II. Gruppen, Ringe und Körper

Im vorigen Kapitel I wurden die wichtigsten Zahlenmengen bereits genannt: die natürlichen Zahlen,

$$\mathbb{N} := \{1, 2, 3, \ldots\},\tag{II.1}$$

die ganzen Zahlen,

$$\mathbb{Z} := \{0, +1, -1, +2, -2, \ldots\},\tag{II.2}$$

die rationalen Zahlen,

$$\mathbb{Q} := \left\{ \frac{p}{q} \mid p \in \mathbb{Z}, q \in \mathbb{N} \right\}, \tag{II.3}$$

sowie die reellen und die komplexen Zahlen,

$$\mathbb{R}$$
 und \mathbb{C} . (II.4)

Wir wenden uns zunächst \mathbb{N} , \mathbb{Z} und \mathbb{Q} zu. Für $a, b \in \mathbb{N}$ ist auch $a+b \in \mathbb{N}$. Diese Tatsache bezeichnet man als Abgeschlossenheit oder Stabilität von \mathbb{N} bezüglich Addition.

I.A. gilt $a - b \in \mathbb{N}$ jedoch nicht. Dafür geht man von \mathbb{N} zu \mathbb{Z} über; für $a, b \in \mathbb{Z}$ sind a + b und $a - b \in \mathbb{Z}$. Insbesondere ist 0 das neutrale Element bezüglich Addition in \mathbb{Z} : a + 0 = 0 + a = a. Man sagt, dass \mathbb{Z} bezüglich der Addition + eine Gruppe bildet.

Weiterhin ist \mathbb{Z} auch bezüglich Multiplikation abgeschlossen, d.h. für $a, b \in \mathbb{Z}$ ist auch $a \cdot b \in \mathbb{Z}$, und es gilt das Distributivgesetz, a(b+c) = ab + bc. Somit ist \mathbb{Z} bezüglich der Addition + und der Multiplikation (·) ein Ring.

Schließlich gelangt man von \mathbb{Z} zu \mathbb{Q} durch die Forderung, dass auch Abgeschlossenheit bezüglich Division gelten soll: Für $a,b\in\mathbb{Q}$ sind $a+b,a-b,a\cdot b\in\mathbb{Q}$ und $\frac{a}{b}\in\mathbb{Q}$, falls $b\neq 0$. Diese Eigenschaften von \mathbb{Q} stehen auch exemplarisch für die allgemeine Definition eines Körpers.

II.1. Gruppen

Definition II.1. Eine Menge G heißt **Gruppe** : \Leftrightarrow

Auf G ist eine Verknüpfung $\circ: G \times G \to G$ definiert, die die folgenden Eigenschaften besitzt:

$$(G_1) \quad \forall a, b, c \in G: \qquad (a \circ b) \circ c = a \circ (b \circ c),$$
 (II.5)

$$(G_2) \quad \exists \ e \in G \ \forall \ a \in G : \qquad a \circ e = e \circ a = a,$$
 (II.6)

$$(G_3) \quad \forall a \in G \ \exists \ a^{-1} \in G : \quad a \circ a^{-1} = a^{-1} \circ a = e.$$
 (II.7)

Dabei bezeichnet man (G_1) als **Assoziativität**, e als das **neutrale Element** und a^{-1} als das **zu** a **inverse Element**. Die Anzahl |G| der Elemente in G bezeichnet man als **Ordnung von** G.

Gilt außerdem noch

$$(G_4) \quad \forall a, b \in G: \quad a \circ b = b \circ a \quad \text{(Kommutativität)},$$
 (II.8)

so nennt man G kommutativ oder abelsch.

Bemerkungen und Beispiele.

• Häufig wird das Verknüpfungszeichen weg gelassen, und man schreibt

$$a \circ b =: a b.$$
 (II.9)

• Die Assoziativität erlaubt es uns, Klammern bei der Gruppenverknüpfung einfach wegzulassen oder bei Bedarf einzufügen,

$$(a b) c = a (b c) =: a b c.$$
 (II.10)

- Das neutrale Element e einer Gruppe ist eindeutig. Ist nämlich e' irgendein (möglicherweise von e verschiedenes) Element von G, das die Eigenschaft (G_2) besitzt, so folgt e' = e e' = e.
- Sind G eine Gruppe, $a \in G$ und $b \in G$ ein (möglicherweise von a^{-1} verschiedenes) zu a inverses Element, also ab = ba = e, so folgt dass $b = (a^{-1} a)b = a^{-1}(ab) = a^{-1}$, und das zu a inverse Element, a^{-1} , ist eindeutig.
- Aus der Eindeutigkeit des inversen Elements folgen dann auch

$$(a^{-1})^{-1} = a$$
 und $(ab)^{-1} = b^{-1}a^{-1}$, (II.11)

letzteres wegen $a b b^{-1} a^{-1} = a e a^{-1} = a a^{-1} = e$.

• Für abelsche Gruppen G schreibt man die Verknüpfung "o" häufig als Addition $+: G \times G \to G$, und die Eigenschaften (G_1) – (G_4) nehmen folgende Gestalt an:

$$(\widetilde{G}_1) \quad \forall a, b, c \in G: \qquad (a+b)+c = a+(b+c),$$
 (II.12)

$$(\widetilde{G}_2) \quad \exists \ 0 \in G \ \forall \ a \in G : \qquad a+0 = 0+a = a,$$
 (II.13)

$$(\widetilde{G}_3) \quad \forall a \in G \; \exists \; -a \in G : \quad a + (-a) = (-a) + a = 0,$$
 (II.14)

$$(\widetilde{G}_4) \quad \forall a, b \in G: \qquad a+b = b+a.$$
 (II.15)

- Die Menge $\mathbb{Z} = \{\ldots, -2, -1, 0, 1, 2, \ldots\}$ der ganzen Zahlen ist bezüglich der Addition eine abelsche Gruppe mit 0 als neutralem Element und $k^{-1} = -k$ als zu $k \in \mathbb{Z}$ inversem Element.
- Die Menge $\mathbb{Q}\setminus\{0\}$ der rationalen Zahlen ohne Null ist bezüglich der Multiplikation eine abelsche Gruppe mit 1 als neutralem Element und $q^{-1}=1/q$ als zu $q\in\mathbb{Q}\setminus\{0\}$ inversem Element.
- Die Menge $G := \mathbb{R} \setminus \{1\}$ bildet bezüglich $a \circ b := a + b ab$ eine Gruppe.

II.1.1. Permutationen

Definition II.2. Zu vorgegebenem $n \in \mathbb{N}$ sei $\mathbb{Z}_1^n := \{1, 2, \dots, n\}$. Die Menge der **Permutationen** von n Elementen ist durch

$$S_n := \left\{ \pi : \mathbb{Z}_1^n \to \mathbb{Z}_1^n \mid \pi \text{ ist bijektiv} \right\}$$
 (II.16)

gegeben. Das **Signum** $(-1)^{\pi} \in \{-1,1\}$ von π ist definiert durch

$$(-1)^{\pi} := \frac{\prod_{1 \le i < j \le n} \pi(i) - \pi(j)}{\prod_{1 \le i < j \le n} i - j}.$$
 (II.17)

Die Permutationen schreibt man auch häufig als Schema

$$\pi \equiv \begin{pmatrix} 1 & 2 & \cdots & n \\ \pi(1) & \pi(2) & \cdots & \pi(n) \end{pmatrix}. \tag{II.18}$$

Die Komposition von Bijektionen ist nach Satz I.4 (iii) stets selbst bijektiv. Somit bildet die Komposition zweier Permutationen eine Verknüpfung $\circ : \mathcal{S}_n \times \mathcal{S}_n \to \mathcal{S}_n$. Die Komposition von Abbildungen ist stets assoziativ, deshalb gilt auch (G_1) . Weiterhin agiert, wie in (G_2) gefordert,

$$\mathbb{1}_{\mathbb{Z}_1^n} \equiv \begin{pmatrix} 1 & 2 & \cdots & n \\ 1 & 2 & \cdots & n \end{pmatrix} \in \mathcal{S}_n \tag{II.19}$$

als neutrales Element bezüglich \circ . Schließlich ist mit $\pi \in \mathcal{S}_n$ auch die Umkehrabbildung $\pi^{-1} \in \mathcal{S}_n$ eine Permutation, und es gilt $\pi^{-1} \circ \pi = \pi \circ \pi^{-1} = \mathbb{1}_{\mathbb{Z}_1^n}$, also (G_3) . Zusammenfassend stellen wir fest, dass die Permutationen \mathcal{S}_n bezüglich der Komposition \circ eine Gruppe bilden. Dabei ist die Ordnung gleich $|\mathcal{S}_n| = n!$.

Bemerkungen und Beispiele.

• Beachte, dass

$$\prod_{1 \le i < j \le n} F(i,j) = \prod_{i=1}^{n} \left(\prod_{j=i+1}^{n} F(i,j) \right).$$
 (II.20)

• Für n = 2 sind $|S_2| = 2! = 2$ und

$$S_2 = \left\{ \mathbb{1} = \begin{pmatrix} 1 & 2 \\ 1 & 2 \end{pmatrix}, \quad \sigma = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} \right\},$$
 (II.21)

mit $(-1)^{1} = +1$ und $(-1)^{\sigma} = -1$.

• Für n = 3 sind $|S_3| = 3! = 6$ und

$$S_3 = \left\{ \pi_1 = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}, \quad \pi_2 = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}, \quad \pi_3 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}, \quad (II.22) \right\}$$

$$\pi_4 = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}, \quad \pi_5 = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}, \quad \pi_6 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} \right\}, \quad (II.23)$$

mit
$$(-1)^{\pi_1} = (-1)^{\pi_2} = (-1)^{\pi_3} = +1$$
 und $(-1)^{\pi_4} = (-1)^{\pi_5} = (-1)^{\pi_6} = -1$.

• Für n = 3 sind $\pi_5(1) = 3$, $\pi_5(2) = 2$, $\pi_5(3) = 1$ und somit

$$\prod_{1 \le i < j \le n} (i - j) = (1 - 2) \cdot (1 - 3) \cdot (2 - 3) = (-1) \cdot (-2) \cdot (-1) = (-2)$$
(II.24)

und

$$\prod_{1 \le i < j \le n} \left(\pi_5(i) - \pi_5(j) \right) = \left(\pi_5(1) - \pi_5(2) \right) \cdot \left(\pi_5(1) - \pi_5(3) \right) \cdot \left(\pi_5(2) - \pi_5(3) \right)
= (3 - 2) \cdot (3 - 1) \cdot (2 - 1) = 1 \cdot 2 \cdot 1 = 2.$$
(II.25)

Also ist in der Tat

$$(-1)^{\pi_5} := \frac{\prod_{1 \le i < j \le n} \left(\pi_5(i) - \pi_5(j) \right)}{\prod_{1 \le i < j \le n} (i - j)} = \frac{2}{-2} = -1.$$
 (II.26)

• Für n = 3 sind $\pi_6(1) = 2$, $\pi_6(2) = 1$, $\pi_6(3) = 3$ sowie $\pi_2(1) = 3$, $\pi_2(2) = 1$, $\pi_2(3) = 2$. Also sind

$$[\pi_6 \circ \pi_2](1) = \pi_6[\pi_2(1)] = \pi_6[3] = 3, \tag{II.27}$$

$$[\pi_6 \circ \pi_2](2) = \pi_6[\pi_2(2)] = \pi_6[1] = 2, \tag{II.28}$$

$$[\pi_6 \circ \pi_2](3) = \pi_6[\pi_2(3)] = \pi_6[2] = 1, \tag{II.29}$$

und dementsprechend ist

$$\pi_6 \circ \pi_2 = \begin{pmatrix} 1 & 2 & 3 \\ [\pi_6 \circ \pi_2](1) & [\pi_6 \circ \pi_2](2) & [\pi_6 \circ \pi_2](3) \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix} = \pi_5.$$
(II.30)

• Analog erhält man für n=3

$$\pi_2 \circ \pi_6 = \pi_4 \neq \pi_5 = \pi_6 \circ \pi_2,$$
 (II.31)

was zeigt, dass die Gruppe S_3 der Permutationen nicht kommutativ ist. Dies gilt in der Tat ganz allgemein für alle S_n mit $n \geq 3$. (Trivialerweise ist S_2 kommutativ.)

• Das Signum von Permutationen ist multiplikativ, d.h. für $n \in \mathbb{N}$ und $\pi, \kappa \in \mathcal{S}_n$ gilt

$$(-1)^{\pi \circ \kappa} = (-1)^{\pi} \cdot (-1)^{\kappa}.$$
 (II.32)

Dies wird in Lemma II.12 bewiesen.

• Die Permutationen der Form

$$\sigma = \begin{pmatrix} 1 & \dots & i-1 & \mathbf{i} & i+1 & \dots & j-1 & \mathbf{j} & j+1 & \dots & n \\ 1 & \dots & i-1 & \mathbf{j} & i+1 & \dots & j-1 & \mathbf{i} & j+1 & \dots & n \end{pmatrix} \in \mathcal{S}_n, \quad (\text{II}.33)$$

die nur zwei Elemente (hier: $i \leftrightarrow j$) gegeneinander austauschen, heißen **Transpositionen**. Gemäß Lemma II.11 gilt stets $(-1)^{\sigma} = -1$.

• Jede Permutation $\pi \in \mathcal{S}_n$ lässt sich als Komposition von Transpositionen schreiben, d. h. es gibt Transpositionen $\sigma_1, \ldots, \sigma_m \in \mathcal{S}_n$, so dass

$$\pi = \sigma_1 \circ \sigma_2 \circ \ldots \circ \sigma_m. \tag{II.34}$$

Gemäß (II.32) und (II.62) gilt also

$$(-1)^{\pi} = (-1)^{\sigma_1} \cdot (-1)^{\sigma_2} \cdot \dots \cdot (-1)^{\sigma_m} = (-1)^m,$$
 (II.35)

d.h. das Signum der Permutation π ist -1 hoch die Anzahl der Transpositionen, deren Komposition π ergibt.

Weitere Details zu Permutationen findet man in Abschnitt II.4.2.

II.2. Ringe

Definition II.3. Eine Menge R heißt Ring : \Leftrightarrow

Auf R sind zwei Verknüpfungen $Addition + : R \times R \to R$ und Multiplikation (·) : $R \times R \to R$ definiert, die die folgenden Eigenschaften besitzen:

$$(R_1)$$
 R ist bezüglich der Addition + eine abelsche Gruppe, (II.36)

$$(R_2) \quad \forall a, b, c \in R: \qquad (a \cdot b) \cdot c = a \cdot (b \cdot c), \tag{II.37}$$

$$(R_3)$$
 $\forall a, b, c \in R:$ $a \cdot (b+c) = a \cdot b + a \cdot c, (b+c) \cdot a = b \cdot a + c \cdot a.$ (II.38)

Dabei bezeichnet man (R_3) als **Distributivität** und vereinbart, dass Multiplikation vor Addition ausgeführt wird (Punktrechnung vor Strichrechnung).

Bemerkungen und Beispiele.

- Die Menge $\mathbb{N} := \{1, 2, 3, \ldots\}$ der natürlichen Zahlen ist kein Ring.
- Die Menge $\mathbb{Z} := \{\ldots, -2, -1, 0, 1, 2, \ldots\}$ der ganzen Zahlen bildet einen Ring.
- Die Menge $2\mathbb{Z} := \{\ldots, -4, -2, 0, 2, 4, \ldots\}$ der geraden Zahlen bildet einen Ring.
- Die Menge $2\mathbb{Z} + 1 := \{..., -5, -3, -1, 1, 3, 5, ...\}$ der ungeraden Zahlen ist gegenüber Addition nicht abgeschlossen und deswegen auch kein Ring.
- Q, R und C sind Ringe.

II.2.1. Die Restklassenringe \mathbb{Z}_p von \mathbb{Z} modulo p

Für $p \in \mathbb{N}$ definieren wir die Restklassen modulo p durch

$$\forall k \in \mathbb{Z}: \qquad [k]_p := k + p\mathbb{Z} = \{k + pn \mid n \in \mathbb{Z}\}. \tag{II.39}$$

Wir beobachten, dass $[k]_p = [\ell]_p$ gleichwertig mit $(k - \ell) \in p\mathbb{Z} = \{pn | n \in \mathbb{Z}\}$ ist. Offensichtlich gibt es genau p solcher Restklassen modulo p. Ihre Menge bezeichnen wir mit

$$\mathbb{Z}_p := \left\{ [0]_p, [1]_p, [2]_p, \dots, [p-1]_p \right\},$$
 (II.40)

sie bilden eine paarweise disjunkte Zerlegung der ganzen Zahlen, $\mathbb{Z} = \bigcup_{K \in \mathbb{Z}_p} K$. Definieren wir Addition und Multiplikation auf \mathbb{Z}_p durch

$$[k]_p + [\ell]_p := [k + \ell]_p \quad \text{und} \quad [k]_p \cdot [\ell]_p := [k \cdot \ell]_p,$$
 (II.41)

so bilden die Restklassen \mathbb{Z}_p modulo p mit den Verknüpfungen in (II.41) einen Ring, den Restklassenring modulo p.

Um einzusehen, dass \mathbb{Z}_p einen Ring bildet, braucht man natürlich nur die Ringaxiome nachzuprüfen, was eine reine Fleißaufgabe ist. Eine Subtilität liegt allerdings im Beweis der Wohldefiniertheit der Verknüpfungen in (II.41): Damit (II.41) überhaupt Verknüpfungen $+: \mathbb{Z}_p \times \mathbb{Z}_p \to \mathbb{Z}_p$ und $(\cdot): \mathbb{Z}_p \times \mathbb{Z}_p \to \mathbb{Z}_p$ definiert, ist zu zeigen, dass die Gleichungen in (II.41) unabhängig von den gewählten Repräsentanten $k, \ell \in \mathbb{Z}$ sind. Seien dazu $k, k', \ell, \ell' \in \mathbb{Z}$ und $[k]_p = [k']_p$ sowie $[\ell]_p = [\ell']_p$, es gibt also $m, n \in \mathbb{Z}$, sodass

$$k' = k + mp \quad \text{und} \quad \ell' = \ell + np.$$
 (II.42)

Dann sind aber auch

$$[k + \ell]_p = [k' + \ell']_p \text{ und } [k \cdot \ell]_p = [k' \cdot \ell']_p,$$
 (II.43)

denn

$$k' + \ell' = (k + \ell) + (m + n)p$$
 und $k' \cdot \ell' = k \cdot \ell + (kn + \ell m + mn)p$, (II.44)

also sind die Verknüpfungen in (II.41) unabhängig von den gewählten Repräsentanten.

Eine Anwendung der Restklassenringe ist die Regel, dass eine Zahl $n \in \mathbb{N}$ genau dann durch 9 teilbar ist, wenn ihre Quersumme durch 9 teilbar ist, denn es gilt

$$[a_0 + a_1 \cdot 10^1 + a_2 \cdot 10^2 + \dots + a_m \cdot 10^m]_9$$

$$= [a_0]_9 + [a_1]_9 \cdot [10]_9 + \dots + [a_m]_9 \cdot [10]_9^m$$

$$= [a_0]_9 + [a_1]_9 + [a_2]_9 + \dots + [a_m]_9$$

$$= [a_0 + a_1 + a_2 + \dots + a_m]_9.$$
(II.45)

II.3. Körper

Definition II.4. Ein Ring \mathbb{F} heißt $\mathbf{K\ddot{o}rper}^1 \Leftrightarrow$

 $\mathbb F$ besitzt zu $(R_1)\!\!-\!\!(R_3)$ zusätzlich die folgenden Eigenschaften:

$$(K_1) \quad \forall a, b \in \mathbb{F}: \qquad \qquad a \cdot b = b \cdot a, \qquad (II.46)$$

$$(K_2) \quad \exists 1 \in \mathbb{F} \setminus \{0\} \ \forall a \in \mathbb{F}: \qquad 1 \cdot a = a \cdot 1 = a,$$
 (II.47)

$$(K_3) \quad \forall a \in \mathbb{F} \setminus \{0\} \ \exists \frac{1}{a} \in \mathbb{F} \setminus \{0\} : \qquad a \cdot \frac{1}{a} = 1.$$
 (II.48)

Bemerkungen und Beispiele.

¹engl.: Field

- Ist \mathbb{F} ein Ring, der die Eigenschaften (K_2) und (K_3) , aber nicht (K_1) besitzt, so bezeichnet man \mathbb{F} als Schiefkörper.
- Die Eigenschaften (R_1) – (R_3) sowie (K_1) – (K_3) eines Körpers \mathbb{F} implizieren, dass $\mathbb{F} \setminus \{0\}$ bezüglich der Multiplikation eine abelsche Gruppe mit neutralem Element 1 ist. Man bezeichnet $\mathbb{F}^{\times} := \mathbb{F} \setminus \{0\}$ als multiplikative Gruppe von \mathbb{F} .
- Der Ring Z der ganzen Zahlen ist kein Körper.
- Die Menge $\mathbb{Q} := \{p/q \mid p \in \mathbb{Z}, q \in \mathbb{N}\}$ der rationalen Zahlen bilden einen Körper.
- Weitere Körper sind die Menge der reellen Zahlen \mathbb{R} und die Menge der komplexen Zahlen \mathbb{C} . Diese Körper sind für diese Vorlesung am wichtigsten. Deshalb schreiben wir \mathbb{K} statt \mathbb{F} , falls $\mathbb{F} = \mathbb{R}$ oder $\mathbb{F} = \mathbb{C}$.
- Ist p eine Primzahl, so bilden die Restklassen \mathbb{Z}_p modulo p einen Körper (s. Abschnitt II.2.1).

II.4. Ergänzungen

II.4.1. Untergruppen

Definition II.5. Sei (G, \circ) eine Gruppe. Eine Teilmenge $U \subseteq G$ heißt **Untergruppe**

$$:\Leftrightarrow U$$
 ist bezüglich der Verknüpfung \circ in G selbst eine Gruppe. (II.49)

Lemma II.6 (Untergruppenkriterium). Sei (G, \circ) eine Gruppe. Eine Teilmenge $U \subseteq G$ ist eine Untergruppe, falls folgende drei Kriterien erfüllt sind:

$$(i) e \in U, (II.50)$$

$$(i) \qquad e \in U, \qquad (II.50)$$

$$(ii) \quad \forall a, b \in U: \qquad a \circ b \in U, \qquad (II.51)$$

(iii)
$$\forall a \in U : a^{-1} \in U.$$
 (II.52)

Beweis. Wegen (i) gilt $\circ: U \times U \to U$, d.h. U ist bezüglich \circ abgeschlossen. Da die Verknüpfung auf G assoziativ ist, ist sie (erst recht) auch auf $U \subseteq G$ assoziativ. (i) sichert (G_2) und (iii) sichert (G_3) .

Bemerkungen und Beispiele.

- $\{e\}, G \subseteq G \text{ sind stets Untergruppen die trivialen Untergruppen.}$
- Die geraden Zahlen $2\mathbb{Z} \subseteq \mathbb{Z}$ bilden bezüglich Addition eine Untergruppe.
- Die ungeraden Zahlen $2\mathbb{Z} + 1 \subseteq \mathbb{Z}$ sind bezüglich Addition keine Untergruppe, denn $0 \notin 2\mathbb{Z} + 1$.

Definition II.7. Sei (G, \circ) eine Gruppe. Das **Zentrum** $Z(G) \subseteq G$ von G ist definiert durch

$$Z(G) := \{ a \in G \mid \forall x \in G : ax = xa \}.$$
 (II.53)

Lemma II.8. Z(G) ist eine abelsche Untergruppe von G.

Beweis. Zunächst weisen wir mit Hilfe des Untergruppenkriteriums, Lemma II.6, nach, dass Z(G) eine Untergruppe von G ist.

- (i) Wegen ex = x = xe ist $e \in Z(G)$.
- (ii) Für $a, b \in Z(G)$ und $x \in G$ ist abx = axb = xab, also ist $ab \in Z(G)$.
- (iii) Für $a \in Z(G)$ und $x \in G$ ist $x^{-1}a = ax^{-1}$ und daher $a^{-1}x = (x^{-1}a)^{-1}$ $(ax^{-1})^{-1} = xa^{-1}$. Also ist mit a auch $a^{-1} \in Z(G)$.

Es folgt, dass Z(G) eine Untergruppe ist. Weiterhin ist für $a, b \in Z(G)$ insbesondere $b \in G$ und deshalb ist ab = ba. Also ist Z(G) abelsch.

II.4.2. Permutationen, Transpositionen, Zyklen und Signum

Definition II.9. Sei $\pi \in \mathcal{S}_n$ eine Permutation. Sind $k_1, k_2, \dots, k_r \in \mathbb{Z}_1^n$ mit $\pi(k_1) = k_2$, $\pi(k_2) = k_3, \dots, \pi(k_r) = k_1$, also

$$k_1 \xrightarrow{\pi} k_2 \xrightarrow{\pi} k_3 \xrightarrow{\pi} \cdots \xrightarrow{\pi} k_r \xrightarrow{\pi} k_1,$$
 (II.54)

so heißt (k_1, k_2, \dots, k_r) **Zyklus** von π der Länge r.

Bemerkungen und Beispiele.

• Die Permutation $\pi \in \mathcal{S}_9$,

$$\pi = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 5 & 4 & 1 & 9 & 3 & 8 & 7 & 6 & 2 \end{pmatrix},$$
 (II.55)

besitzt die Zyklen

$$(1,5,3), (2,4,9), (6,8), (7)$$
 (II.56)

(etwa $1 \mapsto 5 \mapsto 3 \mapsto 1$). Jede Permutation ist offensichtlich durch ihre Zyklen eindeutig bestimmt, und man schreibt

$$\pi := (1, 5, 3) (2, 4, 9) (6, 8).$$
 (II.57)

(Zur Vereinfachung lässt man Zyklen der Länge 1 weg.)

• Umgekehrt kann für $n \geq r$ jeder Zyklus (k_1, k_2, \ldots, k_r) als Permutation in S_n gelesen werden: (k_1, k_2, \ldots, k_r) lässt alle Elemente in $\mathbb{Z}_1^n \setminus \{k_1, k_2, \ldots, k_r\}$ invariant. Mit dieser Lesart wird (II.57) zu

$$\pi = (1, 5, 3) \circ (2, 4, 9) \circ (6, 8).$$
 (II.58)

- Außerdem kommutieren disjunkte Zyklen miteinander, deshalb ist $\pi = (1, 5, 3) \circ (2, 4, 9) \circ (6, 8) = (2, 4, 9) \circ (6, 8) \circ (1, 5, 3).$
- Ein Vergleich mit (II.33) zeigt, dass Transpositionen genau die Zyklen der Länge 2 sind, nämlich

$$\sigma = \begin{pmatrix} 1 & \dots & i-1 & \mathbf{i} & i+1 & \dots & j-1 & \mathbf{j} & j+1 & \dots & n \\ 1 & \dots & i-1 & \mathbf{j} & i+1 & \dots & j-1 & \mathbf{i} & j+1 & \dots & n \end{pmatrix} = (i,j). \text{ (II.59)}$$

Satz II.10. Sei $n \geq 2$. Jede Permutation $\pi \in \mathcal{S}_n$ kann als Komposition von Transpositionen geschrieben werden, d.h. es gibt $a_1, b_1, a_2, b_2, \ldots, a_m, b_m \in \mathbb{Z}_1^n$, mit $a_i \neq b_i$, so dass

$$\pi = (a_1, b_1) \circ (a_2, b_2) \circ \cdots \circ (a_m, b_m).$$
 (II.60)

Beweis. Zunächst stellen wir fest, dass es genügt, für einen beliebigen Zyklus (a_1, \ldots, a_r) der Länge $2 \le r \le n$ Glg. (II.60) zu zeigen. Es ist aber

$$(a_1, a_2, \dots, a_r) = (a_1, a_r) \circ (a_1, a_{r-1}) \circ \dots \circ (a_1, a_2).$$
 (II.61)

WS 2025/26, Seite 28

Lemma II.11. Sind $n \in \mathbb{N}$, $n \geq 2$, $1 \leq i < j \leq n$ und $\sigma = (i, j) \in \mathcal{S}_n$ eine Transposition, so ist

$$(-1)^{\sigma} = -1. \tag{II.62}$$

Beweis. Der Beweis ist eine kleine Rechnung.

$$(-1)^{\sigma} = \prod_{p < q} \frac{\sigma(q) - \sigma(p)}{q - p} = \prod_{p < q; \{p = i \lor q = j\}} \frac{\sigma(q) - \sigma(p)}{q - p}$$

$$= \left(\prod_{p = i; i < q < j} \frac{\sigma(q) - \sigma(p)}{q - p}\right) \cdot \left(\prod_{p = i; q = j} \frac{\sigma(q) - \sigma(p)}{q - p}\right) \cdot \left(\prod_{p = i; q > j} \frac{\sigma(q) - \sigma(p)}{q - p}\right)$$

$$\cdot \left(\prod_{p = j; q > j} \frac{\sigma(q) - \sigma(p)}{q - p}\right) \cdot \left(\prod_{p < i; q = i} \frac{\sigma(q) - \sigma(p)}{q - p}\right) \cdot \left(\prod_{p < i; q = j} \frac{\sigma(q) - \sigma(p)}{q - p}\right)$$

$$\cdot \left(\prod_{i
$$= \left(\prod_{p = i; i < q < j} \frac{q - j}{q - i}\right) \cdot \left(\prod_{p < i; q = j} \frac{q - j}{q - i}\right) \cdot \left(\prod_{p = j; q > j} \frac{q - i}{q - j}\right)$$

$$\cdot \left(\prod_{p < i; q = i} \frac{j - p}{i - p}\right) \cdot \left(\prod_{p < i; q = j} \frac{i - p}{j - p}\right) \cdot \left(\prod_{i < p < j; q = j} \frac{i - p}{j - p}\right)$$

$$= -1. \tag{II.63}$$$$

Lemma II.12. Sind $n \in \mathbb{N}$, $n \geq 2$, and $\pi, \kappa \in \mathcal{S}_n$ zwei Permutationen, so gilt

$$(-1)^{\pi \circ \kappa} = (-1)^{\pi} \cdot (-1)^{\kappa}. \tag{II.64}$$

Beweis.

$$(-1)^{\pi \circ \kappa} = \prod_{1 \leq i < j \leq n} \frac{\pi(\kappa(i)) - \pi(\kappa(j))}{i - j} = \prod_{1 \leq i < j \leq n} \frac{\left[\pi(\kappa(i)) - \pi(\kappa(j))\right] \cdot \left[\kappa(i) - \kappa(j)\right]}{\left[\kappa(i) - \kappa(j)\right] \cdot \left[i - j\right]}$$

$$= \left(\prod_{1 \leq i < j \leq n} \frac{\pi(\kappa(i)) - \pi(\kappa(j))}{\kappa(i) - \kappa(j)}\right) \cdot \left(\prod_{1 \leq i < j \leq n} \frac{\kappa(i) - \kappa(j)}{i - j}\right)$$

$$= \left(\prod_{1 \leq i < j \leq n} \frac{\pi(i) - \pi(j)}{i - j}\right) \cdot \left(\prod_{1 \leq i < j \leq n} \frac{\kappa(i) - \kappa(j)}{i - j}\right)$$

$$= (-1)^{\pi} \cdot (-1)^{\kappa}.$$

Aus Lemmata II.11 und II.12 folgt nun Glg. (II.35), die wir nochmal als Korollar formulieren.

Korollar II.13. Sind $n \in \mathbb{N}$ und $\pi = \sigma_1 \circ \sigma_2 \circ \ldots \circ \sigma_m \in \mathcal{S}_n$ eine Permutation, die als Komposition von m Transpositionen $\sigma_1, \sigma_2, \ldots, \sigma_m \in \mathcal{S}_n$ dargestellt werden kann, so ist

$$(-1)^{\pi} = (-1)^{m}. (II.66)$$

Beweis. Nach Lemmata II.11 und II.12 ist

$$(-1)^{\pi} = (-1)^{\sigma_1} \cdot (-1)^{\sigma_2} \cdot \cdot \cdot (-1)^{\sigma_m} = (-1)^m.$$
 (II.67)

II.4.3. Der Polynomring R[x] über einem kommutativen Ring R

Sei R ein kommutativer Ring. Wir betrachten Folgen $\underline{a}=(a_n)_{n=0}^{\infty}\in R^{\mathbb{N}_0}$, wobei nur endlich viele Folgeglieder von 0 verschieden sind. D.h. es gibt ein $m=m(\underline{a})\in\mathbb{N}$, so dass

$$a = (a_0, a_1, a_2, \dots, a_m, 0, 0, \dots).$$
 (II.68)

(Dabei hängt $m(\underline{a})$ im Allgemeinen von der betrachteten Folge \underline{a} ab und ist nicht für alle Folgen gleich.) Wir sammeln diese Folgen in

$$R[x] := \left\{ \underline{a} = (a_n)_{n=0}^{\infty} \in R^{\mathbb{N}_0} \mid \exists m \in \mathbb{N} \ \forall n > m : a_n = 0 \right\}.$$
 (II.69)

R[x] wird zu einem kommutativen Ring bezüglich der Verknüpfungen

$$\underline{a} + \underline{b} := (a_0 + b_0, a_1 + b_1, a_2 + b_2, \dots)$$
 (II.70)

und

$$\underline{a} \cdot \underline{b} = \underline{c}$$
, wobei $c_n := a_0 b_n + a_1 b_{n-1} + \dots + a_n b_0$. (II.71)

Dies prüft man durch Nachrechnen der Ringaxiome leicht nach.

Wir führen nun x als formale Variable ein und identifizieren \underline{a} mit dem Polynom

$$\underline{a}(x) := a_0 + a_1 x + a_2 x^2 + \ldots + a_m x^m.$$
 (II.72)

Dann sieht man sofort, dass die Addition und Multiplikation in R[x] gerade der Addition und Multiplikation der zugehörigen Polynome entspricht:

$$(\underline{a} + \underline{b})(x) = (a_0 + b_0) + (a_1 + b_1)x + \dots + (a_N + b_N)x^N$$

= $\underline{a}(x) + \underline{b}(x),$ (II.73)

$$(\underline{a} \cdot \underline{b})(x) = a_0 b_0 + (a_0 b_1 + a_1 b_0) x + \ldots + (a_0 b_N + a_1 b_{N-1} + \ldots + a_N b_0) x^N$$

= $a(x) \cdot b(x)$, (II.74)

wobei $N := m(\underline{a}) + m(\underline{b})$. Daher bezeichnet man R[x] als Ring der Polynome (in x) über R.

II.4.4. Restklassenringe \mathbb{Z}_p modulo Primzahlen p sind Körper

Definition II.14. Seien $a, b \in \mathbb{Z}$.

- (i) Eine Zahl $g \in \mathbb{Z}$ heißt **Teiler von** a, falls es ein $h \in \mathbb{Z}$ so gibt, dass a = gh gilt.
- (ii) Für |a| + |b| > 0 ist der **größte gemeinsame Teiler ggT** $(a, b) \in \mathbb{Z}$ von a und b die größte ganze Zahl, die ein Teiler sowohl von a als auch von b ist.

Bemerkungen und Beispiele.

- Da $0 = g \cdot 0$ für alle $g \in \mathbb{Z}$ gilt, sind alle ganzen Zahlen Teiler von 0. Deshalb müssen wir a = b = 0 bei der Definition des größten gemeinsamen Teiler ausschließen.
- Sind $a, b \in \mathbb{Z}$, so ist 1 stets ein Teiler sowohl von a als auch von b. Daher ist $ggT(a, b) \ge 1$, d.h. der größte gemeinsame Teiler von $a \in \mathbb{Z}$ und $b \in \mathbb{Z}$, |a| + |b| > 0, ist stets eine natürliche Zahl.

Lemma II.15. Sind $a, b \in \mathbb{Z}$ mit |a| + |b| > 0, so gibt es $k, \ell \in \mathbb{Z}$ so, dass

$$ggT(a,b) = ka + \ell b. (II.75)$$

Beweis. Sei

$$M := \{ n \in \mathbb{N} \mid \exists k, \ell \in \mathbb{Z} : n = ka + \ell b \}. \tag{II.76}$$

Dann ist $|a| + |b| \in M$, also $M \neq \emptyset$. Seien $m \in \mathbb{N}$ die kleinste Zahl in M, $m := \min M$, und $k, \ell \in \mathbb{Z}$ so, dass $m = ka + \ell b$. Da $d := \operatorname{ggT}(a, b)$ sowohl a als auch b teilt, teilt d auch m, also ist $d \leq m$.

Seien nun a = qm + r, mit $q \in \mathbb{Z}$ und $0 \le r < m$. Wäre $r \ge 1$, so wäre

$$r = a - qm = (1 - qk)a - q\ell b \in M.$$
 (II.77)

Da m die kleinste natürliche Zahl in M ist, kann dies nicht richtig sein, und es folgt r=0, d.h. a=qm. Genauso erhält man b=pm. Also teilt m sowohl a als auch b. Damit ist $m \leq \operatorname{ggT}(a,b) = d$.

Insgesamt folgt, dass

$$ggT(a,b) = m \in M. (II.78)$$

Satz II.16. \mathbb{Z}_p ist ein Körper genau dann, wenn $p \in \mathbb{N}$ eine Primzahl ist.

Beweis.

Ist $p \in \mathbb{N}$ keine Primzahl, so gibt es $1 < a \le b < p$ mit p = ab. Dann sind $[a]_p$, $[b]_p \ne [0]_p$, aber

$$[a]_p \cdot [b]_p = [ab]_p = [0]_p.$$
 (II.79)

Also ist \mathbb{Z}_p kein Körper.

Sind p eine Primzahl und 1 < a < p, so ist ggT(a, p) = 1. Nach Lemma II.15 gibt es $k, \ell \in \mathbb{Z}$ so, dass $1 = ka + \ell b$. Also ist

$$[1]_p = [k]_p \cdot [a]_p + [\ell]_p \cdot [p]_p = [k]_p \cdot [a]_p, \tag{II.80}$$

d.h. $[k]_p$ ist das Inverse zu $[a]_p$ bezüglich Multiplikation in \mathbb{Z}_p .