+ := {x ∈ R | x > 0}, R− := {x ∈ R | x < 0}, (I.73)

R+
0 := {x ∈ R | x ≥ 0}, R−

0 := {x ∈ R | x ≤ 0}. (I.74)

I.4. Funktionen

Funktionen, auch Abbildungen genannt, sind die wichtigsten Objekte der Mathema-
tik. Eine Funktion f ordnet jedem Element x seiner Definitionsmenge D genau ein
Element f(x) seiner Wertemenge W zu. Die symbolische Schreibweise dafür ist

f : D →W , x 7→ f(x). (I.75)

Dabei ist die Definitionsmenge zwar voll ausgeschöpft, denn f(x) ist für jedes x ∈ D
definiert. Für die Wertemenge muss das aber nicht der Fall sein. Sind D′ ⊆ D und
W ′ ⊆ W Teilmengen von D bzw. W , so bezeichnen wir mit

f(D′) :=
{
f(x) ∈ W

∣∣ x ∈ D′} (I.76)

die Bildmenge (oder das Bild) von D′ und

f−1(W ′) :=
{
x ∈ D

∣∣ f(x) ∈ W ′} (I.77)

die Urbildmenge (oder das Urbild) von W ′ .

Es kann also f(D) ⊂ W durchaus eine echte Teilmenge des Wertebereichs sein. (Wir
sollten hier aber erwähnen, dass diese Konvention nicht einheitlich akzeptiert ist. Manche
Autoren verlangen, dass für f : D →W auch stets f(D) =W gilt, andere fordern noch
nicht einmal, dass f−1(W) = D.)

Definition I.2. Seien D,W ≠ ∅ und f : D →W eine Abbildung.

f heißt surjektiv :⇔ f(D) = W , (I.78)

f heißt injektiv :⇔ ∀x, x′ ∈ D :
(
f(x) = f(x′)

)
⇒
(
x = x′

)
, (I.79)

f heißt bijektiv :⇔ f ist surjektiv und injektiv. (I.80)
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Bemerkungen und Beispiele.

• exp : R→ R, x 7→ ex ist nicht surjektiv, (wegen ex > 0) aber injektiv (wegen der
strengen Monotonie der Exponentialfunktion).

• sin : R→ [−1, 1], x 7→ sinx ist surjektiv aber nicht injektiv.

• tan : (−π/2 , π/2)→ R, x 7→ tanx ist bijektiv.

Definition I.3. Für g : A → B und f : g(A) → C ist die Verkettung oder Kompo-
sition oder auch Hintereinanderschaltung f ◦ g von g und f wie folgt definiert:

f ◦ g : A→ C, x 7→ f
(
g(x)

)
. (I.81)

Satz I.4. Seien g : A→ B und f : B → C.

(i) Sind f und g surjektiv, so ist auch f ◦ g : A→ C surjektiv.

(ii) Sind f und g injektiv, so ist auch f ◦ g : A→ C injektiv.

(iii) Sind f und g bijektiv, so ist auch f ◦ g : A→ C bijektiv.

Beweis.
Zu (i): Sei c ∈ C. Weil f surjektiv ist, gibt es ein b ∈ B mit f(b) = c. Weil g surjektiv
ist, gibt es ein a ∈ A mit g(a) = b. Also gilt (f ◦ g)(a) = c.

Zu (ii): Seien a, a′ ∈ A mit (f ◦ g)(a) = (f ◦ g)(a′). Weil f injektiv ist, folgt g(a) = g(a′).
Weil g injektiv ist, folgt dann auch a = a′.

Zu (iii): Folgt aus (i) und (ii).

Wichtig ist also zu beachten, dass der Definitionsbereich von f mit dem Bildbereich von
g übereinstimmt. Man beachte auch die Reihenfolge: obwohl die Komposition f ◦g heißt,
wird erst g auf x ∈ A angewandt und danach f auf das Ergebnis g(x) ∈ B.

Die Bedeutung der Bijektivität liegt darin, dass sie die Existenz und Eindeutigkeit der
Umkehrfunktion sichert, wie der folgende Satz zeigt.

Satz I.5. Seien A,B zwei nichtleere Mengen und f : A → B eine bijektive Abbildung.
Dann gibt es eine eindeutige Abbildung g : B → A so, dass g ◦ f = 1A und f ◦ g = 1B
gelten, d.h. dass

∀x ∈ A : g[f(x)] = x und ∀ y ∈ B : f [g(y)] = y (I.82)

gelten. In diesem Fall heißt g : B → A Umkehrabbildung zu f , und wir schreiben
g =: f−1.

Beweis. Sei y ∈ B. Weil f surjektiv ist, gibt es ein x ∈ A so, dass y = f(x), und weil f
injektiv ist, ist x das einzige Element in A, für das y = f(x) ist. Also definiert g(y) := x
eine Abbildung g : B → A. Diese Abbildung hat die Eigenschaft, dass f [g(y)] = f(x) = y
für alle y ∈ B gilt. Ist umgekehrt x ∈ A beliebig, so setzen wir y := f(x) und beobachten,
dass f(x) = y = f [g(y)] = f

(
g[f(x)]

)
gilt. Aus der Injektivität von f folgt nun jedoch

x = g[f(x)].
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Eine wichtige Klasse von Funktionen ist die der charakteristischen Funktionen, auch
Indikatorfunktionen genannt. Ist D eine nichtleere Menge und A ⊆ D eine Teilmenge,
so ist die charakteristische Funktion von A gegeben als

1A : D → {0, 1}, x 7→
{

1 falls x ∈ A,
0 falls x /∈ A. (I.83)

Mit anderen Worten: 1A[x] ist genau dann gleich 1, wenn x in A liegt und anderenfalls
gleich 0.

I.5. Beweistechniken

I.5.1. Vollständige Induktion

Eine häufig verwendete Beweistechnik ist die vollständige Induktion. Zunächst stellen
wir das Verfahren abstrakt vor. Nehmen wir an, wir wollten AussagenA(1), A(2), A(3), . . .
beweisen. Dann können wir folgende Tatsache verwenden.

Satz I.6. Gibt es ein n0 ∈ N, so dass A(n0) wahr ist, und gilt die Implikation

A(n) ⇒ A(n+ 1), (I.84)

für jedes n ≥ n0, n ∈ N, so ist A(m) wahr, für jedes m ≥ n0, m ∈ N.

Beweis. Wendet man (I.84) (m− n0)-mal an, so erhält man

A(n0)⇒ A(n0 + 1)⇒ A(n0 + 2)⇒ · · · ⇒ A(m− 1)⇒ A(m). (I.85)

Der Beweis durch vollständige Induktion wird an einem Beispiel am deutlichsten. Wir
wollen für n ∈ N die Summe

F (n) := 1 + 2 + · · ·+ n (I.86)

berechnen, und wir haben die Vermutung, dass F (n) = G(n), wobei

G(n) :=
n(n+ 1)

2
. (I.87)

Nun gilt es, die Aussage

A(n) = w :⇔ F (n) = G(n) (I.88)

für alle n ∈ N zu beweisen.

• Induktionsanfang: Wähle n0 := 1. Dann ist

F (n0) = F (1) = 1 =
1(1 + 1)

2
= G(1) = G(n0), (I.89)

und A(n0) = A(1) = w.
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• Induktionsannahme: Seien n ≥ 1 und gelte A(n) = w, also F (n) = G(n).

• Induktionsschritt: Wir zeigen, dass aus A(n) = w auch A(n+1) = w folgt. Dazu
beobachten wir, dass unter Verwendung von F (n) = G(n) auch

F (n+ 1) = n+ 1 + F (n) = n+ 1 +G(n) = n+ 1 +
n(n+ 1)

2

=
(n+ 1)(n+ 2)

2
= G(n+ 1) (I.90)

gilt, dass somit also A(n+ 1) = w richtig ist.

Nach Satz I.6 ist damit A(n) = w für alle n ∈ N bewiesen.

I.5.2. Beweis durch Kontraposition

Neben der vollständigen Induktion ist auch der Beweis durch Kontraposition eine häufig
verwendete Methode, die auf (I.25) beruht,

(A⇒ B) ⇔ (¬B ⇒ ¬A). (I.91)

Wir illustrieren dies wieder mit einem Beispiel: Seien die Aussagen A und B definiert
durch

A = w :⇔
√
2 ∈ Q , (I.92)

B = w :⇔ ∃p, q ∈ N, ggT(p, q) = 1 : 2q2 = p2 (I.93)

wobei ggT(a, b) ∈ N den größten gemeinsamen Teiler zweier natürlichen Zahlen a, b ∈ N
bezeichne.

Ist nun A = w, so gibt es Zahlen p′, q′ ∈ N so, dass
√
2 = p′

q′
gilt. Enthalten p′ und q′

einen gemeinsamen ganzzahligen Faktor r ∈ N, sodass also p′ = pr und q′ = qr gelten,
so können wir r herauskürzen und erhalten

√
2 = p

q
mit teilerfremden p und q, d.h.

ggT(p, q) = 1. Damit ist auch B = w, und wir erhalten

A⇒ B . (I.94)

Die Aussage B ist jedoch stets falsch, weil dann der Primfaktor 2 in 2q2 in ungerader
Anzahl und in p2 in gerader Anzahl auftreten müsste.

{B = f} ⇒ {¬B = w} ⇒ {¬A = w} ⇒ {
√
2 /∈ Q} . (I.95)

Wir bemerken, dass der Beweis durch Kontraposition sehr ähnlich zur Methode des
Widerspruchsbeweises ist, letzterer beruht auf [A⇒ B] = (¬A) ∨B = ¬[A ∧ (¬B)].

I.6. Notationen

Seien m,n ∈ Z mit m ≤ n und

A = {am, am+1, am+2, . . . , an} (I.96)
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eine Menge von Zahlen. Dann ist das Summenzeichen wie folgt definiert,

n∑
i=m

ai := am + am+1 + am+2 + . . .+ an. (I.97)

Wir bemerken, dass der Summationsindex i durch irgend einen anderen Buchstaben
außer m oder n ersetzt werden kann,

n∑
i=m

ai =
n∑

k=m

ak =
n∑

j=m

aj. (I.98)

Für m > n wird
∑n

i=m ai := 0 definiert.
Mit I := {m,m+ 1, . . . , n} und A wird die Summe auch oft noch anders geschrieben:

n∑
i=m

ai =
∑
i∈I

ai =
∑
a∈A

a. (I.99)
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I.7. Ergänzungen

I.7.1. Äquivalenzrelationen

Häufig lässt sich eine Menge in eine Familie disjunkter Teilmengen zerlegen, deren Ele-
mente jeweils ähnliche Eigenschaften haben. Beispiel:
Wir zerlegen Z in Z = A0 ∪ A1 ∪ A2, wobei

A0 :=3Z = {3k | k ∈ Z}, (I.100)

A1 :=3Z+ 1 = {3k + 1 | k ∈ Z}, (I.101)

A2 :=3Z+ 2 = {3k + 2 | k ∈ Z}. (I.102)

Offensichtlich sind A0 ∩ A1 = A1 ∩ A2 = A0 ∩ A2 = ∅. Die Elemente in Aj (j = 0, 1, 2)
lassen sich dadurch charakterisieren, dass sie einen Rest j beim Teilen durch 3 ergeben.

Wir formalisieren nun diese Überlegungen.

Definition I.7. Sei A eine Menge. Eine Abbildung R : A×A→ {w, f} heißt Relation
auf A. Für R(a, b) = w schreiben wir auch a ∼ b.

Definition I.8. Eine Relation R : A × A → {w, f} auf einer Menge A, mit R(a, b) =
w ⇔: a ∼ b heißt Äquivalenzrelation, falls folgende drei Eigenschaften gelten:

Reflexivität ∀ a ∈ A : a ∼ a, (I.103)

Symmetrie ∀ a, b ∈ A : a ∼ b⇔ b ∼ a, (I.104)

Transitivität ∀ a, b, c ∈ A : (a ∼ b ∧ b ∼ c)⇒ (a ∼ c). (I.105)

Satz I.9. Eine Äquivalenzrelation auf einer Menge A bewirkt eine Zerlegung von A in
disjunkte Teilmengen. Dabei sind zwei Elemente aus A genau dann äquivalent, wenn sie
derselben Teilmenge angehören.

Beweis. Zu a ∈ A definieren wir

[a]∼ := {x ∈ A | a ∼ x}. (I.106)

Wegen a ∈ [a]∼ ist [a]∼ nicht leer. Wir zeigen nun für a, b ∈ A, dass

entweder [a]∼ ∩ [b]∼ = ∅ (I.107)

oder [a]∼ = [b]∼ (I.108)

gilt. (Wegen [a]∼ ̸= ∅ können (I.107) und (I.108) nicht gleichzeitig gelten.)
Sei [a]∼∩ [b]∼ ̸= ∅. Dann gibt es also ein gemeinsames Element c ∈ [a]∼ , c ∈ [b]∼ . Damit
gelten a ∼ c und c ∼ b, also auch a ∼ b. Ist nun x ∈ [a]∼ , dann gilt x ∼ a und mit a ∼ b
auch x ∼ b, also x ∈ [b]∼. Es folgt, dass [a]∼ ⊆ [b]∼. Genauso erhält man [b]∼ ⊆ [a]∼,
also [a]∼ = [b]∼. Damit ist (I.107)–(I.108) gezeigt.
Schreiben wir jetzt

A =
⋃
a∈A

[a]∼, (I.109)

folgt die Aussage unmittelbar durch Zusammenfassen gleicher [a]∼.
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Definition I.10. Die Teilmengen [a]∼ heißen Äquivalenzklassen. Die Familie der
Äquivalenzklassen bezeichnet man mit

A/ ∼ (sprich: ′′A modulo ∼ ′′). (I.110)

Liegt a in einer Äquivalenzklasse, so heißt a Repräsentant der Klasse.

Bemerkungen und Beispiele.
Sind A := Z die ganzen Zahlen und p ∈ N eine natürliche Zahl, so sind

m ∼ n :⇔ ∃ k ∈ Z : m− n = kp. (I.111)

⇒ Z = [0]∼ ∪ [1]∼ ∪ . . . ∪ [p− 1]∼, (I.112)

[j]∼ = {kp+ j | k ∈ Z}. (I.113)

Z/ ∼ bezeichnet man auch mit Z/pZ oder Zp und [j]∼ =: [j] mod p.

Definition I.11. Sei ∼ eine Äquivalenzrelation auf einer Menge A. Eine Teilmenge
S ⊆ A heißt ein vollständiges Repräsentantensystem zu ∼, falls folgende zwei
Eigenschaften gelten:

(i) Jedes Element aus A ist zu einem Element aus S äquivalent.

(ii) Die Elemente aus S sind paarweise nicht äquivalent.

Bemerkungen und Beispiele.

A :=
{
g ⊆ R2

∣∣ g ist eine Gerade
}
, (I.114)

g1 ∼ g2 :⇔ g1 und g2 sind parallel.

⇒ S =
{
g ∈ A

∣∣ g ∩ {⃗0} = {⃗0}} (I.115)

ist ein vollständiges Repräsentantensystem. (I.116)

I.7.2. Das griechische Alphabet

Das griechische Alphabet wird in der Mathematik häufig verwendet. Zum Abschluss ge-
ben wir noch eine Liste der gebräuchlichsten griechischen Buchstaben:
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KLEIN

α alpha β beta γ gamma δ delta ϵ epsilon
ε epsilon ζ zeta η eta θ theta ϑ theta
ι jota κ kappa λ lambda µ mü ν nü
ξ xi o o π pi φ phi ρ rho
ϱ rho σ sigma ς sigma τ tau υ upsilon
ϕ phi φ phi χ chi ψ psi ω omega

GROSS

Γ Gamma ∆ Delta Θ Theta Λ Lambda Ξ Xi
Π Pi Σ Sigma Υ Upsilon Φ Phi Ψ Psi
Ω Omega
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II. Gruppen, Ringe und Körper

Im vorigen Kapitel I wurden die wichtigsten Zahlenmengen bereits genannt:

die natürlichen Zahlen,

N := {1, 2, 3, . . .}, (II.1)

die ganzen Zahlen,

Z := {0,+1,−1,+2,−2, . . .}, (II.2)

die rationalen Zahlen,

Q :=

{
p

q

∣∣∣∣ p ∈ Z, q ∈ N}, (II.3)

sowie die reellen und die komplexen Zahlen,

R und C. (II.4)

Wir wenden uns zunächst N, Z und Q zu. Für a, b ∈ N ist auch a+b ∈ N. Diese Tatsache
bezeichnet man als Abgeschlossenheit oder Stabilität von N bezüglich Addition.

I.A. gilt a − b ∈ N jedoch nicht. Dafür geht man von N zu Z über; für a, b ∈ Z sind
a + b und a− b ∈ Z. Insbesondere ist 0 das neutrale Element bezüglich Addition in Z:
a+ 0 = 0 + a = a. Man sagt, dass Z bezüglich der Addition + eine Gruppe bildet.

Weiterhin ist Z auch bezüglich Multiplikation abgeschlossen, d.h. für a, b ∈ Z ist auch
a · b ∈ Z, und es gilt das Distributivgesetz, a(b+ c) = ab+ bc. Somit ist Z bezüglich der
Addition + und der Multiplikation (·) ein Ring.

Schließlich gelangt man von Z zu Q durch die Forderung, dass auch Abgeschlossenheit
bezüglich Division gelten soll: Für a, b ∈ Q sind a + b, a − b, a · b ∈ Q und a

b
∈ Q, falls

b ̸= 0. Diese Eigenschaften von Q stehen auch exemplarisch für die allgemeine Definition
eines Körpers.

II.1. Gruppen

Definition II.1. Eine Menge G heißt Gruppe :⇔
Auf G ist eine Verknüpfung ◦ : G × G → G definiert, die die folgenden Eigenschaften
besitzt:

(G1) ∀ a, b, c ∈ G : (a ◦ b) ◦ c = a ◦ (b ◦ c), (II.5)

(G2) ∃ e ∈ G ∀ a ∈ G : a ◦ e = e ◦ a = a, (II.6)

(G3) ∀ a ∈ G ∃ a−1 ∈ G : a ◦ a−1 = a−1 ◦ a = e. (II.7)
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Dabei bezeichnet man (G1) als Assoziativität, e als das neutrale Element und a−1

als das zu a inverse Element. Die Anzahl |G| der Elemente in G bezeichnet man als
Ordnung von G.
Gilt außerdem noch

(G4) ∀ a, b ∈ G : a ◦ b = b ◦ a (Kommutativität), (II.8)

so nennt man G kommutativ oder abelsch.

Bemerkungen und Beispiele.

• Häufig wird das Verknüpfungszeichen weg gelassen, und man schreibt

a ◦ b =: a b. (II.9)

• Die Assoziativität erlaubt es uns, Klammern bei der Gruppenverknüpfung einfach
wegzulassen oder bei Bedarf einzufügen,

(a b) c = a (b c) =: a b c. (II.10)

• Das neutrale Element e einer Gruppe ist eindeutig. Ist nämlich e′ irgendein (mögli-
cherweise von e verschiedenes) Element von G, das die Eigenschaft (G2) besitzt,
so folgt e′ = e e′ = e.

• Sind G eine Gruppe, a ∈ G und b ∈ G ein (möglicherweise von a−1 verschiedenes)
zu a inverses Element, also ab = ba = e, so folgt dass b = (a−1 a)b = a−1(ab) = a−1,
und das zu a inverse Element, a−1, ist eindeutig.

• Aus der Eindeutigkeit des inversen Elements folgen dann auch

(a−1)−1 = a und (ab)−1 = b−1a−1, (II.11)

letzteres wegen a b b−1 a−1 = a e a−1 = a a−1 = e.

• Für abelsche Gruppen G schreibt man die Verknüpfung “◦” häufig als Addition
+ : G×G→ G, und die Eigenschaften (G1)–(G4) nehmen folgende Gestalt an:

(G̃1) ∀ a, b, c ∈ G : (a+ b) + c = a+ (b+ c), (II.12)

(G̃2) ∃ 0 ∈ G ∀ a ∈ G : a+ 0 = 0 + a = a, (II.13)

(G̃3) ∀ a ∈ G ∃ − a ∈ G : a+ (−a) = (−a) + a = 0, (II.14)

(G̃4) ∀ a, b ∈ G : a+ b = b+ a. (II.15)

• Die Menge Z = {. . . ,−2,−1, 0, 1, 2, . . .} der ganzen Zahlen ist bezüglich der Ad-
dition eine abelsche Gruppe mit 0 als neutralem Element und k−1 = −k als zu
k ∈ Z inversem Element.

• Die Menge Q\{0} der rationalen Zahlen ohne Null ist bezüglich der Multiplikation
eine abelsche Gruppe mit 1 als neutralem Element und q−1 = 1/q als zu q ∈ Q\{0}
inversem Element.

• Die Menge G := R \ {1} bildet bezüglich a ◦ b := a+ b− ab eine Gruppe.
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II.1.1. Permutationen

Definition II.2. Zu vorgegebenem n ∈ N sei Zn1 := {1, 2, . . . , n}. Die Menge der Per-
mutationen von n Elementen ist durch

Sn :=
{
π : Zn1 → Zn1

∣∣ π ist bijektiv
}

(II.16)

gegeben. Das Signum (−1)π ∈ {−1, 1} von π ist definiert durch

(−1)π :=

∏
1≤i<j≤n π(i)− π(j)∏

1≤i<j≤n i− j
. (II.17)

Die Permutationen schreibt man auch häufig als Schema

π ≡
(

1 2 · · · n
π(1) π(2) · · · π(n)

)
. (II.18)

Die Komposition von Bijektionen ist nach Satz I.4 (iii) stets selbst bijektiv. Somit
bildet die Komposition zweier Permutationen eine Verknüpfung ◦ : Sn × Sn → Sn.
Die Komposition von Abbildungen ist stets assoziativ, deshalb gilt auch (G1). Weiterhin
agiert, wie in (G2) gefordert,

1Zn
1
≡
(
1 2 · · · n
1 2 · · · n

)
∈ Sn (II.19)

als neutrales Element bezüglich ◦. Schließlich ist mit π ∈ Sn auch die Umkehrabbildung
π−1 ∈ Sn eine Permutation, und es gilt π−1 ◦ π = π ◦ π−1 = 1Zn

1
, also (G3). Zusammen-

fassend stellen wir fest, dass die Permutationen Sn bezüglich der Komposition ◦ eine
Gruppe bilden. Dabei ist die Ordnung gleich |Sn| = n!.

Bemerkungen und Beispiele.

• Beachte, dass ∏
1≤i<j≤n

F (i, j) =
n∏
i=1

( n∏
j=i+1

F (i, j)

)
. (II.20)

• Für n = 2 sind |S2| = 2! = 2 und

S2 =

{
1 =

(
1 2
1 2

)
, σ =

(
1 2
2 1

)}
, (II.21)

mit (−1)1 = +1 und (−1)σ = −1.
• Für n = 3 sind |S3| = 3! = 6 und

S3 =

{
π1 =

(
1 2 3
1 2 3

)
, π2 =

(
1 2 3
3 1 2

)
, π3 =

(
1 2 3
2 3 1

)
, (II.22)

π4 =

(
1 2 3
1 3 2

)
, π5 =

(
1 2 3
3 2 1

)
, π6 =

(
1 2 3
2 1 3

)}
, (II.23)

mit (−1)π1 = (−1)π2 = (−1)π3 = +1 und (−1)π4 = (−1)π5 = (−1)π6 = −1.
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• Für n = 3 sind π5(1) = 3, π5(2) = 2, π5(3) = 1 und somit∏
1≤i<j≤n

(i− j) = (1− 2) · (1− 3) · (2− 3) = (−1) · (−2) · (−1) = (−2)

(II.24)

und ∏
1≤i<j≤n

(
π5(i)− π5(j)

)
=
(
π5(1)− π5(2)

)
·
(
π5(1)− π5(3)

)
·
(
π5(2)− π5(3)

)
= (3− 2) · (3− 1) · (2− 1) = 1 · 2 · 1 = 2. (II.25)

Also ist in der Tat

(−1)π5 :=

∏
1≤i<j≤n

(
π5(i)− π5(j)

)∏
1≤i<j≤n(i− j)

=
2

−2
= −1. (II.26)

• Für n = 3 sind π6(1) = 2, π6(2) = 1, π6(3) = 3 sowie π2(1) = 3, π2(2) = 1,
π2(3) = 2. Also sind

[π6 ◦ π2](1) = π6[π2(1)] = π6[3] = 3, (II.27)

[π6 ◦ π2](2) = π6[π2(2)] = π6[1] = 2, (II.28)

[π6 ◦ π2](3) = π6[π2(3)] = π6[2] = 1, (II.29)

und dementsprechend ist

π6 ◦ π2 =

(
1 2 3

[π6 ◦ π2](1) [π6 ◦ π2](2) [π6 ◦ π2](3)

)
=

(
1 2 3
3 2 1

)
= π5.

(II.30)

• Analog erhält man für n = 3

π2 ◦ π6 = π4 ̸= π5 = π6 ◦ π2, (II.31)

was zeigt, dass die Gruppe S3 der Permutationen nicht kommutativ ist. Dies gilt in
der Tat ganz allgemein für alle Sn mit n ≥ 3. (Trivialerweise ist S2 kommutativ.)

• Das Signum von Permutationen ist multiplikativ, d.h. für n ∈ N und π, κ ∈ Sn gilt

(−1)π◦κ = (−1)π · (−1)κ . (II.32)

Dies wird in Lemma II.12 bewiesen.

• Die Permutationen der Form

σ =

(
1 . . . i− 1 i i+ 1 . . . j − 1 j j + 1 . . . n
1 . . . i− 1 j i+ 1 . . . j − 1 i j + 1 . . . n

)
∈ Sn, (II.33)

die nur zwei Elemente (hier: i↔ j) gegeneinander austauschen, heißen Transpo-
sitionen. Gemäß Lemma II.11 gilt stets (−1)σ = −1.
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• Jede Permutation π ∈ Sn lässt sich als Komposition von Transpositionen schreiben,
d. h. es gibt Transpositionen σ1, . . . , σm ∈ Sn, so dass

π = σ1 ◦ σ2 ◦ . . . ◦ σm. (II.34)

Gemäß (II.32) und (II.62) gilt also

(−1)π = (−1)σ1 · (−1)σ2 · · · (−1)σm = (−1)m, (II.35)

d.h. das Signum der Permutation π ist −1 hoch die Anzahl der Transpositionen,
deren Komposition π ergibt.

Weitere Details zu Permutationen findet man in Abschnitt II.4.2.

II.2. Ringe

Definition II.3. Eine Menge R heißt Ring :⇔
Auf R sind zwei Verknüpfungen Addition + : R × R → R und Multiplikation (·) :
R×R→ R definiert, die die folgenden Eigenschaften besitzen:

(R1) R ist bezüglich der Addition + eine abelsche Gruppe, (II.36)

(R2) ∀a, b, c ∈ R : (a · b) · c = a · (b · c), (II.37)

(R3) ∀a, b, c ∈ R : a · (b+ c) = a · b+ a · c, (b+ c) · a = b · a+ c · a. (II.38)

Dabei bezeichnet man (R3) als Distributivität und vereinbart, dass Multiplikation vor
Addition ausgeführt wird (Punktrechnung vor Strichrechnung).

Bemerkungen und Beispiele.

• Die Menge N := {1, 2, 3, . . .} der natürlichen Zahlen ist kein Ring.

• Die Menge Z := {. . . ,−2,−1, 0, 1, 2, . . .} der ganzen Zahlen bildet einen Ring.

• Die Menge 2Z := {. . . ,−4,−2, 0, 2, 4, . . .} der geraden Zahlen bildet einen Ring.

• Die Menge 2Z + 1 := {. . . ,−5,−3,−1, 1, 3, 5, . . .} der ungeraden Zahlen ist ge-
genüber Addition nicht abgeschlossen und deswegen auch kein Ring.

• Q, R und C sind Ringe.

II.2.1. Die Restklassenringe Zp von Z modulo p

Für p ∈ N definieren wir die Restklassen modulo p durch

∀ k ∈ Z : [k]p := k + pZ =
{
k + pn

∣∣ n ∈ Z} . (II.39)

Wir beobachten, dass [k]p = [ℓ]p gleichwertig mit (k − ℓ) ∈ pZ = {pn|n ∈ Z} ist.
Offensichtlich gibt es genau p solcher Restklassen modulo p. Ihre Menge bezeichnen wir
mit

Zp :=
{
[0]p, [1]p, [2]p, . . . , [p− 1]p

}
, (II.40)
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sie bilden eine paarweise disjunkte Zerlegung der ganzen Zahlen, Z =
⋃
K∈Zp

K. Defi-
nieren wir Addition und Multiplikation auf Zp durch

[k]p + [ℓ]p := [k + ℓ]p und [k]p · [ℓ]p := [k · ℓ]p, (II.41)

so bilden die Restklassen Zp modulo p mit den Verknüpfungen in (II.41) einen Ring,
den Restklassenring modulo p.

Um einzusehen, dass Zp einen Ring bildet, braucht man natürlich nur die Ringaxio-
me nachzuprüfen, was eine reine Fleißaufgabe ist. Eine Subtilität liegt allerdings im
Beweis der Wohldefiniertheit der Verknüpfungen in (II.41): Damit (II.41) überhaupt
Verknüpfungen + : Zp × Zp → Zp und (·) : Zp × Zp → Zp definiert, ist zu zeigen, dass
die Gleichungen in (II.41) unabhängig von den gewählten Repräsentanten k, ℓ ∈ Z sind.
Seien dazu k, k′, ℓ, ℓ′ ∈ Z und [k]p = [k′]p sowie [ℓ]p = [ℓ′]p, es gibt also m,n ∈ Z, sodass

k′ = k +mp und ℓ′ = ℓ+ np. (II.42)

Dann sind aber auch

[k + ℓ]p = [k′ + ℓ′]p und [k · ℓ]p = [k′ · ℓ′]p, (II.43)

denn

k′ + ℓ′ = (k + ℓ) + (m+ n)p und k′ · ℓ′ = k · ℓ+ (kn+ ℓm+mn)p, (II.44)

also sind die Verknüpfungen in (II.41) unabhängig von den gewählten Repräsentanten.

Eine Anwendung der Restklassenringe ist die Regel, dass eine Zahl n ∈ N genau dann
durch 9 teilbar ist, wenn ihre Quersumme durch 9 teilbar ist, denn es gilt[

a0 + a1 · 101 + a2 · 102 + . . . + am · 10m
]
9

= [a0]9 + [a1]9 ·
[
10
]
9
+ . . . + [am]9 ·

[
10
]m
9

= [a0]9 + [a1]9 + [a2]9 + . . . + [am]9

= [a0 + a1 + a2 + . . .+ am]9. (II.45)

II.3. Körper

Definition II.4. Ein Ring F heißt Körper1 ⇔
F besitzt zu (R1)–(R3) zusätzlich die folgenden Eigenschaften:

(K1) ∀a, b ∈ F : a · b = b · a, (II.46)

(K2) ∃1 ∈ F \ {0} ∀a ∈ F : 1 · a = a · 1 = a, (II.47)

(K3) ∀a ∈ F \ {0} ∃
1

a
∈ F \ {0} : a · 1

a
= 1. (II.48)

Bemerkungen und Beispiele.

1engl.: Field
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• Ist F ein Ring, der die Eigenschaften (K2) und (K3), aber nicht (K1) besitzt, so
bezeichnet man F als Schiefkörper.

• Die Eigenschaften (R1)–(R3) sowie (K1)–(K3) eines Körpers F implizieren, dass
F \ {0} bezüglich der Multiplikation eine abelsche Gruppe mit neutralem Element
1 ist. Man bezeichnet F× := F \ {0} als multiplikative Gruppe von F.

• Der Ring Z der ganzen Zahlen ist kein Körper.

• Die Menge Q := {p/q | p ∈ Z, q ∈ N} der rationalen Zahlen bilden einen Körper.

• Weitere Körper sind die Menge der reellen Zahlen R und die Menge der komplexen
Zahlen C. Diese Körper sind für diese Vorlesung am wichtigsten. Deshalb schreiben
wir K statt F, falls F = R oder F = C.

• Ist p eine Primzahl, so bilden die Restklassen Zp modulo p einen Körper (s. Ab-
schnitt II.2.1).
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II.4. Ergänzungen

II.4.1. Untergruppen

Definition II.5. Sei (G, ◦) eine Gruppe. Eine Teilmenge U ⊆ G heißt Untergruppe

:⇔ U ist bezüglich der Verknüpfung ◦ in G selbst eine Gruppe. (II.49)

Lemma II.6 (Untergruppenkriterium). Sei (G, ◦) eine Gruppe. Eine Teilmenge U ⊆ G
ist eine Untergruppe, falls folgende drei Kriterien erfüllt sind:

(i) e ∈ U, (II.50)

(ii) ∀a, b ∈ U : a ◦ b ∈ U, (II.51)

(iii) ∀a ∈ U : a−1 ∈ U. (II.52)

Beweis. Wegen (i) gilt ◦ : U × U → U , d.h. U ist bezüglich ◦ abgeschlossen. Da die
Verknüpfung auf G assoziativ ist, ist sie (erst recht) auch auf U ⊆ G assoziativ. (i)
sichert (G2) und (iii) sichert (G3).

Bemerkungen und Beispiele.

• {e}, G ⊆ G sind stets Untergruppen – die trivialen Untergruppen.

• Die geraden Zahlen 2Z ⊆ Z bilden bezüglich Addition eine Untergruppe.

• Die ungeraden Zahlen 2Z + 1 ⊆ Z sind bezüglich Addition keine Untergruppe,
denn 0 ̸∈ 2Z+ 1.

Definition II.7. Sei (G, ◦) eine Gruppe. Das Zentrum Z(G) ⊆ G von G ist definiert
durch

Z(G) := {a ∈ G | ∀x ∈ G : ax = xa}. (II.53)

Lemma II.8. Z(G) ist eine abelsche Untergruppe von G.

Beweis. Zunächst weisen wir mit Hilfe des Untergruppenkriteriums, Lemma II.6, nach,
dass Z(G) eine Untergruppe von G ist.

(i) Wegen ex = x = xe ist e ∈ Z(G).
(ii) Für a, b ∈ Z(G) und x ∈ G ist abx = axb = xab, also ist ab ∈ Z(G).
(iii) Für a ∈ Z(G) und x ∈ G ist x−1a = ax−1 und daher a−1x = (x−1a)−1 =

(ax−1)−1 = xa−1. Also ist mit a auch a−1 ∈ Z(G).
Es folgt, dass Z(G) eine Untergruppe ist. Weiterhin ist für a, b ∈ Z(G) insbesondere
b ∈ G und deshalb ist ab = ba. Also ist Z(G) abelsch.
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II.4.2. Permutationen, Transpositionen, Zyklen und Signum

Definition II.9. Sei π ∈ Sn eine Permutation. Sind k1, k2, . . . , kr ∈ Zn1 mit π(k1) = k2,
π(k2) = k3, . . . , π(kr) = k1, also

k1
π7−→ k2

π7−→ k3
π7−→ · · · π7−→ kr

π7−→ k1, (II.54)

so heißt (k1, k2, . . . , kr) Zyklus von π der Länge r.

Bemerkungen und Beispiele.

• Die Permutation π ∈ S9,

π =

(
1 2 3 4 5 6 7 8 9
5 4 1 9 3 8 7 6 2

)
, (II.55)

besitzt die Zyklen

(1, 5, 3), (2, 4, 9), (6, 8), (7) (II.56)

(etwa 1 7−→ 5 7−→ 3 7−→ 1). Jede Permutation ist offensichtlich durch ihre
Zyklen eindeutig bestimmt, und man schreibt

π := (1, 5, 3) (2, 4, 9) (6, 8). (II.57)

(Zur Vereinfachung lässt man Zyklen der Länge 1 weg.)

• Umgekehrt kann für n ≥ r jeder Zyklus (k1, k2, . . . , kr) als Permutation in Sn
gelesen werden: (k1, k2, . . . , kr) lässt alle Elemente in Zn1 \{k1, k2, . . . , kr} invariant.
Mit dieser Lesart wird (II.57) zu

π = (1, 5, 3) ◦ (2, 4, 9) ◦ (6, 8). (II.58)

• Außerdem kommutieren disjunkte Zyklen miteinander, deshalb ist π = (1, 5, 3) ◦
(2, 4, 9) ◦ (6, 8) = (2, 4, 9) ◦ (6, 8) ◦ (1, 5, 3).

• Ein Vergleich mit (II.33) zeigt, dass Transpositionen genau die Zyklen der Länge 2
sind, nämlich

σ =

(
1 . . . i− 1 i i+ 1 . . . j − 1 j j + 1 . . . n
1 . . . i− 1 j i+ 1 . . . j − 1 i j + 1 . . . n

)
= (i, j). (II.59)

Satz II.10. Sei n ≥ 2. Jede Permutation π ∈ Sn kann als Komposition von Transposi-
tionen geschrieben werden, d.h. es gibt a1, b1, a2, b2, . . . , am, bm ∈ Zn1 , mit ai ̸= bi, so
dass

π = (a1, b1) ◦ (a2, b2) ◦ · · · ◦ (am, bm). (II.60)

Beweis. Zunächst stellen wir fest, dass es genügt, für einen beliebigen Zyklus (a1, . . . , ar)
der Länge 2 ≤ r ≤ n Glg. (II.60) zu zeigen. Es ist aber

(a1, a2, . . . , ar) = (a1, ar) ◦ (a1, ar−1) ◦ · · · ◦ (a1, a2). (II.61)
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Lemma II.11. Sind n ∈ N, n ≥ 2, 1 ≤ i < j ≤ n und σ = (i, j) ∈ Sn eine Transpositi-
on, so ist

(−1)σ = −1. (II.62)

Beweis. Der Beweis ist eine kleine Rechnung,

(−1)σ =
∏
p<q

σ(q)− σ(p)
q − p

=
∏

p<q; {p=i ∨ q=j}

σ(q)− σ(p)
q − p

=

( ∏
p=i; i<q<j

σ(q)− σ(p)
q − p

)
·
( ∏
p=i; q=j

σ(q)− σ(p)
q − p

)
·
( ∏
p=i; q>j

σ(q)− σ(p)
q − p

)

·
( ∏
p=j; q>j

σ(q)− σ(p)
q − p

)
·
( ∏
p<i; q=i

σ(q)− σ(p)
q − p

)
·
( ∏
p<i; q=j

σ(q)− σ(p)
q − p

)

·
( ∏
i<p<j; q=j

σ(q)− σ(p)
q − p

)

=

( ∏
p=i; i<q<j

q − j
q − i

)
·
(
i− j
j − i

)
·
( ∏
p=i; q>j

q − j
q − i

)
·
( ∏
p=j; q>j

q − i
q − j

)

·
( ∏
p<i; q=i

j − p
i− p

)
·
( ∏
p<i; q=j

i− p
j − p

)
·
( ∏
i<p<j; q=j

i− p
j − p

)
= − 1. (II.63)

Lemma II.12. Sind n ∈ N, n ≥ 2, und π, κ ∈ Sn zwei Permutationen, so gilt

(−1)π◦κ = (−1)π · (−1)κ. (II.64)

Beweis.

(−1)π◦κ =
∏

1≤i<j≤n

π(κ(i))− π(κ(j))
i− j

=
∏

1≤i<j≤n

[
π(κ(i))− π(κ(j))

]
·
[
κ(i)− κ(j)

][
κ(i)− κ(j)

]
· [i− j]

(II.65)

=

( ∏
1≤i<j≤n

π(κ(i))− π(κ(j))
κ(i)− κ(j)

)
·
( ∏

1≤i<j≤n

κ(i)− κ(j)
i− j

)

=

( ∏
1≤i<j≤n

π(i)− π(j)
i− j

)
·
( ∏

1≤i<j≤n

κ(i)− κ(j)
i− j

)
= (−1)π · (−1)κ.
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Aus Lemmata II.11 und II.12 folgt nun Glg. (II.35), die wir nochmal als Korollar for-
mulieren.

Korollar II.13. Sind n ∈ N und π = σ1 ◦ σ2 ◦ . . . ◦ σm ∈ Sn eine Permutation, die als
Komposition von m Transpositionen σ1, σ2, . . . , σm ∈ Sn dargestellt werden kann, so ist

(−1)π = (−1)m. (II.66)

Beweis. Nach Lemmata II.11 und II.12 ist

(−1)π = (−1)σ1 · (−1)σ2 · · · (−1)σm = (−1)m. (II.67)

II.4.3. Der Polynomring R[x] über einem kommutativen Ring R

Sei R ein kommutativer Ring. Wir betrachten Folgen a = (an)
∞
n=0 ∈ RN0 , wobei nur

endlich viele Folgeglieder von 0 verschieden sind. D.h. es gibt ein m = m(a) ∈ N, so
dass

a = (a0, a1, a2, . . . , am, 0, 0, . . .). (II.68)

(Dabei hängt m(a) im Allgemeinen von der betrachteten Folge a ab und ist nicht für
alle Folgen gleich.) Wir sammeln diese Folgen in

R[x] :=
{
a = (an)

∞
n=0 ∈ RN0

∣∣∣ ∃m ∈ N ∀n > m : an = 0
}
. (II.69)

R[x] wird zu einem kommutativen Ring bezüglich der Verknüpfungen

a+ b := (a0 + b0, a1 + b1, a2 + b2, . . .) (II.70)

und

a · b = c, wobei cn := a0bn + a1bn−1 + · · ·+ anb0. (II.71)

Dies prüft man durch Nachrechnen der Ringaxiome leicht nach.

Wir führen nun x als formale Variable ein und identifizieren a mit dem Polynom

a(x) := a0 + a1x+ a2x
2 + . . .+ amx

m. (II.72)

Dann sieht man sofort, dass die Addition und Multiplikation in R[x] gerade der Addition
und Multiplikation der zugehörigen Polynome entspricht:

(a+ b)(x) = (a0 + b0) + (a1 + b1)x+ . . .+ (aN + bN)x
N

= a(x) + b(x), (II.73)

(a · b)(x) = a0b0 + (a0b1 + a1b0)x+ . . .+ (a0bN + a1bN−1 + . . .+ aNb0)x
N

= a(x) · b(x), (II.74)

wobei N := m(a)+m(b). Daher bezeichnet man R[x] als Ring der Polynome (in x) über
R.
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II.4.4. Restklassenringe Zp modulo Primzahlen p sind Körper

Definition II.14. Seien a, b ∈ Z.
(i) Eine Zahl g ∈ Z heißt Teiler von a, falls es ein h ∈ Z so gibt, dass a = gh gilt.

(ii) Für |a|+ |b| > 0 ist der größte gemeinsame Teiler ggT(a, b) ∈ Z von a und b
die größte ganze Zahl, die ein Teiler sowohl von a als auch von b ist.

Bemerkungen und Beispiele.

• Da 0 = g ·0 für alle g ∈ Z gilt, sind alle ganzen Zahlen Teiler von 0. Deshalb müssen
wir a = b = 0 bei der Definition des größten gemeinsamen Teiler ausschließen.

• Sind a, b ∈ Z, so ist 1 stets ein Teiler sowohl von a als auch von b. Daher ist
ggT(a, b) ≥ 1, d.h. der größte gemeinsame Teiler von a ∈ Z und b ∈ Z, |a|+|b| > 0,
ist stets eine natürliche Zahl.

Lemma II.15. Sind a, b ∈ Z mit |a|+ |b| > 0, so gibt es k, ℓ ∈ Z so, dass

ggT(a, b) = ka+ ℓb. (II.75)

Beweis. Sei

M :=
{
n ∈ N

∣∣ ∃ k, ℓ ∈ Z : n = ka+ ℓb
}
. (II.76)

Dann ist |a| + |b| ∈ M , also M ̸= ∅. Seien m ∈ N die kleinste Zahl in M , m := minM ,
und k, ℓ ∈ Z so, dass m = ka + ℓb. Da d := ggT(a, b) sowohl a als auch b teilt, teilt d
auch m, also ist d ≤ m.

Seien nun a = qm+ r, mit q ∈ Z und 0 ≤ r < m. Wäre r ≥ 1, so wäre

r = a− qm = (1− qk)a− qℓb ∈ M . (II.77)

Da m die kleinste natürliche Zahl in M ist, kann dies nicht richtig sein, und es folgt
r = 0, d.h. a = qm. Genauso erhält man b = pm. Also teilt m sowohl a als auch b.
Damit ist m ≤ ggT(a, b) = d.

Insgesamt folgt, dass

ggT(a, b) = m ∈ M. (II.78)

Satz II.16. Zp ist ein Körper genau dann, wenn p ∈ N eine Primzahl ist.

Beweis.
Ist p ∈ N keine Primzahl, so gibt es 1 < a ≤ b < pmit p = ab. Dann sind [a]p, [b]p ̸= [0]p,
aber

[a]p · [b]p = [ab]p = [0]p. (II.79)
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Also ist Zp kein Körper.

Sind p eine Primzahl und 1 < a < p, so ist ggT(a, p) = 1. Nach Lemma II.15 gibt es
k, ℓ ∈ Z so, dass 1 = ka+ ℓb. Also ist

[1]p = [k]p · [a]p + [ℓ]p · [p]p = [k]p · [a]p, (II.80)

d.h. [k]p ist das Inverse zu [a]p bezüglich Multiplikation in Zp.
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III. Reelle und komplexe Zahlen

Die detaillierte Einführung der reellen und der komplexen Zahlen ist traditionell Gegen-
stand der Einführungsvorlesung der Analysis. Wir geben hier nur ein paar Eckpunkte
wieder. Dabei setzen wir Begriffe wie Ordnungsrelationen, totale Ordnung, Beschränkt-
heit nach oben (von Teilmengen einer total geordneten Menge) und geordneter Körper
als bekannt voraus.

III.1. Reelle Zahlen

Definition III.1. Seien S ̸= ∅ eine total geordnete Menge und T ⊆ S eine nach oben
beschränkte Teilmenge. Ein Element b ∈ S heißt Supremum von T :⇔

(i) ∀t ∈ T : t ≤ b, (III.1)

(ii) ∀a ∈ S, a < b ∃ t ∈ T : a < t. (III.2)

Bemerkungen und Beispiele.

• Besitzt eine Teilmenge T ⊆ S einer total geordneten Menge S ein Supremum
b ∈ S, so ist dieses eindeutig und wir schreiben

b =: sup
{
T
}
, (III.3)

für das Supremum von T .

• Sind S := Q und T := {a ∈ Q | a2 < 2}, so ist S total geordnet und T nach oben
beschränkt - z.B. 2 ist eine obere Schranke. Es existiert jedoch kein Supremum von
T in S: Man sieht nämlich leicht ein, dass b2 = 2 für das Supremum b = sup{T} ∈
S = Q gelten müsste, diese Gleichung jedoch keine rationale Lösung besitzt.

Definition III.2. Eine total geordnete Menge S ̸= ∅ erfüllt das Supremumsaxiom
oder L.U.B.-Axiom1

:⇔ Jede nach oben beschränkte Teilmenge T ⊆ S besitzt ein Supremum, sup{T} ∈ S.
1“L.U.B.” steht für “least upper bound”. Solche einfallsreichen Namensgebungen werden uns noch
häufiger begegnen.
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Satz III.3. Es gibt einen eindeutigen geordneten Körper, in dem a+ c < b+ c für alle
a, b, c ∈ F mit a < b gilt, in dem ab > 0 für alle a > 0 und b > 0 gilt, der Q enthält und
der das Supremumsaxiom erfüllt. Wir nennen diesen Körper die reellen Zahlen und
bezeichnen ihn mit R.

III.2. Komplexe Zahlen

Mit Hilfe der Erweiterung der rationalen Zahlen Q durch die reellen Zahlen R ⊃ Q

können wir also die Lösungen der Gleichung x2 = 2 in R finden. Wenn wir hingegen die
Lösungen der Gleichung x2 = −2 suchen, werden wir erneut vor ein Problem gestellt:
Da Quadrate reeller Zahlen stets positiv oder null sind, kann x2 = −2 keine reelle
Lösung haben. Die Frage nach einer abermaligen Erweiterung des Zahlenbereichs, um
auch Lösungen von x2 = −2 finden, führt uns von den reellen ZahlenR auf die komplexen
Zahlen C.

Definition III.4. Auf der Menge R2 := R×R seien Addition und Multiplikation durch

(a, b) + (c, d) := (a+ c, b+ d), (III.4)

(a, b) · (c, d) := (a · c− b · d, b · c+ a · d), (III.5)

definiert.

Satz III.5. Die Menge R2 := R × R bildet bezüglich der Addition (III.4) und der
Multiplikation (III.5) einen Körper, den Körper C der komplexen Zahlen. Dabei sind
(0, 0) das neutrale Element bezüglich Addition und (1, 0) das neutrale Element bezüglich
Multiplikation. Die inversen Elemente in C sind wie folgt gegeben,

−(a, b) = (−a,−b), (III.6)

1

(a, b)
=

(
a

a2 + b2
,
−b

a2 + b2

)
, (III.7)

wobei zu beachten ist, dass[
(a, b) ̸= (0, 0)

]
⇔

[
(a ̸= 0 ∨ b ̸= 0)

]
⇔

[
a2 + b2 > 0

]
. (III.8)

Beweis. Der Beweis, dass C ein Körper ist, erfolgt durch Nachprüfen der Eigenschaften
(R1)− (R3) und (K1)− (K3).

Zu jeder komplexen Zahl z = (a, b) ∈ C definieren wir

ihren Realteil Re{z} := a ∈ R, (III.9)

ihren Imaginärteil Im{z} := b ∈ R, (III.10)

ihren Betrag |z| :=
√
a2 + b2 ∈ R+

0 , (III.11)

und die konjugiert komplexe Zahl z̄ := (a,−b) ∈ C. (III.12)

WS 2025/26, Seite 34



Kapitel III. Reelle und komplexe Zahlen

Bemerkungen und Beispiele.

• Sind w = (2, 1) und z = (−3, 4), so sind

Re{w} = 2, Im{w} = 1 , und Re{z} = −3, Im{z} = 4 , (III.13)

|w| =
√
22 + 12 =

√
5 , und |z| =

√
(−3)2 + 42 =

√
25 = 5 , (III.14)

w =

(
2
−1

)
und z =

(
−3
−4

)
. (III.15)

• Weiterhin sind mit w = (2, 1) und z = (−3, 4) auch

w + z = (−1, 5) , w − z = (5,−3) , (III.16)

w · z = (2 · (−3)− 1 · 4 , 2 · 4 + 1 · (−3)) = (−10, 5) , (III.17)

1

z
=

(
−3

32 + 42
,
−4

32 + 42

)
=

(
−3
25
,
−4
25

)
und (III.18)

w

z
= w · 1

z
= (2, 1) ·

(
−3
25
,
−4
25

)
(III.19)

=

(
2 · (−3)− 1 · (−4)

25
,
1 · (−3) + 2 · (−4)

25

)
=

(
− 2

25
, −11

25

)
.

• Die Definition (III.5)

(a, b) · (c, d) = (ac− bd , bc+ ad) (III.20)

des Produkts komplexer Zahlen wirkt auf den ersten Blick merkwürdig und un-
motiviert. Tatsächlich ergibt sie sich jedoch zwingend aus den Körperaxiomen
(R1)− (R3) und (K1)− (K3) und der zusätzlichen Forderung, dass

1 · z = z und |w · z| = |w| · |z| (III.21)

gelten möge: Das Produkt (III.20) ist das einzige auf R2, mit dem R2 die Körper-
axiome und (III.21) erfüllt.

III.2.1. Imaginäre Einheit i und R ⊂ C als Teilkörper

Es ist bequem, die sogenannte imaginäre Einheit i := (0, 1) einzuführen. Identifizieren
wir weiterhin 1 := (1, 0), so kann man jede komplexe Zahl (a, b) ∈ C als (a, b) = a·1+b·i
schreiben. Damit ist

z = Re{z} · 1 + Im{z} · i. (III.22)

Weiterhin sind mit dieser Schreibweise (III.4) und (III.5) äquivalent zu

(a · 1+ b · i) + (c · 1+ d · i) = (a+ c) · 1 + (b+ d) · i, (III.23)

(a · 1+ b · i) · (c · 1+ d · i) = (ac− bd) · 1 + (bc+ ad) · i. (III.24)
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Insbesondere ist

i2 = (0, 1) · (0, 1) = (−1, 0) = −1, (III.25)

d.h. die imaginäre Einheit ist eine Quadratwurzel aus −1. Das ist auch die einzige
zusätzliche Rechenregel, die man beim Rechnen mit komplexen Zahlen im Vergleich zu
den reellen beachten muss.

Eine sehr nützliche Beobachtung ist, dass die komplexen Zahlen mit verschwindendem
Imaginärteil mit den reellen Zahlen identifiziert werden können. Dies rechtfertigt auch
den Namen “Realteil” für die erste Komponente einer komplexen Zahl. Definieren wir

ReC := {(a, 0) = a · 1 ∈ C | a ∈ R}, (III.26)

so sieht man leicht, dass ReC ⊆ C ein Teilkörper ist, d.h. ReC ⊆ C ist eine Teilmenge,
die selbst ein Körper ist. Außerdem ist ReC ⊆ C isomorph (als Körper) zu R. Etwas
genauer formuliert, ist

J : R→ ReC, a 7→ a · 1 (III.27)

eine Bijektion, die die Körpereigenschaften erhält, d.h. es gilt J(a + b) = J(a) + J(b)
und J(a · b) = J(a) · J(b). Mit (III.27) können wir R und ReC = J [R] miteinan-
der identifizieren und die reellen Zahlen als Teilmenge der komplexen Zahlen auffassen.
Konkret geschieht diese Identifikation einfach durch das Weglassen von “1”, also indem
wir a + ib := a · 1 + b · i schreiben und Einsen 1 als Faktoren auslassen. Mit dieser
Identifikation wird dann auch

|z|2 = z̄ · z, (III.28)

für jede komplexe Zahl z ∈ C, sowie

(a+ ib) + (c+ id) = (a+ c) + i(b+ d), (III.29)

(a+ ib) · (c+ id) = (ac− bd) + i(bc+ ad). (III.30)

III.2.2. Polardarstellung, Potenzen und Wurzeln komplexer Zahlen

Von großer Bedeutung ist die Polardarstellung für komplexe Zahlen. Für eine komplexe
Zahl z = a+ ib ̸= 0, die nicht null ist, definieren wir einen Winkel φ ∈ R so, dass

cos(φ) =
a√

a2 + b2
=

Re{z}
|z|

und sin(φ) =
b√

a2 + b2
=

Im{z}
|z|

. (III.31)

gelten. Mit diesem Winkel wird dann

z = |z|
(
cos(φ) + i sin(φ)

)
. (III.32)

Wegen der Periodizität cos(φ + 2π) = cos(φ) der Kosinusfunktion und der Periodizität
sin(φ + 2π) = sin(φ) der Sinusfunktion ändert sich die Zahl z in (III.32) nicht, wenn
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man 2π zu φ hinzuaddiert. Daher kann der Winkel φ stets zwischen 0 und 2π gewählt
werden,

0 ≤ φ < 2π, (III.33)

und man bezeichnet φ in diesem Zusammenhang als Argument der Zahl z oder als
eine Phase. Die oben genannte Periodizität ist auch in der (Gaußschen) Zahlenebene C
klar erkennbar: Eine Addition von π zu φ bedeutet geometrisch ein Schwenken des zu z
gehörigen Vektors genau um einen geschlossenen Kreis 360◦ = 2π um den Ursprung.

Ist nun z̃ = |z̃|{cos(ψ) + i sin(ψ)} eine weitere komplexe Zahl mit zugehöriger Phase
ψ ∈ R, so erhalten wir aus den Additionstheoremen für Sinus und Kosinus,

cos(α + β) = cos(α) cos(β) − sin(α) sin(β), (III.34)

sin(α + β) = sin(α) cos(β) + cos(α) sin(β), (III.35)

die für beliebige Winkel α, β ∈ R gelten, dass

z · z̃ = |z| · |z̃| ·
{
cos(φ) + i sin(φ)

}
·
{
cos(ψ) + i sin(ψ)

}
= |z| |z̃|

{[
cos(φ) cos(ψ) − sin(φ) sin(ψ)

]
+ i

[
sin(φ) cos(ψ) + cos(φ) sin(ψ)

]}
= |z| |z̃|

{
cos(φ+ ψ) + i sin(φ+ ψ)

}
. (III.36)

Die Multiplikation zweier komplexer Zahlen erfolgt also durch Multiplikation ihrer Be-
träge und Addition der Phasen, und es gelten sogar

eiφ = cos(φ) + i sin(φ) und z = |z| · eiφ, (III.37)

sodass (III.36) nur das Potenzgesetz exey = ex+y widerspiegelt.

z · z̃ =
(
|z| · eiφ

)
·
(
|z̃| · eiψ

)
= |z| · |z̃| ·

(
eiφ · eiψ

)
= |z| · |z̃| · ei(φ+ψ). (III.38)

Glg. (III.37) lässt sich durch Entwicklungen der Exponential-, der Kosinus- und der
Sinusfunktion in Potenzreihen mathematisch streng begründen – dies ist jedoch Gegen-
stand der Analysis und wird in dieser Vorlesung nicht behandelt.

Mit r := |z| wird (III.37) zur Polardarstellung

z = r · eiφ. (III.39)

der komplexen Zahl z. (Diese ist auch für z = 0 gültig, da in diesem Fall r = 0 ist und
die Phase φ beliebig gewählt werden kann.)

Bemerkungen und Beispiele.

• In der Polardarstellung haben dann Addition und Multiplikation zweier komplexer
Zahlen jeweils folgende grafische Interpretation.

• Die Addition zweier komplexer Zahlen z1 = a+ ib = (a, b) und z2 = c+ id = (c, d)
erfolgt komponentenweise, wie bei Vektoren in der Ebene R2,

z1 + z2 = (a, b) + (c, d) = (a+ c, b+ d) = (a+ c) + i(b+ d). (III.40)
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• Die Multiplikation zweier in Polardarstellung gegebener komplexer Zahlen z1 =
r1 · eiφ1 und z2 = r2 · eiφ2 erfolgt durch Multiplikation ihrer Beträge und Addition
ihrer Phasen,

z1 · z2 = (r1 e
iφ1) · (r2 eiφ2) = r1 r2 e

i(φ1+φ2). (III.41)

• Die Division zweier in Polardarstellung gegebener komplexer Zahlen z1 = r1 · eiφ1

und z2 = r2 · eiφ2 ̸= 0 erfolgt durch Division ihrer Beträge und Subtraktion ihrer
Phasen,

z1
z2

=
r1 e

iφ1

r2 eiφ2
=

r1
r2
ei(φ1−φ2). (III.42)

• Wir belegen die obigen Aussagen mit einem Zahlenbeispiel. Sind w = 2 + i und
z = −3− 4i, so sind w = |w| · eiα und z = |z| · eiβ mit

|w| =
√
5, cos(α) =

2√
5
, sin(α) =

1√
5
⇒ α ≈ 0, 46 ⇒ w ≈

√
5 · ei·(0,46) ,

(III.43)

|z| = 5, cos(β) =
−3
5
, sin(β) =

−4
5
⇒ β ≈ 4, 07 ⇒ z ≈ 5 · ei·(2,21).

(III.44)

Andererseits können wir direkt ausrechnen, dass w · z = |w · z| · eiγ mit

w · z = −2− 11i, (III.45)

|w · z| =
√

(−2)2 + (−11)2 =
√
125 = 5 ·

√
5, (III.46)

cos(γ) =
−2√
125

, sin(γ) =
−11√
125

⇒ γ ≈ 4, 53 (III.47)

⇒ w · z ≈
√
125 · ei·(4,53) =

√
5 · ei·(0,46) · 5 · ei·(4,07). (III.48)

Die wahre Stärke der Polardarstellung z = r · eiφ einer komplexen Zahl z liegt in der
Vereinfachung der Berechnung von Potenzen zn und Wurzeln n

√
z von z. Für eine nicht-

negative ganze Zahl n ∈ N0 ist nämlich nach (III.41)

zn =
(
r · eiφ

)n
= rn ·

(
eiφ
)n

= rn · ein·φ, (III.49)

und für z ̸= 0 gilt dies auch für negative n, also für alle ganzen Zahlen n ∈ Z.

Bemerkungen und Beispiele.
Sind etwa z = 3 + 4i und n = 4, so kann man ausmultiplizieren und erhält

z4 = (3 + 4i)4 =
(
(3 + 4i)2

)2
=
(
32 + 2 · 3 · 4i+ (4i)2

)2
=
(
9 + 24i− 16

)2
(III.50)

= (−7 + 24i)2 = (−7)2 + 2 · (−7) · 24i+ (24i)2 = 49− 336i− 576 = −527− 336i
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durch mühsame Rechnung. Schreibt man aber z in Polardarstellung, z ≈ 5 · ei·0,927, so
erhält man mit (III.41) ganz einfach

z4 ≈
(
5 · ei·0,927

)4
= 54 ·

(
ei·0,927

)4
= 54 · ei·4·0,927 = 625 · ei·3,71. (III.51)

Um die Übereinstimmung der Ergebnisse zu überprüfen, beobachtet man, dass cos(3, 71) ≈
−0, 843 und sin(3, 71) ≈ −0, 538 sind und daher

625 · ei·3,71 = 625 · cos(3, 71) + 625 · sin(3, 71)i ≈ 625 · (−0, 843) + i 625 · (−0, 538)

= − 526, 875− (336, 25)i ≈ −527− 336i (III.52)

gilt, wobei die Fehler nur durch das Runden von Sinus und Kosinus auf zwei signifikante
Stellen hinter dem Komma entstehen – und nicht durch falsche Rechnung.

Auch das Wurzelziehen ist bei komplexen Zahlen leicht und funktioniert vor allem immer.
Ist z = r ·eiφ eine komplexe Zahl mit r > 0 und 0 ≤ φ < 2π, so sind die Quadratwurzeln
von z alle komplexen Zahlen w, für die w2 = z gilt. In Polardarstellung w = s · eiα muss
also

s2 · ei2α = r · eiφ (III.53)

gelten, wobei s ≥ 0 und 0 ≤ α < 2π. Somit ist s =
√
r > 0, und es muss ei2α = eiφ

gelten. Letztere Gleichung hat zwei Lösungen im Intervall [0, 2π), nämlich

α1 =
φ

2
und α2 =

φ

2
+ π, (III.54)

da e2πi = 1. Außerdem ist eπi = −1, und wir erhalten z = w2
1 = w2

2 mit

w1 =
√
r · eiφ/2 und w2 =

√
r · ei(π+φ/2) =

√
r · eiπ · eiφ/2 = −

√
r · eiφ/2 = −w1,

(III.55)

wie gewohnt.

Auch das Ziehen der allgemeinen n. Wurzel ist nicht schwer: Sind z = r · eiφ ̸= 0 eine
komplexe und n ≥ 2 eine natürliche Zahl, wobei wir abermals r > 0 und 0 ≤ φ < 2π
annehmen können, so sind die n. Wurzeln von z alle komplexen Zahlen w, für die wn = z
gilt. In Polardarstellung w = s · eiα mit s ≥ 0 und 0 ≤ α < 2π muss also wieder
sn · einα = r · eiφ gelten, was auf s = n

√
r = r1/n > 0 und

einα = eiφ ⇔ ei(nα−φ) = 1 (III.56)

führt. Daher muss nα − φ ein ganzzahliges Vielfaches von 2π sein, und die möglichen
Lösungen haben die Gestalt

αk =
φ

n
+

2π(k − 1)

n
, (III.57)

wobei k ∈ Z eine ganze Zahl ist. Da wir außerdem 0 ≤ αk < 2π fordern, gibt es für α
genau n Lösungen, nämlich

α1 =
φ

n
, α2 =

φ

n
+

2π

n
, . . . , αn =

φ

n
+

2π(n− 1)

n
. (III.58)
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Daher besitzt z genau die n. Wurzeln

w1 = n
√
r · e

iφ
n , w2 = n

√
r · e

iφ
n
+ 2πi

n , . . . , wn = n
√
r · e

iφ
n
+

2πi(n−1)
n . (III.59)

Die obigen Überlegungen zeigen, dass eine komplexe Zahl z ̸= 0 stets n (voneinander
verschiedene) n. Wurzeln besitzt – im Gegensatz zu den reellen Zahlen, in denen etwa
−1 keine reelle Quadratwurzel besitzt (sondern nur die komplexen Wurzeln ±i, wobei
wir dann aber schon wieder −1 als komplexe Zahl mit Imaginärteil null betrachten).
Diese bemerkenswerte Eigenschaft der komplexen Zahlen führt letztendlich dazu, dass
jedes komplexe Polynom in Linearfaktoren zerfällt. Genauer gilt der folgende Satz.

Satz III.6 (Fundamentalsatz der Algebra). Für n ∈ N seien c0, c1, . . . , cn−1 ∈ C kom-
plexe Zahlen und p das Polynom

p(z) := zn + cn−1z
n−1 + . . .+ c1z + c0. (III.60)

Dann gibt es komplexe Zahlen λ1, λ2, . . . , λn ∈ C so, dass

p(z) = (z − λ1) · (z − λ2) · · · (z − λn) (III.61)

für alle z ∈ C gilt, d.h. λ1, λ2, . . . , λn sind die (nicht notwendig voneinander verschiede-
nen) Nullstellen des Polynoms p.

Bemerkungen und Beispiele.

• Das reelle Polynom p(x) = x2 + 1 besitzt keine reellen Nullstellen und lässt sich
nicht in der Form p(x) = (x−x1)(x−x2) mit x1, x2 ∈ R zerlegen. Der Fundamen-
talsatz der Algebra ist für reelle Zahlen also falsch.

• Das komplexe Polynom p(z) = z2 + 1 (mit 1 = 1 + 0 · i als komplexe Zahl) besitzt
die komplexen Nullstellen ±i und zerfällt zu p(z) = (z−i)(z+i) in Linearfaktoren,
wie es der Fundamentalsatz der Algebra behauptet.

• Der Fundamentalsatz der Algebra, Satz III.6, sichert zwar für jedes Polynom
p(z) = zn + cn−1z

n−1 + . . . + c1z + c0 vom Grad n die Existenz von n Nullstellen
λ1, λ2, . . . , λn ∈ C, beinhaltet aber keine Lösungsformel oder ein anderes Verfahren
zu ihrer Bestimmung.

• Für Grad n = 1 ist p(z) = z+c0, und offensichtlich gilt die Lösungsformel λ1 = −c0.
• Für Grad n = 2 ist p(z) = z2 + c1z + c0, und λ1 und λ2 können mit Hilfe der

p-q-Formel bestimmt werden, λ1 = − c1
2
+

√
c21
4
− c0 und λ2 = − c1

2
−
√

c21
4
− c0.

• Für Grad n = 3, 4 gibt es gibt es allgemeine Lösungsformeln für die Nullstellen.
Sie sind jedoch zu kompliziert um wirklich nützlich zu sein.

• n ≥ 5: Vor etwa zweihundert Jahren haben die zwei (leider jung verstorbenen)
Mathematiker Niels Henrik Abel (1802-1829) und Evariste Galois (1811-1832) die
bemerkenswerte Tatsache bewiesen, dass es Lösungsformeln für die Bestimmung
der Nullstellen von Polynomen vom Grad n ≥ 5 prinzipiell nicht geben kann! Dies
werden wir hier nicht behandeln, sondern ist Gegenstand einer Vorlesung über
Galoistheorie.
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IV. Vektorräume

Wir beginnen diesen Abschnitt mit der allgemeinen Definition eines Vektorraums. Wir
notieren im Folgenden mit K den Körper R der reellen Zahlen oder den Körper C der
komplexen Zahlen, d.h. es ist (durchgehend) K = R oder (durchgehend) K = C.

Die Theorie der Vektorräume lässt sich weitgehend auch genauso für einen allgemeinen
Körper F entwickeln. Beispielsweise würden wir mit F = Q auch Vektorräume über den
rationalen Zahlen oder mit F = Zp Vektorräume über den Restklassenring Zp erhalten,
falls p ∈ N eine Primzahl und somit Zp ein Körper sind.

IV.1. Definition eines Vektorraums

Definition IV.1. Eine Menge X heißt Vektorraum über K oder K-Vektorraum
:⇔
Auf X sind Addition + : X×X → X und Multiplikation mit einem Skalar (·) : K×X →
X definiert, die die folgenden Eigenschaften besitzen:

(i) ∀a⃗, b⃗, c⃗ ∈ X : a⃗+ b⃗ = b⃗+ a⃗, (⃗a+ b⃗) + c⃗ = a⃗+ (⃗b+ c⃗), (IV.1)

(ii) ∃0⃗ ∈ X ∀a⃗ ∈ X : a⃗ = a⃗+ 0⃗ = 0⃗ + a⃗, (IV.2)

(iii) ∀a⃗ ∈ X ∃(−a⃗) ∈ X : a⃗+ (−a⃗) = (−a⃗) + a⃗ = 0⃗, (IV.3)

(iv) ∀a⃗, b⃗ ∈ X, α, β ∈ K :

{
α · (⃗a+ b⃗) = α · a⃗+ α · b⃗,
(α + β) · a⃗ = α · a⃗+ β · a⃗, (IV.4)

(v) ∀a⃗ ∈ X, α, β ∈ K : 1 · a⃗ = a⃗, α(βa⃗) = (αβ)⃗a. (IV.5)

Die Elemente von X heißen Vektoren, 0⃗ ∈ X ist der Nullvektor. Vektorräume über
R bezeichnet man auch als reelle Vektorräume, Vektorräume über C als komplexe
Vektorräume.

Bemerkungen und Beispiele.

• Gleichungen (IV.1), (IV.2) und (IV.3) besagen zusammen, dass X bezüglich der
Addition + eine abelsche Gruppe bildet.
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• Multiplikation mit einem Skalar und Skalarprodukt ist nicht dasselbe.

• K ist ein Vektorraum über K. (Dieses Beispiel ist allerdings etwas künstlich.)

• Sei N ∈ N. Schreiben wir

AN := A× A× . . .× A︸ ︷︷ ︸
N Faktoren

, (IV.6)

für die Menge aller N -Tupel in A [s. (I.51)], so wird

KN =

 x⃗ =


x1
x2
...
xN


∣∣∣∣∣∣∣∣∣ x1, x2, . . . , xN ∈ K

 (IV.7)

bezüglich komponentenweiser Addition und Multiplikation mit einem Skalar,

γ ·

x1
...
xN

 +

y1
...
yN

 :=

 γx1 + y1
...

γxN + yN

 (IV.8)

zu einem Vektorraum über K. Dabei sind

0⃗ =

0
...
0

 und −

x1
...
xN

 =

−x1...
−xN

 . (IV.9)

• Für N = 1, 2, 3 gewinnt man durch Zeichnungen eine gewisse Vorstellung von den
Vektoren in RN .

• Schränkt man bei den komplexen Zahlen die Multiplikation auf die reellen Ele-
mente ein, so ist C = R2 ein Vektorraum über R (mit Dimension 2, s.u.).

• Ein weiteres Beispiel eines Vektorraums ist die Menge der reellen Funktionen auf
[α, β], α, β ∈ R, α < β,

F := {f : [α, β]→ R}. (IV.10)

Mit f, g ∈ F und γ ∈ R wird F durch

∀x ∈ [α, β] : (f + γ · g)(x) := f(x) + γ · g(x) (IV.11)

zum reellen Vektorraum. Diese Festlegung wird auch als punktweise Addition und
Multiplikation mit einem Skalar bezeichnet. Dabei sind

∀x ∈ [α, β] : 0F(x) := 0R, (−f)(x) := −f(x). (IV.12)

Für diesen Vektorraum F liefert eine Zeichnung eine gewisse Anschauung.

• Das obige Beispiel lässt sich noch wie folgt verallgemeinern. Sind A ̸= ∅ eine Menge
und X ein Vektorraum über K, so wird durch punktweise Addition und punktweise
Multiplikation mit einem Skalar wie in (IV.11) auch der Funktionenraum

F ′ := {f : A→ X} (IV.13)

zum Vektorraum über K.
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• Insbesondere ist F ′ für A := ZN1 und X := K1 = K gleich (genauer: isomorph zu)
KN ,

KN = {f : ZN1 → K}. (IV.14)

IV.2. Unterräume

Definition IV.2. Sei X ein K-Vektorraum. Eine Teilmenge Y ⊆ X, die selbst ein
K-Vektorraum ist, heißt Unterraum oder Teilraum.

Lemma IV.3 (Unterraumkriterium). Seien X ein K-Vektorraum und Y ⊆ X eine
Teilmenge. Dann gilt folgende Äquivalenz:{

Y ist ein Unterraum von X
}

(IV.15)

⇔ 0⃗ ∈ Y und
{
∀ α ∈ K ∀x⃗, y⃗ ∈ Y : (x⃗+ αy⃗) ∈ Y

}
.

Beweis.
⇒: ist trivial.

⇐: Setzen wir α := 1, so folgt mit x⃗, y⃗ ∈ Y auch x⃗ + y⃗ ∈ Y . Wegen 0⃗ ∈ Y ist
weiterhin mit α ∈ K und x⃗ ∈ Y auch αx⃗ = 0⃗ + αx⃗ ∈ Y . Schließlich ist mit x⃗ ∈ Y
auch −x⃗ = (−1)x⃗ ∈ Y . Die anderen Vektorraumeigenschaften übertragen sich von X
auf Y .

Bemerkungen und Beispiele.

• Ist X ein K-Vektorraum, so sind {⃗0} ⊆ X und X selbst Unterräume von X, die
man als triviale Unterräume bezeichnet.

• Sind X ein K-Vektorraum und x⃗ ∈ X, so definiert

K · x⃗ :=
{
α x⃗

∣∣ α ∈ K} (IV.16)

einen Unterraum von X.

• Sind K ein Körper und a⃗ := (a1, . . . , aN)
T ∈ KN , so definiert

Ya⃗ :=
{
x⃗ = (x1, x2, . . . , xN)

T ∈ KN
∣∣ a1x1 + a2x2 + . . .+ aNxN = 0

}
⊆ KN

(IV.17)

einen Unterraum. Dabei notieren wir für

(x1, x2, . . . , xN)
T :=


x1
x2
...
xN

 (IV.18)

den zum Spaltenvektor jeweils gehörigen Zeilenvektor. (Der Superskript “T” be-
deutet Transposition, was später noch eingeführt wird.)
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• Sei F = {f : [α, β] → R} der in (IV.10) definierte R-Vektorraum der reellen
Funktionen auf [α, β], dann bilden die Mengen der auf [α, β] stetigen Funktionen
oder der auf [α, β] stetigen und auf (α, β) differenzierbaren Funktionen in F jeweils
einen Unterraum.

Lemma IV.4. Sei X ein K-Vektorraum.

(i) Sind I ̸= ∅ eine Indexmenge und {Yi}i∈I eine Familie von Unterräumen von X,
so ist auch ihr Durchschnitt

⋂
i∈I Yi wieder ein Unterraum von X.

(ii) Sind N ∈ N und {Yn}Nn=1 eine endliche Familie von Unterräumen von X, so ist
auch ihre Summe

Y1 + Y2+ . . .+ YN := (IV.19){
y⃗1 + y⃗2 + . . .+ y⃗N

∣∣∣ y⃗1 ∈ Y1, y⃗2 ∈ Y2, . . . , y⃗N ∈ YN}
wieder ein Unterraum von X.

Beweis. Das Lemma ist eine einfache Folgerung aus dem Unterraumkriterium.

Bemerkungen und Beispiele.

• Sind a⃗1, a⃗2, . . . , a⃗M ∈ KN mit a⃗i := (ai,1, ai,2, . . . , ai,N)
T , so definiert

Ya⃗1,...,⃗aM := Ya⃗1 ∩ . . . ∩ Ya⃗M (IV.20)

nach Lemma IV.4 (i) einen Unterraum in KN , der durch die Lösungen
x⃗ = (x1, . . . , xN)

T des Gleichungssystems

a1,1x1 + a1,2x2 + . . .+ a1,NxN = 0,

a2,1x1 + a2,2x2 + . . .+ a2,NxN = 0,

... (IV.21)

aM,1x1 + aM,2x2 + . . .+ aM,NxN = 0

gegeben ist.

• Sind X ein K-Vektorraum und x⃗1, . . . , x⃗M ∈ X, so definiert

K · x⃗1 + . . .+K · x⃗M =
{
α1x⃗1 + . . .+ αM x⃗M

∣∣ α1, . . . , αM ∈ K
}

(IV.22)

nach Lemma IV.4 (ii) einen Unterraum in X.

Definition IV.5. Sei X ein K-Vektorraum.

(i) Ist S ⊆ X eine Teilmenge in X, so heißt der durch

span(S) :=
⋂{

Y
∣∣∣ S ⊆ Y ⊆ X, Y ist ein Unterraum

}
(IV.23)

definierte Unterraum lineare Hülle von S oder der von S erzeugte Unter-
raum.
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(ii) Sind Y ⊆ X ein Unterraum, S ⊆ X eine Teilmenge in X und Y = span(S), so
heißt S Erzeugendensystem von Y .

Bemerkungen und Beispiele.

• span(S) ⊆ X ist der kleinste Unterraum in X, der S enthält. D.h. ist Y ⊆ X ein
Unterraum mit Y ⊇ S, so ist auch Y ⊇ span(S).

• Sind X ein K-Vektorraum und x⃗1, . . . , x⃗M ∈ X, so ist

span
(
{x⃗1, . . . , x⃗M}

)
= K · x⃗1 + . . .+K · x⃗M . (IV.24)

IV.3. Lineare Unabhängigkeit und Basen

Definition IV.6. Seien X ein K-Vektorraum und {x⃗1, . . . , x⃗M} ⊆ X eine endliche
Teilmenge.

(i) Sind α1, . . . , αM ∈ K, so heißt die Summe α1x⃗1+ . . .+αM x⃗M ∈ X Linearkombi-
nation (der Vektoren x⃗1, . . . , x⃗M). Speziell bezeichnet man 0 · x⃗1+ . . .+0 · x⃗M = 0⃗
als triviale Linearkombination.

(ii) Die endliche Teilmenge {x⃗1, . . . , x⃗M} ⊆ X heißt linear unabhängig :⇔
Der Nullvektor lässt sich nur als triviale Linearkombination der x⃗1, . . . , x⃗M dar-
stellen, d.h.

∀α1, . . . , αM ∈ K :
{
α1x⃗1 + . . .+ αM x⃗M = 0⃗

}
⇒

{
α1 = . . . = αM = 0

}
.

(IV.25)

Die leere Menge ∅ definieren wir als linear unabhängig.

(iii) Eine (nicht notwendig endliche) Teilmenge S ⊆ X heißt linear unabhängig
:⇔ Jede endliche Teilmenge von S ist linear unabhängig.

(iv) Ist {x⃗1, . . . , x⃗M} nicht linear unabhängig, so sagt man, die Menge {x⃗1, . . . , x⃗M}
oder die Vektoren x⃗1, . . . , x⃗M seien linear abhängig.

Bemerkungen und Beispiele.

• Die lineare Abhängigkeit zweier Vektoren x⃗1, x⃗2 ∈ X ist gleichwertig mit ihrer
Parallelität, d.h. es gibt ein α ∈ K, so dass x⃗1 = αx⃗2 oder dass x⃗2 = αx⃗1 gilt.

• Die lineare Abhängigkeit dreier Vektoren x⃗1, x⃗2, x⃗3 ∈ X ist gleichwertig mit ihrer
Planarität, d.h. es gibt Zahlen α, β ∈ K, so dass x⃗1 = αx⃗2 + βx⃗3, dass x⃗2 =
αx⃗3 + βx⃗1 oder dass x⃗3 = αx⃗1 + βx⃗2 gilt.

• Ist {x⃗1, . . . , x⃗M} linear unabhängig, so gilt x⃗i ̸= 0⃗, für alle i = 1, . . . ,M . Wäre
nämlich z.B. x⃗i = 0⃗, dann gälte α1x⃗1 + . . . + αM x⃗M = 0⃗ mit αi = 1 und α1 =
. . . = αi−1 = αi+1 = . . . = αM = 0.

• Sei X = R3. Es soll festgestellt werden, ob die Vektoren

x⃗1 =

1
0
0

 , x⃗2 =

1
2
1

 , x⃗3 =

0
1
1

 (IV.26)
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linear unabhängig sind. Ist α1x⃗1+α2x⃗2+α3x⃗2 = 0⃗ eine Darstellung des Nullvektors
als Linearkombination dieser Vektoren, so muss

α1

1
0
0

+ α2

1
2
1

+ α3

0
1
1

 =

 α1 + α2

2α2 + α3

α2 + α3

 = 0⃗ =

0
0
0

 (IV.27)

gelten, d.h. es müssen

(i) : α1 + α2 = 0
(ii) : 2α2 + α3 = 0
(iii) : α2 + α3 = 0

 ⇒


(ii)− (iii) : α2 = 0

(i) : α1 = −α2

(iii) : α3 = −α2

(IV.28)

gelten. Also sind α1 = α2 = α3 = 0, und damit ist {x⃗1, x⃗2, x⃗3} linear unabhängig.
• Mit {x⃗1, . . . , x⃗M} sind auch alle ihre Teilmengen linear unabhängig. Sind z.B. 1 ≤
k < M und α1x⃗1 + . . . + αkx⃗k = 0⃗, so ist mit αk+1 := . . . := αM := 0 auch
α1x⃗1 + . . .+ αM x⃗M = 0⃗, und daraus folgt dann α1 = . . . = αk = 0.

• Sei x⃗ ∈ span{x⃗1, . . . , x⃗M} ⊆ X. Dann lässt sich x⃗ als Linearkombination

x⃗ = α1 x⃗1 + . . . + αM x⃗M (IV.29)

darstellen. Ist {x⃗1, . . . , x⃗M} linear unabhängig, so sind die Koeffizienten αi eindeu-
tig. Ist nämlich x⃗ = β1x⃗1 + . . .+ βM x⃗M , so folgt aus

(α1 − β1) x⃗1 + . . . + (αM − βM) x⃗M = 0⃗, (IV.30)

dass α1 = β1, α2 = β2, . . . , αM = βM .

• Ist {x⃗1, . . . , x⃗M} linear abhängig, so gibt es in (IV.29) mehrere verschiedene Line-
arkombinationen, die x⃗ darstellen.

• Es gilt folgende Äquivalenz:

{x⃗1, . . . , x⃗M} ist linear abhängig (IV.31)

⇔ ∃ i ∈ ZM1 , β1, . . . , βi−1, βi+1, . . . , βM :

x⃗i = β1x⃗1 + . . .+ βi−1x⃗i−1 + βi+1x⃗i+1 + . . .+ βM x⃗M .

• Aus dieser Äquivalenz ergibt sich unmittelbar die folgende Äquivalenz:

{x⃗1, . . . , x⃗M} ist linear abhängig ⇔ (IV.32)

∃i ∈ ZM1 : span
(
{x⃗1, . . . , x⃗i−1, x⃗i+1, . . . , x⃗M}

)
= span

(
{x⃗1, . . . , x⃗M}

)
.

Definition IV.7. Sei X ein K-Vektorraum. Eine Teilmenge S ⊆ X heißt Basis von
X

:⇔ S ist linear unabhängig und X = span(S).

Satz IV.8. Seien X ein K-Vektorraum und Y = span(S) ⊆ X ein endlich erzeugter

Unterraum, |S| <∞. Dann gibt es eine Teilmenge S̃ ⊆ S, die eine Basis von Y bildet.
Jede andere Basis von Y hat dieselbe Elementzahl.
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Beweis. Nach dem Ergänzungssatz IV.12 kannM = ∅ mit Vektoren aus S zu einer Basis
S̃ von Y ergänzt werden.

Ist T̃ eine andere Basis von Y , so folgt wegen Y = span(T̃ ) nach Satz IV.13, dass

|T̃ | ≥ |S̃|. Genauso folgt natürlich umgekehrt |S̃| ≥ |T̃ |, also

|T̃ | = |S̃|. (IV.33)

IV.4. Dimension

Definition IV.9. Seien X ein K-Vektorraum und Y ⊆ X ein Unterraum.

(i) Sind Y endlich erzeugt und S eine Basis von Y , so setzen wir

dim(Y ) := |S| < ∞. (IV.34)

(ii) Ist Y nicht endlich erzeugt, so setzen wir

dim(Y ) := ∞. (IV.35)

Die Zahl dim(Y ) bezeichnet man als Dimension von Y (über K).

Bemerkungen und Beispiele.

• Es ist span(∅) der Durchschnitt aller Unterräume, die ∅ enthalten.
Also ist span(∅) = {⃗0}, und somit

dim
(
{⃗0}
)

= 0. (IV.36)

• Die kanonischen Basisvektoren e⃗1, . . . , e⃗N ∈ KN ,

e⃗1 :=


1
0
...
0

 , e⃗2 :=


0
1
...
0

 , . . . , e⃗N :=


0
0
...
1

 , (IV.37)

bilden eine Basis in KN , die so genannte Standardbasis EN := {e⃗1, . . . , e⃗N}. Also
ist

dim
(
KN
)

= N. (IV.38)

• Der Vektorraum F der reellen Funktionen auf [a, b] ist unendlichdimensional,

dimF = ∞. (IV.39)

So sind z.B. mit f1(x) := 1, f2(x) := x1, f3(x) := x2, f4(x) := x3, . . . die Mengen{
f1, . . . , fK

}
linear unabhängig für jedes (noch so große) K ∈ N.
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• Seien Y ′, Y ⊆ X zwei endlich erzeugte Unterräume eines K-Vektorraums X und
Y ′ ⊆ Y . Aus dem Ergänzungssatz folgt sofort, dass

dim(Y ′) ≤ dim(Y ). (IV.40)

• Gelten hingegen Y ′ ⊆ Y und dim(Y ′) = dim(Y ) <∞, so folgt umgekehrt

Y ′ = Y. (IV.41)

• Sind Y = span(S) endlich erzeugt und |S| > dim(Y ), so ist S linear abhängig.

• Ist umgekehrt S ⊆ Y eine linear unabhängige Teilmenge und |S| = dim(Y ), so ist
S eine Basis von Y .

• Ist dim(X) = ∞, so gibt es in X linear unabhängige Teilmengen mit beliebig
großer Elementzahl.

• Sind dim(X) =∞ und S ⊆ X eine Basis, so ist

X = {α1x⃗1 + · · ·+ αN x⃗N |N ∈ N, α1, . . . , αN ∈ K, x⃗1, . . . , x⃗N ∈ S}. (IV.42)

D.h. X enthält alle (endlichen) Linearkombinationen von Vektoren aus S. Unend-
liche Linearkombinationen sind (zunächst) nicht definiert.

Satz IV.10. Jeder Vektorraum besitzt eine Basis.

Beweis. Anwendung des Zornschen Lemmas bzw. des Auswahlaxioms.

Bemerkungen und Beispiele.

• Satz IV.10 gilt auch für Vektorräume, die nicht endlich erzeugt sind.

Satz IV.11 (Dimensionsformel). Seien Y, Y ′ ⊆ X zwei Unterräume eines K-Vektorraums
X. Dann gilt die Dimensionsformel

dim(Y ) + dim(Y ′) = dim(Y ∩ Y ′) + dim(Y + Y ′). (IV.43)

(Wobei auf beiden Seiten ∞ steht, falls dim(Y ) =∞ oder dim(Y ′) =∞.)
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IV.5. Ergänzungen

IV.5.1. Ergänzungssatz und Austauschsatz von Steinitz

Der Beweis von Satz IV.8 benutzt die beiden folgenden wichtigen Aussagen:

Lemma IV.12 (Ergänzungssatz). Seien K ein Körper, X ein K-Vektorraum und Y ⊆
X ein Unterraum. Seien weiterhin M = {x⃗1, . . . , x⃗k} ⊆ Y eine endliche, linear un-
abhängige (möglicherweise leere) Teilmenge und S = {y⃗1, . . . , y⃗n} ⊆ Y ein endliches

Erzeugendensystem, Y = span(S). Dann gibt es eine Teilmenge S̃ ⊆ S, so dass M ∪ S̃
eine Basis von Y bildet.

Beweis. Betrachte das System von Teilmengen

T :=
{
T ⊆M ∪ S

∣∣ T ⊇M, Y = span(T )
}
. (IV.44)

Wegen M ∪ S ∈ T ist T ≠ ∅. Weiterhin gilt offensichtlich k ≤ |T | ≤ k + n für jedes
T ∈ T . Sei nun T ∈ T eine Menge mit minimaler Elementzahl. Dann erzeugt T den
Unterraum Y . Zeigen wir nun noch, dass T linear unabhängig ist, so bildet T eine Basis
von Y . Seien also y⃗1, . . . , y⃗ℓ ∈ S so, dass T = {x⃗1, . . . , x⃗k, y⃗1, . . . , y⃗ℓ}. Seien weiterhin
α1, . . . , αk, β1, . . . , βℓ ∈ K, so dass

α1x⃗1 + . . .+ αkx⃗k + β1y⃗1 + . . .+ βℓy⃗ℓ = 0⃗. (IV.45)

Wäre etwa βi ̸= 0, so ließe sich y⃗i als Linearkombination der Vektoren in T̃ := T \ {y⃗i}
darstellen. Dann wäre aber span(T̃ ) = span(T ) = Y und somit T̃ ∈ T . Andererseits
wäre dann |T̃ | < |T |, und weil die Zahl der Elemente von T minimal ist, folgte auch

|T̃ | ≥ |T |. Widerspruch. Es folgt also, dass

β1 = β2 = . . . = βℓ = 0, (IV.46)

was dann

α1x⃗1 + . . .+ αkx⃗k = 0⃗ (IV.47)

impliziert. Aus der linearen Unabhängigkeit von M erhalten wir dann auch noch

α1 = α2 = . . . = αk = 0. (IV.48)

Somit ist T linear unabhängig.

Satz IV.13 (Austauschsatz von Steinitz). Seien K ein Körper, X ein K-Vektorraum
und Y ⊆ X ein Unterraum mit Basis {x⃗1, . . . , x⃗k} ⊆ Y . Sei weiterhin S ⊆ Y ein
Erzeugendensystem von Y = span(S). Dann gibt es einen Vektor y⃗ ∈ S, so dass auch
{y⃗, x⃗2, . . . , x⃗k} eine Basis von Y bildet.

Beweis. Setzen wir M := {x⃗2, . . . , x⃗k}, so ist M ⊆ Y linear unabhängig und kann

nach Lemma IV.12 mit S̃ ⊆ S zu einer Basis ergänzt werden. Dabei ist S̃ ̸= ∅, da
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x⃗1 /∈ span(M). Nehmen wir an, S̃ enthielte mindestens zwei Vektoren y⃗, z⃗ ̸= 0⃗, y⃗ ̸= z⃗.
Weil {x⃗1, . . . , x⃗k} eine Basis in Y ist, gäbe es eindeutige αi und βi so, dass

y⃗ = α1 x⃗1 + . . . + αk x⃗k, (IV.49)

z⃗ = β1 x⃗1 + . . . + βk x⃗k. (IV.50)

Da y⃗, z⃗ /∈ span(M), wären α1, β1 ̸= 0. Damit wäre

−β1y⃗ + α1z⃗ + (β1α2 − α1β2)x⃗2 + . . . + (β1αk − α1βk)x⃗k = 0⃗ , (IV.51)

und aus der linearen Unabhängigkeit von {y⃗, z⃗, x⃗2, . . . , x⃗k} folgte, dass alle Koeffizienten
verschwinden und insbesondere auch β1 = α1 = 0 gälte, was in Widerspruch zu α1, β1 ̸= 0
stünde. Also enthält S̃ genau ein Element.

IV.5.2. Beweis der Dimensionsformel

Beweis. In dieser Ergänzung führen wir den Beweis von Satz IV.11, d.h. wir beweisen die
Dimensionsformel (IV.43). Dazu können wir o.B.d.A. dim(Y ), dim(Y ′) <∞ annehmen.
Dann sind auch

dim(Y ∩ Y ′) ≤ dim(Y ) < ∞, (IV.52)

dim(Y + Y ′) ≤ dim
(
span

(
{Y ∪ Y ′}

))
≤ dim(Y ) + dim(Y ′) < ∞. (IV.53)

Sei nun {x⃗1, . . . , x⃗r} eine Basis von Y ∩ Y ′. Nach dem Ergänzungssatz IV.12 gibt es
Vektoren y⃗1, . . . , y⃗m ∈ Y und z⃗1, . . . , z⃗n ∈ Y ′, so dass {x⃗1, . . . , x⃗r, y⃗1, . . . , y⃗m} eine Basis
von Y und {x⃗1, . . . , x⃗r, z⃗1, . . . , z⃗n} eine Basis von Y ′ bilden. Offenbar ist dann auch

Y + Y ′ = span
{
x⃗1, . . . , x⃗r, y⃗1, . . . , y⃗m, z⃗1, . . . , z⃗n

}
. (IV.54)

Wir zeigen, dass diese Menge linear unabhängig ist. Seien α1, . . . , αr, β1, . . . , βm ∈ K,
sowie γ1, . . . , γn ∈ K, so dass

α1x⃗1 + . . .+ αrx⃗r + β1y⃗1 + . . .+ βmy⃗m + γ1z⃗1 + . . .+ γnz⃗n = 0, (IV.55)

bzw.

w⃗ := −
(
β1y⃗1 + . . .+ βmy⃗m

)
= α1x⃗1 + . . .+ αrx⃗r + γ1z⃗1 + . . .+ γnz⃗n. (IV.56)

Aus der ersten Gleichung in (IV.56) folgt, dass w⃗ ∈ Y , und aus der zweiten, dass w⃗ ∈ Y ′.
Also ist w⃗ = −(β1y⃗1 + . . . + βmy⃗m) ∈ Y ∩ Y ′ und kann als Linearkombination der x⃗i
dargestellt werden, d.h. es gibt α̃1, . . . , α̃r ∈ K, so dass

β1y⃗1 + . . .+ βmy⃗m + α̃1x⃗1 + . . .+ α̃rx⃗r = 0. (IV.57)

Da {y⃗1, . . . , y⃗m, x⃗1, . . . , x⃗r} eine Basis in Y ist, folgt daraus jedoch, dass α̃1 = · · · =
α̃r = 0 und insbesondere

β1 = β2 = · · · = βm = 0 (IV.58)

WS 2025/26, Seite 50



Kapitel IV. Vektorräume

sowie

0⃗ = w⃗ = α1x⃗1 + . . .+ αrx⃗r + γ1z⃗1 + . . .+ γnz⃗n. (IV.59)

Da aber {x⃗1, . . . , x⃗r, z⃗1, . . . , z⃗n} eine Basis von Y ′ bilden, folgt daraus, dass auch

α1 = α2 = · · · = αr = γ1 = γ2 = · · · = γn = 0. (IV.60)

Also ist {x⃗1, . . . , x⃗r, y⃗1, . . . , y⃗m, z⃗1, . . . , z⃗n} eine Basis von Y +Y ′, und (IV.43) ergibt sich
nun durch Abzählen aus

dim(Y ∩ Y ′) = r, dim(Y + Y ′) = r +m+ n, (IV.61)

dim(Y ) = r +m, dim(Y ′) = r + n. (IV.62)
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V. Lineare Abbildungen

V.1. Definitionen

Definition V.1. Seien X und Y zwei K-Vektorräume. Eine Abbildung Φ : X → Y
heißt linear oder Homomorphismus

:⇔ ∀ x⃗, y⃗ ∈ X, α ∈ K : Φ(αx⃗+ y⃗) = αΦ(x⃗) + Φ(y⃗). (V.1)

Die Menge der linearen Abbildungen X → Y bezeichnen wir mit L(X;Y ). Ist Y = X,
so schreiben wir L(X) := L(X;X)

Bemerkungen und Beispiele.

• Durch vollständige Induktion erhält man aus (V.1) leicht, dass

Φ
( k∑
i=1

αix⃗i

)
=

k∑
i=1

αiΦ(x⃗i), (V.2)

für alle x⃗1, . . . , x⃗k ∈ X und α1, . . . , αk ∈ K.

• Φ(⃗0) = Φ(0 · 0⃗) = 0 · Φ(⃗0) = 0⃗.

• Sind x⃗1, . . . , x⃗k ∈ X linear abhängig, so sind auch Φ(x⃗1), . . . ,Φ(x⃗k) ∈ Y linear
abhängig, denn

k∑
i=1

αix⃗i = 0⃗ ⇒
k∑
i=1

αiΦ(x⃗i) = Φ
( k∑
i=1

αix⃗i

)
= 0⃗. (V.3)

• Ist U ⊆ X ein Unterraum, so ist auch Φ(U) ⊆ Y ein Unterraum.

• Ist U = span{x⃗1, . . . , x⃗k}, so ist Φ(U) = span{Φ(x⃗1), . . . ,Φ(x⃗k)}, denn für y⃗ ∈
Φ(U) gibt es ein x⃗ ∈ U , so dass y⃗ = Φ(x⃗). Weiterhin ist x⃗ = α1x⃗1 + . . .+αkx⃗k, für
geeignete α1, . . . , αk ∈ K. Damit ist dann aber

y⃗ = Φ
( k∑
i=1

αix⃗i

)
=

k∑
i=1

αiΦ(x⃗i) ∈ span
{
Φ(x⃗1), . . . ,Φ(x⃗k)

}
. (V.4)
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• Letzteres ergibt auch sofort dim[Φ(U)] ≤ dim[U ].

• Sind X und Y zwei K-Vektorräume, so bildet die Menge L(X;Y ) der linearen
Abbildungen selbst einen K-Vektorraum bezüglich punktweiser Operationen, d.h.
für α ∈ K und Φ,Ψ ∈ L(X;Y ) ist (αΦ +Ψ) ∈ L(X;Y ) definiert durch

∀ x⃗ ∈ X : (αΦ +Ψ)(x⃗) := αΦ(x⃗) + Ψ(x⃗). (V.5)

• Sind X, Y, Z drei K-Vektorräume und Φ ∈ L(X;Y ) sowie Ψ ∈ L(Y ;Z), so ist auch
deren Komposition linear, (Ψ ◦ Φ) ∈ L(X;Z).

• Insbesondere ist für Φ,Ψ ∈ L(X) auch (Ψ ◦ Φ) ∈ L(X).

Satz V.2. Seien X und Y zwei K-Vektorräume. Sind {x⃗1, . . . , x⃗N} ⊆ X eine Basis
und {y⃗1, . . . , y⃗N} ⊆ Y eine Teilmenge, dann gibt es genau eine lineare Abbildung Φ ∈
L(X;Y ) so, dass

Φ(x⃗1) = y⃗1, Φ(x⃗2) = y⃗2, . . . , Φ(x⃗N) = y⃗N . (V.6)

Beweis. Existenz: Für x⃗ = α1x⃗1 + . . .+ αN x⃗N definieren wir

Φ(x⃗) := α1y⃗1 + . . .+ αN y⃗N . (V.7)

Wegen der linearen Unabhängigkeit von {x⃗1, . . . , x⃗N} ⊆ X sind die Koeffizienten
α1, . . . , αN ∈ K in (V.7) eindeutig, und Φ ist wohldefiniert. Weiterhin erfüllt Φ offen-
sichtlich die Gleichungen (V.6).

Seien nun x⃗, x⃗′ ∈ X und β ∈ K. Dann gibt es α1, . . . , αN , α
′
1, . . . , α

′
N ∈ K, so dass

x⃗ = α1x⃗1 + · · ·+ αN x⃗N , x⃗′ = α′
1x⃗1 + . . .+ α′

N x⃗N . (V.8)

Daher gilt auch

βx⃗+ x⃗′ = (βα1 + α′
1)x⃗1 + . . .+ (βαN + α′

N)x⃗N . (V.9)

Also ist

Φ(βx⃗+ x⃗′) =
N∑
i=1

(βαi + α′
i)y⃗i = β

( N∑
i=1

αiy⃗i

)
+
( N∑
i=1

α′
iy⃗i

)
= βΦ(x⃗) + Φ(x⃗′),

(V.10)

und Φ ist linear.

Eindeutigkeit: Sei Φ̃ ∈ L(X;Y ) mit Φ̃(x⃗1) = y⃗1, . . . , Φ̃(x⃗N) = y⃗N . Ist x⃗ ∈ X, so gibt es
eindeutige α1, . . . , αN ∈ K so, dass x⃗ = α1x⃗1 + . . . + αN x⃗N . Wegen der Linearität von
sowohl Φ als auch Φ̃ ist dann

Φ(x⃗) =
N∑
i=1

αiy⃗i = Φ̃(x⃗). (V.11)

Dies gilt für alle x⃗ ∈ X, also ist Φ = Φ̃.
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Bemerkungen und Beispiele.

• Satz V.2 besagt, dass jede lineare Abbildung Φ durch die Bilder Φ(x⃗i) der Basis-
vektoren x⃗i eindeutig bestimmt ist.

• K = R, X = R3 mit Standardbasis {e⃗1, e⃗2, e⃗3} ⊆ X,

e⃗1 =

 1
0
0

 , e⃗2 =

 0
1
0

 , e⃗3 =

 0
0
1

 ; (V.12)

Y = R2 und

b⃗1 :=

(
2

1

)
, b⃗2 :=

(
1

1

)
, b⃗3 :=

(
1

0

)
. (V.13)

Führen wir x, y, z ∈ R als Koordinaten (statt α1, α2, α3) ein, so wird die lineare

Abbildung Φ ∈ L(X;Y ), für die Φ(e⃗i) = b⃗ gilt, zu

Φ

 x
y
z

 = Φ
(
xe⃗1 + ye⃗2 + ze⃗3

)
= x⃗b1 + y⃗b2 + z⃗b3 =

(
2x+ y + z

x+ y

)
.

(V.14)

V.2. Kern und Bild

Definition V.3. Seien X und Y zwei K-Vektorräume und Φ ∈ L(X;Y ) eine lineare
Abbildung. Dann heißen

Ker[Φ] :=
{
x⃗ ∈ X

∣∣ Φ(x⃗) = 0⃗
}

(V.15)

der Kern von Φ und

Ran[Φ] := Φ(X) =
{
y⃗ ∈ Y

∣∣ ∃ x⃗ ∈ X : y⃗ = Φ(x⃗)
}

(V.16)

das Bild von Φ1.

Als einfache Anwendung des Unterraumkriteriums ergibt sich sofort

Lemma V.4. Seien X und Y zwei K-Vektorräume und Φ ∈ L(X;Y ) eine lineare
Abbildung. Dann sind Ker[Φ] ⊆ X und Ran[Φ] ⊆ Y Unterräume.

Satz V.5. Seien X und Y zwei K-Vektorräume und Φ ∈ L(X;Y ) eine lineare Abbildung.
Dann gilt

dim
(
Ker[Φ]

)
+ dim

(
Ran[Φ]

)
= dim(X). (V.17)

1Ker steht für ”kernel”, Ran steht für ”range”.
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Beweis. Wir zeigen (V.17) nur für dim(X) = N < ∞. Ist {x⃗1, . . . , x⃗k} ⊆ Ker[Φ] eine
Basis, so können wir diese durch {x⃗k+1, . . . , x⃗N} ⊆ X zu einer Basis von X ergänzen.
Wegen

Φ
( N∑
i=1

αix⃗i

)
=

N∑
i=1

αiΦ(x⃗i) =
N∑

i=k+1

αiΦ(x⃗i) (V.18)

ist Ran[Φ] = span{Φ(x⃗k+1), . . . ,Φ(x⃗N)}. Sind nun αk+1, . . . , αN ∈ K Koeffizienten, so-
dass αk+1Φ(x⃗k+1) + . . . + αNΦ(x⃗N) = 0⃗, so folgt 0⃗ = Φ(αk+1x⃗k+1 + . . . + αN x⃗N). Also
ist

αk+1x⃗k+1 + . . .+ αN x⃗N ∈ Ker[Φ]. (V.19)

Somit gibt es α1, . . . , αk ∈ K, so dass

αk+1x⃗k+1 + . . .+ αN x⃗N = α1x⃗1 + . . .+ αkx⃗k. (V.20)

Wegen der linearen Unabhängigkeit von {x⃗1, . . . , x⃗N} ergibt sich daraus α1 = α2 = · · · =
αN = 0. Insbesondere verschwinden αk+1 = · · · = αN = 0. Damit ist jedoch die Menge
{Φ(x⃗k+1), . . . ,Φ(x⃗N)} ⊆ Ran[Φ] eine Basis, und (V.17) folgt trivial.

Bemerkungen und Beispiele.

• Seien wieder X = R3, Y = R2 und Φ
[
(x, y, z)T

]
:= (2x + y + z, x + y)T , wie in

(V.14).

– Für b⃗ = (β1, β2)
T ∈ R2 ist dann b⃗ = Φ[x⃗] ∈ Ran[Φ] mit x⃗ = (0, β2, β1 − β2)T .

Da b⃗ ∈ R2 beliebig gewählt werden kann, folgt daraus

Ran[Φ] = R2. (V.21)

– Ist a⃗ = (α1, α2, α3)
T ∈ Ker[Φ], so gelten 2α1 + α2 + α3 = 0 und α1 + α2 = 0.

Wählen wir γ =: α1 ∈ R beliebig, so folgt dass α2 = −α1 = −γ und dass
α3 = −2α1 − α2 = −γ, d.h. dass a⃗ = (γ,−γ,−γ)T . Da γ ∈ R frei gewählt
werden kann, ergibt sich daraus, dass

Ker[Φ] = R ·

 1
−1
−1

 . (V.22)

– Wie in Satz V.5 behauptet, sind dimKer[Φ] + dimRan[Φ] = 1 + 2 = 3 =
dim(R3).

• Seien K = R, X = R3, Y = R3,

x⃗1 :=

1
1
0

 , x⃗2 :=

0
2
1

 , x⃗3 :=

4
0
1

 , (V.23)

y⃗1 :=

2
1
0

 , y⃗2 :=

4
0
4

 , y⃗3 :=

 2
−1
4

 , (V.24)
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und Φ ∈ L(R3;R3) mit

Φ(x⃗1) := y⃗1, Φ(x⃗2) := y⃗2, Φ(x⃗3) := y⃗3. (V.25)

Wir wollen

Φ

α1

α2

α3

 , Ker[Φ], und Ran[Φ] (V.26)

für beliebige α1, α2, α3 ∈ R berechnen. Dazu bestimmen wir zunächst η1, η2, η3 ∈ R
so, dass e⃗1 = η1x⃗1 + η2x⃗2 + η3x⃗3, d.h. wir lösen1

0
0

 =

 η1 + 0 + 4η3
η1 + 2η2 + 0
0 + η2 + η3

 . (V.27)

Dies führt auf η1 = −2η2 = 2η3 und 1 = η1 + 4η3 = 3η1, also η1 =
1
3
, η2 = −1

6
und

η3 =
1
6
. Somit ist

e⃗1 =
1

3
x⃗1 −

1

6
x⃗2 +

1

6
x⃗3. (V.28)

Genauso erhalten wir

e⃗2 =
2

3
x⃗1 +

1

6
x⃗2 −

1

6
x⃗3, (V.29)

e⃗3 = − 4

3
x⃗1 +

2

3
x⃗2 +

1

3
x⃗3. (V.30)

Somit sind X = span({e⃗1, e⃗2, e⃗3}) ⊆ span({x⃗1, x⃗2, x⃗3}) ⊆ X und insbesondere
span({x⃗1, x⃗2, x⃗3}) = X. Aus |{x⃗1, x⃗2, x⃗3}| = 3 folgt dann, dass {x⃗1, x⃗2, x⃗3} ⊆ X
eine Basis ist.

Gleichungen (V.28)-(V.30) setzen wir ein, nutzen die Linearität von Φ aus und
erhalten

Φ

α1

α2

α3

 = Φ
(
α1e⃗1 + α2e⃗2 + α3e⃗3

)
(V.31)

= α1Φ
(
e⃗1
)
+ α2Φ

(
e⃗2
)
+ α3Φ

(
e⃗3
)

= α1Φ
(
1
3
x⃗1 − 1

6
x⃗2 +

1
6
x⃗3
)
+ α2Φ

(
2
3
x⃗1 +

1
6
x⃗2 − 1

6
x⃗3
)

+ α3Φ
(
− 4

3
x⃗1 +

2
3
x⃗2 +

1
3
x⃗3
)

=
(
1
3
α1 +

2
3
α2 − 4

3
α3

)
Φ
(
x⃗1
)
+
(
− 1

6
α1 +

1
6
α2 +

2
3
α3

)
Φ
(
x⃗2
)

+
(
1
6
α1 − 1

6
α2 +

1
3
α3

)
Φ
(
x⃗3
)
,
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also

Φ

α1

α2

α3

 =
(
1
3
α1 +

2
3
α2 − 4

3
α3

)2
1
0

+
(
− 1

6
α1 +

1
6
α2 +

2
3
α3

)4
0
4

 (V.32)

+
(
1
6
α1 − 1

6
α2 +

1
3
α3

) 2
−1
4



=


1
3
α1 +

5
3
α2 +

2
3
α3

1
6
α1 +

5
6
α2 − 5

3
α3

4α3

 .

Weiterhin sehen wir, dass

x⃗ =

α1

α2

α3

 ∈ Ker[Φ] ⇔


1
3
α1 +

5
3
α2 +

2
3
α3

1
6
α1 +

5
6
α2 − 5

3
α3

4α3

 =

0

0

0

 , (V.33)

woraus α3 = 0 und α2 = −1
5
α1 folgen. Da keine weiteren Einschränkungen vorlie-

gen, gilt somit

x⃗ =

α1

α2

α3

 ∈ Ker[Φ] ⇔ x⃗ =

 α1

−1
5
α1

0

 , α1 ∈ R beliebig wählbar, d.h.

(V.34)

Ker[Φ] = R ·

 5
−1
0

 , dim
(
Ker[Φ]

)
= 1. (V.35)

Nach Satz V.5 ist damit dim
(
Ran[Φ]

)
= 2 und daher muss {y⃗1, y⃗2, y⃗3} ⊆ R3 linear

abhängig sein. In der Tat sieht man leicht, dass y⃗3 = y⃗2 − y⃗1 und somit ist

Ran[Φ] = span
(
{y⃗1, y⃗2, y⃗3}

)
= span

(
{y⃗1, y⃗2}

)
(V.36)

=
{
β1y⃗1 + β2y⃗2

∣∣ β1, β2 ∈ R} =


2β1 + 4β2

β1
4β2

 ∣∣∣∣∣∣ β1, β2 ∈ R
 .

Weiterhin muss {y⃗1, y⃗2} ⊆ Ran[Φ] wegen dim
(
Ran[Φ]

)
= 2 auch eine Basis und

insbesondere linear unabhängig sein.

• Satz V.5 ist auch für dim(X) =∞ richtig, d.h. für dim(X) =∞ gilt dim(Ker[Φ]) =
∞ oder dim(Ran[Φ]) =∞ (oder beides).

• Wir beobachten, dass für Φ ∈ L(X;Y )

Φ(x⃗) = Φ(x⃗′)⇔ Φ(x⃗− x⃗′) = 0⃗, (V.37)

x⃗ = x⃗′ ⇔ x⃗− x⃗′ = 0⃗. (V.38)
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Daher gilt (
Φ ∈ L(X;Y ) ist injektiv

)
⇔

(
Ker[Φ] = {⃗0}

)
. (V.39)

• Offensichtlich gilt außerdem(
Φ ∈ L(X;Y ) ist surjektiv

)
⇔

(
Ran[Φ] = Y

)
. (V.40)

Satz V.6. Seien X und Y zwei K-Vektorräume mit dim(X) = dim(Y ) < ∞ und
Φ ∈ L(X;Y ). Dann gilt(

Φ ist injektiv
)
⇔

(
Φ ist surjektiv

)
⇔

(
Φ ist bijektiv

)
. (V.41)

Beweis. Es reicht, die erste Äquivalenz zu zeigen. Seien dazu

N1 := dim(Ker[Φ]), N2 := dim(Ran[Φ]), N := dim(X) = dim(Y ). (V.42)

Dann gelten (
Φ ist injektiv

)
⇔

(
Ker[Φ] = {⃗0}

)
⇔

(
N1 = 0

)
, (V.43)(

Φ ist surjektiv
)
⇔

(
Ran[Φ] = Y

)
⇔

(
N2 = N

)
. (V.44)

Nach Satz V.5 ist N1+N2 = N , was sofort die Gleichwertigkeit der Injektivität und der
Surjektivität von Φ nach sich zieht.

Bemerkungen und Beispiele.

• Für dim(X) = ∞ gilt (V.41) im Allgemeinen nicht. Ist etwa X = C[x] der C-
Vektorraum der Polynome in x über C,

C[x] =
{
α0 + α1x+ . . .+ αnx

n
∣∣ n ∈ N, α0, . . . , αn ∈ C

}
, (V.45)

mit Vektorraumstruktur definiert durch

γ(α0 + α1x+ . . .+ αnx
n) + (β0 + β1x+ . . .+ βmx

m) (V.46)

:= (γα0 + β0) + (γα1 + β1)x + . . .+ (γαm+n + βm+n)x
m+n,

wobei γ ∈ C und αn+1 := · · · := αn+m := βm+1 := · · · := βm+n := 0, so ist

dim(C[x]) = ∞, (V.47)

denn für jedes n ∈ N ist die Menge {1, x, x2, . . . , xn} ⊆ C[x] linear unabhängig.
Seien weiterhin Φ,Ψ ∈ L(C[x];C[x]), wobei

Φ(α0 + α1x+ . . .+ αnx
n) := α0x+ α1x

2 + . . .+ αnx
n+1, (V.48)

Ψ(α0 + α1x+ . . .+ αnx
n) := α1 + α2x+ . . .+ αnx

n−1. (V.49)

Dann gelten:

Ran[Φ] ̸∋ 1 ⇒ Φ ist injektiv, aber nicht surjektiv, (V.50)

Ker[Ψ] ∋ 1 ⇒ Ψ ist surjektiv, aber nicht injektiv. (V.51)

WS 2025/26, Seite 58



Kapitel V. Lineare Abbildungen

Definition V.7. Seien X und Y zwei K-Vektorräume. Eine lineare Abbildung Φ ∈
L(X;Y ) heißt Isomorphismus, falls Φ bijektiv ist. Existiert ein Isomorphismus Φ ∈
L(X;Y ), so heißen X und Y zueinander isomorph.

Bemerkungen und Beispiele.

• Isomorphie zwischenK-Vektorräumen definiert eine Äquivalenzrelation. (Den Nach-
weis führt man durch Nachprüfen der drei Eigenschaften Reflexivität, Symmetrie
und Transitivität.)

Satz V.8. Für N ∈ N ist jeder N-dimensionale Vektorraum über K isomorph zu KN .

Beweis. Sind X ein N -dimensionaler K-Vektorraum mit Basis {x⃗1, . . . , x⃗N} ⊆ X, und
ist {e⃗1, . . . , e⃗N} ⊆ KN die Standardbasis, so kann man leicht zeigen, dass Φ ∈ L(X;KN),
mit

Φ(α1x⃗1 + . . .+ αN x⃗N) = α1e⃗1 + . . .+ αN e⃗N =


α1

α2
...
αN

 , (V.52)

surjektiv ist und somit nach Satz V.6 einen Isomorphismus definiert.

Korollar V.9. Seien X und Y zwei K-Vektorräume.

(i) Sind X und Y isomorph, so gilt dim(X) = dim(Y ).

(ii) Gilt dim(X) = dim(Y ) <∞, so sind X und Y isomorph.

Beweis. (i): Ist Φ ∈ L(X;Y ) ein Isomorphismus, so sind Ker[Φ] = {⃗0} und Ran[Φ] = Y .
Nach Satz V.5 gilt also

dim(X) = dim
(
Ker[Φ]︸ ︷︷ ︸

=0

)
+ dim

(
(Ran[Φ]︸ ︷︷ ︸

=Y

)
= dim(Y ). (V.53)

(ii): Seien dim(X) = dim(Y ) =: N <∞ und {x⃗1, . . . , x⃗N} ⊆ X, {y⃗1, . . . , y⃗N} ⊆ Y Basen
in X bzw. in Y . Dann definieren wir Φ ∈ L(X;Y ) durch

Φ(α1x⃗1 + . . .+ αN x⃗N) := α1y⃗1 + . . .+ αN y⃗N . (V.54)

Offensichtlich ist Φ surjektiv und nach Satz V.6 wegen N <∞ auch bijektiv.

Bemerkungen und Beispiele.

• Satz V.8 garantiert also, dass wir einen abstraktenK-VektorraumX der Dimension
N stets o.B.d.A. durch KN ersetzen dürfen.

• Letzteres bedeutet aber nicht, dass sich auch andere Strukturen, außer der Vek-
torraumstruktur, die X besitzt, ohne Weiteres auf KN übertragen lassen. So ist
beispielsweise C als reeller Vektorraum isomorph zu R2, aber die Multiplikation
komplexer Zahlen ist eine zusätzliche Struktur auf C.
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VI. Matrizen

VI.1. Definitionen

Definition VI.1. Seien M,N ∈ N und K der Körper R der reellen Zahlen oder C der
komplexen Zahlen.

(i) KN×M :=
{
(ai,j) i=1,...,N

j=1,...,M

∣∣∣ ai,j ∈ K} (VI.1)

definiert die Menge der N ×M-Matrizen über K. Dabei ist (ai,j) i=1,...,N
j=1,...,M

eine

abkürzende Schreibweise für eine Tabelle von Zahlen,

(ai,j) i=1,...,N
j=1,...,M

:=


a1,1 a1,2 . . . a1,M
a2,1 a2,2 . . . a2,M
...

...
...

aN,1 aN,2 . . . aN,M

 . (VI.2)

(ii) Seien X und Y zwei K-Vektorräume mit dim(X) = M , dim(Y ) = N und X :=
{x⃗1, . . . , x⃗M} ⊆ X, Y := {y⃗1, . . . , y⃗N} ⊆ Y Basen in X bzw. in Y . Ist nun Φ ∈
L(X;Y ) mit

Φ(x⃗j) = a1,j y⃗1 + a2,j y⃗2 + . . .+ aN,j y⃗N , (VI.3)

für j ∈ ZM1 , so heißt

YMX [Φ] :=

 a1,1 . . . a1,M
...

...
aN,1 . . . aN,M

 ∈ KN×M (VI.4)

Matrixdarstellung von Φ bezüglich der Basen X = {x⃗j}Mj=1 ⊆ X und
Y = {y⃗i}Ni=1 ⊆ Y .

(iii) Für Φ ∈ L(X) = L(X;X) schreiben wirMX [Φ] := XMX [Φ].

(iv) Sind X = KM und Y = KN mit Standardbasen EM = {e⃗1, . . . , e⃗M} ⊆ X und
EN = {e⃗1, . . . , e⃗N} ⊆ Y , so bezeichnet

M[Φ] := ENMEM [Φ] (VI.5)

dieMatrixdarstellung von Φ ∈ L(KM ;KN) bezüglich der Standardbasen.
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Bemerkungen und Beispiele.

• K = R, M = 3, N = 2, X = {x⃗1, x⃗2, x⃗3}, Y = {y⃗1, y⃗2}, Φ ∈ L(X;Y ) mit

Φ(x⃗1) := 2y⃗1, Φ(x⃗2) := y⃗1 − y⃗2, Φ(x⃗3) := −2y⃗2, (VI.6)

⇒ YMX [Φ] =

(
2 1 0
0 −1 −2

)
. (VI.7)

• Seien X = KM , Y = KN mit Standardbasen EM = {e⃗ (X)
1 , . . . , e⃗

(X)
M } ⊆ KM und

EN = {e⃗ (Y )
1 , . . . , e⃗

(Y )
N } ⊆ KN und Φ ∈ L(KM ;KN) mit

Φ(e⃗
(X)
i ) := a1,ie⃗

(Y )
1 + . . .+ aN,ie⃗

(Y )
N =

 a1,i
...

aN,i

 , (VI.8)

für i = 1, . . . ,M . Dann ist

M[Φ] ≡ ENMEM [Φ] =

 a1,1 a1,2 · · · a1,M
...

...
...

aN,1 aN,2 aN,M


=
(
Φ(e⃗

(X)
1 ),Φ(e⃗

(X)
2 ), . . . ,Φ(e⃗

(X)
M )

)
, (VI.9)

d.h. die Matrixdarstellung von Φ bzgl. der Standardbasis erhält man durch Anein-
anderreihung der Bilder Φ(e⃗

(X)
1 ), . . . ,Φ(e⃗

(X)
M ) (als Spaltenvektoren) der Basisvek-

toren e⃗
(X)
1 , . . . , e⃗

(X)
M .

Lemma VI.2. Seien M,N ∈ N und X, Y zwei K-Vektorräume mit Dimensionen M =
dim(X), N = dim(Y ) und Basen X ⊆ X und Y ⊆ Y .

(i) KN×M ist ein K-Vektorraum der Dimension dim[KN×M ] =M ·N bezüglich

γ

 a1,1 . . . a1,M
...

...
aN,1 . . . aN,M

+

 b1,1 . . . b1,M
...

...
bN,1 . . . bN,M

 :=

 (γa1,1 + b1,1) . . . (γa1,M + b1,M)
...

...
(γaN,1 + bN,1) . . . (γaN,M + bN,M)

 . (VI.10)

(ii) YMX : L(X;Y )→ KN×M ist ein Isomorphismus.

Beweis. (i) ist trivial.

(ii): Seien X = {x⃗1, . . . , x⃗M} und Y = {y⃗1, . . . , y⃗N}. Zu festen m ∈ ZM1 und n ∈ ZN1
definieren wir Θn,m ∈ L(X;Y ) durch

Θn,m

(
x⃗j
)

:= δj,m y⃗n. (VI.11)
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Ist nun eine lineare Abbildung Φ ∈ L(X;Y ) durch die Bilder Φ(x⃗j) = a1,j y⃗1+. . .+aN,j y⃗N
der Basisvektoren in X gegeben, so ist

M∑
m=1

N∑
n=1

an,mΘn,m

(
x⃗j
)

=
M∑
m=1

N∑
n=1

an,m δj,m y⃗n =
N∑
n=1

an,j y⃗n = Φ(x⃗j), (VI.12)

für alle j ∈ ZM1 . Also ist

Φ =
M∑
m=1

N∑
n=1

an,mΘn,m, (VI.13)

d.h. jede lineare Abbildung in L(X;Y ) kann als Linearkombination der Θn,m dargestellt
werden, L(X;Y ) = span

(
{Θn,m |m ∈ ZM1 , n ∈ ZN1 }

)
.

Um die lineare Unabhängigkeit der Θn,m zu zeigen, nehmen wir die an, die Nullabbildung

sei als Linearkombination der Θn,m dargestellt,
∑M

m=1

∑N
n=1 γn,mΘn,m = 0L(X;Y ), d.h.

∀x⃗ ∈ X :
M∑
m=1

N∑
n=1

γn,mΘn,m(x⃗) = 0⃗ (VI.14)

gilt, was äquivalent zu

∀j ∈ ZM1 : 0⃗ =
M∑
m=1

N∑
n=1

γn,mΘn,m(x⃗j) =
M∑
m=1

N∑
n=1

γn,m δj,m y⃗n =
N∑
n=1

γn,j y⃗n (VI.15)

ist. Weil {y⃗1, . . . , y⃗N} ⊆ Y eine Basis ist, folgt daraus γ1,j = γ2,j = · · · = γn,j = 0, für
alle j ∈ ZM1 . Also verschwinden alle γn,m und {Θn,m |m ∈ ZM1 , n ∈ ZN1 } ⊆ L(X;Y ) ist
eine Basis.

Damit sind dim[KN×M ] = M N = dim[L(X;Y )] < ∞, und KN×M und L(X;Y ) sind
gemäß Korollar V.9(ii) zueinander isomorph. Die zugehörigen Matrixdarstellungen

En,m := YMX [Θn,m] =


0

... 0
0

· · · 0 1 0 · · ·
0

0
... 0

← n. Zeile

↑
m. Spalte (VI.16)

bezeichnet man als Matrixeinheiten. Die Menge der Matrixeinheiten {En,m | m ∈
ZM1 , n ∈ ZN1 } ⊆ KN×M bildet eine Basis.

Bemerkungen und Beispiele.

• Seien K = R, M = 3, N = 2, so ist z.B.

3

(
1 2 3
1 0 2

)
+

(
2 −1 −1
3 2 1

)
=(

(3 · 1 + 2) (3 · 2− 1) (3 · 3− 1)
(3 · 1 + 3) (3 · 0 + 2) (3 · 2 + 1)

)
=

(
5 5 8
6 2 7

)
. (VI.17)
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VI.2. Matrixmultiplikation

Definition VI.3. Seien L,M,N ∈ N. Das Matrixprodukt ist eine Verknüpfung

(·) : KN×M ×KM×L → KN×L, (VI.18)


 a1,1 . . . a1,M

...
...

aN,1 . . . aN,M

 ,

 b1,1 . . . b1,L
...

...
bM,1 . . . bM,L


 7−→

 c1,1 . . . c1,L
...

...
cN,1 . . . cN,L

 , (VI.19)

wobei

cn,ℓ :=
M∑
m=1

an,m bm,ℓ. (VI.20)

Bemerkungen und Beispiele.

• Zunächst ein Zahlenbeispiel:

(
2 3 0
7 1 1

)
·

 1 0
2 1
0 1

 =

(
2 · 1 + 3 · 2 + 0 · 0 2 · 0 + 3 · 1 + 0 · 1
7 · 1 + 1 · 2 + 1 · 0 7 · 0 + 1 · 1 + 1 · 1

)

=

(
8 3
9 2

)
. (VI.21)

• Zur Berechnung des Matrixproduktes ist folgendes Schema hilfreich:∣∣∣∣∣∣∣∣


b1,1 · · · b1,ℓ · · · b1,L
... ↓ ...

bM,1 · · · bM,ℓ · · · bM,L




a1,1 · · · a1,M
...

...
an,1 −→ an,M
...

...
aN,1 · · · aN,M



∣∣∣∣∣∣∣∣∣∣∣


c1,1 · · · | · · · c1,L
... ↓ ...
−→ cn,ℓ

...
...

cN,1 · · · · · · cN,L


. (VI.22)

• Auch Vektoren lassen sich als Matrizen auffassen. Es sind K1×M , KM×1 und KM

isomorph, denn sie haben alle DimensionM . Identifiziert man KM mit KM×1, d.h.
liest man die Vektoren

x⃗ =

 x1
...
xM

 ∈ KM ←→ M[x⃗] =

 x1
...
xM

 ∈ KM×1 (VI.23)
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als (M × 1)-Matrix, so lässt sich die Anwendung von Φ ∈ L(KM ;KN) auch als
Matrixmultiplikation schreiben. Ist nämlich

M[Φ] =

 a1,1 . . . a1,M
...

...
aN,1 . . . aN,M

 , (VI.24)

so istM[Φ(x⃗)] ∈ KN×1 mit

M[Φ(x⃗)] = M[Φ] · M[x⃗] (VI.25)

=

a1,1 . . . a1,M
...

...
aN,1 . . . aN,M

 ·
 x1

...
xM

 =

a1,1x1 + · · ·+ a1,MxM
...

...
aN,1x1 + · · ·+ aN,MxM

 .

Wegen dieser Interpretation der Anwendung von Φ auf x⃗ als Matrixmultiplikation
lässt man häufig die Argumentsklammern weg und schreibt

Φx⃗ := Φ(x⃗). (VI.26)

Der folgende Satz zeigt nun, dass die Matrixmultiplikation genau der Komposition von
linearen Abbildungen entspricht.

Satz VI.4. Seien X, Y, Z drei K-Vektorräume mit Basen X := {x⃗ℓ}Lℓ=1 ⊆ X, Y :=
{y⃗m}Mm=1 ⊆ Y , Z := {z⃗n}Nn=1 ⊆ Z, wobei L,M,N ∈ N. Sind weiterhin Φ ∈ L(X;Y )
und Ψ ∈ L(Y ;Z), so gilt

ZMX [Ψ ◦ Φ] = ZMY [Ψ] · YMX [Φ]. (VI.27)

Beweis. Sind

∀m ∈ ZM1 : Ψ(y⃗m) = a1,m z⃗1 + . . .+ aN,m z⃗N , (VI.28)

∀ℓ ∈ ZL1 : Φ(x⃗ℓ) = b1,ℓ y⃗1 + . . .+ bM,ℓ y⃗M , (VI.29)

so ist, für jedes ℓ ∈ ZL1 ,

(Ψ ◦ Φ)(x⃗ℓ) = Ψ
(
b1,ℓy⃗1 + . . .+ bM,ℓy⃗M

)
= b1,ℓΨ(y⃗1) + . . .+ bM,ℓΨ(y⃗M) (VI.30)

= b1,ℓ ·
(
a1,1z⃗1 + . . .+ aN,1z⃗N

)
+ . . .+ bM,ℓ ·

(
a1,M z⃗1 + . . .+ aN,M z⃗N

)
=
(
a1,1b1,ℓ + a1,2b2,ℓ + . . .+ a1,MbM,ℓ

)
z⃗1+

. . .+
(
aN,1b1,ℓ + aN,2b2,ℓ + . . .+ aN,MbM,ℓ

)
z⃗N .

Die Behauptung ergibt sich nun sofort durch den Vergleich von (VI.30), (VI.20) und
(VI.3).
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VI.3. Der Matrixring KN×N

Definition VI.5. Sei X ein K-Vektorraum.

(i) Man bezeichnet die linearen Abbildungen X → X als Endomorphismen und
schreibt

L(X) := L(X;X). (VI.31)

(ii) Die bijektiven Elemente in L(X) bilden die Familie der Automorphismen, 1

GL(X) :=
{
Φ ∈ L(X)

∣∣ Φ ist bijektiv
}
. (VI.32)

Lemma VI.6. Sei X ein K-Vektorraum.

(i) Die Endomorphismen L(X) bilden einen Ring bezüglich punktweiser Addition und
Komposition als Multiplikation, d.h. für Φ,Ψ,Θ ∈ L(X) ist (Φ ◦ Ψ + Θ) ∈ L(X)
definiert durch (

Φ ◦Ψ+Θ
)
(x⃗) := Φ

(
Ψ(x⃗)

)
+Θ(x⃗). (VI.33)

Die Identität 1X ∈ L(X), 1X(x⃗) = x⃗, operiert als Einselement.

(ii) Die Automorphismen GL(X) ⊆ L(X) bilden eine Gruppe bezüglich Multiplikation
(d.h. Komposition).

Beweis.
(i) erhält man durch Nachprüfen der Ringaxiome.

(ii) Mit Φ,Ψ ∈ L(X) bijektiv ist auch Φ ◦ Ψ bijektiv, also ist ◦ : GL(X) × GL(X) →
GL(X). Die Komposition von Abbildungen ist auch assoziativ, und es gilt (G1). Die
Identitätsabbildung 1X ist offensichtlich auch ein Automorphismus, also gilt (G2). Es
verbleibt die Existenz des Inversen, (G3), nachzuprüfen. Seien dazu Φ ∈ GL(X) und
Φ−1 : X → X die inverse Abbildung, d.h.

∀ x⃗ ∈ X :
(
Φ ◦ Φ−1

)
(x⃗) =

(
Φ−1 ◦ Φ

)
(x⃗) = x⃗. (VI.34)

Sind nun x⃗, y⃗ ∈ X und α ∈ K, so gibt es w⃗, z⃗ ∈ X mit x⃗ = Φ(w⃗), y⃗ = Φ(z⃗). Somit ist

Φ−1(αx⃗+ y⃗) = Φ−1
(
αΦ(w⃗) + Φ(z⃗)

)
= Φ−1

(
Φ(αw⃗ + z⃗)

)
= αw⃗ + z⃗

= αΦ−1(x⃗) + Φ−1(y⃗) , (VI.35)

und Φ−1 ist linear. Offensichtlich ist Φ−1 auch bijektiv, also Φ−1 ∈ GL(X).

Satz VI.7. Seien N ∈ N und X ein K-Vektorraum mit Basis X := {x⃗1, . . . , x⃗N} ⊆ X.

(i) KN×N ist ein Ring (bezüglich komponentenweiser Addition und Matrixmultiplika-
tion) mit Einselement

1 =

 1 0
. . .

0 1

 , (VI.36)

der Einheitsmatrix.
1GL steht für ”general linear group”
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(ii) MX : L(X)→ KN×N ist ein Ringisomorphismus, d.h.MX ist bijektiv und erhält
die Ringeigenschaften,

∀Φ,Ψ,Θ ∈ L(X) : MX [Φ ◦Ψ+Θ] = MX [Φ] · MX [Ψ] +MX [Θ]. (VI.37)

Beweis. (i) erhält man wieder durch Nachprüfen der Ringaxiome, und (ii) ergibt sich
trivial aus Satz VI.4 und Lemma VI.6.

Bemerkungen und Beispiele.

• KN×N ist nicht kommutativ für N ≥ 2, etwa(
1 1
0 1

)
·
(

1 1
1 0

)
=

(
2 1
1 0

)
̸=
(

1 2
1 1

)
=

(
1 1
1 0

)
·
(

1 1
0 1

)
. (VI.38)

• Für Φ ∈ GL(X) erhält man aus (VI.37) sofort, dass

MX [Φ
−1] =

(
MX [Φ]

)−1
. (VI.39)

Die Berechnung der inversen Matrix auf der rechten Seite in (VI.39) ist allerdings
nicht ganz einfach. (Siehe Satz VII.8.)

• Wir wählen N = 2, K = R, X = R2 und Basen

X =

{
x⃗1 :=

(
2
0

)
, x⃗2 :=

(
1
1

)}
, E =

{
e⃗1 :=

(
1
0

)
, e⃗2 :=

(
0
1

)}
⊆ R2,

(VI.40)

und eine lineare Abbildung Φ ∈ L(R2) mit

Φ(x⃗1) =

(
4
0

)
, Φ(x⃗2) =

(
3
3

)
. (VI.41)

Dann sind Φ(x⃗1) = 2x⃗1 + 0x⃗2 und Φ(x⃗2) = 0x⃗1 + 3x⃗2, also ist

MX [Φ] =

(
2 0
0 3

)
. (VI.42)

Andererseits sind

e⃗1 =

(
1
0

)
= 1

2
x⃗1, e⃗1 =

(
0
1

)
= x⃗2 − 1

2
x⃗1, (VI.43)

und daher sind

Φ(e⃗1) = 1
2
Φ(x⃗1) = 1

2

(
4
0

)
=

(
2
0

)
= 2e⃗1, (VI.44)

Φ(e⃗2) = Φ(x⃗2)− 1
2
Φ(x⃗1) =

(
3
3

)
− 1

2

(
4
0

)
=

(
1
3

)
= 1e⃗1 + 3e⃗2, (VI.45)

also ist

ME [Φ] =

(
2 1
0 3

)
̸= MX [Φ]. (VI.46)
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VI.4. Transformation von Matrizen bei Basiswechsel

Seien X und Y zwei K-Vektorräume mit dim(X) = M , dim(Y ) = N und Basen
X := {x⃗1, . . . , x⃗M} ⊆ X, Y := {y⃗1, . . . , y⃗N} ⊆ Y . Die Matrixdarstellung MY,X [Φ]
einer linearen Abbildung Φ ∈ L(X;Y ) bezüglich dieser Basen ist basisabhängig, so wie
die Koordinaten eines Vektors basisabhängig sind. Sind W := {w⃗1, . . . , w⃗M} ⊆ X und
Z := {z⃗1, . . . , z⃗N} ⊆ Y auch Basen von X bzw. Y , so stellt sich die Frage, wie man

YMX [Φ] in ZMW [Φ] umrechnet.

Dazu bemerken wir, dass es nach Satz V.2 eindeutige lineare Abbildungen Ξ ∈ L(X),
Θ ∈ L(Y ) gibt, mit

Ξ(x⃗1) = w⃗1, Ξ(x⃗2) = w⃗2, . . . , Ξ(x⃗M) = w⃗M , (VI.47)

Θ(y⃗1) = z⃗1, Θ(y⃗2) = z⃗2, . . . , Θ(y⃗N) = z⃗N . (VI.48)

Ξ und Θ sind beide surjektiv, also nach Satz V.6 bijektiv und somit Automorphismen,
Ξ ∈ GL(X), Θ ∈ GL(Y ). Die inversen Abbildungen sind damit ebenfalls Automorphis-
men Ξ−1 ∈ GL(X), Θ−1 ∈ GL(Y ) und besitzen die Eigenschaften

Ξ−1(w⃗1) = x⃗1, Ξ−1(w⃗2) = x⃗2, . . . , Ξ−1(w⃗M) = x⃗M , (VI.49)

Θ−1(z⃗1) = y⃗1, Θ−1(z⃗2) = y⃗2, . . . , Θ−1(z⃗N) = y⃗N . (VI.50)

Die linearen Abbildungen Ξ, Θ, Ξ−1, Θ−1 bezeichnet man als Basistransformationen.

Satz VI.8. SeienM,N ∈ N, X und Y zwei K-Vektorräume mit Basen X := {x⃗m}Mm=1 ⊆
X, Y := {y⃗n}Nn=1 ⊆ Y , W := {w⃗m}Mm=1 ⊆ X, Z := {z⃗n}Nn=1 ⊆ Y und zugehörigen Ba-
sistransformationen Ξ ∈ L(X), Θ ∈ L(Y ) mit Ξ(x⃗m) = w⃗m und Θ(y⃗n) = z⃗n. Dann gilt
für jede lineare Abbildung Φ ∈ L(X;Y ), dass

ZMW [Φ] = YMX [Θ
−1 ◦ Φ ◦ Ξ]. (VI.51)

Beweis. Seien an,m ∈ K so gegeben, dass

∀m ∈ ZM1 : Φ(w⃗m) = a1,mz⃗1 + . . .+ aN,mz⃗N , (VI.52)

d.h.

ZMW [Φ] =

 a1,1 · · · a1,M
...

...
aN,1 · · · aN,M

 . (VI.53)

Dann ist, für alle m ∈ ZM1 ,

Φ
(
Ξ(x⃗m)

)
= Φ(w⃗m) = a1,mΘ(y⃗1) + . . .+ aN,mΘ(y⃗N)

= Θ
(
a1,my⃗1 + . . .+ aN,my⃗N

)
. (VI.54)

Durch Anwendung von Θ−1 erhalten wir dann

∀m ∈ ZM1 :
(
Θ−1 ◦ Φ ◦ Ξ

)
(x⃗m) = a1,my⃗1 + . . .+ aN,my⃗N , (VI.55)
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d.h.

YMX
[
Θ−1 ◦ Φ ◦ Ξ

]
=

 a1,1 · · · a1,M
...

...
aN,1 · · · aN,M

 . (VI.56)

Korollar VI.9. Gelten die Voraussetzungen wie in Satz VI.8, so ist

ZMW [Φ] =
(
MY [Θ]

)−1 · YMX [Φ] · MX [Ξ]. (VI.57)

Beweis. Ergibt sich sofort aus Satz VI.4 und (VI.39).

Korollar VI.10. Seien N ∈ N, X ein K-Vektorraum mit Basen X := {x⃗n}Nn=1, W :=
{w⃗n}Nn=1 ⊆ X und zugehöriger Basistransformation Ξ ∈ GL(X), mit Ξ(x⃗n) = w⃗n. Für
alle Φ ∈ L(X) gilt

MW [Φ] =
(
MX [Ξ]

)−1 · MX [Φ] · MX [Ξ]. (VI.58)

Bemerkungen und Beispiele.

• Zur Berechnung der inversen Matrix braucht man die Determinante. Diese ist
Gegenstand des nächsten Kapitels. Erst wenn wir Matrizen invertieren können,
sind (VI.57) und (VI.58) zu etwas nütze.

• Wir illustrieren Korollar VI.10 durch ein Beispiel und kommen dazu nochmal auf
(VI.40)–(VI.46) zurück, wählen also N = 2, K = R, X = R2 und Basen

E =

{
e⃗1 =

(
1
0

)
, e⃗2 =

(
0
1

)}
, X =

{
x⃗1 :=

(
2
0

)
, x⃗2 :=

(
1
1

)}
⊆ R2.

(VI.59)

Der Basis E entspricht nun also X in Korollar VI.10 und X in (VI.59) entspricht
W in Korollar VI.10.

Wir berechnen nun die Matrixdarstellungen ME [Ξ],
(
ME [Ξ]

)−1
= ME [Ξ

−1] ∈
K2×2 zur Basistransformation Ξ ∈ GL(X), Ξ(e⃗1) = x⃗1, Ξ(e⃗2) = x⃗2, und ihrer
Inversen Ξ−1 ∈ GL(X), Ξ−1(x⃗1) = e⃗1, Ξ

−1(x⃗2) = e⃗2. Dazu beobachten wir, dass

Ξ(e⃗1) = x⃗1 =

(
2
0

)
= 2e⃗1, (VI.60)

Ξ(e⃗2) = x⃗2 =

(
1
1

)
= e⃗1 + e⃗2, (VI.61)

und

e⃗1 = Ξ−1(x⃗1) = 2Ξ−1(e⃗1) ⇒ Ξ−1(e⃗1) = 1
2
e⃗1, (VI.62)

e⃗2 = Ξ−1(x⃗2) = Ξ−1(e⃗1 + e⃗2) = 1
2
e⃗1 + Ξ−1(e⃗2) ⇒ Ξ−1(e⃗2) = e⃗2 − 1

2
e⃗1.
(VI.63)
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Somit sind

ME [Ξ] =

(
2 1
0 1

)
und ME [Ξ

−1] =

(
1
2
−1

2

0 1

)
. (VI.64)

Nun überprüfen wir
(
ME [Ξ]

)−1
= ME [Ξ

−1] durch Matrixmultiplikation. In der
Tat sind

ME [Ξ] · ME [Ξ
−1] =

(
2 1
0 1

)
·
(

1
2
−1

2

0 1

)
=

(
1 0
0 1

)
= 1, (VI.65)

ME [Ξ
−1] · ME [Ξ] =

(
1
2
−1

2

0 1

)
·
(
2 1
0 1

)
=

(
1 0
0 1

)
= 1. (VI.66)

Wir kommen nun auf die in (VI.41) definierte lineare Abbildung Φ ∈ L(R2) zurück,
die gemäß (VI.42) und (VI.46) die Matrixdarstellungen

ME [Φ] =

(
2 1
0 3

)
und MX [Φ] =

(
2 0
0 3

)
(VI.67)

besitzt. Durch Matrixmultiplikation erhalten wir nun sofort, dass

(
ME [Ξ]

)−1 · ME [Φ] · ME [Ξ] =

(
1
2
−1

2

0 1

)
·
(
2 1
0 3

)
·
(
2 1
0 1

)
(VI.68)

=

(
1 −1
0 3

)
·
(
2 1
0 1

)
=

(
2 0
0 3

)
= MX [Φ],

wie in Korollar VI.10 behauptet.
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VII. Determinanten

VII.1. Der Leibnizsche Entwicklungssatz

Definition VII.1. Für N ∈ N sei det : KN×N → K definiert durch

det[A] :=
∑
π∈SN

(−1)π aπ(1),1 · aπ(2),2 · · · aπ(N),N , (VII.1)

für

A =

a1,1 · · · a1,N
...

...
aN,1 · · · aN,N

 ∈ KN×N . (VII.2)

det[A] heißt Determinante von A. Die Formel (VII.1) heißt Leibnizscher Entwick-
lungssatz.

Bemerkungen und Beispiele.

• In (VII.1) ist (−1)π das Signum der Permutation π; ist π das Produkt von t
Transpositionen, so ist (−1)π = (−1)t. (Siehe Kapitel II.)

• Sei N = 2. Dann ist S2 = {1, σ}, mit

1 =

(
1 2
1 2

)
σ =

(
1 2
2 1

)
⇒ (−1)1 = +1, (−1)σ = −1. (VII.3)

Also ist

det

[(
a1,1 a1,2
a2,1 a2,2

)]
=
∑
π∈S2

(−1)πaπ(1),1aπ(2),2

= (+1) · a1(1),1 · a1(2),2 + (−1) · aσ(1),1 · aσ(2),2

= a1,1 · a2,2 − a2,1 · a1,2. (VII.4)

Merkregel:

det

a b
↘↙

c d

 = ad− bc. (VII.5)
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• Sei N = 3. Dann ist S = {π1, π2, . . . , π6} mit

π1 := 1 =

(
1 2 3
1 2 3

)
, π2 :=

(
1 2 3
2 3 1

)
, π3 :=

(
1 2 3
3 1 2

)
, (VII.6)

π4 :=

(
1 2 3
2 1 3

)
, π5 :=

(
1 2 3
3 2 1

)
, π6 :=

(
1 2 3
1 3 2

)
, (VII.7)

und

(−1)π1 = (−1)π2 = (−1)π3 = +1, (−1)π4 = (−1)π5 = (−1)π6 = −1.
(VII.8)

Somit wird

det

a1,1 a1,2 a1,3
a2,1 a2,2 a2,3
a3,1 a3,2 a3,3

 (VII.9)

= + a1,1 · a2,2 · a3,3︸ ︷︷ ︸
π1

+ a2,1 · a3,2 · a1,3︸ ︷︷ ︸
π2

+ a3,1 · a1,2 · a2,3︸ ︷︷ ︸
π3

− a2,1 · a1,2 · a3,3︸ ︷︷ ︸
π4

− a3,1 · a2,2 · a1,3︸ ︷︷ ︸
π5

− a1,1 · a3,2 · a2,3︸ ︷︷ ︸
π6

.

Merkregel (Sarrussche Regel): ↘= +1, ↙= −1.

a1,1 a1,2 a1,3 a1,1 a1,2
↘ ↘↙ ↘↙ ↙

a2,1 a2,2 a2,3 a2,1 a2,2
↙ ↘↙ ↘↙ ↘

a3,1 a3,2 a3,3 a3,1 a3,2

• So sind beispielsweise

det

[(
2 1
1 0

)]
= 2 · 0− 1 · 1 = −1 (VII.10)

und

det

3 3 2
1 0 1
1 2 2


= 3 · 0 · 2 + 3 · 1 · 1 + 2 · 1 · 2 − 3 · 1 · 2 − 2 · 0 · 1 − 3 · 1 · 2
= −5. (VII.11)

• Es ist

1 =

1 0
. . .

0 1

 =

δ1,1 · · · δ1,N
...

...
δN,1 · · · δN,N

 , (VII.12)
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wobei das Kroneckersymbol δi,j definiert ist als

∀i, j ∈ ZN1 : δi,j :=

{
1 falls i = j,

0 falls i ̸= j.
(VII.13)

Beachte nun, dass für π ∈ SN{
δπ(1),1 · δπ(2),2 · · · δπ(N),N ̸= 0

}
⇔

{
π(1) = 1, . . . , π(N) = N

}
⇔

{
π = 1

}
.

(VII.14)

Also ist

det[1] =
∑
π∈SN

(−1)πδπ(1),1 · · · δπ(N),N = δ1,1 · · · δN,N = 1. (VII.15)

Wichtig ist auch, dass man die Determinante auch aus drei sie determinierenden Eigen-
schaften gewinnt, wie der folgende Satz behauptet.

Satz VII.2. Für N ∈ N besitzt die Abbildung det : KN×N → K folgende drei Eigen-
schaften (i)–(iii) und ist durch sie eindeutig bestimmt. Seien dazu γ ∈ K und

∀i ∈ ZN1 : x⃗i :=

 a1,i
...

aN,i

 , y⃗i :=

 b1,i
...
bN,i

 ∈ KN . (VII.16)

(i) Die Determinante ist linear in jeder Spalte, d.h. für jedes i ∈ ZN1 gilt

det
[(
x⃗1, . . . , x⃗i−1, γx⃗i + y⃗i, x⃗i+1, . . . , x⃗N

)]
(VII.17)

= γ · det
[(
x⃗1, . . . , x⃗i−1, x⃗i, x⃗i+1, . . . , x⃗N

)]
+ det

[(
x⃗1, . . . , x⃗i−1, y⃗i, x⃗i+1, . . . , x⃗N

)]
.

(ii) Sind zwei Spalten gleich, so verschwindet die Determinante, d.h. gibt es ein Paar
i, j ∈ ZN1 , i ̸= j, so dass z⃗ := x⃗i = x⃗j, so gilt

det
[(
x⃗1, . . . , z⃗, . . . z⃗, . . . , x⃗n

)]
= 0. (VII.18)

(iii)

det[1] = 1. (VII.19)

Beweis. S. Ergänzung im Abschnitt VII.5.1.

Eine weitere wichtige Eigenschaft von Determinanten ist ihre Multiplikativität.

Satz VII.3. Seien N ∈ N und A,B ∈ KN×N . Dann gilt

det[A ·B] = det[A] · det[B]. (VII.20)

WS 2025/26, Seite 72



Kapitel VII. Determinanten

Beweis. Seien A =: (ai,j)
N
i,j=1, B =: (bi,j)

N
i,j=1 und A ·B =: (γi,j)

N
i,j=1, also

γi,j =
N∑
k=1

ai,k bk,j. (VII.21)

Sei κ ∈ SN fest gewählt. Dann ist, für alle π ∈ SN ,

aπ(1),1 · · · aπ(N),N = a(π◦κ)(1),κ(1) · · · a(π◦κ)(N),κ(N). (VII.22)

Also ist, mit η := π ◦ κ,

det[A] · det[B] =
∑

π,κ∈SN

(−1)π · (−1)κ︸ ︷︷ ︸
=(−1)π◦κ

aπ(1),1 · · · aπ(N),N · bκ(1),1 · · · bκ(N),N

=
∑
κ∈SN

{ ∑
π∈SN

(−1)π◦κ aπ◦κ(1),κ(1) · · · aπ◦κ(N),κ(N) bκ(1),1 · · · bκ(N),N

}
=
∑
κ∈SN

{ ∑
η∈SN

(−1)ηaη(1),κ(1) · · · aη(N),κ(N)

}
bκ(1),1 · · · bκ(N),N

=
∑
κ∈SN

det
[(
x⃗κ(1), . . . , x⃗κ(N)

)]
· bκ(1),1 · · · bκ(N),N , (VII.23)

wobei

∀ ℓ ∈ ZN1 : x⃗ℓ :=

 a1,ℓ
...

aN,ℓ

 . (VII.24)

In (VII.23) ist κ ∈ SN , also ist κ : ZN1 → ZN1 eine bijektive Abbildung. Ist κ : ZN1 → ZN1
nicht bijektiv, so gibt es i, j ∈ ZN1 mit κ(i) = κ(j), und dann ist

det
[(
x⃗κ(1), . . . , x⃗κ(i), . . . , x⃗κ(j), . . . , x⃗κ(N)

)]
= 0. (VII.25)

Also ist∑
κ∈SN

det
[(
x⃗κ(1), . . . ,x⃗κ(N)

)]
· bκ(1),1 · · · bκ(N),N

=
∑

κ:ZN1 →ZN1 ,

κ bijektiv

det
[(
x⃗κ(1), . . . , x⃗κ(N)

)]
· bκ(1),1 · · · bκ(N),N

=
∑

κ:ZN
1 →ZN

1

det
[(
x⃗κ(1), . . . , x⃗κ(N)

)]
· bκ(1),1 · · · bκ(N),N

=
N∑

κ(1),...,κ(N)=1

det
[(
x⃗κ(1), . . . , x⃗κ(N)

)]
· bκ(1),1 · · · bκ(N),N . (VII.26)

WS 2025/26, Seite 73



Kapitel VII. Determinanten

Damit wird

det[A] · det[B] =
N∑

κ(1),...,κ(N)=1

∑
π∈SN

(−1)πaπ(1),κ(1) · · · aπ(N),κ(N) bκ(1),1 · · · bκ(N),N

=
∑
π∈SN

(−1)π
( N∑
κ(1)=1

aπ(1),κ(1)bκ(1),1

)
· · ·
( N∑
κ(N)=1

aπ(N),κ(N)bκ(N),N

)
=
∑
π∈SN

(−1)πγπ(1),1 · · · γπ(N),N = det[A ·B]. (VII.27)

VII.2. Das Inverse einer Matrix

Definition VII.4. Sei A = (ai,j)i∈ZN
1 ,j∈ZM

1
∈ KN×M eine N ×M -Matrix, dann heißt

AT := (bi,j)i∈ZM
1 ,j∈ZN

1
∈ KM×N mit bi,j := aj,i, die zu A transponierte Matrix,

A =


a1,1 a1,2 · · · a1,M
a2,1 a2,2 · · · a2,M
...

...
...

aN,1 aN,2 · · · aN,M

 ⇒ AT =


a1,1 a2,1 · · · aN,1
a1,2 a2,2 · · · aN,2
...

...
...

a1,M a2,M · · · aN,M

 . (VII.28)

Bemerkungen und Beispiele.

• Man erhält AT aus A durch Spiegelung an der Diagonalen.

• Zum Beispiel ist

A =

 8 3
7 9
1 2

⇒ AT =

(
8 7 1
3 9 2

)
. (VII.29)

• Sind A ∈ KN×M und B ∈ KM×L, so ist

(A ·B)T = BT · AT . (VII.30)

(Beachte vertauschte Reihenfolge!)

• Ist x⃗ =

 x1
...
xN

 ∈ KN ein Spaltenvektor, den wir als N × 1-Matrix der Form

M(x⃗) =

 x1
...
xN

 ∈ KN×1 auffassen, so entspricht die zu M(x⃗) transponierte

Matrix

M(x⃗)T = (x1, . . . , xN) ∈ K1×N (VII.31)

gerade der Darstellung von x⃗ als Zeilenvektor.
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Lemma VII.5. Ist A ∈ KN×N , so gilt

det[A] = det[AT ]. (VII.32)

Beweis. S. Ergänzung im Abschnitt VII.5.2.

Definition VII.6. Seien N ∈ N und A = (ai,j)
N
i,j=1 ∈ KN×N . Definiere die Matrix

Aminor = (bi,j)
N
i,j=1 ∈ KN×N der Minoren bi,j durch

bi,j :=
∑

π∈SN,

π(j)=i

(−1)π aπ(1),1 · · · aπ(j−1),j−1 aπ(j+1),j+1 · · · aπ(N),N . (VII.33)

Bemerkungen und Beispiele.

• Man erhält bi,j als bi,j = (−1)i+j · det [A(i,j)] wobei A(i,j) ∈ K(N−1)×(N−1) gegeben
ist durch

A(i,j) =



a1,1 · · · a1,j−1 a1,j a1,j+1 · · · a1,N
...

...
...

...
...

ai−1,1 · · · ai−1,j−1 ai−1,j ai−1,j+1 · · · ai−1,N

ai,1 · · · ai,j−1 ai,j ai,j+1 · · · ai,N

ai+1,1 · · · ai+1,j−1 ai+1,j ai+1,j+1 · · · ai+1,N
...

...
...

...
...

aN,1 · · · aN,j−1 aN,j aN,j+1 · · · aN,N


,

(VII.34)

also aus A durch Streichen der i. Zeile und der j. Spalte hervorgeht.

• Für

A =

 a1,1 a1,2 a1,3
a2,1 a2,2 a2,3
a3,1 a3,2 a3,3

 , Aminor =

 b1,1 b1,2 b1,3
b2,1 b2,2 b2,3
b3,1 b3,2 b3,3

 (VII.35)

sind beispielsweise

b1,2 = (−1)1+2 · det

 a1,1 a1,2 a1,3
a2,1 a2,2 a2,3

a3,1 a3,2 a3,3

 = − det

[(
a2,1 a2,3
a3,1 a3,3

)]
,

(VII.36)

b3,3 = (−1)3+3 · det

 a1,1 a1,2 a1,3
a2,1 a2,2 a2,3
a3,1 a3,2 a3,3

 = det

[(
a1,1 a1,2
a2,1 a2,2

)]
. (VII.37)

• Ein konkretes Zahlenbeispiel:

A =

3 3 2
1 0 1
1 2 2

 . (VII.38)
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Dann sind

b1,1 = (−1)2 · det
[(

0 1
2 2

)]
= (+1) · (0− 2) = −2, (VII.39)

b1,2 = (−1)3 · det
[(

1 1
1 2

)]
= (−1) · (2− 1) = −1, (VII.40)

b1,3 = (−1)4 · det
[(

1 0
1 2

)]
= (+1) · (2− 0) = 2, (VII.41)

b2,1 = (−1)3 · det
[(

3 2
2 2

)]
= (−1) · (6− 4) = −2, (VII.42)

b2,2 = (−1)4 · det
[(

3 2
1 2

)]
= (+1) · (6− 2) = 4, (VII.43)

b2,3 = (−1)5 · det
[(

3 3
1 2

)]
= (−1) · (6− 3) = −3, (VII.44)

b3,1 = (−1)4 · det
[(

3 2
0 1

)]
= (+1) · (3− 0) = 3, (VII.45)

b3,2 = (−1)5 · det
[(

3 2
1 1

)]
= (−1) · (3− 2) = −1, (VII.46)

b3,3 = (−1)6 · det
[(

3 3
1 0

)]
= (+1) · (0− 3) = −3, (VII.47)

und somit ist

Aminor =

−2 −1 2
−2 4 −3
3 −1 −3

 . (VII.48)

• Für N = 2 kann Aminor sofort direkt angegeben werden, da die Determinante einer
1× 1-Matrix die Zahl selbst ist:

A =

(
a b
c d

)
⇒ Aminor =

(
d −c
−b a

)
. (VII.49)

Satz VII.7. Seien N ∈ N und A = (ai,j)
N
i,j=1 ∈ KN×N . Dann ist

A · ATminor = ATminor · A = det[A] · 1. (VII.50)

Der Beweis des Satzes VII.7 ähnelt dem Beweis des Satzes VII.3, s. die Ergänzung VII.5.3.
Wir ziehen hier nur die wichtigen Folgerungen.

Satz VII.8. Für N ∈ N und A ∈ KN×N gelten folgende Aussagen:

(i) A ist genau dann invertibel, wenn det[A] ̸= 0 ist;

(ii) Ist A invertibel und bezeichnet A−1 ∈ KN×N mit A · A−1 = A−1 · A = 1 die zu A
inverse Matrix, so gilt

A−1 =
1

det[A]
· ATminor. (VII.51)
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Beweis. Sei det[A] ̸= 0. Dann setzen wir Ã := (det[A])−1 · ATminor und erhalten

A · Ã = Ã · A = 1 (VII.52)

aus Satz VII.7. Somit ist A invertibel und A−1 = Ã.

Sei umgekehrt det[A] = 0. Wäre A invertibel mit Inverser A−1 ∈ KN×N , so wäre nach
Satz VII.3

1 = det[1] = det[A · A−1] = det[A]︸ ︷︷ ︸
=0

· det[A−1] = 0, (VII.53)

was einen Widerspruch ergibt.

Bemerkungen und Beispiele.

• Seien N = 2 und a, b, c, d ∈ K, so dass ad − bc ̸= 0. Mit A :=
(
a b
c d

)
ist also

det[A] ̸= 0, und A ist invertibel mit

A−1 =
1

ad− bc

(
d −b
−c a

)
. (VII.54)

• Die Bestimmung der Inversen einer 3 × 3-Matrix ist schon aufwändiger. Dazu
müssen wir ihre Determinante und 9 Minoren (Determinanten von 2×2-Matrizen)
berechnen. Beispielsweise sind nach (VII.11) und (VII.38)–(VII.48)

A =

3 3 2
1 0 1
1 2 2

 ⇒ det[A] = −5, Aminor =

−2 −1 2
−2 4 −3
3 −1 −3

 (VII.55)

⇒ A−1 = − 1

5

−2 −2 3
−1 4 −1
2 −3 −3

 =


2
5

2
5
−3

5

1
5
−4

5
1
5

−2
5

3
5

3
5

 .

• Die Menge der invertiblen N ×N -Matrizen über K bezeichnen wir mit

GL(N,K) :=
{
A ∈ KN×N ∣∣ det[A] ̸= 0

}
. (VII.56)

VII.3. Lineare Gleichungssysteme

Eine wichtige Anwendung von Matrizen und ihrer Inversen sind lineare Gleichungs-
systeme (LGS). Sind A = (ai,j)

N
i,j=1 ∈ KN×N eine N × N -Matrix über K und y⃗ =

(yi)
N
i=1 ∈ KN ∼= KN×1 ein Spaltenvektor, so betrachten wir das LGS

a1,1x1 + a1,2x2 + . . .+ a1,NxN = y1, (VII.57)

a2,1x1 + a2,2x2 + . . .+ a2,NxN = y2, (VII.58)

... (VII.59)

aN,1x1 + aN,2x2 + . . .+ aN,NxN = yN . (VII.60)
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Wir möchten Bedingungen finden, wann das LGS (VII.57)-(VII.60) eine Lösung x⃗ =
(xi)

N
i=1 ∈ KN besitzt und ggf. Aussagen über die Lösungsmenge machen. Offensichtlich

ist das LGS (VII.57)-(VII.60) äquivalent zur Vektorgleichung

Ax⃗ = y⃗. (VII.61)

Satz VII.9.

(i) Homogene LGS (y⃗ = 0⃗):{
det[A] = 0

}
⇔

{
∃ x⃗ ∈ KN \ {⃗0} : Ax⃗ = 0⃗

}
. (VII.62)

(ii) Inhomogene LGS:{
det[A] ̸= 0, Ax⃗ = y⃗

}
⇒

{
x⃗ = A−1y⃗

}
. (VII.63)

Beweis.
(ii) folgt trivial aus Satz VII.8. Um (i) zu beweisen, nehmen wir zunächst det[A] ̸= 0

an. Dann ist A invertibel und x⃗ = A−10⃗ = 0⃗ die eindeutige Lösung von Ax⃗ = 0⃗. Also
gibt es keine nichttriviale Lösung von Ax⃗ = 0⃗.

Ist umgekehrt det[A] = 0, so ist A nicht invertibel. Nun istM : L(KN)→ KN×N gemäß
Satz VI.7, (ii) ein Ringisomorphismus, und es gibt eine eindeutige lineare Abbildung
Φ ∈ L(KN), so dass A = M[Φ]. Weil A nicht invertibel ist, ist Φ nicht bijektiv und
somit auch nicht injektiv. Es gibt also x⃗, x⃗ ′ ∈ KN , x⃗ ̸= x⃗ ′, so dass Ax⃗ = Ax⃗ ′. Damit ist
(x⃗− x⃗ ′) ̸= 0⃗ eine Lösung: A(x⃗− x⃗ ′) = 0⃗.

VII.4. Determinante und Spur einer linearen Abbildung

In den vorigen Abschnitten dieses Kapitels haben wir die Determinante det[A] einer
N × N -Matrix A kennengelernt. Wir haben gesehen, dass A genau dann invertibel ist,
wenn det[A] ̸= 0 gilt. Wir wollen den Zusammenhang zwischen einer linearen Abbildung
Φ ∈ L(X) und der Determinante ihrer Matrixdarstellung bezgl. einer Basis bestimmen.
Doch zuvor führen wir den Begriff der Spur einer Matrix ein.

Definition VII.10. Für N ∈ N sei Tr : KN×N → K definiert durch

Tr{A} :=
N∑
i=1

ai,i für A =

 a1,1 · · · a1,N
...

...
aN,1 · · · aN,N

 ∈ KN×N . (VII.64)

Tr{A} heißt Spur von A.

Lemma VII.11 (Zyklizität der Spur). Für N ∈ N seien G1, G2, . . . , Gk ∈ KN×N . Dann
ist

Tr{G1 G2 · · ·Gk} = Tr{Gk G1 G2 · · ·Gk−1} (VII.65)
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Beweis. Sei zunächst k = 2, also etwa

A =

 a1,1 · · · a1,N
...

...
aN,1 · · · aN,N

 , B =

 b1,1 · · · b1,N
...

...
bN,1 · · · bN,N

 . (VII.66)

Dann ist

Tr{A ·B} =
N∑
i=1

( N∑
j=1

ai,jbj,i

)
=

N∑
j=1

( N∑
i=1

bj,iai,j

)
= Tr{B · A}. (VII.67)

Setzt man A := G1G2 · · ·Gk−1 und B := Gk, so folgt (VII.65) für k ≥ 2 direkt aus
(VII.67).

Satz VII.12. Seien N ∈ N und X ein N-dimensionaler Vektorraum über K mit Basen
X := {x⃗1, . . . , x⃗N} ⊆ X und W := {w⃗1, . . . , w⃗N} ⊆ X. Ist Φ ∈ L(X) eine lineare
Abbildung, so sind

det
[
MX [Φ]

]
= det

[
MW [Φ]

]
, (VII.68)

Tr
{
MX [Φ]

}
= Tr

{
MW [Φ]

}
. (VII.69)

Beweis. Ist Ξ ∈ L(X) die Basistransformation zwischen X und W , also Ξ(x⃗i) = w⃗i, für
alle i = 1, . . . , N , so gilt nach (VI.58)

Ã = H−1AH, (VII.70)

wobei A :=MX [Φ], Ã :=MW [Φ] und H :=MX [Ξ]. Nach Satz VII.3 ist dann

det[Ã] = det[H−1] · det[A] · det[H] = det[H−1H] · det[A] = det[A]. (VII.71)

Ähnlich erhalten wir mit Lemma VII.11

Tr{Ã} = Tr{H−1AH} = Tr{H H−1A} = Tr{A}. (VII.72)

Wir sehen also, dass Determinante und Spur einer Matrix nicht durch Basistransforma-
tionen beeinflusst werden.

Definition VII.13. Für N ∈ N sei X ein N -dimensionaler Vektorraum über K. Defi-
niere die Abbildungen det,Tr : L(X)→ K durch

det[Φ] := det
[
MX [Φ]

]
, (VII.73)

Tr{Φ} := Tr
{
MX [Φ]

}
, (VII.74)

wobei X := {x⃗1, . . . , x⃗N} ⊆ X (irgend)eine Basis von X ist.

Bemerkungen und Beispiele.
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• Satz VII.12 sichert die Wohldefiniertheit (Basisunabhängigkeit) der Abbildungen
det : L(X)→ K und Tr : L(X)→ K.

• Man sagt auch, Determinante und Spur seien invariant (unter Basistransformatio-
nen).

• Es ist

Tr


3 3 2
1 0 1
1 2 2

 = 3 + 0 + 2 = 5. (VII.75)
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VII.5. Ergänzungen

VII.5.1. Die drei determinierenden Eigenschaften der Determinante

Beweis. Wir zeigen nur, dass det die Eigenschaften (i)–(iii) aus Satz VII.2 besitzt, aber
nicht, dass sie die einzige Abbildung mit diesen Eigenschaften ist.

(i): ergibt sich sofort aus der Definition,∑
π∈SN

(−1)πaπ(1),1 · · ·
(
γaπ(i),i + bπ(i),i

)
· · · aπ(N),N

= γ
( ∑
π∈SN

(−1)πaπ(1),1 · · · aπ(i),i · · · aπ(N),N

)
+
( ∑
π∈SN

(−1)πaπ(1),1 · · · bπ(i),i · · · aπ(N),N

)
.

(VII.76)

(iii): haben wir schon in (VII.15) gezeigt.

(ii): Sei x⃗i = x⃗j, etwa für (i, j) mit 1 ≤ i < j ≤ N . Dann ist, mit A := (x⃗1, . . . , x⃗N) ∈
KN×N ,

det[A] =
∑
π∈SN

(−1)π
N∏
ℓ=1

aπ(ℓ),ℓ

=
∑
π∈SN

(−1)πaπ(i),iaπ(j),j
∏
ℓ(̸=i,j)

aπ(ℓ),ℓ

=
∑
π∈SN

(−1)πγπ(i)γπ(j)
∏
ℓ(̸=i,j)

aπ(ℓ),ℓ, (VII.77)

wobei γk := ak,i = ak,j und “
∏

ℓ(̸=i,j)” das Produkt über alle ℓ ∈ ZN1 \ {i, j} notiert. Sei
nun σ ∈ SN die Transposition (i, j), d.h.

σ :=

(
1 2 . . . i . . . j . . . N
1 2 . . . j . . . i . . . N

)
. (VII.78)

Dann sind (−1)π◦σ = −(−1)π und

γ(π◦σ)(i) γ(π◦σ)(j)
∏
ℓ( ̸=i,j)

a(π◦σ)(ℓ),ℓ = γπ(j) · γπ(i) ·
∏
ℓ(̸=i,j)

aπ(ℓ),ℓ = γπ(i) γπ(j)
∏
ℓ(̸=i,j)

aπ(ℓ),ℓ.

(VII.79)

Daher ist

det[A] = −
∑
π∈SN

(−1)π◦σγ(π◦σ)(i) γ(π◦σ)(j)
∏
ℓ(̸=i,j)

a(π◦σ)(ℓ),ℓ

= −
∑
κ∈SN

(−1)κγκ(i) γκ(j)
∏
ℓ(̸=i,j)

aκ(ℓ),ℓ

= − det[A], (VII.80)
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wobei wir κ := π ◦σ als neue Summationsvariable einführen und benutzen, dass SN eine
Gruppe ist und insbesondere SN = SN ◦ σ gilt. Also ist det[A] = − det[A] = 0.

VII.5.2. Erhaltung der Determinante unter Transposition

Beweis. (Beweis von Lemma VII.5): Sei A = (ai,j)
N
i,j=1. Dann erhalten wir durch Um-

sortieren des Produkts, dass

aπ(1),1 · aπ(2),2 · · · aπ(N),N = aπ(1),π−1(π(1)) · aπ(2),π−1(π(2)) · · · aπ(N),π−1(π(N))

= a1,π−1(1) · a2,π−1(2) · · · aN,π−1(N). (VII.81)

Weil (−1)π = (−1)π−1
, und weil SN eine Gruppe ist, erhalten wir, mit κ := π−1 als neue

Summationsvariable, dass

det[A] =
∑
π∈SN

(−1)π−1

a1,π−1(1) · · · aN,π−1(N) =
∑
κ∈SN

a1,κ(1) · · · aN,κ(N) = det[AT ].

(VII.82)

VII.5.3. Beweis von Satz VII.7

Bezeichnen wir die Produktmatrizen mit

(γi,j)
N
i,j=1 := ATminor · A und (γ̃i,j)

N
i,j=1 := A · ATminor, (VII.83)

d.h.

γi,j =
N∑
k=1

bk,i ak,j und γ̃i,j =
N∑
k=1

ai,k bj,k, (VII.84)

so ist also zu zeigen, dass γi,j = γ̃i,j = det[A] · δi,j. Wir zeigen nur γi,j = det[A] · δi,j.
Setzen wir (VII.33) ein, so erhalten wir für festes i, j ∈ ZN1

γi,j =
N∑
k=1

ak,jbk,i =
N∑
k=1

ak,j
∑

π∈SN,

π(i)=k

(−1)πaπ(1),1 · · · aπ(i−1),i−1 · aπ(i+1),i+1 · · · aπ(N),N

=
N∑
k=1

∑
π∈SN

δπ(i),k(−1)πaπ(1),1 · · · aπ(i−1),i−1 · ak,j︸︷︷︸
= aπ(i),j

·aπ(i+1),i+1 · · · aπ(N),N

=
∑
π∈SN

{
(−1)πaπ(1),1 · · · aπ(i−1),i−1 · aπ(i),j · aπ(i+1),i+1 · · · aπ(N),N

( N∑
k=1

δπ(i),k︸ ︷︷ ︸
=1

)}

=
∑
π∈SN

(−1)πaπ(1),1 · · · aπ(i−1),i−1 · aπ(i),j · aπ(i+1),i+1 · · · aπ(N),N

= det [(x⃗1, . . . , x⃗i−1, x⃗j, x⃗i+1, . . . , x⃗j, . . . , x⃗N)] , (VII.85)
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wobei

∀ ℓ ∈ ZN1 : x⃗ℓ :=

 a1,ℓ
...

aN,ℓ

 . (VII.86)

Für i ̸= j sind dann zwei Spalten in (VII.85) gleich, und aus Satz VII.2 (ii), folgt γi,j = 0.

Für i = j ist aber γi,j = det[A], also

γi,j = det[A] · δi,j. (VII.87)
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VIII. Der Gauß-Algorithmus

Zur Berechnung von Determinanten und von inversen Matrizen ist der Gauß-Algorithmus
viel praktischer als der Leibnizsche Entwicklungssatz und die Matrix der Minoren. Er
basiert auf der Multiplikativität der Determinante und dem sogenannten Kästchensatz.

Satz VIII.1 (Kästchensatz). Seien N = n1+n2+ . . .+nL ∈ N mit n1, n2, . . . , nL ∈ N.
Seien weiterhin gk,ℓ ∈ Knk×nℓ und

A =


g1,1 g1,2 g1,L
g2,1 g2,2
...

. . .

gL,1 · · · gL,L

 ∈ KN×N . (VIII.1)

Sind gk,ℓ = 0, falls k > ℓ, also

A =


g1,1 g1,2 · · · g1,L

0 g2,2
. . .

...
...

. . . . . . gL−1,L

0 · · · 0 gL,L

 , (VIII.2)

oder sind gk,ℓ = 0, falls k < ℓ, also

A =


g1,1 0 · · · 0

g2,1 g2,2
. . .

...
...

. . . 0
gL,1 · · · gL,L−1 gL,L

 , (VIII.3)

so gilt in beiden Fällen

det[A] = det[g1,1] · det[g2,2] · · · det[gL,L]. (VIII.4)

Beweis. Es genügt, die Aussage für L = 2 zu zeigen. Für L > 2 folgt sie dann leicht per
vollständiger Induktion.
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Seien also A = (ai,j)
N
i,j=1, g1,1 = (ai,j)

n
i,j=1, g2,2 = (ai,j)

N
i,j=n+1 und ai,j = 0, falls i ≥ n+1

und j ≤ n. D.h.

A =



a1,1 · · · a1,n
...

...
an,1 · · · an,n

∣∣∣∣∣∣∣
a1,n+1 · · · a1,N

...
...

an,n+1 · · · an,N
0 · · · 0
...

...
0 · · · 0

∣∣∣∣∣∣∣
an+1,n+1 · · · an+1,N

...
...

aN,n+1 · · · aN,N


. (VIII.5)

Seien nun π ∈ SN eine Permutation und j ≤ n. Ist π(j) ≥ n + 1, so ist aπ(j),j = 0 und
somit auch

(−1)πaπ(1),1 · · · aπ(N),N = 0. (VIII.6)

Also tragen nur die Permutationen π ∈ SN zu det[A] bei, die die Mengen {1, . . . , n}
und {n + 1, . . . , N} jeweils auf sich abbilden. Diese sind aber gerade die Produkte aus
Permutationen von {1, . . . , n} und {n+ 1, . . . , N},

π = κ ◦ η, (VIII.7)

wobei κ ∈ Sn und η ∈ SN−n (auf {n+ 1, . . . , N} wirkend). Also ist

det[A] =
∑
π∈SN

(−1)πaπ(1),1 · · · aπ(n),n · aπ(n+1),n+1 · · · aπ(N),N

=
∑

κ∈Sn,η∈SN−n

(−1)κ◦ηaκ(1),1 · · · aκ(n),n · aη(n+1),n+1 · · · aη(N),N

= det[g1,1] · det[g2,2]. (VIII.8)

Ein Spezialfall des Kästchensatzes ist L = N und n1 = n2 = . . . = nN = 1, d.h. wenn
A eine rechte obere Dreiecksmatrix oder eine linke untere Dreiecksmatrix ist. In diesem
Fall ist die Determinante durch das Produkt der Matrixelemente auf der Diagonalen
gegeben.

Korollar VIII.2. Sei N ∈ N. Ist

A =



a1,1 a1,2 a1,3 · · · a1,N
0 a2,2 a2,3 · · · a2,N
0 0 a3,3 · · · a3,N
...

...
. . . · · · ...

0 · · · 0 aN−1,N−1 aN−1,N

0 · · · 0 0 aN,N


∈ KN×N , (VIII.9)
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eine rechte obere Dreiecksmatrix oder

A =



a1,1 0 0 · · · · · · 0

a2,1 a2,2 0 · · · · · · ...

a3,1 a3,2 a3,3
. . . · · · ...

...
...

. . . . . .
...

aN−1,1 aN−1,2 aN−1,3 · · · aN−1,N−1 0
aN,1 aN,2 aN,3 · · · aN,N−1 aN,N


∈ KN×N , (VIII.10)

eine linke untere Dreiecksmatrix, so gilt in beiden Fällen

det[A] = a1,1 · a2,2 · · · aN,N . (VIII.11)

VIII.1. Elementare Zeilen- und Spaltenoperationen

Der später vorgestellte Gauß-Algorithmus besteht aus sukzessiven Anwendungen von
elementaren Zeilenoperationen auf eine zu untersuchende Matrix A ∈ KN×N , die ihre
Determinante bis auf ihr Vorzeichen unverändert lassen.

Definition VIII.3. Sei N ∈ N und A ∈ KN×N eine N ×N -Matrix.

(Z) Als elementare Zeilenoperationen bezeichnet man

– das Vertauschen der k. Zeile mit der ℓ. Zeile in A und

– das Addieren des η-fachen der k. Zeile zur ℓ. Zeile in A,

für alle k, ℓ ∈ ZN1 mit k ̸= ℓ und η ∈ K.

(S) Als elementare Spaltenoperationen bezeichnet man

– das Vertauschen der k. Spalte mit der ℓ. Spalte in A und

– das Addieren des η-fachen der k. Spalte zur ℓ. Spalte in A,

für alle k, ℓ ∈ ZN1 mit k ̸= ℓ und η ∈ K.

Bemerkungen und Beispiele.

• Sind A = (ai,j)
N
i,j=1 ∈ KN×N eine N × N -Matrix und k, ℓ ∈ ZN1 mit k ̸= ℓ und

η ∈ K, so bewirken die elementaren Zeilenoperationen, dass

A =



a1,1 · · · a1,N
...

...
ak,1 · · · ak,N
...

...
aℓ,1 · · · aℓ,N
...

...
aN,1 · · · aN,N


(VIII.12)
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übergeht in

A
(k,ℓ)
Z :=



a1,1 · · · a1,N
...

...
aℓ,1 · · · aℓ,N
...

...
ak,1 · · · ak,N
...

...
aN,1 · · · aN,N


, A

(ℓ+ηk)
Z :=



a1,1 · · · a1,N
...

...
ak,1 · · · ak,N
...

...
aℓ,1 + η ak,1 · · · aℓ,N + η ak,N

...
...

aN,1 · · · aN,N


.

(VIII.13)

• Sind A = (ai,j)
N
i,j=1 ∈ KN×N eine N × N -Matrix und k, ℓ ∈ ZN1 mit k ̸= ℓ und

η ∈ K, so bewirken die elementaren Spaltenoperationen, dass

A =

a1,1 · · · a1,k · · · a1,ℓ · · · a1,N
...

...
...

...
aN,1 · · · aN,k · · · aN,ℓ · · · aN,N

 (VIII.14)

übergeht in

A
(k,ℓ)
S :=

a1,1 · · · a1,ℓ · · · a1,k · · · a1,N
...

...
...

...
aN,1 · · · aN,ℓ · · · aN,k · · · aN,N

 ,

A
(ℓ+ηk)
S :=

a1,1 · · · a1,k · · · a1,ℓ + η a1,k · · · a1,N
...

...
...

...
aN,1 · · · aN,k · · · aN,ℓ + η aN,k · · · aN,N

 . (VIII.15)

Elementare Zeilen- und Spaltenoperationen bewirken höchstens einen Vorzeichenwechsel
der Determinante der Matrix A, wie das folgende Lemma zeigt.

Lemma VIII.4. Seien N ∈ N, A ∈ KN×N eine N×N-Matrix und k, ℓ ∈ ZN1 mit k ̸= ℓ
sowie η ∈ K.

(i) Gehen A
(k,ℓ)
Z ∈ KN×N aus A durch Vertauschen der k. und der ℓ. Zeilen und

A
(k,ℓ)
S ∈ KN×N aus A durch Vertauschen der k. und der ℓ. Spalten hervor, so gilt

det
[
A

(k,ℓ)
Z

]
= det

[
A

(k,ℓ)
S

]
= − det[A] . (VIII.16)

(ii) Gehen A
(ℓ+ηk)
Z ∈ KN×N aus A durch Addieren des η-fachen der k. Zeile zur ℓ. Zeile

und A
(ℓ+ηk)
S ∈ KN×N aus A durch Addieren des η-fachen der k. Spalte zur ℓ. Spalte

A
(k,ℓ)
S ∈ KN×N hervor, so gilt

det
[
A

(ℓ+ηk)
Z

]
= det

[
A

(ℓ+ηk)
S

]
= det[A] . (VIII.17)
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Beweis. Wir beweisen tatsächlich noch etwas allgemeinere Identitäten als (VIII.16) und
(VIII.17). Dazu führen wir ein paar Rechnungen durch.

Seien γ2, γ3, . . . , γN ∈ K und A,G,H ∈ KN×N gegeben durch

A =

a1,1 · · · a1,N
...

...
aN,1 · · · aN,N

 , (VIII.18)

G =


1 0 · · · · · · 0

γ2 1
. . .

...

γ3 0
. . .

...
...

...
. . . . . . 0

γN 0 · · · 0 1

 , (VIII.19)

H =


1 η2 η3 · · · ηN
0 1 0 · · · 0
...

. . . . . .
...

...
. . . . . . 0

0 · · · 0 0 1

 . (VIII.20)

Offensichtlich sind G eine linke untere bzw. H eine rechte obere Dreieckmatrix, und aus
Korollar VIII.2 folgt sofort, dass

det[G] = det[H] = 1 . (VIII.21)

Durch Matrixmultiplikation erhalten wir außerdem, dass G · G−1 = G−1 · G = 1 und
H ·H−1 = H−1 ·H = 1 mit

G−1 =


1 0 · · · · · · 0

−γ2 1
. . .

...

−γ3 0
. . .

...
...

...
. . . . . . 0

−γN 0 · · · 0 1

 , (VIII.22)

H−1 =


1 −η2 −η3 · · · −ηN
0 1 0 · · · 0
...

. . . . . .
...

...
. . . . . . 0

0 · · · 0 0 1

 , (VIII.23)
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und weiterhin

G · A =


a1,1 a1,2 · · · a1,N

a2,1 + γ2a1,1 a2,2 + γ2a1,2 · · · a2,N + γ2a1,N
...

...
...

aN,1 + γNa1,1 aN,2 + γNa1,2 · · · aN,N + γNa1,N

 , (VIII.24)

A ·H =


a1,1 a1,2 + η2a1,1 · · · a1,N + ηNa1,1
a2,1 a2,2 + η2a2,1 · · · a2,N + ηNa2,1
...

...
...

aN,1 aN,2 + η2aN,1 · · · aN,N + ηNaN,1

 . (VIII.25)

Insbesondere sind

det




a1,1 a1,2 · · · a1,N
a2,1 + γ2a1,1 a2,2 + γ2a1,2 · · · a2,N + γ2a1,N

...
...

...
aN,1 + γNa1,1 aN,2 + γNa1,2 · · · aN,N + γNa1,N


 = det[G · A] (VIII.26)

= det[G] · det[A] = det[A] = det



a1,1 a1,2 · · · a1,N
a2,1 a2,2 · · · a2,N
...

...
...

aN,1 aN,2 · · · aN,N


 ,

und

det



a1,1 a1,2 + η2a1,1 · · · a1,N + ηNa1,1
a2,1 a2,2 + η2a2,1 · · · a2,N + ηNa2,1
...

...
...

aN,1 aN,2 + η2aN,1 · · · aN,N + ηNaN,1


 = det[A ·H] (VIII.27)

= det[A] · det[H] = det[A] = det



a1,1 a1,2 · · · a1,N
a2,1 a2,2 · · · a2,N
...

...
...

aN,1 aN,2 · · · aN,N


 ,

Wir definieren auch für 1 ≤ i < j ≤ N die Permutationsmatrix S(i,j) ∈ KN×N durch

(
S(i,j)

)
k,ℓ

=


1, falls k = ℓ /∈ {i, j},
1, falls k = j und ℓ = i,
1, falls k = i und ℓ = j,
0, sonst.

(VIII.28)

und setzen S(i,i) := 1. Dann bewirkt die Multiplikation mit S(i,j) von links die Vertau-
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schung der i. mit der j. Zeile von A,

A =



a1,1 · · · a1,N
...

...
ai,1 · · · ai,N
...

...
aj,1 · · · aj,N
...

...
aN,1 · · · aN,N


, S(i,j) · A =



a1,1 · · · a1,N
...

...
aj,1 · · · aj,N
...

...
ai,1 · · · ai,N
...

...
aN,1 · · · aN,N


, (VIII.29)

und die Multiplikation mit S(i,j) von rechts vertauscht die i. mit der j. Spalte von A,

A =

a1,1 · · · a1,i · · · a1,j · · · a1,N
...

...
...

...
aN,1 · · · aN,i · · · aN,j · · · aN,N

 , (VIII.30)

A · S(i,j) =

a1,1 · · · a1,j · · · a1,i · · · a1,N
...

...
...

...
aN,1 · · · aN,j · · · aN,i · · · aN,N

 . (VIII.31)

Da S(i,j) für i < j wie eine Transposition und für i = j wie die Identität wirkt, ist

∀ i ≤ j : det
[
S(i,j)

]
= (−1)1−δi,j , (VIII.32)

wobei δi,j das Kroneckersymbol notiert.

Sind nun k, ℓ ∈ ZN1 mit k ̸= ℓ und η ∈ K, so folgt (VIII.16) für A
(k,ℓ)
Z sofort aus (VIII.32)

und A
(k,ℓ)
Z = S(k,ℓ) · A,

det
[
A

(k,ℓ)
Z

]
= det

[
S(k,ℓ) · A

]
= det

[
S(k,ℓ)

]
· det

[
A
]

= − det
[
A
]

(VIII.33)

und natürlich analog für A
(k,ℓ)
S .

Den Beweis von (VIII.17) führen wir nur für den Fall, dass ℓ > 1 ist. Dann definieren
wir G wie in (VIII.18), wobei wir γi := für i ∈ ZN2 \ {ℓ} und γℓ := η wählen, also

G =



1 0 · · · · · · · · · · · · · · · 0

0 1
. . .

...
...

. . . . . . . . .
...

0
. . . . . . . . .

...

η 0
. . . . . . . . .

...

0
. . . . . . . . .

...
...

. . . . . . 0
0 · · · · · · · · · · · · · · · 0 1


. (VIII.34)
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Ist nun k = 1, so ist ℓ > 2, und wir erhalten aus (VIII.24), dass

G · A =



a1,1 a1,2 · · · a1,N
...

...
...

aℓ−1,1 aℓ−1,2 · · · aℓ−1,N

aℓ,1 + ηa1,1 aℓ,2 + ηa1,2 · · · aℓ,N + ηa1,N
aℓ+1,1 aℓ+1,2 · · · aℓ+1,N

...
...

...
aN,1 aN,2 · · · aN,N


= A

(ℓ+η1)
Z , (VIII.35)

was in diesem Fall (k, ℓ) = (1, ℓ) gerade die Behauptung ergibt,

det
[
A

(ℓ+η1)
Z

]
= det

[
G · A

]
= det

[
G
]
· det

[
A
]

= det
[
A
]
. (VIII.36)

Ist k ∈ ZN2 \ {ℓ}, so tauschen wir erst die k. Zeile in die erste Zeile, wenden dann
(VIII.35) an und tauschen anschließend die erste Zeile mit der k. Zeile. Dann ist also

A
(ℓ+ηk)
Z = S(1,k) ·G · S(1,k) · A und somit

det
[
A

(ℓ+ηk)
Z

]
=
(
det
[
S(1,k)

])2 · det [G] · det [A] = det
[
A
]
. (VIII.37)

VIII.2. Der Gauß-Algorithmus für Determinanten

Wir kommen nun zur Beschreibung des Gauß-Algorithmus’ zur Berechnung von Deter-
minanten. Seien N ∈ N, und

A =

a1,1 · · · a1,N
...

...
aN,1 · · · aN,N

 ∈ KN×N (VIII.38)

eine N ×N -Matrix, deren Determinante wir berechnen wollen.

1. Wir betrachten zunächst die erste Spalte (a1,1, . . . , aN,1) von A und unterscheiden
drei Fälle:

1.1 Verschwindet die erste Spalte identisch, (a1,1, . . . , aN,1) = (0, . . . , 0), so gilt
nach dem Kästchensatz

det[A] = det




0 a1,2 · · · a1,N
0 a2,2 · · · a2,N
...

...
...

0 aN,2 · · · aN,N




= 0 · det


a2,2 · · · a2,N

...
...

aN,2 · · · aN,N


 = 0, (VIII.39)

und wir sind fertig.
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1.2 Ist a1,1 ̸= 0, so setzen wir j := 1 und B := A = S(1,1) · A.
1.3 Sind schließlich (a1,1, . . . , aN,1) ̸= (0, . . . , 0), aber a1,1 = 0, so gibt es ein

j ∈ ZN2 , sodass aj,1 ̸= 0 (anderenfalls wären wir im Fall 1.1). Nun vertauschen
wir die j. Zeile mit der 1. Zeile und nennen die resultierende Matrix wieder
B := S(1,j) ·A. Da det[S(1,j)] = −1 ist, wechselt die Determinante von A dabei
nur das Vorzeichen, d.h. det[B] = − det[A].

Beachte, dass dieser Schritt gerade die Anwendung der elementaren Zeilen-
operation Vertauschung der 1. Zeile mit der j. Zeile ist.

Beide Fälle 1.2 und 1.3 zusammenfassend stellen wir fest, dass danach b1,1 ̸= 0
gilt, wobei

B = S(1,j) · A =

b1,1 · · · b1,N
...

...
bN,1 · · · bN,N

 , (VIII.40)

und dass weiterhin

det[A] = (−1)1−δ1,j det[B] (VIII.41)

gilt.

2. Wir setzen nun ηk := −bk,1/b1,1, für k = 2, 3, . . . , N , multiplizieren B von links mit

G =


1 0 · · · · · · 0

η2 1
. . . 0

η3 0
. . . . . .

...
...

...
. . . . . . 0

ηN 0 · · · 0 1

 , (VIII.42)

und erhalten nach (VIII.24)

G ·B =


b1,1 b1,2 · · · b1,N

b2,1 + η2b1,1 b2,2 + η2b1,2 · · · b2,N + η2b1,N
...

...
...

bN,1 + ηNb1,1 bN,2 + ηNb1,2 · · · bN,N + ηNb1,N



=


b1,1 b1,2 · · · b1,N
0 b2,2 + η2b1,2 · · · b2,N + η2b1,N
...

...
...

0 bN,2 + ηNb1,2 · · · bN,N + ηNb1,N

 . (VIII.43)

Wir bemerken, dass auch dieser Schritt als (N − 1)-mal ausgeführte elementa-
ren Zeilenoperationen aufgefasst werden kann, nämlich Addition des ηj-fachen der
1. Zeile zur j. Zeile für j = 2, 3, . . . , N ist.

3. Nach dem Kästchensatz sind det[G] = 1 und

det[A] = (−1)1−δ1,j det[B] = (−1)1−δ1,j det[G ·B] = (−1)1−δ1,j b1,1 det[Ã],
(VIII.44)
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wobei Ã ∈ K(N−1)×(N−1) eine (N − 1)× (N − 1)-Matrix ist, die durch

Ã =

 b2,2 + η2b1,2 · · · b2,N + η2b1,N
...

...
bN,2 + ηNb1,2 · · · bN,N + ηNb1,N

 (VIII.45)

gegeben ist.

4. Damit haben wir die Berechnung der Determinante der N × N -Matrix A auf die
Berechnung der Determinante der (N − 1) × (N − 1)-Matrix Ã zurückgeführt.
Wenden wir dieses Verfahren N -mal hintereinander an, erhalten wir schließlich die
Determinante von A.

5. Zur Illustration ein Beispiel:

det

 1 2 3
4 5 6
7 8 9

 = det

 1 2 3
0 −3 −6
0 −6 −12

 = det

 1 2 2
0 −3 −6
0 0 0


= 0. (VIII.46)

VIII.3. Der Gauß-Algorithmus zur Berechnung des
Inversen einer Matrix

Wir skizzieren nun noch den Gauß-Algorithmus zur Berechnung der Inversen einer Ma-
trix. Seien N ∈ N, und

A =

a1,1 · · · a1,N
...

...
aN,1 · · · aN,N

 ∈ KN×N (VIII.47)

eine invertible N × N -Matrix, für die also det[A] ̸= 0 gelten soll (was wir vorher z. B.
mit dem Gauß-Algorithmus zur Berechnung der Determinante überprüft haben).

• Wir setzen A(0) := A und a
(0)
i,j := ai,j. Wir wenden zunächst dieselben Schritte wie

zur Berechnung der Determinanten mit dem Gauß-Algorithmus an und erhalten

A(1) = G1 · S(1,j1) · A(0) , (VIII.48)

wobei j1 ≥ 1,

A(1) =


a
(1)
1,1 a

(1)
1,2 · · · a

(1)
1,N

0 a
(1)
2,2 · · · a

(1)
2,N

...
...

...

0 a
(1)
N,2 · · · a

(1)
N,N

 (VIII.49)
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und

G1 =



1 0 · · · · · · 0

η
(1)
2 1

. . . 0

η
(1)
3 0

. . . . . .
...

...
...

. . . . . . 0

η
(1)
N 0 · · · 0 1

 . (VIII.50)

• Anschließend wiederholen wir das Verfahren für die rechte untere (N−1)×(N−1)-
Teilmatrix in A(1). Wir erhalten

A(2) = G2 · S(1,j2) · A(1) = G2 · S(1,j2) ·G1 · S(1,j1) · A(0) , (VIII.51)

wobei j2 ≥ 2,

A(2) =


a
(2)
1,1 a

(2)
1,2 a

(2)
1,3 · · · a

(2)
1,N

0 a
(2)
2,2 a

(2)
2,3 · · · a

(2)
2,N

0 0 a
(2)
3,3 · · · a

(2)
3,N

...
...

...
...

0 0 a
(2)
N,3 · · · a

(2)
N,N

 (VIII.52)

und

G2 =



1 0 · · · · · · · · · 0

0 1
. . .

0 η
(2)
3 1

. . .
...

0 η
(2)
4 0

. . . . . .
...

0
...

...
. . . . . . 0

0 η
(2)
N 0 · · · 0 1


. (VIII.53)

• Wenden wir dieses Verfahren (N − 1)-mal an, so erhalten wir eine rechte obere
Dreiecksmatrix

A(N−1) = GN−1 · S(N−1,jN−1) · · ·G1 · S(1,j1) · A(0) , (VIII.54)

wobei jk ≥ k, für alle k ∈ ZN−1
1 ,

A(N−1) =


a
(N−1)
1,1 a

(N−1)
1,2 · · · a

(N−1)
1,N

0 a
(N−1)
2,2 · · · a

(N−1)
2,N

...
. . . . . .

...

0 · · · 0 a
(N−1)
N,N

 (VIII.55)
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und

Gk =



1 0 · · · · · · 0

0
. . . . . .

...
...

. . . 1 0
...

0 0 1 0
...

...
... η

(k)
k+1 1 0

...
...

... η
(k)
k+2 0

. . . . . .
...

...
...

...
...

. . . . . . 0

0 · · · 0 η
(k)
N 0 · · · 0 1


. (VIII.56)

• Um die Notation übersichtlich zu halten, schreiben wir D̂ = (di,j)
N
i,j=1 := A(N−1),

also

D̂ := A(N−1) =


d1,1 d1,2 · · · d1,N
0 d2,2 · · · d2,N
...

. . . . . .
...

0 · · · 0 dN,N

 , (VIII.57)

und beobachten, dass

∀ j ∈ ZN1 : dj,j ̸= 0 , (VIII.58)

da sich det[D̂] und det[A] höchstens im Vorzeichen unterscheiden und wir eingangs
det[A] ̸= 0 vorausgesetzt hatten (da A anderenfalls ohnehin nicht invertibel wäre).

• Nun wenden wir das analoge Verfahren zum eben durchgeführten an, diesmal aber
zur Elimination der Spalten oberhalb der Diagonalen von D̂. Wegen der rechten
oberen Dreiecksstruktur und (VIII.58) sind Zeilenvertauschungen nicht mehr not-
wendig.

• Auch die Definition der Matrizen zur Zeilenaddition ist einfach: Im ersten Schritt
setzen wir η̂

(N)
i := −di,N/dN,N und

ĜN =


1 0 · · · 0 η̂

(N)
1

0
. . . . . .

...
...

. . . . . . 0

0
. . . . . . η̂

(N)
N−1

0 · · · 0 0 1

 . (VIII.59)

Multiplizieren wir eine Matrix A von links mit ĜN , so wird das η̂
(N)
i -fache der

N . Zeile zur i. Zeile von A hinzuaddiert.

Hier multiplizieren wir D̂ von links mit ĜN und erreichen dadurch, dass die
N . Spalte oberhalb der Diagonalen eliminiert und D̂ sonst aber unverändert ge-
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lassen wird,

ĜN · D̂ =


d1,1 d1,2 · · · d1,N−1 0

0 d2,2 · · · d2,N−1
...

...
. . . . . .

...
...

...
. . . dN−1,N−1 0

0 · · · 0 0 dN,N

 . (VIII.60)

• Allgemein gehen wir k ∈ ZN2 genauso vor: Wir definieren η̂
(k)
i := −di,k/dk,k und

Ĝk =



1 0 · · · 0 η̂
(k)
1 0 · · · 0

0
. . . . . .

...
...

...
...

...
. . . 1 0 η̂

(k)
k−2

...
...

...
. . . 1 η̂

(k)
k−1

...
...

...
. . . 1 0 · · · 0

...
. . . 1

. . .
...

...
. . . . . . 0

0 · · · · · · · · · 0 1


(VIII.61)

und beobachten, dass wieder det[Ĝk] = 1 und

Ĝ−1
k =



1 0 · · · 0 −η̂(k)1 0 · · · 0

0
. . . . . .

...
...

...
...

...
. . . 1 0 −η̂(k)k−2

...
...

...
. . . 1 −η̂(k)k−1

...
...

...
. . . 1 0 · · · 0

...
. . . 1

. . .
...

...
. . . . . . 0

0 · · · · · · · · · 0 1


(VIII.62)

• Multiplizieren wir sukzessiv die Matrizen ĜN , ĜN−1, . . . , Ĝ2 von links an D̂, so
erhalten wir die Diagonalmatrix

D := Ĝ2 · Ĝ3 · · · ĜN · D̂ =


d1,1 0 · · · 0

0 d2,2
. . .

...
...

. . . . . . 0
0 · · · 0 dN,N

 . (VIII.63)

Diese Matrix lässt sich jedoch leicht invertieren, nämlich

D−1 =


d−1
1,1 0 · · · 0

0 d−1
2,2

. . .
...

...
. . . . . . 0

0 · · · 0 d−1
N,N

 , (VIII.64)
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wobei (VIII.58) sicherstellt, dass die Kehrwerte d−1
j,j ∈ K existieren. Insgesamt ist

also

1 = D−1D = D−1 Ĝ2 · · · ĜN D̂ = D−1 Ĝ2 · · · ĜN A
(N−1)

= D−1 Ĝ2 · · · ĜN GN−1 S
(N−1,jN−1) · · ·G1 S

(1,j1)A(0)

= D−1 Ĝ2 · · · ĜN GN−1 S
(N−1,jN−1) · · ·G1 S

(1,j1)A , (VIII.65)

und das Matrixprodukt links von A ist die gesuchte inverse Matrix,

A−1 = D−1 Ĝ2 · · · ĜN GN−1 S
(N−1,jN−1)GN−2 S

(N−1,jN−1) · · ·G1 S
(1,j1) . (VIII.66)

• Zur konkreten Durchführung der oben beschriebenen Schritte gibt es ein prak-
tisches Schema, das aus der Matrix A und rechts daneben der Einheitsmatrix
besteht,

A 1 =

a1,1 a1,2 · · · a1,N 1 0 · · · 0

a2,1 a2,2 · · · a2,N 0 1
. . .

...
...

...
...

...
. . . . . . 0

aN,1 aN,2 · · · aN,N 0 · · · 0 1

. (VIII.67)

Nun wird die erste Multiplikation von links mit S(1,j1) beider Seiten durchgeführt,
d.h. man berechnet

S(1,j1) · A S(1,j1) · 1 = S(1,j1)A S(1,j1) . (VIII.68)

Dies ist leicht durchzuführen, denn wir wissen, dass S(1,j1) nur die Vertauschung
der 1. mit der j1. Zeile bewirkt. Wir führen also diese Vertauschung sowohl für A
auf der linken als auch für die Einheitsmatrix 1 auf der rechten Seite durch.

Danach multiplizieren wir beide Matrizen mit G1,

G1 S
(1,j1)A G1 S

(1,j1) . (VIII.69)

Dadurch werden die η
(1)
j -fachen der ersten auf die j. Zeile addiert, wir brauchen

also auch hier keine Matrixmultiplikationen vorzunehmen.

So fahren wir fort und erhalten mit Sk := S(1,j1) schließlich

D−1 Ĝ2 · · · ĜN GN−1 SN−1 · · ·G1 S1A D−1 Ĝ2 · · · ĜN GN−1 SN−1 · · ·G1 S1

= 1 A−1 . (VIII.70)

Durch die sukzessive Anwendung geschickt gewählter Zeilenoperationen haben wir
also die linke Seite des Schemas von A in 1 und die rechte Seite von 1 in A−1 um-
gewandelt, und wir können die inverse Matrix auf der rechten Seite direkt ablesen.
Man kann sich rechts auch die einzelnen Schritte notieren - dies bewahrt einem
vor fehlerhaften Berechnungen.
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• Ein konkretes Beispiel: K = R, N = 3 und

A =

0 1 4
1 1 1
2 3 5

 ∈ R3×3 . (VIII.71)

Das Schema sieht zu Beginn so aus,

A 1 =

0 1 4 1 0 0 (i)0

1 1 1 0 1 0 (ii)0

2 3 5 0 0 1 (iii)0

. (VIII.72)

Wir schreiben ab jetzt nur noch die Schemata auf. Mit j1 = 2 wird

−→
1 1 1 0 1 0 (i)1 = (ii)0

0 1 4 1 0 0 (ii)1 = (i)0

2 3 5 0 0 1 (iii)1 = (iii)0

(VIII.73)

−→
1 1 1 0 1 0 (i)2 = (i)1

0 1 4 1 0 0 (ii)2 = (ii)1

0 1 3 0 −2 1 (iii)2 = (iii)1 − 2 · (i)1

(VIII.74)

−→
1 1 1 0 1 0 (i)3 = (i)2

0 1 4 1 0 0 (ii)3 = (ii)2

0 0 −1 −1 −2 1 (iii)3 = (iii)2 − (ii)2

(VIII.75)

−→
1 1 0 −1 −1 1 (i)4 = (i)3 + (iii)3

0 1 0 −3 −8 4 (ii)4 = (ii)3 + 4 · (iii)3
0 0 −1 −1 −2 1 (iii)4 = (iii)3

(VIII.76)

−→
1 0 0 2 7 −3 (i)5 = (i)4 − (ii)4

0 1 0 −3 −8 4 (ii)5 = (ii)4

0 0 −1 −1 −2 1 (iii)5 = (iii)4

(VIII.77)

−→
1 0 0 2 7 −3 (i)6 = (i)5

0 1 0 −3 −8 4 (ii)6 = (ii)5

0 0 1 1 2 −1 (iii)6 = (iii)5/(−1)
, (VIII.78)

also ist

A−1 =

 2 7 −3
−3 −8 4
1 2 −1

 . (VIII.79)
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IX. Skalarprodukte

In diesem Kapitel wollen wir wie schon zuvor voraussetzen, dass der zugrunde liegende
Körper K der Körper R der reellen Zahlen oder der Körper C der komplexen Zahlen
ist. In den vorigen Kapiteln war diese Voraussetzung jedoch entbehrlich, und die dort
bewiesenen Resultate würde ihre Gültigkeit behalten, wenn K irgendein Körper wäre.
Im Gegensatz dazu ist in diesem und den folgenden Kapiteln die Annahme, dass K = R
oder K = C gilt, wesentlich.

IX.1. Quadratische Formen und Skalarprodukte

Definition IX.1. Sei X ein K-Vektorraum.

(i) Eine Abbildung Q : X ×X → K heißt quadratische Form (auf X)

:⇔ ∀α, β ∈ K, x⃗, y⃗, w⃗, z⃗ ∈ X :

Q(αx⃗+ y⃗, βw⃗ + z⃗) (IX.1)

=

{
αβQ(x⃗, w⃗) + αQ(x⃗, z⃗) + βQ(y⃗, w⃗) +Q(y⃗, z⃗), falls K = R,

ᾱβQ(x⃗, w⃗) + ᾱQ(x⃗, z⃗) + βQ(y⃗, w⃗) +Q(y⃗, z⃗), falls K = C.

Für K = R bezeichnet man die Eigenschaft (IX.1) als Bilinearität, für K = C

heißt (IX.1) Sesquilinearität.

(ii) Eine quadratische Form Q : X ×X → K heißt symmetrisch

:⇔ ∀ x⃗, y⃗ ∈ X : Q(x⃗, y⃗) =

{
Q(y⃗, x⃗), falls K = R,

Q(y⃗, x⃗), falls K = C.
(IX.2)

(iii) Eine symmetrische quadratische Form Q : X×X → K, für die für alle x⃗ ∈ X \ {⃗0}

Q(x⃗, x⃗) > 0 gilt, heißt positiv definit, (IX.3)

Q(x⃗, x⃗) ≥ 0 gilt, heißt positiv semidefinit, (IX.4)

Q(x⃗, x⃗) < 0 gilt, heißt negativ definit, (IX.5)

Q(x⃗, x⃗) ≤ 0 gilt, heißt negativ semidefinit. (IX.6)
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Gibt es Vektoren x⃗, y⃗ ∈ X so, dass Q(x⃗, x⃗) > 0 und Q(y⃗, y⃗) < 0 gelten, so heißt
Q : X ×X → K indefinit.

(iv) Eine Abbildung ⟨·|·⟩ : X ×X → K heißt Skalarprodukt (auf X)

:⇔ ⟨·|·⟩ : X ×X → K ist eine positiv definite symmetrische quadratische Form.
(IX.7)

Bemerkungen und Beispiele.

• Quadratische Formen auf R-Vektorräumen heißen auch Bilinearformen.

• Quadratische Formen auf C-Vektorräumen heißen auch Sesquilinearformen. Die
Eigenschaft Q(αx⃗, y⃗) = αQ(x⃗, y⃗) nennt man auch Antilinearität.

• Die hier eingeführte Terminologie ist in der Literatur nicht ganz einheitlich. Häufig
werden bilineare bzw. sesquilineare Abbildungen als Skalarprodukte bezeichnet,
und Definitheit ist eine zusätzliche Eigenschaft.

• Aus (ii) folgt, dass für eine symmetrische quadratische Form Q(x⃗, x⃗) ∈ R stets reell
ist (auch für K = C). Es gilt also stets Q(x⃗, x⃗) > 0, Q(x⃗, x⃗) < 0 oder Q(x⃗, x⃗) = 0.

• Für d ∈ N und (α1, . . . , αd)
T , (β1, . . . , βd)

T ∈ Rd ist〈α1
...
αd


∣∣∣∣∣∣∣
β1...
βd

〉 := α1β1 + α2β2 + . . .+ αdβd (IX.8)

das euklidische Skalarprodukt auf Rd.

• Für d ∈ N und (α1, . . . , αd)
T , (β1, . . . , βd)

T ∈ Cd ist〈α1
...
αd


∣∣∣∣∣∣∣
β1...
βd

〉 := ᾱ1β1 + ᾱ2β2 + . . .+ ᾱdβd (IX.9)

das unitäre Skalarprodukt auf Cd.

• Identifiziert man Rd mit (ReC)d durch

Rd ∋ (α1, . . . , αd)
T 7→ (α1 + i0, . . . , αd + i0)T ∈ Cd, (IX.10)

so fallen euklidisches und unitäres Skalarprodukt zusammen. Wir können also stets
Rd als reellen Teilraum von Cd betrachten, auf dem das unitäre Skalarprodukt
(IX.9) die Form (IX.8) des euklidischen annimmt.

• Auf R4 ist durch

Q



α0

α1

α2

α3

 ,


β0
β1
β2
β3


 := α0β0 − α1β1 − α2β2 − α3β3 (IX.11)

eine indefinite quadratische Form definiert, wobei (α0, α1, α2, α3)
T ∈ R4 und

(β0, β1, β2, β3)
T ∈ R4. Glg. (IX.11) wird auch als Minkowski-Skalarprodukt be-

zeichnet (obwohl es indefinit und somit kein Skalarprodukt ist); R4 nennt man in
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diesem Zusammenhang auch den Minkowskiraum und schreibt M4 oder R1,3 statt
R4.

• Sei X = C[x] der C-Vektorraum der Polynome in x mit komplexen Koeffizienten.
Für p, q ∈ C[x] definiert

⟨p|q⟩ :=
∫ ∞

−∞
p(x) q(x)

e−x
2

√
2π

dx (IX.12)

ein Skalarprodukt auf C[x].

Satz IX.2 (Cauchy-Schwarzsche Ungleichung). Sei X ein K-Vektorraum mit einer po-
sitiv semidefiniten symmetrischen quadratische Form Q : X ×X → K. Dann gilt

∀x⃗, y⃗ ∈ X : |Q(x⃗, y⃗)| ≤
√
Q(x⃗, x⃗) ·

√
Q(y⃗, y⃗) . (IX.13)

Beweis. Wir führen den Beweis nur für K = C. Für Q(x⃗, y⃗) = 0 gilt (IX.13) trivia-
lerweise, und wir können im Folgenden Q(x⃗, y⃗) ̸= 0 annehmen. Für jedes λ ∈ K ist
dann

0 ≤ Q(λx⃗+ y⃗ , λx⃗+ y⃗) = λ̄ λQ(x⃗, x⃗) + Q(y⃗, y⃗) + λ̄ Q(x⃗, y⃗) + λQ(y⃗, x⃗)

= |λ|2Q(x⃗, x⃗) + Q(y⃗, y⃗) + 2Re{λ̄ Q(x⃗, y⃗)} . (IX.14)

Wir setzen

λ := −r · Q(x⃗, y⃗)
|Q(x⃗, y⃗)|

, (IX.15)

wobei r ≥ 0 später gewählt wird. Dann sind |λ| = r und

2Re{λ̄ Q(x⃗, y⃗)} = 2Re

{
− r |Q(x⃗, y⃗)|2

|Q(x⃗, y⃗)|

}
= −2r |Q(x⃗, y⃗)| . (IX.16)

Damit folgt aus (IX.14)

∀ r ∈ R+
0 : r |Q(x⃗, y⃗)| ≤ r2

2
Q(x⃗, x⃗) +

1

2
Q(y⃗, y⃗) . (IX.17)

Wäre nun Q(x⃗, x⃗) = 0, so erhielten wir durch die Wahl r := Q(y⃗, y⃗) |Q(x⃗, y⃗)|−1 die Aus-
sage |Q(y⃗, y⃗)| ≤ |Q(y⃗, y⃗)|/2, was |Q(y⃗, y⃗)| = 0 impliziert. Damit wären also Q(x⃗, x⃗) =
|Q(y⃗, y⃗)| = 0, und aus (IX.17) würde r |Q(x⃗, y⃗)| ≤ 0 für jedes r ≥ 0 folgen. So-
mit wäre auch |Q(x⃗, y⃗)| = 0, was in Widerspruch zur anfangs gemachten Annahme
Q(x⃗, y⃗) ̸= 0 stünde. Es muss also Q(x⃗, x⃗) > 0 gelten. Durch die somit definierte Wahl
r := Q(y⃗, y⃗)1/2Q(x⃗, x⃗)−1/2 ∈ R+

0 erhalten wir die behauptete Ungleichung (IX.13).

Korollar IX.3 (Cauchy-Schwarzsche Ungleichung). Sei X ein K-Vektorraum mit Ska-
larprodukt ⟨·|·⟩ : X ×X → K. Dann gilt

∀x⃗, y⃗ ∈ X : |⟨x⃗|y⃗⟩| ≤
√
⟨x⃗|x⃗⟩ ·

√
⟨y⃗|y⃗⟩. (IX.18)
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Bemerkungen und Beispiele.

• Satz IX.2 unterscheidet sich von Korollar IX.3 nur durch die etwas schwächere
Annahme der positiven Semidefinitheit.

• Dieser Unterschied ist jedoch von großer Bedeutung für verschiedene Beweise in
der Mathematik, da die positive Semidefinitheit in vielen Situation einfach zu
gewinnen ist, die positive Definitheit aber nicht.

• Ein prominentes Beispiel ist die GNS-Konstruktion (Gelfand, Naimark, Segal) der
Theorie der C∗-Algebren.

IX.2. Skalarprodukte und Normen

Definition IX.4. Eine Abbildung ∥ · ∥ : X → R+
0 auf einem K-Vektorraum X heißt

Norm, falls folgende drei Eigenschaften erfüllt sind,

(i) ∀ x⃗ ∈ X :
(
∥x⃗∥ = 0

)
⇔

(
x⃗ = 0⃗

)
, (IX.19)

(ii) ∀ α ∈ K, x⃗ ∈ X : ∥αx⃗∥ = |α| · ∥x⃗∥, (IX.20)

(iii) ∀ x⃗, y⃗ ∈ X : ∥x⃗+ y⃗∥ ≤ ∥x⃗∥+ ∥y⃗∥, (IX.21)

und in diesem Fall heißt
(
X, ∥ · ∥

)
normierter Vektorraum.

Satz IX.5. Sei X ein K-Vektorraum mit Skalarprodukt ⟨·|·⟩ : X ×X → K. Dann wird
X ein normierter Vektorraum mit

∀x ∈ X : ∥x⃗∥ :=
√
⟨x⃗|x⃗⟩. (IX.22)

Beweis. Eigenschaft (IX.19) folgt aus der positiven Definitheit ⟨x⃗|x⃗⟩ > 0, für x⃗ ̸= 0⃗.
(Natürlich gilt ⟨⃗0|⃗0⟩ = ⟨⃗0|0 · 0⃗⟩ = 0⟨⃗0|⃗0⟩ = 0.) Die Homogenität (IX.20) folgt direkt aus
der Bilinearität bzw. Sesquilinearität, etwa√

⟨αx⃗|αx⃗⟩ =
√
ᾱ · α⟨x⃗|x⃗⟩ = |α| ·

√
⟨x⃗|x⃗⟩, (IX.23)

für K = C. Die Dreiecksungleichung (IX.21) resultiert aus der Cauchy-Schwarzschen
Ungleichung (IX.13), denn

⟨x⃗+ y⃗|x⃗+ y⃗⟩ = ⟨x⃗|x⃗⟩+ ⟨y⃗|y⃗⟩+ ⟨x⃗|y⃗⟩+ ⟨y⃗|x⃗⟩

≤ ⟨x⃗|x⃗⟩+ ⟨y⃗|y⃗⟩+ 2|⟨x⃗|y⃗⟩|

≤ ⟨x⃗|x⃗⟩+ ⟨y⃗|y⃗⟩+ 2
√
⟨x⃗|x⃗⟩ ·

√
⟨y⃗|y⃗⟩

=
(√
⟨x⃗|x⃗⟩+

√
⟨y⃗|y⃗⟩

)2
, (IX.24)

und man erhält (IX.21) durch Wurzelziehen.
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Bemerkungen und Beispiele.

• FürX = Rd mit d ∈ N induziert das euklidische Skalarprodukt die euklidische Norm,

∀ x⃗ =

 α1
...
αd

 ∈ Rd : ∥x⃗∥eukl :=
√
⟨x⃗|x⃗⟩ =

√
α2
1 + . . .+ α2

d, (IX.25)

und wir erhalten mit ∥ · ∥eukl den üblichen Abstandsbegriff,

dist(x⃗, y⃗) = ∥x⃗− y⃗∥eukl. (IX.26)

• Analog findet man einen Abstandsbegriff auf Cd durch ∥x⃗− y⃗∥unit, wobei

x⃗ =

 α1
...
αd

 , y⃗ =

 β1
...
βd

 , ∥x⃗− y⃗∥unit =
√
|α1 − β1|2 + . . .+ |αd − βd|2.

(IX.27)

• Es gibt aber auch Normen, die nicht durch ein Skalarprodukt induziert werden.
Für d ∈ N und X = Cd sind, mit x⃗ = (α1, . . . , αd)

T ∈ Cd,

∥x⃗∥1 = |α1|+ . . .+ |αd|, ∥x⃗∥∞ = max
{
|α1|, . . . , |αd|

}
(IX.28)

und allgemeiner

∀ 1 ≤ p <∞ : ∥x⃗∥p :=
(
|α1|p + |α2|p + . . .+ |αd|p

)1/p
(IX.29)

alles Normen auf X. Außer für p = 2 (∥ · ∥2 = ∥ · ∥unit) ist keine dieser Normen
durch ein Skalarprodukt erzeugt.

IX.3. Orthogonalität und Orthonormalbasen

Definition IX.6. Sei X ein K-Vektorraum mit Skalarprodukt ⟨·|·⟩ : X ×X → K.

(i) Zwei Vektoren x⃗, y⃗ ∈ X heißen orthogonal oder senkrecht zueinander, x⃗ ⊥ y⃗

:⇔ ⟨x⃗|y⃗⟩ = 0. (IX.30)

(ii) Ist A ⊆ X eine Teilmenge, so heißt

A⊥ =
{
x⃗ ∈ X

∣∣∣ ∀ a⃗ ∈ A : ⟨⃗a|x⃗⟩ = 0
}

(IX.31)

das orthogonale Komplement zu A.

(iii) Eine Teilmenge A ⊆ X heißt orthonormal

:⇔ ∀ x⃗, y⃗ ∈ A, x⃗ ̸= y⃗ : ⟨x⃗|x⃗⟩ = ⟨y⃗|y⃗⟩ = 1, ⟨x⃗|y⃗⟩ = 0. (IX.32)
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(iv) Eine Teilmenge A ⊆ X heißt Orthonormalbasis (ONB)

:⇔ A ist orthonormal und eine Basis in X. (IX.33)

Bemerkungen und Beispiele.

• Für jede Teilmenge A ⊆ X ist A⊥ ein Unterraum in X, denn offensichtlich ist
0⃗ ∈ A⊥, und mit x⃗, y⃗ ∈ A⊥ und α ∈ K ist

∀ a⃗ ∈ A : ⟨⃗a|αx⃗+ y⃗⟩ = α⟨⃗a|x⃗⟩+ ⟨⃗a|y⃗⟩ = 0. (IX.34)

(Anwendung des Unterraumkriteriums.)

• Sind A ⊆ X und x⃗ ∈ A ∩ A⊥, so gilt ∥x⃗∥2 = ⟨x⃗|x⃗⟩ = 0 und somit x⃗ = 0⃗. Also ist
stets

A ∩ A⊥ ⊆ {⃗0} . (IX.35)

• Für A ⊆ B ⊆ X ist A⊥ ⊇ B⊥.

• Für A ⊆ X ist A⊥ = (span(A))⊥, denn einerseits ist A⊥ ⊇ (span(A))⊥ wegen
A ⊆ (span(A)). Sind andererseits x⃗ ∈ A⊥ und a⃗ = α1a⃗1 + . . . + αN a⃗N ∈ span(A)
mit αj ∈ K und a⃗j ∈ A, so gilt

⟨⃗a|x⃗⟩ =
N∑
j=1

ᾱj ⟨⃗aj|x⃗⟩︸ ︷︷ ︸
= 0

= 0, (IX.36)

also ist auch x⃗ ∈ (span(A))⊥.

• Seien X = R3 mit dem euklidschen Skalarprodukt und A := {a⃗} ⊆ B := {a⃗, b⃗}
sowie x⃗ ∈ X, mit

a⃗ =

1
1
0

 , b⃗ =

0
1
0

 , x⃗ =

x1x2
x3

 . (IX.37)

Dann sind ⟨⃗a|x⃗⟩ = x1 + x2 und ⟨⃗b|x⃗⟩ = x2. Somit gelten

x⃗ ∈ A⊥ ⇔ x2 = −x1, x⃗ ∈ B⊥ ⇔ x2 = −x1, x2 = 0, (IX.38)

also

A⊥ =


 α
−α
β

∣∣∣∣∣∣ α, β ∈ R
 = span


 1
−1
0

 ,

0
0
1


 (IX.39)

⊇


0
0
β

∣∣∣∣∣∣ β ∈ R
 = span


0
0
1


 = B⊥.
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• Eine orthonormale Teilmenge A ⊆ X ist stets linear unabhängig. Ist nämlich eine
endliche Teilmenge von A gegeben durch {a⃗1, . . . , a⃗N} ⊆ A, so gilt nach (IX.32)

∀ i, j ∈ ZN1 : ⟨⃗ai |⃗aj⟩ = δi,j. (IX.40)

Sind nun α1, . . . , αN ∈ K so, dass α1a⃗1 + . . . + αN a⃗N = 0⃗, dann folgt für jedes
i ∈ ZN1 , dass

0 = ⟨⃗ai |⃗0⟩ = ⟨⃗ai|α1a⃗1 + . . .+ αN a⃗N⟩ =
N∑
j=1

αj ⟨⃗ai |⃗aj⟩︸ ︷︷ ︸
δi,j

= αi. (IX.41)

Also sind α1 = · · · = αN = 0, und {a⃗1, . . . , a⃗N} ist linear unabhängig.
• Die Standardbasis {e⃗1, . . . , e⃗N} ⊆ RN , mit

e⃗1 =


1
0
...
0

 , e⃗2 =


0
1
...
0

 , . . . , e⃗N =


0
0
...
1

 , (IX.42)

ist eine ONB bezüglich des euklidischen/unitären Skalarproduktes in KN .

Satz IX.7. Seien X ein Vektorraum der Dimension N < ∞ mit Skalarprodukt ⟨·|·⟩ :
X ×X → K und Orthonormalbasis A = {a⃗1, . . . , a⃗N} ⊆ X.

(i) Für alle x⃗ ∈ X ist

x⃗ =
N∑
j=1

⟨⃗aj|x⃗⟩ a⃗j. (IX.43)

(ii) Ist Φ ∈ L(X) eine lineare Abbildung, so ist ihre Matrixdarstellung bzgl. A gegeben
durch

MA[Φ] =


⟨⃗a1|Φa⃗1⟩ ⟨⃗a1|Φa⃗2⟩ · · · ⟨⃗a1|Φa⃗N⟩
⟨⃗a2|Φa⃗1⟩ ⟨⃗a2|Φa⃗2⟩ · · · ⟨⃗a2|Φa⃗2⟩

...
...

...
⟨⃗aN |Φa⃗1⟩ ⟨⃗aN |Φa⃗2⟩ · · · ⟨⃗aN |Φa⃗N⟩

 . (IX.44)

Beweis. (i): Da A eine Basis ist, besitzt der Vektor x⃗ ∈ X eine eindeutige Darstellung
x⃗ = α1a⃗1+α2a⃗2+ . . .+αN a⃗N ∈ X als Linearkombination der Basisvektoren in A. Bilden
wir das Skalarprodukt mit a⃗j, so erhalten wir

⟨⃗aj|x⃗⟩ =
N∑
i=1

αi ⟨⃗aj |⃗ai⟩ =
N∑
i=1

αi δi,j = αj, (IX.45)

für j ∈ ZN1 , und wir erhalten (i).
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(ii): IstMA[Φ] = (ai,j)
N
i,j=1 ∈ KN×N , so gilt

∀ j ∈ ZN1 : Φa⃗j =
N∑
i=1

ai,j a⃗i. (IX.46)

Also ist, für alle k, j ∈ ZN1 ,

⟨⃗ak|Φa⃗j⟩ =
N∑
i=1

ai,j ⟨⃗ak |⃗ai⟩︸ ︷︷ ︸
= δk,i

= ak,j. (IX.47)

Definition IX.8. Seien N ∈ N und A = (akj,j)
N
k,j=1 ∈ KN×N . Die zu A adjungierte

Matrix ist durch

A∗ =
(
A
)T

=

 a1,1 a2,1 · · · aN,1
a1,2 a2,2 · · · aN,2
a1,N a2,N · · · aN,N

 (IX.48)

definiert.

Bemerkungen und Beispiele.

• Es sind(
1 + i 2i
3 2− i

)∗

=

(
1− i 3
−2i 2 + i

)
,

1 2 3
4 5 6
7 8 9

∗

=

1 4 7
2 5 8
3 6 9

 . (IX.49)

• Für A ∈ RN×N ist A∗ = AT .

Korollar IX.9. Seien X ein K-Vektorraum der Dimension N < ∞ mit Skalarprodukt
⟨·|·⟩ : X ×X → K.

(i) Zu jeder linearen Abbildung Φ ∈ L(X) existiert genau eine lineare Abbildung Φ∗ ∈
L(X), so dass

∀ x⃗, y⃗ ∈ X : ⟨x⃗|Φy⃗⟩ = ⟨Φ∗x⃗|y⃗⟩. (IX.50)

Dabei heißt Φ∗ die zu Φ adjungierte lineare Abbildung.

(ii) Ist A = {a⃗1, a⃗2, . . . , a⃗N} ⊆ X eine ONB, so gilt

MA[Φ
∗] =

(
MA[Φ]

)∗
, (IX.51)

für jede lineare Abbildung Φ ∈ L(X).

Beweis. Wir führen den Beweis unter der Annahme, dass wir über eine ONB A =
{a⃗1, a⃗2, . . . , a⃗N} ⊆ X verfügen, was wir erst später mit den Schmidtschen Orthonormie-
rungverfahren rechtfertigen.
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Seien Φ ∈ L(X) eine lineare Abbildung mit MatrixdarstellungM = (mk,j)
N
k,j=1 =MA[Φ]

bezüglich der ONB A. Nach Satz IX.7 (ii) ist dann

∀ k, j ∈ ZN1 : mk,j = ⟨⃗ak |Φa⃗j⟩ . (IX.52)

Wir definieren nun eine lineare Abbildung Φ∗ ∈ L(X) durch ihre Matrixdarstellung

MA[Φ
∗] :=

(
mj,k

)N
k,j=1

= M
T
. Kraft dieser Definition erfüllt MA[Φ

∗] damit (IX.51).

Außerdem gilt für alle k, j ∈ ZN1 , dass

⟨Φ∗a⃗k | a⃗j⟩ = ⟨⃗aj |Φ∗a⃗k⟩ =
(
M

T )
j,k

= mk,j = ⟨⃗ak |Φa⃗j⟩ . (IX.53)

Somit gilt (IX.50) für alle Paare a⃗k, a⃗j ∈ A von Basisvektoren und wegen der Sesquili-
nearität des Skalarprodukts damit auch für alle Paare x⃗, y⃗ ∈ X.

IX.4. Das Schmidtsche Orthonormierungsverfahren

Zur Vorbereitung des unten beschriebenen Schmidtschen Orthonormierungsverfahrens
definieren wir noch orthogonale Projektionen und formulieren eine allgemeine Version
des Satzes von Pythagoras. Seien dazu X ein K-Vektorraum mit Skalarprodukt ⟨·|·⟩,
A = {a⃗1, . . . , a⃗N} ⊆ X eine orthonormale Teilmenge und Y := span(A). Wir definieren
lineare Abbildungen P, P⊥ ∈ L(X) durch P⊥ := 1− P und

∀x⃗ ∈ X : Px⃗ :=
N∑
n=1

⟨⃗an|x⃗⟩ a⃗n. (IX.54)

Dann ist

∀m ∈ ZN1 : P a⃗m :
N∑
n=1

⟨⃗an |⃗am⟩︸ ︷︷ ︸
=δm,n

a⃗n = a⃗m. (IX.55)

Also ist für alle y⃗ = α1a⃗1 + . . .+ αN a⃗N ∈ Y

P y⃗ =
N∑
n=1

αnP a⃗n =
N∑
n=1

αna⃗n = y⃗. (IX.56)

Weiterhin ist für alle x⃗ ∈ X

P 2x⃗ = P
(
Px⃗
)

= P

( N∑
n=1

⟨⃗an|x⃗⟩ a⃗n
)

=
N∑
n=1

⟨⃗an|x⃗⟩P a⃗n =
N∑
n=1

⟨⃗an|x⃗⟩ a⃗n = Px⃗,

(IX.57)

d.h. es gilt

P 2 = P (IX.58)
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und daher auch (P⊥)2 = (1−P )2 = 1−2P+P 2 = 1−P = P⊥ sowie PP⊥ = P (1−P ) =
P − P 2 = 0 und P⊥P = (1− P )P = P − P 2 = 0, also insgesamt

P 2 = P,
(
P⊥)2 = P⊥, P P⊥ = 0, P⊥ P = 0. (IX.59)

Schließlich ist für alle x⃗, z⃗ ∈ X

⟨x⃗|P z⃗⟩ =

〈
x⃗

∣∣∣∣ N∑
n=1

⟨⃗an|z⃗⟩ a⃗n
〉

=
N∑
n=1

⟨⃗an|z⃗⟩ ⟨x⃗|⃗an⟩ =

〈 N∑
n=1

⟨⃗an|x⃗⟩ a⃗n
∣∣∣∣z⃗〉 = ⟨Px⃗|z⃗⟩,

(IX.60)

und wir erhalten für alle x⃗ ∈ X

∥x⃗∥2 = ⟨x⃗|x⃗⟩ = ⟨Px⃗+ P⊥x⃗|Px⃗+ P⊥x⃗⟩ (IX.61)

= ⟨Px⃗|Px⃗⟩+ ⟨P⊥x⃗|Px⃗⟩+ ⟨Px⃗|P⊥x⃗⟩+ ⟨P⊥x⃗|P⊥x⃗⟩

= ∥Px⃗∥2 + ⟨PP⊥x⃗|x⃗⟩+ ⟨x⃗|PP⊥x⃗⟩+ ∥P⊥x⃗∥2

= ∥Px⃗∥2 + ∥P⊥x⃗∥2 .

P heißt orthogonale Projektion (auf Y ) und (IX.61) ist eine Verallgemeinerung des
Satzes von Pythagoras.

Satz IX.10 (Schmidtsches Orthonormierungsverfahren). Ist X ein K-Vektorraum mit

einem Skalarprodukt ⟨·|·⟩ : X → K und einer abzählbaren Basis {⃗bj}Jj=1, wobei J ∈ N
oder J =∞, so besitzt X auch eine abzählbare Orthonormalbasis {a⃗j}Jj=1.

Beweis. Wir führen den Beweis nur für K = C und dim(X) =∞. Der Fall dimK(X) <
∞ geht analog. Für N ∈ N seien {a⃗1, . . . , a⃗N} ⊆ X eine orthonormale und

{a⃗1, . . . , a⃗N , b⃗N+1} ⊆ X eine linear unabhängige Teilmenge. Wie in (IX.54) definieren
wir die orthogonale Projektion PN ∈ L(X) durch

PN x⃗ :=
N∑
n=1

⟨⃗an|x⃗⟩⃗an, (IX.62)

und verwenden nun (IX.56)–(IX.61). Weil {a⃗1, . . . , a⃗N , b⃗N+1} ⊆ X linear unabhängig ist,
ist

P⊥
N b⃗N+1 = b⃗N+1 −

N∑
n=1

⟨⃗an|⃗bN+1⟩⃗an ̸= 0⃗, (IX.63)

und daher können wir

a⃗N+1 :=
P⊥
N b⃗N+1∥∥P⊥
N b⃗N+1

∥∥ (IX.64)

bilden. Beachte, dass a⃗N+1 ∈ span
(
{a⃗1, . . . , a⃗N , b⃗N+1}

)
. Wegen

b⃗N+1 = PN b⃗N+1 + P⊥
N b⃗N+1 =

N∑
n=1

⟨⃗an|⃗bN+1⟩ a⃗n +
∥∥P⊥

N b⃗N+1

∥∥ a⃗N+1 (IX.65)
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gilt umgekehrt auch b⃗N+1 ∈ span
(
{a⃗1, . . . , a⃗N , a⃗N+1}

)
. Mit YN+1 := span

(
{a⃗1, . . . , a⃗N+1}

)
ist also

YN+1 = span
(
{a⃗1, . . . , a⃗N , a⃗N+1}

)
= span

(
{a⃗1, . . . , a⃗N , b⃗N+1}

)
. (IX.66)

Offensichtlich ist ∥a⃗N+1∥ = 1. Weiterhin sind a⃗N+1 = P⊥
N a⃗N+1 und a⃗k = PN a⃗k, für alle

k ∈ ZN1 , und deshalb〈
a⃗k
∣∣ a⃗N+1

〉
=
〈
PN a⃗k

∣∣ P⊥
N a⃗N+1

〉
=
〈
a⃗k
∣∣ PNP⊥

N a⃗N+1

〉
= 0, (IX.67)

da PNP
⊥
N = 0. Also ist

∀ i, j ∈ ZN+1
1 : ⟨⃗ai |⃗aj⟩ = δi,j, (IX.68)

und {a⃗1, . . . , a⃗N+1} ⊆ YN+1 ist eine Orthonormalbasis von YN+1. Sei nun {⃗bn}∞n=1 eine

Basis in X. Wir setzen a⃗1 := b⃗1/∥⃗b1∥ und für N ∈ N definieren wir rekursiv

a⃗N+1 =
P⊥
N b⃗N+1∥∥P⊥
N b⃗N+1

∥∥ =
b⃗N+1 −

∑N
k=1⟨⃗ak |⃗bN+1⟩⃗ak∥∥∥⃗bN+1 −

∑N
k=1⟨⃗ak |⃗bN+1⟩⃗ak

∥∥∥ , (IX.69)

XN+1 = span
(
{⃗b1, b⃗2, . . . , b⃗N+1}

)
. (IX.70)

Wir behaupten, dass

XN+1 = YN+1. (IX.71)

Für N = 0 ist (IX.71) trivial, denn X1 = K · b⃗1 = K · ∥⃗b1∥ · a⃗1 = K · a⃗1 = Y1.

Für N ≥ 1 folgt (IX.71) mit (IX.66) induktiv aus derselben Behauptung für N ,

XN+1 = span
(
XN ∪ {⃗bN+1}

)
= span

(
YN ∪ {⃗bN+1}

)
= YN+1. (IX.72)

Daher gilt (IX.71) für alle N ∈ N. Nach (IX.68) ist die durch (IX.69) definierte Folge
{a⃗n}∞n=1 orthonormal und damit auch linear unabhängig. Sie erzeugt aber auch X, denn
wenn x⃗ ∈ X, so gibt es ein N ∈ N und Zahlen α1, α2, . . . , αN ∈ K, so dass x⃗ =
α1⃗b1 + . . . + αN b⃗N , d.h. x⃗ ∈ XN . (X enthält nur endliche Linearkombinationen der

Basisvektoren {⃗bn}∞n=1, siehe (IV.35))). Wegen (IX.71) ist dann jedoch

x⃗ ∈ YN = span
(
{a⃗1, a⃗2, . . . , a⃗N}

)
. (IX.73)

Also ist {a⃗n}∞n=1 ⊆ X eine Basis.

Korollar IX.11. Sei X ein K-Vektorraum mit Skalarprodukt ⟨·|·⟩ : X ×X → K.

(i) Sind dimK(X) = N ∈ N und {a⃗n}Nn=1 ⊆ X eine Orthonormalbasis, so gilt

∀ x⃗ ∈ X : x⃗ =
N∑
n=1

⟨⃗an|x⃗⟩ a⃗n. (IX.74)
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(ii) Sind dimK(X) =∞ und {a⃗n}∞n=1 ⊆ X eine abzählbare Orthonormalbasis, so gilt

∀ x⃗ ∈ X : x⃗ =
N∑
n=1

⟨⃗an|x⃗⟩ a⃗n, (IX.75)

wobei N ∈ N genügend groß ist, sodass x⃗ ∈ span
(
{a⃗1, . . . , a⃗N}

)
.

Beweis. Ist x⃗ = α⃗1a⃗1 + · · ·+ α⃗N a⃗N , so ist

⟨⃗an|x⃗⟩ =
N∑
k=1

αk ⟨⃗an |⃗ak⟩︸ ︷︷ ︸
= δn,k

= αn. (IX.76)

Bemerkungen und Beispiele.

• Seien K = R, X = R3 mit dem euklidschen Skalarprodukt und

b⃗1 =

1
1
0

 , b⃗2 =

0
1
2

 , b⃗3 =

1
1
1

 . (IX.77)

Wir wenden das Schmidtsche Orthonormierungsverfahren auf die Basis {⃗b1, b⃗2, b⃗3}
von X an.

Dann ist ∥⃗b1∥ =
√
⟨⃗b1|⃗b1⟩ =

√
2 und somit

a⃗1 :=
b⃗1

∥⃗b1∥
=

 1√
2
1√
2

0

 . (IX.78)

Also ist

P⊥
1 b⃗2 = b⃗2 − P1⃗b2 = b⃗2 − ⟨⃗a1 |⃗b2⟩⃗a1 =

0
1
2

−〈
 1√

2
1√
2

0

∣∣∣∣∣∣
0
1
2

〉 1√
2
1√
2

0



=

0
1
2

− 1√
2

 1√
2
1√
2

0

 =

0
1
2

−
1

2
1
2

0

 =

−1
2

1
2

2

 , (IX.79)

was ∥P⊥
1 b⃗2∥ =

√
1
4
+ 1

4
+ 4 = 3√

2
nach sich zieht. Also ist

a⃗2 :=
b⃗2

∥⃗b2∥
=

√
2

3

−1
2

1
2

2

 =

−
1

3
√
2

1
3
√
2

2
√
2

3

 . (IX.80)
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Dann berechnen wir schließlich

P⊥
2 b⃗3 = b⃗3 − P2⃗b3 = b⃗3 − ⟨⃗a1|⃗b3⟩⃗a1 − ⟨⃗a2|⃗b3⟩⃗a2 (IX.81)

=

1
1
1

−〈
 1√

2
1√
2

0

∣∣∣∣∣∣
1
1
1

〉 1√
2
1√
2

0

−〈
−

1
3
√
2

1
3
√
2

2
√
2

3


∣∣∣∣∣∣∣
1
1
1

〉
−

1
3
√
2

1
3
√
2

2
√
2

3



=

1
1
1

−√2
 1√

2
1√
2

0

− 2
√
2

3

−
1

3
√
2

1
3
√
2

2
√
2

3


=

1
1
1

−
1
1
0

−
−2

9
2
9
8
9

 =

 2
9

−2
9

1
9

 ,

also ∥P⊥
2 b⃗3∥ =

√
4
81

+ 4
81

+ 1
81

= 1
3
und daher

a⃗3 :=
P⊥
2 b⃗3

∥P⊥
2 b⃗3∥

= 3

 2
9

−2
9

1
9

 =

 2
3

−2
3

1
3

 . (IX.82)

IX.5. Diskrete Fourier-Transformation und Diskrete
Kosinustransformation

IX.5.1. Diskrete Fourier-Transformation

Seien L ∈ N und ZL der Restklassenring modulo L mit vollständigem Repräsentanten-
system {0, 1, 2, . . . , L − 1} (siehe Abschnitt II.2.1). Wir betrachten den C-Vektorraum
X := {ZL → C} der komplexwertigen Abbildungen auf ZL. Schreiben wir die Werte
von f ∈ X als Zeilenvektor,

f =
(
f(0), f(1), f(2), . . . , f(L− 1)

)
∈ X (IX.83)

auf, so ist klar, dass X isomorph zu CL ist. Das unitäre Skalarprodukt auf CL wird somit
zum Skalarprodukt auf X durch

∀f, g ∈ X : ⟨f |g⟩ :=
L−1∑
x=0

f(x) g(x), (IX.84)

und die Standardbasis {δ0, δ1, . . . , δL−1} ⊆ X ist gegeben durch δz(x) := δz,x, wobei δz,x
das Kroneckersymbol notiert.

Zu ξ ∈ ZL definieren wir nun Vektoren φξ ∈ X durch

∀x ∈ ZL : φξ(x) :=
1√
L

exp
[
2πi
L
ξx
]
. (IX.85)
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Lemma IX.12. Die Menge {φξ | ξ ∈ ZL} ⊆ X ist eine ONB.

Beweis. Zur Berechnung der Skalarprodukte ⟨φξ|φη⟩ benötigen wir die geometrische
Summe. Ist α ∈ C \ {1}, so ist

(1− α)
( L−1∑

x=0

αx
)

=
L−1∑
x=0

αx −
L−1∑
x=0

αx+1 = 1− αL, (IX.86)

also

∀α ∈ C \ {1} :
L−1∑
x=0

αx =
1− αL

1− α
. (IX.87)

Sind nun ξ, η ∈ ZL, so ist

⟨φξ|φη⟩ =
1

L

L−1∑
x=0

exp
[
− 2πi

L
ξx
]
exp

[
2πi
L
ηx
]

=
1

L

L−1∑
x=0

exp
[
2πi
L
(η − ξ)x

]
. (IX.88)

Für ξ = η ist exp[2πi
L
(η − ξ)x] = 1, für alle x ∈ ZL, und aus (IX.88) folgt sofort, dass

⟨φξ|φξ⟩ = ⟨φη|φη⟩ = 1. Ist umgekehrt ξ ̸= η, so ist η − ξ ∈ ZL \ {0} ∼= {1, 2, . . . , L− 1}.
Dann sind

exp[2πi(η − ξ)] = 0 und exp
[
2πi
(
η−ξ
L

)]
̸= 0 , (IX.89)

und (IX.87) und (IX.88) implizieren, dass

⟨φξ|φη⟩ =
1

L

L−1∑
x=0

(
exp

[
2πi
L
(η − ξ)

])x
=

1

L

1− exp[2πi(η − ξ)]
1− exp

[
2πi
(
η−ξ
L

)] = 0 . (IX.90)

Somit ist die Menge {φξ |ξ ∈ ZL} ⊆ X orthonormal und insbesondere linear unabhängig.
Weiterhin ist |{φξ | ξ ∈ ZL}| = L = dim(X), und deshalb ist {φξ | ξ ∈ ZL} eine ONB
von X.

Gemäß (IX.43) ist damit f =
∑

ξ∈ZL
⟨φξ|f⟩φξ, für jedes f ∈ X, d.h.

∀x ∈ ZL : f(x) =
∑
ξ∈ZL

f̂(ξ)
e

2πi
L
ξx

√
L
, (IX.91)

wobei

∀ξ ∈ ZL : f̂(ξ) := ⟨φξ|f⟩ =
∑
x∈ZL

e−
2πi
L
ξx

√
L

f(x). (IX.92)

Die Basistransformation von der durch die Standardbasis {δz|z ∈ ZL} gegebenen ONB
auf die ONB {φξ|ξ ∈ ZL} vonX bezeichnet man als diskrete Fourier-Transformation
(DFT). Zu gegebenem f : ZL → C bezeichnet man die durch (IX.92) gegebene Funktion
f̂ : ZL → C als ihre (diskrete) Fourier-Transformierte. Die Glg. (IX.91) wird auch
als inverse diskrete Fourier-Transformation bezeichnet, da man mit ihrer Hilfe f
aus f̂ zurückgewinnen kann.
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IX.5.2. Diskrete Kosinustransformation

Analog zu (IX.85) definieren wir nun zu ξ ∈ ΓL := {0, 1, 2, . . . , L − 1} Vektoren ψξ ∈
Y := {ΓL → C} durch

∀x ∈ ΓL : ψξ(x) :=


√

2
L
cos
[
π
L
ξ(x+ 1

2
)
]
, falls ξ ̸= 0,

1√
L

falls ξ = 0.
(IX.93)

Lemma IX.13. Die Menge {ψξ | ξ ∈ ΓL} ⊆ Y ist eine ONB.

Beweis. Wir definieren zunächst ψ̃ξ ∈ Y durch

∀x ∈ ΓL : ψ̃ξ(x) := cos
[
π
L
ξ(x+ 1

2
)
]
, (IX.94)

sodass ψ0 =
√

1
L
ψ̃0 und ψξ =

√
2
L
ψ̃ξ, für ξ ̸= 0.

Sind nun ξ, η ∈ ΓL, so ist

⟨ψ̃ξ|ψ̃η⟩ =
L−1∑
x=0

cos
[
π
L
ξ(x+ 1

2
)
]
cos
[
π
L
η(x+ 1

2
)
]

=
1

4

L−1∑
x=0

{(
exp

[
πi
L
ξ(x+ 1

2
)
]
+ exp

[
− πi

L
ξ(x+ 1

2
)
])

·
(
exp

[
πi
L
η(x+ 1

2
)
]
+ exp

[
− πi

L
η(x+ 1

2
)
])}

=
1

4

∑
σ,τ=±1

L−1∑
x=0

exp
[
πi
L
σ(ξ + τη)(x+ 1

2
)
]

=
1

2
Re

{ ∑
τ=±1

L−1∑
x=0

exp
[
πi
L
(ξ + τη)(x+ 1

2
)
]}

=
1

2
Re

{ ∑
τ=±1

exp
[
πi
2L
(ξ + τη)

] L−1∑
x=0

(
exp

[
πi
L
(ξ + τη)

])x}
. (IX.95)

Wir unterscheiden jetzt drei Fälle.

(a) η ̸= ξ: Da ξ und η nichtnegativ sind, muss 1 ≤ ξ + τη ≤ 2L− 2 für τ = 1 gelten.
Außerdem ist ξ + τη = ξ − η ̸= 0 für τ = −1. Also ist

∀ τ ∈ {−1, 1} : exp
[
πi
L
(ξ + τη)

]
̸= 1 , (IX.96)

und weiterhin ist

exp
[
πi(ξ + τη)

]
= (−1)ξ+τη . (IX.97)
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Zur Berechnung der Skalarprodukte ⟨ψ̃ξ|ψ̃η⟩ verwenden wir wieder die geometrische
Summe (IX.87) und erhalten

⟨ψ̃ξ|ψ̃η⟩ =
1

2
Re
{ ∑
τ=±1

exp
[
πi
2L
(ξ + τη)

] 1 − exp[πi(ξ + τη)]

1 − exp[πi
L
(ξ + τη)]

}

= Re
{ i
2

∑
τ=±1

1 − (−1)ξ+τη

sin[− π
2L
(ξ + τη)]

}
= 0 , (IX.98)

da die Zahl in geschweiften Klammern, deren Realteil genommen wird, rein ima-
ginär ist. Daher gilt

∀ ξ, η ∈ ΓL, ξ ̸= η : ⟨ψξ|ψη⟩ = 0 . (IX.99)

(b) Ist η = ξ > 0, so ist ξ+ τη = 0, für τ = −1. Eine Rechnung wie in (IX.96)-(IX.98)
zeigt, dass dann der Summand für τ = 1 abermals verschwindet, und wir erhalten

⟨ψ̃ξ|ψ̃ξ⟩ =
1

2
Re

{ L−1∑
x=0

1

}
=

L

2
. (IX.100)

Somit folgt

∀ ξ ∈ ΓL \ {0} : ⟨ψξ|ψξ⟩ = 1 . (IX.101)

(c) Ist η = ξ = 0, so folgt direkt

⟨ψ0|ψ0⟩ =
1

L

L−1∑
x=0

1 = 1 . (IX.102)

Gemäß (IX.43) ist damit f =
∑

ξ∈ΓL
⟨ψξ|f⟩ψξ, für jedes f ∈ Y , d.h.

∀x ∈ ΓL : f(x) =
D[f ](0)

L
+

L−1∑
ξ=1

2D[f ](ξ)

L
cos
[
π
L
ξ(x+ 1

2
)
]
, (IX.103)

wobei

∀ξ ∈ ΓL : D[f ](ξ) :=
∑
x∈ΓL

cos
[
π
L
ξ(x+ 1

2
)
]
f(x) . (IX.104)

Analog zur diskreten Fouriertransformation bezeichnet man die Basistransformation von
der durch die Standardbasis {δz|z ∈ ΓL} gegebenen ONB auf die ONB {ψξ | ξ ∈ ΓL}
von Y als diskrete Kosinustransformation (DCT). Zu gegebenem f : ΓL → C

bezeichnet man die durch (IX.92) gegebene Funktion D[f ] : ΓL → C als ihre diskre-
te Kosinustransformierte. Die Glg. (IX.91) wird auch als inverse diskrete Kosi-
nustransformation bezeichnet, da man mit ihrer Hilfe f aus D[f ] zurückgewinnen
kann.
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Die DCT spielt in der Signalverarbeitung und vor allem in der Bildverarbeitung eine
wichtige Rolle. In digitalen Bildern (Fotos, Videos) sind die RGB- bzw. YUV-Farbwerte
der Pixel durch reelle Zahlen repräsentiert. Zur Vereinfachung gehen wir von einem
Schwarz-Weiß-Bild aus, in dem für jeden der ca. 1000× 1000 Pixel ein reeller Grauwert
angegeben ist. [Tatsächlich ist der Grauwert eine ganze Zahl zwischen 0 (schwarz) und
255 (weiß).] Das heißt also, dass jedes Bild eines Schwarz-Weiß-Videos durch 1.000.000
reelle Zahlen -die Grauwerte der Pixel- gegeben ist. Bei 50 Frames pro Sekunde kommen
50.000.000 reelle Zahlen zusammen, die pro Sekunde übertragen werden müssen. Sind
noch weitere Signale zu übertragen, berücksichtigen wir die Farben der Pixel und bau-
en wir auch zur Vorbeugung von Übertragungsfehlern Redundanz ein, so wird die pro
Sekunde zu übertragende Datenmenge zu groß für ein Streaming in Echtzeit.

Um dieses Problem zu lösen, macht man sich zunutze, dass sich in den meisten Bilden die
Grauwerte benachbarter Pixel kaum unterscheiden. Um dies mathematisch zu formulie-
ren, fassen wir ein Bild als reellwertige Funktion f : Λ×Λ→ Rmit Λ = {0, 1, 2, . . . , 999}
auf. Für x1, x2 ∈ Λ ist dann f(x1, x2) ∈ R der Grauwert am Pixel mit den Koordinaten
(x1, x2) ∈ Λ×Λ. Die langsame Variation der Grauwerte benachbarter Bildpunkte könnte
man quantitativ durch

∀(x1, x2), (y1, y2) ∈Λ× Λ, ∥(x1, x2)− (y1, y2)∥∞ ≤ L : (IX.105)

|f(x1, x2)− f(y1, y2)| ≤ ε
∑

(z1,z2)∈Λ×Λ

|f(z1, z2)|

ausdrücken, wobei 0 < ε ≪ 1 ist. In der Praxis wird L = 8 gewählt. Nun bildet
man die DCT D[f ] auf jeder Kachel mit L × L Pixel. Die langsame Variation von
f manifestiert sich nun darin, dass die DCT D[f ](ξ1, ξ2) nur für kleine ξ1, ξ2 ∈ ΓL
nicht verschwindend klein ist und man deshalb beispielsweise nur D[f ](0, 0), D[f ](0, 1),
D[f ](1, 0) und D[f ](1, 1) überträgt und die 60 Werte von D[f ](ξ1, ξ2) für max(ξ1, ξ2) ≥ 2
schlicht ignoriert. Ein solches Verfahren bezeichnet man in der Signalverarbeitung als
verlustbehaftete Kompression.

Dies beschreibt das Vorgehen bei Anwendung des JPEG-Standards, der seit Mitte der
90er Jahren der maßgebliche Bildstandard für digitale Fotos und Videos ist. Das un-
geübte menschliche Auge kann trotzdem praktisch keinen Unterschied erkennen, und
die zu übertragende Datenmenge wurde um den Faktor 64/4 = 16 reduziert. Mit etwas
Übung kann man manchmal die einzelnen Kacheln auf Bildern als Artefakte erkennen.
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IX.6. Ergänzungen

IX.6.1. Äquivalenz von Normen

Sei X ein K-Vektorraum. Zwei Normen ∥ · ∥, ∥ · ∥′ : X → R+
0 heißen äquivalent, falls

es Konstanten 0 < c < C <∞ gibt, sodass

∀ x⃗ ∈ X : c ∥x⃗∥ ≤ ∥x⃗∥′ ≤ C ∥x⃗∥ (IX.106)

gilt. Die in Glg. (IX.29) definierten Normen sind alle paarweise äquivalent, da Kd ein
Vektorraum endlicher Dimension d = dim[Kd] = d ∈ N ist.

Allgemein gilt, dass Normen aufX zueinander äquivalent sind, fallsX einK-Vektorraum
endlicher Dimension ist. Für d ∈ N und X = Cd bedeutet dies, dass es zu 1 ≤ p, q ≤ ∞
Konstanten 0 < cd,p,q < Cd,p,q <∞ so gibt, dass

∀ x⃗ ∈ X : cd,p,q ∥x⃗∥p ≤ ∥x⃗∥q ≤ Cd,p,q ∥x⃗∥p (IX.107)

gilt.

Die Äquivalenz zweier Normen ist wichtig für die Analysis, denn sie sichert, dass die
mit ihnen formulierten Konvergenzbegriffe zusammenfallen. Eine wichtige Beobachtung,
die wir hier ohne Beweis formulieren, ist die Tatsache, dass je zwei Normen auf einem
K-Vektorraum X stets äquivalent sind. Um Unterschiede im Konvergenzbegriff sehen zu
können, muss der zugrunde Vektorraum also notwendig unendlichdimensional sein. Dies
kann man als Ausgangspunkt des mathematischen Teilgebiets der Funktionalanalysis
betrachten.
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X. Eigenwerte und Diagonalisierbarkeit

In diesem Kapitel wollen wir K = C annehmen. Eine analoge Theorie lässt sich auch für
K = R entwickeln, ist aber aufwändiger und letztendlich auch weniger wichtig.

X.1. Eigenwerte

Definition X.1. Seien X ein C-Vektorraum und Φ ∈ L(X) eine lineare Abbildung.

(i) Die Resolventenmenge von Φ ist definiert durch

ρ(Φ) =
{
λ ∈ C

∣∣ (Φ− λ · 1) ist bijektiv}. (X.1)

(ii) Das Spektrum von Φ ist definiert als

σ(Φ) =
{
λ ∈ C

∣∣ Φ− λ · 1 ist nicht bijektiv
}

= C \ ρ(Φ). (X.2)

(iii) Eine Zahl λ ∈ C heißt Eigenwert von Φ

:⇔ ∃ x⃗ ∈ X \ {⃗0} : Φx⃗ = λx⃗. (X.3)

Ist Φx⃗ = λx⃗ mit x⃗ ̸= 0, so heißt x⃗ Eigenvektor von Φ (zum Eigenwert λ).

Satz X.2. Sind X ein endlich-dimensionaler C-Vektorraum und Φ ∈ L(X) eine lineare
Abbildung, so gilt

σ(Φ) =
{
λ ∈ C

∣∣ λ ist Eigenwert von Φ
}

=
{
λ ∈ C

∣∣ det[Φ− λ · 1] = 0
}
̸= ∅. (X.4)

Beweis. Die Gleichheit der drei Mengen folgt aus der Gleichwertigkeit der folgenden
Aussagen, (

Ker{Φ− λ · 1} = {⃗0}
)
⇔

(
(Φ− λ · 1) ist injektiv

)
⇔

(
(Φ− λ · 1) ist bijektiv

)
⇔
(
det[Φ− λ · 1] ̸= 0

)
. (X.5)
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Die letzten beiden Äquivalenzen ergeben sich aus Satz V.6 und Satz VII.8, (i), die beide
nur für endlich-dimensionale Vektorräume gültig sind. Ist nun MX [Φ] = (ai,j)

N
i,j=1 ∈

CN×N eine Matrixdarstellung von Φ, mit N = dim(X), so ist das charakteristische
Polynom von Φ,

det[Φ− λ · 1] = (−1)N
(
λN + cN−1λ

N−1 + . . .+ c1λ+ c0
)

(X.6)

ein Polynom N . Grades in λ mit komplexen Koeffizienten (deren genauer Wert von
den Matrixelementen ai,j abhängt). Nach dem Fundamentalsatz der Algebra, Satz III.6,
zerfällt somit det[Φ − λ · 1] in Linearfaktoren, d.h. es gibt L ∈ N, λ1, . . . , λL ∈ C und
n1, . . . , nL ∈ N, mit n1 + . . .+ nL = N so, dass

det[Φ− λ · 1] = (−1)N(λ− λ1)n1 · (λ− λ2)n2 · · · (λ− λL)nL . (X.7)

Damit ist

σ(Φ) = {λ1, λ2, . . . , λL} ≠ ∅. (X.8)

Bemerkungen und Beispiele.

• Seien X = C2 und Φ ∈ L(X) eine lineare Abbildung mit Matrixdarstellung

A = M(Φ) =

(
4 1
2 3

)
. (X.9)

1. Wir berechnen die Eigenwerte mit Hilfe des charakteristischen Polynoms

det
[
A− λ1

]
= det

[(
4− λ 1
2 3− λ

)]
= (4− λ)(3− λ)− 2

= λ2 − 7λ+ 10 (X.10)

Die Eigenwerte σ(Φ) von Φ sind die Nullstellen des charakteristischen Poly-
noms, also σ(Φ) = {λ+, λ−} mit

λ+ = 5 , λ− = 2 , (X.11)

wie man leicht mit Hilfe der p-q-Formel erhält (was allerdings nur in Dimen-
sion dim(X) = 2 so geht; in höheren Dimensionen muss man die Eigenwerte
i.A. numerisch berechnen und erhält sie somit nur näherungsweise).

2. Wir berechnen die zu λ± gehörigen Eigenvektoren x⃗± := (α±, β±)
T ∈ C2\{⃗0}.

Dazu lösen wir jeweils das zugehörige LGS:(
0
0

)
= 0⃗ =

(
A− λ±1

)
x⃗± =

(
4− λ± 1

2 3− λ±

)(
α±
β±

)
, (X.12)

also

(4− λ±)α± + β± = 0, (X.13)

2α± + (3− λ±) β± = 0. (X.14)
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Für λ+ = 5 liefert dies

−α+ + β+ = 0
2α+ − 2β+ = 0

}
⇔ β+ = α+ ⇔ x⃗+ = t

(
1
1

)
, t ∈ C \ {0},

(X.15)

und für λ− = 2 erhalten wir

2α− + β− = 0,
2α− + β− = 0.

}
⇔ β− = −2α− ⇔ x⃗− = t

(
1
−2

)
, t ∈ C \ {0},

(X.16)

• IstX unendlichdimensional, aber mit einer geeigneten topologischen Struktur (z.B.
X ein Hilbertraum) versehen, so gilt auch allgemein σ(Φ) ̸= ∅. Die Punkte im
Spektrum sind aber nicht notwendig Eigenwerte, sondern es gilt nur{

λ ∈ C
∣∣ λ ist Eigenwert von Φ

}
⊆ σ(Φ). (X.17)

• Für X = ℓ2(Z) :=
{
ψ : Z → C

∣∣ ∑∞
n=−∞ |ψn|2 < ∞

}
und (Φψ)n := ψn+1 + ψn−1

ist etwa σ(Φ) = [−2, 2], aber Φ ∈ L(X) besitzt gar keinen Eigenwert.

• Eigenvektoren zu verschiedenen Eigenwerten sind stets linear unabhängig, wie das
folgende Lemma X.3 zeigt.

Lemma X.3. Seien X ein C-Vektorraum, Φ ∈ L(X) eine lineare Abbildung und
λ1, λ2, . . . , λL ∈ σ(Φ) paarweise verschiedene Eigenwerte von Φ mit zugehörigen Eigen-
vektoren x⃗1, x⃗2, . . . , x⃗L ∈ X\{0}, also Φx⃗ℓ = λℓx⃗ℓ, für ℓ ∈ ZL1 . Dann ist {x⃗1, x⃗2, . . . , x⃗L} ⊆
X linear unabhängig.

Beweis. Siehe Abschnitt X.6.1.

X.2. Diagonalisierbarkeit

Definition X.4. Sei N ∈ N.

(i) Eine Matrix A ∈ CN×N heißt diagonalisierbar

:⇔ ∃ H ∈ GL(N,C) ∃ λ1, . . . , λN ∈ C :

H−1AH =


λ1 0

λ2
. . .

0 λN

 . (X.18)

(ii) Sei X ein N -dimensionaler Vektorraum über C. Eine lineare Abbildung Φ ∈ L(X)
heißt diagonalisierbar

:⇔ Es gibt eine Basis X ⊆ X, so dassMX [Φ] ∈ CN×N diagonalisierbar ist.
(X.19)
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Lemma X.5. Seien N ∈ N und X ein C-Vektorraum der Dimension N . Sei weiterhin
Φ ∈ L(X) mit Matrixdarstellung A :=MW [Φ] ∈ CN×N , wobei W ⊆ X eine Basis ist.
Dann gilt folgende Äquivalenz:{

Φ ist diagonalisierbar
}
⇔

{
MW [Φ] ist diagonalisierbar

}
. (X.20)

Beweis. Gleichung (X.20) ist offensichtlich, wenn H = MW [V ] die Matrixdarstellung
einer Basistransformation ist, die die Basis W auf die Basis X transformiert, für die
(X.18) gilt.

Satz X.6. Seien X ein N-dimensionaler Vektorraum über C, mit N ∈ N, und Φ ∈
L(X).{

Φ ist diagonalisierbar
}

(X.21)

⇔
{
Es gibt eine Basis X = {x⃗1, . . . , x⃗N} ⊆ X aus Eigenvektoren von Φ

}
.

Beweis. Sind Φ diagonalisierbar und X = {x⃗1, . . . , x⃗N} ⊆ X eine Basis, so dass

MX [Φ] =

 λ1 0
. . .

0 λN

 , (X.22)

so gilt Φx⃗1 = λ1x⃗1, . . . ,Φx⃗N = λN x⃗N , und X ist die gesuchte Basis aus Eigenvektoren
von Φ. Dies gilt offensichtlich auch umgekehrt.

Korollar X.7. Seien N ∈ N und X ein C-Vektorraum der Dimension dim(X) = N
sowie Φ ∈ L(X). Besitzt Φ N paarweise verschiedene Eigenwerte, so ist Φ diagonali-
sierbar.

Beweis. Sind λ1, . . . , λN ⊆ σ(Φ) die Eigenwerte von Φ mit zugehörigen Eigenvektoren
x⃗1, x⃗2, . . . , x⃗L ∈ X \ {0}, also Φx⃗ℓ = λℓx⃗ℓ, für ℓ ∈ ZL1 , so ist {x⃗1, x⃗2, . . . , x⃗L} ⊆ X nach
Lemma X.3 linear unabhängig und wegen dim(X) = N auch eine Basis.

Bemerkungen und Beispiele.

• Nicht alle linearen Abbildungen bzw. Matrizen sind diagonalisierbar. Sei etwa

A = M(Φ) =

(
0 1
0 0

)
, (X.23)

so ist

det[A− λ1] = det

[(
−λ 1
0 −λ

)]
= λ2, (X.24)

und λ = 0 ist der einzige Eigenwert von Φ. Die Eigenvektoren von Φ sind dann
genau die nichtverschwindenden Vektoren im Kern von Φ. Dieser ist jedoch eindi-
mensional und somit verschieden von C2, denn

Ker[Φ] =
{
x⃗ ∈ C2

∣∣ Ax⃗ = 0⃗
}

(X.25)

=

{(
α
β

)
∈ C2

∣∣∣∣(0 1
0 0

)(
α
β

)
=

(
β
0

)
=

(
0
0

)}
= C ·

(
1
0

)
.
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X.3. Diagonalisierbarkeit selbstadjungierter Matrizen
und der Spektralsatz

Zu Beginn dieses Abschnitts erinnern wir an den in Korollar IX.9 gebildeten Begriff der
Adjungierten Φ∗ ∈ L(X) einer linearen Abbildung Φ ∈ L(X). Für einen C-Vektorraum
X mit Skalarprodukt ⟨·|·⟩ ist Φ∗ definiert durch

∀ x⃗, y⃗ ∈ X : ⟨x⃗|Φy⃗⟩ = ⟨Φ∗x⃗|y⃗⟩. (X.26)

Analog ist die adjungierte Matrix A∗ = (bi,j)
N
i,j=1 ∈ CN×N einer gegebenen Matrix

A = (ai,j)
N
i,j=1 ∈ CN×N definiert durch

bi,j = aj,i. (X.27)

Der Zusammenhang zwischen dem Adjungieren einer linearen Abbildung und der ad-
jungierten Matrix besteht in der IdentitätMA[Φ

∗] = (MA[Φ])
∗, die für jede ONB A in

X gilt.

Definition X.8.
(i) Sei X ein endlich-dimensionaler C-Vektorraum mit Skalarprodukt ⟨·|·⟩ : X×X →

C. Eine lineare Abbildung Φ ∈ L(X) heißt selbstadjungiert

:⇔ Φ = Φ∗. (X.28)

(ii) Eine Matrix A ∈ CN×N , N ∈ N heißt selbstadjungiert

:⇔ A = A∗. (X.29)

Bemerkungen und Beispiele.

• Der Begriff der Selbstadjungiertheit im Fall, dass Φ ein unbeschränkter Operator
auf einem unendlichdimensionalen Hilbertraum X ist, ist erheblich subtiler. Aus
dem Satz vom abgeschlossenen Graphen (siehe Vorlesung Funktionalanalysis) folgt
nämlich, dass ein linearer Operator Φ ∈ L(X), der (X.28) genügt, notwendig auch
beschränkt ist. Scheinbar gibt es also gar keine unbeschränkten, selbstadjungierten
linearen Operatoren.

• Die Auflösung dieses scheinbaren Widerspruchs gelang J. von Neumann: unbe-
schränkte Operatoren sind gar nicht auf ganz X definiert, sondern nur auf einem,
in X dichtem Unterraum dom(Φ) ⊆ X. Selbstadjungiertheit definiert man dann
durch dom(Φ∗) = dom(Φ) und

∀ x⃗, y⃗ ∈ dom(Φ) : ⟨x⃗|Φy⃗⟩ = ⟨Φ∗x⃗|y⃗⟩. (X.30)

• Sind dim(X) =: N <∞ und A = {a⃗1, . . . , a⃗N} ⊆ X eine ONB, so gilt{
Φ = Φ∗} ⇔ {

M[Φ] = M[Φ]∗
}
. (X.31)

• Beispiele selbstadjungierter Matrizen in C3×3 sind 1 2 9
2 3 7i
9 −7i 5

 ,

 2 4 8 + 3i
4 10 2i

8− 3i −2i 12

 . (X.32)
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Definition X.9. Seien X eine Menge und Φ : X → X eine Abbildung. Eine Teilmenge
B ⊆ X heißt unter Φ invariant

:⇔ Φ(B) ⊆ B, d.h. ∀x ∈ B : Φ(x) ∈ B . (X.33)

Lemma X.10. Seien X ein endlich-dimensionaler C-Vektorraum mit Skalarprodukt
⟨·|·⟩ : X × X → C und Φ = Φ∗ ∈ L(X) eine selbstadjungierte lineare Abbildung. Ist
Y ⊆ X ein unter Φ invarianter Unterraum, so ist auch Y ⊥ ⊆ X unter Φ invariant,

Φ(Y ) ⊆ Y ⇒ Φ(Y ⊥) ⊆ Y ⊥. (X.34)

Beweis. Seien x⃗ ∈ Y ⊥ und y⃗ ∈ Y . Mit y⃗ ∈ Y und der Invarianz von Y unter Φ ist dann
auch Φ∗y⃗ = Φy⃗ ∈ Y , und deshalb gilt

⟨Φx⃗|y⃗⟩ = ⟨x⃗|Φ∗y⃗⟩ = ⟨x⃗|Φy⃗⟩ = 0 . (X.35)

Weil y⃗ ∈ Y beliebig ist, folgt Φx⃗ ∈ Y ⊥.

Lemma X.11. Seien X ein endlich-dimensionaler C-Vektorraum mit Skalarprodukt
⟨·|·⟩ : X ×X → C und Y ⊆ X ein Unterraum. Dann ist

X = Y + Y ⊥ =: Y ⊕ Y ⊥. (X.36)

Beweis. Sei {a⃗1, . . . , a⃗M} ⊆ Y eine ONB in Y , die wir uns nötigenfalls durch das
Schmidtsche Orthonormierungsverfahren beschafft haben. Wir definieren P ∈ L(X)
durch

Px⃗ =
M∑
i=1

⟨⃗ai|x⃗⟩ a⃗i, (X.37)

und bemerken, dass Ran(P ) = Y . Offenbar ist P = P ∗ = P 2 die orthogonale Projektion
auf Y . Schreiben wir nun, für x⃗ ∈ X,

x⃗ = Px⃗+ P⊥x⃗, (X.38)

so ist Px⃗ ∈ Y . Für jedes y⃗ ∈ Y können wir wegen Y = Ran(P ) ein x⃗ ′ finden, so dass
y⃗ = Px⃗ ′. Damit ist

⟨y⃗ |P⊥x⃗⟩ = ⟨Px⃗ ′|P⊥x⃗⟩ = ⟨x⃗ ′|PP⊥ x⃗⟩ = 0, (X.39)

da PP⊥ = 0. Es folgt, dass P⊥x⃗ ∈ Y ⊥.

Satz X.12 (Spektralsatz). Seien N ∈ N und X ein N-dimensionaler C-Vektorraum
mit Skalarprodukt ⟨·|·⟩ : X ×X → C und Φ = Φ∗ ∈ L(X) eine selbstadjungierte lineare
Abbildung. Dann gibt es eine Orthonormalbasis A = {a⃗1, . . . , a⃗N} ⊆ X von X aus
Eigenvektoren von Φ.
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Beweis. Wir führen den Beweis durch Induktion in N . Für N = 1 ist X = C · a⃗1 für
einen geeigneten normierten Vektor a⃗1 und wegen Φa⃗1 ∈ C · a⃗1 gibt es ein λ1 ∈ C so,
dass Φa⃗1 = λ1a⃗1, d.h. a⃗1 ist trivialerweise ein Eigenvektor von Φ.

Seien nun N ≥ 2 und die Behauptung für N − 1 richtig. Nach Satz X.2 ist σ(Φ) ̸= ∅,
und Φ besitzt einen Eigenwert λ ∈ C. Es gibt also ein y⃗ ∈ X \ {⃗0}, so dass Φy⃗ = λy⃗.
Wir setzen nun

Y = C · y⃗ (X.40)

und stellen fest, dass Φ(Y ) = λY ⊆ Y . Weil Φ = Φ∗ selbstadjungiert ist, impliziert
Lemma X.10, dass Φ auch Y ⊥ invariant lässt. Nach Lemma X.11 ist dim(Y ⊥) = N − 1,
und nach Induktionsannahme besitzt Y ⊥ eine ONB AN−1 = {a⃗1, . . . , a⃗N−1} ⊆ Y ⊥ aus
Eigenvektoren von (der Restriktion auf Y ⊥ von) Φ.

Bemerkungen und Beispiele.

• Sind Φ = Φ∗ ∈ L(X) und λ ∈ C ein Eigenwert von Φ, so ist λ ∈ R reell. Ist
nämlich a⃗λ ein zugehöriger Eigenvektor, Φa⃗λ = λa⃗λ, so folgt

λ⟨⃗aλ|⃗aλ⟩ = ⟨⃗aλ|Φa⃗λ⟩ = ⟨Φa⃗λ|⃗aλ⟩ = λ̄⟨⃗aλ|⃗aλ⟩. (X.41)

• Eigenvektoren zu verschiedenen Eigenwerten von Φ = Φ∗ ∈ L(X) sind automatisch
orthogonal. Sind etwa Φa⃗λ = λa⃗λ und Φa⃗µ = µa⃗µ, mit a⃗λ, a⃗µ ̸= 0⃗ und λ ̸= µ, so
folgt

λ⟨⃗aµ|⃗aλ⟩ = ⟨⃗aµ|λa⃗λ⟩ = ⟨Φa⃗µ|⃗aλ⟩ = µ⟨⃗aµ|⃗aλ⟩. (X.42)

Also ist ⟨⃗aµ |⃗aλ⟩ = 0
λ−µ = 0.

X.4. Isometrien, orthogonale und unitäre Abbildungen

In diesem Abschnitt untersuchen wir Basistransformationen, die die Länge der Basis-
vektoren und ihre Winkel zueinander erhalten.

Definition X.13. Sei X ein K-Vektorraum mit Skalarprodukt ⟨·|·⟩ : X ×X → K. Eine
Abbildung ϕ : X → X heißt Isometrie

:⇔ ∀ x⃗, y⃗ ∈ X : ⟨ϕ(x⃗)|ϕ(y⃗)⟩ = ⟨x⃗|y⃗⟩. (X.43)

Definition X.14. Sei N ∈ N.

(i) Eine Matrix D ∈ RN×N heißt orthogonal

:⇔ D−1 = DT . (X.44)

O(N) :=
{
D ∈ RN×N ∣∣D ist orthogonal

}
, (X.45)

SO(N) :=
{
D ∈ O(N)

∣∣ det[D] = 1
}
. (X.46)

O(N) bezeichnet man als orthogonale Gruppe, SO(N) heißt eigentliche or-
thogonale Gruppe.

WS 2025/26, Seite 123



Kapitel X. Eigenwerte und Diagonalisierbarkeit

(ii) Eine Matrix U ∈ CN×N heißt unitär

:⇔ U−1 = U∗. (X.47)

U(N) :=
{
U ∈ CN×N ∣∣ U ist unitär

}
, (X.48)

SU(N) :=
{
U ∈ U(N)

∣∣ det[U ] = 1
}
. (X.49)

U(N) heißt unitäre Gruppe, SU(N) heißt eigentliche unitäre Gruppe.

Bemerkungen und Beispiele.

• Eine Isometrie erhält die Längen von Vektoren,

∥ϕ(x⃗)∥ =
√
⟨ϕ(x⃗)|ϕ(x⃗)⟩ =

√
⟨x⃗|x⃗⟩ = ∥x⃗∥, (X.50)

und Orthogonalität,(
⟨x⃗|y⃗⟩ = 0

)
⇒

(
⟨ϕ(x⃗)|ϕ(y⃗)⟩ = 0

)
. (X.51)

• Für N := dimK(X) < ∞ ist also mit A = {a⃗1, . . . , a⃗N} ⊆ X auch ϕ(A) =
{ϕ(⃗a1), . . . , ϕ(⃗aN)} ⊆ X eine ONB.

• Für N := dimK(X) < ∞ ist jede Isometrie automatisch bijektiv und linear. Sind
nämlich α ∈ K, x⃗, y⃗ ∈ X und A = {a⃗1, . . . , a⃗N} ⊆ X eine ONB, so ist, für alle
j ∈ ZN1 ,

⟨ϕ(⃗aj)|ϕ(αx⃗+ y⃗)−αϕ(x⃗)− ϕ(y⃗)⟩ (X.52)

= ⟨ϕ(⃗aj)|ϕ(αx⃗+ y⃗)⟩ − α⟨ϕ(⃗aj)|ϕ(x⃗)⟩ − ⟨ϕ(⃗aj)|ϕ(y⃗)⟩

= ⟨⃗aj|αx⃗+ y⃗⟩ − α⟨⃗aj|x⃗⟩ − ⟨⃗aj|y⃗⟩ = ⟨⃗aj |⃗0⟩ = 0 .

Da ϕ(A) eine ONB in X ist, folgt ϕ(αx⃗+ y⃗) = αϕ(x⃗) + ϕ(y⃗), und ϕ ist linear. Da
ϕ(A) eine ONB in X ist, ist ϕ surjektiv und daher auch bijektiv.

• Ist ϕ ∈ L(X) als linear vorausgesetzt, so ist (X.43) sogar gleichwertig mit (X.50),
denn

⟨ϕ(x⃗)|ϕ(y⃗)⟩ =
1

2

(
∥ϕ(x⃗+ y⃗)∥2 − ∥ϕ(x⃗)∥2 − ∥ϕ(y⃗)∥2

)
, für K = R, (X.53)

⟨ϕ(x⃗)|ϕ(y⃗)⟩ =
1

2

(
∥ϕ(x⃗+ y⃗)∥2 + ∥ϕ(x⃗− iy⃗)∥2

)
− ∥ϕ(x⃗)∥2 − ∥ϕ(y⃗)∥2, für K = C.

(X.54)

• Ist U ∈ U(N) unitär, so gilt

1 = det[U∗U ] = det[UT ] · det[U ] = | det[U ]|2, (X.55)

d.h. die Determinante einer unitären Matrix ist im Betrag gleich 1.
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• Dasselbe gilt für die Determinante einer orthogonalen Matrix D. Weil D eine reelle
Matrix ist, folgt außerdem

det[D] ∈ {−1,+1}. (X.56)

Satz X.15. Seien X ein N-dimensionaler K-Vektorraum mit Skalarprodukt ⟨·|·⟩ : X ×
X → K und Orthonormalbasis A = {a⃗1, . . . , a⃗N} ⊆ X.

(i) Für K = R sind die Matrixdarstellungen bezüglich A der Isometrien in L(X)
genau die orthogonalen Matrizen,

O(N) =
{
M[ϕ]

∣∣ ϕ : X → X ist Isometrie
}
. (X.57)

(ii) Für K = C sind die Matrixdarstellungen bezüglich A der Isometrien in L(X)
genau die unitären Matrizen,

U(N) =
{
M[ϕ]

∣∣ ϕ : X → X ist Isometrie
}
. (X.58)

Beweis. Wir beweisen nur (ii). Ist ϕ : X → X eine Isometrie, so ist ϕ automatisch linear
und bijektiv. Nach Korollar IX.9 ist U := M[ϕ] := (ui,j)

N
i,j=1 ∈ CN×N gegeben durch

ui,j = ⟨⃗ai|ϕa⃗j⟩. Mit U∗U =: (γi,j)
N
i,j=1 und UU∗ =: (γ̃i,j)

N
i,j=1 sind also

γi,j =
N∑
k=1

uk,i uk,j =
N∑
k=1

⟨⃗ak|ϕa⃗i⟩ ⟨⃗ak|ϕa⃗j⟩

=
N∑
k=1

⟨ϕa⃗i |⃗ak⟩⟨⃗ak|ϕa⃗j⟩ =

〈
ϕa⃗i

∣∣∣∣ N∑
k=1

⟨⃗ak|ϕa⃗j ⟩⃗ak
〉

(X.59)

und analog

γ̃i,j =

〈
a⃗i

∣∣∣∣ N∑
k=1

⟨ϕa⃗k |⃗aj⟩ϕa⃗k
〉
. (X.60)

Nach (IX.43) sind jedoch

N∑
k=1

⟨⃗ak|ϕa⃗j⟩ a⃗k = ϕa⃗j und
N∑
k=1

⟨ϕa⃗k |⃗aj⟩ ϕa⃗k = a⃗j, (X.61)

weil A = {a⃗1, . . . , a⃗N} und auch ϕA = {ϕa⃗1, . . . , ϕa⃗N} ONB in X sind. Setzen wir dies
in (X.59) und (X.60) ein, so erhalten wir

γi,j = ⟨ϕa⃗i|ϕa⃗j⟩ = δi,j und γ̃i,j = ⟨ei|ej⟩ = δi,j. (X.62)

Das bedeutet aber nichts anderes als

U∗U = UU∗ = 1 , (X.63)

d.h. U ∈ U(N). Somit ist{
M[ϕ]

∣∣ ϕ : X → X ist Isometrie
}
⊆ U(N). (X.64)
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Ist umgekehrt U ∈ U(N), also U ∈ CN×N mit U−1 = U∗, und ist Φ ∈ L(X) die
eindeutige lineare Abbildung, so dassM[Φ] = U , dann ist Φ−1 = Φ∗, weilM : L(X)→
CN×N ein Ringisomorphismus ist. Für alle x⃗, y⃗ ∈ X gilt also〈

x⃗
∣∣y⃗〉 =

〈
x⃗
∣∣Φ−1Φy⃗

〉
=
〈
x⃗
∣∣Φ∗Φy⃗

〉
=
〈
Φx⃗
∣∣Φy⃗〉. (X.65)

Also ist Φ eine Isometrie, und damit gilt

U(N) ⊆
{
M[ϕ]

∣∣ ϕ : X → X ist Isometrie
}
. (X.66)

Bemerkungen und Beispiele.

• Schreibt man U = {u⃗1, u⃗2, . . . , u⃗N} ∈ KN×N mit

u⃗1 =

u1,1
...

uN,1

 , . . . , u⃗N =

u1,N
...

uN,N

 ∈ KN , (X.67)

so ist U genau dann unitär (orthogonal), wenn {u⃗1, . . . , u⃗N} ⊆ KN eine ONB
darstellt,{

U ∈ U(N)
(
∈ O(N)

)}
⇔

{
∀ i, j ∈ ZN1 : ⟨u⃗i|u⃗j⟩ = δi,j

}
, (X.68)

wobei hier ⟨·|·⟩ das unitäre (euklidische) Skalarprodukt notiert.

Korollar X.16. Seien N ∈ N und A = A∗ ∈ CN×N eine selbstadjungierte Matrix.
Dann ist A diagonalisierbar, und es gibt eine unitäre Matrix U ∈ U(N) und Eigenwerte
λ1, λ2, . . . , λN ∈ R, so dass

U∗AU =


λ1

λ2 0
. . .

0 λN

 . (X.69)

Beweis. Sind E = {e⃗1, . . . , e⃗N} ⊆ CN die Standardbasis und Φ ∈ L(CN) die eindeutige
lineare Abbildung, sodass A = ME [Φ] die Matrixdarstellung von Φ ist, so ist Φ = Φ∗

selbstadjungiert. Nach dem Spektralsatz gibt es eine ONBW = {w⃗1, . . . , w⃗N} ⊆ CN aus
Eigenvektoren von Φ mit zugehörigen Eigenwerten λj, sodass also Φw⃗j = λjw⃗j. Ist nun
Θ ∈ L(CN) die Transformation von der ONB E auf die ONB W , d.h. gilt Θe⃗j = w⃗j, so
ist U :=ME [Θ] ∈ U(N) unitär, und es gilt λ1 0

. . .

0 λN

 = MW [Φ] = ME [Θ]−1 · ME [Φ] · ME [Θ] = U∗ A U . (X.70)
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X.5. Anwendung des Spektralsatzes zur Lösung von
Systemen linearer Differenzialgleichungen

Zur Illustration des Nutzens des Werkzeugs, das der Spektralsatz für Anwendungen
darstellt, wollen wir zeigen, wie man ein System gewöhnlicher Differenzialgleichungen
mit ihm löst. Ein solches System ist für N ∈ N durch N lineare Differenzialgleichungen

ẋ1(t) = a1,1x1(t) + a1,2x2(t) + . . .+ a1,NxN(t) , (X.71)

ẋ2(t) = a2,1x1(t) + a2,2x2(t) + . . .+ a2,NxN(t) , (X.72)

...

ẋN(t) = aN,1x1(t) + aN,2x2(t) + . . .+ aN,NxN(t) , (X.73)

gegeben. Gesucht sind Lösungen x1, x2, . . . , xN : R+
0 → C, die x1(0) = α1, x2(0) =

α2, . . . , xN(0) = αN genügen, wobei α1, α2, . . . , αN ∈ C eine Anfangsbedingung definie-
ren. Mit

x⃗(t) =


x1(t)
x2(t)
...

xN(t)

 , A =


a1,1 a1,2 · · · a1,N
a2,1 a2,2 · · · a2,N
... a2,2

...
aN,1 aN,2 · · · aN,N

 , und x⃗0 =


α1

α2
...
αN

 ,

(X.74)

kann man das Differenzialgleichungssystem (X.71)-(X.73) als eine einzige Differenzial-
gleichung

∀ t > 0 : ˙⃗x(t) = Ax⃗(t) , x⃗(0) = x⃗0 , (X.75)

für eine differenzierbare vektorwertige Funktion x⃗ : R+
0 → CN und einen Anfangswert

x⃗0 ∈ CN schreiben. Wir wollen dabei annehmen, dass die die Gleichung definierende
komplexe N ×N -Matrix A := (ai,j)

N
i,j=1 ∈ CN×N selbstadjungiert ist, A = A∗.

Bemerkungen und Beispiele.

• Vermutlich wäre die Bezeichung
”
Anfangsvektor

”
für x⃗0 treffender, ist aber nicht

üblich.

• Die Beschränkung des obigen AWP auf selbstadjungierte Matrizen erfasst zwar
viele, aber nicht alle Beispielanwendungen. Tatsächlich kann man das AWP (X.75)
für allgemeine komplexe N × N -Matrizen ähnlich lösen; wir kommen am Schluss
darauf zurück.

• Auch die Festlegung, dass die Matrix A in (X.75) unabhängig von der Variablen
t (die wir als Zeitvariable interpretieren) sein soll, ist eine der Kürze der für die
Vorlesung zur Verfügung stehenden Zeit geschuldete Vereinfachung - aber kein
prinzipielles mathematisches Hindernis.

• Im AWP (X.75) tritt die Zeitableitung einer vektorwertigen Funktion auf, die in
der Schule nicht behandelt wird.
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• Wir erinnern zunächst an die Definition der Differenzierbarkeit einer reellen Funk-
tion, die für nichtnegative Zeiten definiert ist: Eine Funktion f : R+

0 → R heißt
differenzierbar bei t > 0, falls der Grenzwert

ḟ(t) := lim
h→0

{
f(t+ h)− f(t)

h

}
∈ R (X.76)

existiert. In diesem Fall nennen wir ḟ(t) die Ableitung von f (bei t).

• Ist f differenzierbar bei t für alle t > 0, so heißt f differenzierbar auf R+ und die
Ableitung definiert eine Abbildung ḟ : R∗ → R.

• Man beachte, dass die Ableitung bei t = 0 nicht gebildet werden kann, weil die
Grenzwertbildung in (X.76) bedingt, dass man sich t von links und von rechts
nähert.

• Die Definition der Differenzierbarbeit einer Funktion x⃗ : R+
0 → CN und ihrer

Ableitung ist die natürliche Verallgemeinerung von (X.76): x⃗ : R+
0 → CN heißt

differenzierbar bei t > 0, falls der Grenzwert

˙⃗x(t) := lim
h→0

{
x⃗(t+ h)− x⃗(t)

h

}
∈ CN (X.77)

existiert. In diesem Fall nennen wir ˙⃗x(t) die Ableitung von x⃗ (bei t).

• Ist x⃗ differenzierbar bei t für alle t > 0, so heißt x⃗ differenzierbar auf R+ und die
Ableitung definiert eine Abbildung ˙⃗x : R∗ → CN .

• Schreiben wir x⃗(t) =
(
x1(t), . . . , xN(t)

)T
mit xn(t) ∈ C, so ist

x⃗(t+ h)− x⃗(t)
h

=
1

h


x1(t+ h)

...
xN(t+ h)

−
x1(t)

...
xN(t)


 (X.78)

=


Re[x1(t+h)]−Re[x1(t)]

h
+ i Im[x1(t+h)]−Im[x1(t)]

h
...

Re[xN (t+h)]−Re[xN (t)]
h

+ i Im[xN (t+h)]−Im[xN (t)]
h

 ,

und es folgt sofort, dass die Ableitung der vektorwertigen Funktion t 7→ x⃗(t) auf
die übliche Ableitungen reeller Funktionen, nämlich der Real- und Imaginärteile
der Komponenten von x⃗(t), zurückgeführt werden kann,

˙⃗x(t) =

 Re[ẋ1(t)] + iIm[ẋ1(t)]
...

Re[ẋN(t)] + iIm[ẋN(t)]

 =

 ẋ1(t)
...

ẋN(t)

 . (X.79)

Setzt man auf der rechten Seite die Gleichungen (X.71)-(X.73) ein, erhält man
sofort (X.75).

• Sind B ∈ CN×N eine feste komplexe N × N -Matrix und y⃗(t) := Bx⃗(t), so beob-
achten wir, dass

y⃗(t+ h)− y⃗(t)
h

=
Bx⃗(t+ h)−Bx⃗(t)

h
= B

(
x⃗(t+ h)− x⃗(t)

h

)
. (X.80)
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Im Limes h→ 0 folgt, dass mit x⃗ auch y⃗ differenzierbar ist und

˙⃗y(t) = B ˙⃗x(t) . (X.81)

Zur Lösung der Differenzialgleichung (X.75) wenden wir den Spektralsatz und genauer
Korollar X.16 auf die selbstadjungierte Matrix A an: Nach Korollar X.16 ist A diagona-
lisierbar, und es gibt eine unitäre Matrix U ∈ U(N) und Eigenwerte λ1, λ2, . . . , λN ∈ R,
so dass

U∗AU = Λ :=


λ1

λ2 0
. . .

0 λN

 (X.82)

gilt. Durch Multiplikation mit U von links und U∗ von rechts wird diese Gleichung
äquivalent überführt in

A = U ΛU∗ . (X.83)

Sei nun x⃗ : R∗
0 → CN eine Lösung der Differenzialgleichung (X.75). Wir definieren

z⃗(t) := U∗x⃗(t) und z⃗0 := U∗x⃗0 (X.84)

und beobachten, dass z⃗(0) = z⃗0 und für t > 0

˙⃗z(t) = U∗ ˙⃗x(t) = U∗Ax⃗(t) = U∗AU U∗x⃗(t) = Λz⃗(t) (X.85)

gilt. Glg. (X.85) und die Anfangsbedingung z⃗(0) = z⃗0 =: (β1, . . . , βN)
T ist aber gleich-

wertig mit dem System folgender N Differenzialgleichungen,

ż1(t) = λ1 z1(t) , z1(0) = β1 (X.86)

ż2(t) = λ2 z2(t) , z2(0) = β2 (X.87)

...
...

żN(t) = λN zN(t) , zN(0) = βN . (X.88)

Diese Differenzialgleichungen besitzen aber die eindeutigen Lösungen

∀n ∈ ZN1 , t ≥ 0 : zn(t) = eλnt βn , (X.89)

bzw. in Vektorschreibweise

∀ t ≥ 0 : z⃗(t) = exp[tΛ] z⃗0 , exp[tΛ] :=


eλ1t

eλ2t 0
. . .

0 eλN t

 . (X.90)

Damit erhalten wir für die ursprünglich gesuchte Vektorfunktion

∀ t ≥ 0 : x⃗(t) = U exp[tΛ]U∗x⃗0 . (X.91)

Dies ist eine Lösung der Differenzialgleichung (X.75) und weil die Lösungen zn : R+
0 → C

der Differenzialgleichungen żn(t) = λnzn(t) mit Anfangswerten zn(0) = β0 eindeutig sind,
ist (X.91) auch die einzige Lösung von (X.75).
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X.6. Ergänzungen

X.6.1. Beweis von Lemma X.3

Beweis. Für n ∈ ZL1 definieren wir

An := {x⃗1, x⃗2, . . . , x⃗n} (X.92)

und beobachten, dass A1 = {x⃗1} wegen x⃗1 ̸= 0 linear unabhängig ist. Wir zeigen nun,
dass

∀n ∈ ZL−1
1 :

(
An ist linear unabhängig

)
⇒

(
An+1 ist linear unabhängig

)
(X.93)

gilt. Dies liefert dann induktiv die lineare Unabhängigkeit von AL und somit die Be-
hauptung.

Um (X.93) zu zeigen, nehmen wir an, dass An linear unabhängig ist und An+1 linear
abhängig wäre und führen diese Annahme zum Widerspruch. Die lineare Abhängigkeit
von An+1 bedeutet, dass es (α1, . . . , αn, αn+1) ̸= (0, . . . , 0, 0) so gibt, dass

α1x⃗1 + . . .+ αnx⃗n + αn+1x⃗n+1 = 0⃗ . (X.94)

Wäre nun αn+1 = 0, so folgte aus der linearen Unabhängigkeit von An, dass mit α1x⃗1 +
. . . + αnx⃗n = 0⃗ auch α1 = · · · = αn = 0 wären, also (α1, . . . , αn, αn+1) = (0, . . . , 0, 0)
gälte, was in Widerspruch zu (α1, . . . , αn, αn+1) ̸= (0, . . . , 0, 0) stünde. Also ist αn+1 ̸= 0.

Wir setzen nun βℓ := −αℓ/αn+1 und erhalten

x⃗n+1 = β1x⃗1 + . . .+ βnx⃗n . (X.95)

Wenden wir nun Φ− λn+11 auf (X.95) an, so erhalten wir

0⃗ =
(
Φ− λn+11

)
x⃗n+1 =

n∑
ℓ=1

βℓ
(
Φ− λn+11

)
x⃗ℓ =

n∑
ℓ=1

βℓ
(
Φx⃗ℓ − λn+1x⃗ℓ

)
=

n∑
ℓ=1

βℓ(λℓ − λn+1) x⃗ℓ. (X.96)

Da An linear unabhängig ist, impliziert dies, dass βℓ(λℓ−λn+1) = 0 für alle ℓ ∈ Zn1 sind.
Wegen der paarweisen Verschiedenheit der Eigenwerte sind außerdem λℓ − λn+1 ̸= 0,
und deshalb muss sogar β1 = · · · = βn = 0 gelten, d.h. es ist x⃗n+1 = 0⃗. Widerspruch;
also ist An+1 linear unabhängig.

X.6.2. Die Drehgruppe SO(N)

Bemerkungen und Beispiele.

• Ist D =
(
a b
c d

)
∈ SO(2), so gilt nach (VII.56) und mit det[D] = 1, dass(

d −b
−c a

)
= D−1 = DT =

(
a c
b d

)
, (X.97)
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also a = d und b = −c. Außerdem ist dann 1 = det[D] = a2 + b2. Wählen wir
φ ∈ [0, 2π] so, dass

cos(φ) =
a√

a2 + b2
= a und sin(φ) =

b√
a2 + b2

= b , (X.98)

dann ist also

D =

(
cos(φ) sin(φ)
− sin(φ) cos(φ)

)
. (X.99)

Betrachtet man D als Basistransformation, so dreht D das kartesische Koordina-
tensystem um φ

• Ein typisches Element S ∈ O(2) \ SO(2) ist

S =

(
1 0
0 −1

)
. (X.100)

Als Basistransformation spiegelt S die a⃗2-Achse und lässt die a⃗1-Achse unberührt.
Die Spiegelungseigenschaft wird mathematisch durch S2 = 1 ausgedrückt.

• Jede Matrix M ∈ O(2) ist entweder eine Drehung, M ∈ SO(2), oder das Produkt
einer Drehung D ∈ SO(2) und einer Spiegelung S ∈ O(2)\SO(2), d.h.M = D ·S.

• Weiterhin bilden O(N) ⊆ GL(N,R) eine Untergruppe der reellen, invertiblen
N ×N -Matrizen und SO(N) ⊆ O(N) eine Untergruppe von O(N) bezüglich Ma-
trixmultiplikation, wie man leicht durch Nachprüfen der Gruppenaxiome einsieht.

• Man bezeichnet SO(N) auch als Drehgruppe.

• Tatsächlich lässt sich auch jedes D ∈ SO(3) für geeignete α, β, γ ∈ [0, 2π] als
D = D3(α) ·D1(β) ·D3(γ) schreiben, wobei

D1(β) =

1 0 0
0 cos(β) sin(β)
0 − sin(η) cos(β)

 , D3(α) =

 cos(α) sin(α) 0
− sin(α) cos(α) 0

0 0 1

 .

(X.101)

Dabei sind α, β, γ die eulerschen Winkel. Diese Parametrisierung spielt in der
Theorie des Kreisels eine wichtige Rolle. Jede Drehung in R3 ist also die Kom-
position einer Drehung um die a⃗3-Achse, dann einer weiteren um die a⃗1-Achse und
anschließend nochmal eine um die a⃗3-Achse.

• Natürlich bilden auch SU(N) ⊆ U(N) ⊆ GL(N,C) Untergruppen der komplexen,
invertiblen (N ×N)-Matrizen bezüglich Matrixmultiplikation.

X.6.3. Diagonalisierbarkeit normaler Operatoren

Definition X.17. Seien X ein endlich dimensionaler Vektorraum über C und Φ,Ψ ∈
L(X) zwei lineare Abbildungen. Der Kommutator von Φ und Ψ ist die lineare Ab-
bildung

[Φ,Ψ] := ΦΨ−ΨΦ ∈ L(X). (X.102)
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Satz X.18 (Kommutierende Observablen). Seien N ∈ N, X ein C-Vektorraum der
Dimension dim(X) = N mit Skalarprodukt ⟨·|·⟩ : X × X → C und Φ1 = Φ∗

1,Φ2 =
Φ∗

2, . . . ,ΦL = Φ∗
L ∈ L(X) selbstadjungierte lineare Abbildungen mit Eigenwerten σ(Φℓ) =

{λ(ℓ)i }Ni=1, für ℓ ∈ ZL1 . Kommutieren [Φk,Φℓ] = 0, für alle k, ℓ ∈ ZL1 , so gibt es eine ONB
A = {a⃗1, . . . , a⃗N} ⊆ X gemeinsamer Eigenvektoren aller Φ1,Φ2, . . . ,ΦL, d.h.

∀ ℓ ∈ ZL1 ∀n ∈ ZN1 : Φℓa⃗n = λ(ℓ)n a⃗n. (X.103)

Beweis. Wir führen den Beweis nur für L = 2 und genauer zwei selbstadjungierte linea-
ren Abbildungen Φ = Φ∗,Ψ = Ψ∗ ∈ L(X), die kommutieren, ΦΨ = ΨΦ.

Seien λ1, λ2, . . . , λK ∈ σ(Φ) die paarweise verschiedenen Eigenwerte von Φ und Yk :=
Ker[Φ − λk1] die von den zugehörigen Eigenvektoren aufgespannten Unterräume, die
Eigenräume von Φ. Da Eigenvektoren Φ zu verschiedenen Eigenwerten zueinander
orthogonal sind, folgt

X = Y1 ⊕ Y2 ⊕ . . .⊕ YK . (X.104)

Seien nun k ∈ ZK1 und x⃗ ∈ Yk, also Φx⃗ = λkx⃗. Wegen

Φ(Ψx⃗) = Ψ(Φx⃗) = λkΨx⃗ (X.105)

ist auch Ψx⃗ ∈ Yk, d.h. die Eigenräume Yk sind auch unter Ψ invariant,

∀k ∈ ZK1 : ΨYk ⊆ Yk. (X.106)

Bezeichnen wir die Restriktion von Ψ auf Yk mit Ψk := Ψ ↿Yk∈ L(Yk), so überträgt sich
die Selbstadjungiertheit von Ψ auf Ψk und nach dem Spektralsatz gibt es eine ONB in
Yk aus Eigenvektoren von Ψk, die auch alle Eigenvektoren von Φ zum Eigenwert λk sind.
Die Vereinigung dieser ONB über alle k ∈ ZK1 ist dann die gesuchte ONB von X aus
gemeinsamen Eigenvektoren von Φ und Ψ.

Definition X.19. Seien X ein endlich-dimensionaler Vektorraum über C mit Skalar-
produkt ⟨·|·⟩ : X ×X → C. Eine lineare Abbildung Φ ∈ L(X) heißt normal

:⇔ ΦΦ∗ = Φ∗Φ. (X.107)

Bemerkungen und Beispiele.

• Selbstadjungierte lineare Abbildungen sind normal, da ΦΦ∗ = Φ2 = Φ∗Φ.

• Unitäre lineare Abbildungen sind normal, da UU∗ = 1 = U∗U .

• Zu jeder linearen Abbildung Φ ∈ L(X) bilden wir ihren Realteil

Re{Φ} =
(
Re{Φ}

)∗
:=

1

2

(
Φ + Φ∗) ∈ L(X), (X.108)

und ihren Imaginärteil

Im{Φ} =
(
Im{Φ}

)∗
:=

1

2i

(
Φ− Φ∗) ∈ L(X). (X.109)

Dann gilt

Φ = Re{Φ} + i Im{Φ}. (X.110)
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• Es gilt folgende Äquivalenz:(
Φ ∈ L(X) ist normal

)
⇔

(
[Re{Φ}, Im{Φ}] = 0

)
. (X.111)

Dies ergibt sich aus

[Re{Φ}, Im{Φ}] =
1

4i

{
(Φ + Φ∗) (Φ− Φ∗)− (Φ− Φ∗) (Φ + Φ∗)

}
=

1

4i

{
Φ2 − (Φ∗)2 + Φ∗Φ− ΦΦ∗ − Φ2 + (Φ∗)2 + Φ∗Φ− ΦΦ∗}

=
1

2i

{
Φ∗Φ− ΦΦ∗}. (X.112)

Aus Satz X.18 und der Äquivalenz (X.111) ergibt sich noch das folgende Korollar

Korollar X.20. Seien X ein endlich-dimensionaler Vektorraum über C mit Skalarpro-
dukt ⟨·|·⟩ : X × X → C und Φ ∈ L(X) eine normale lineare Abbildung. Dann gibt
es eine ONB A = {a⃗1, . . . , a⃗N} ⊆ X von X aus Eigenvektoren von Φ. Somit ist Φ
diagonalisierbar.
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