II. Bounded Linear Operators on Hilbert Spaces

II.1. Self-Adjoint, Normal, and Unitary Operators

In this section we collect some basic facts about the spectral theory of bounded linear operators on Hilbert spaces. Note that any Hilbert space $(\mathcal{H}, \langle \cdot | \cdot \rangle)$ is, in particular, a Banach space with norm $||x|| = \sqrt{\langle x | x \rangle}$. We recall from (I.8) that

$$\mathcal{B}(\mathcal{H}) = \left\{ A : \mathcal{H} \to \mathcal{H} \mid A \text{ is linear, } \|A\|_{\mathcal{B}(\mathcal{H})} < \infty \right\},$$
(II.1)

where

$$\|A\|_{\mathcal{B}(\mathcal{H})} := \sup_{x \in \mathcal{H} \setminus \{0\}} \left\{ \frac{\|Ax\|}{\|x\|} \right\} = \sup_{x \in \mathcal{H}, \|x\|=1} \left\{ \|Ax\| \right\} = \sup_{x, y \in \mathcal{H}, \|x\|=\|y\|=1} \left\{ \left| \langle y|Ax \rangle \right| \right\}$$
(II.2)

is the operator norm of A, where the last inequality follows from (I.30).

Fix $A \in \mathcal{B}(\mathcal{H})$. For any $y \in \mathcal{H}$, the map $\ell_y(x) := \langle y | Ax \rangle$ defines a bounded linear functional $\ell_y \in \mathcal{H}^*$ with $\|\ell_y\|_{\mathcal{H}^*} \leq \|y\| \cdot \|A\|_{\text{op}}$. By the Riesz representation theorem I.10 there exists a unique vector $z_y \in \mathcal{H}$ such that

$$\forall x \in \mathcal{H}: \qquad \langle y | Ax \rangle = \ell_y(x) = \langle z_y | x \rangle. \tag{II.3}$$

Definition II.1. Let $(\mathcal{H}, \langle \cdot | \cdot \rangle)$ be a complex Hilbert space and $A \in \mathcal{B}(\mathcal{H})$ a bounded operator on \mathcal{H} .

(i) The map y → z_y =: A*(y), where z_y ∈ H is the unique vector in (II.3), is linear and defines a bounded operator A* ∈ B(H) called the **adjoint operator to** A. This operator is uniquely determined by

$$\forall x, y \in \mathcal{H}: \qquad \langle y | Ax \rangle = \langle A^* y | x \rangle. \tag{II.4}$$

- (ii) If $A = A^*$ then A is called **self-adjoint**.
- (iii) If $AA^* = A^*A$ then A is said to be **normal**.
- (iv) A bounded operator A is called (**bounded**) invertible if there exists a bounded operator $A^{-1} \in \mathcal{B}(\mathcal{H})$ such that $AA^{-1} = A^{-1}A = \mathbf{1}_{\mathcal{H}}$. In this case the operator $A^{-1} \in \mathcal{B}(\mathcal{H})$ is called the inverse of A. The set of bounded invertible operators on \mathcal{H} form a group with respect to composition, the automorphism group $Aut(\mathcal{H}) \subseteq \mathcal{B}(\mathcal{H})$.
- (v) The spectrum $\sigma(A) \subseteq \mathbb{C}$ and the resolvent set $\rho(A) \subseteq \mathbb{C}$ of a bounded operator $A \in \mathcal{B}(\mathcal{H})$ are defined by

$$\sigma(A) := \left\{ \lambda \in \mathbb{C} \mid A - \lambda \cdot \mathbf{1}_{\mathcal{H}} \text{ is not bounded invertible } \right\},$$
(II.5)

$$\rho(A) := \left\{ \lambda \in \mathbb{C} \mid A - \lambda \cdot \mathbf{1}_{\mathcal{H}} \text{ is bounded invertible } \right\}, \tag{II.6}$$

i.e., $\rho(A) = \mathbb{C} \setminus \sigma(A)$.

(vi) A bounded invertible operator $U \in Aut(\mathcal{H})$ is called **unitary** if $U^{-1} = U^*$. The set of unitary operators on \mathcal{H} form a subgroup of $Aut(\mathcal{H})$, the **unitary group** $\mathcal{U}(\mathcal{H})$.

II.2. Linear Operators on finite-dimensional Hilbert Spaces

We first discuss the finite-dimensional case. Let $d \in \mathbb{N}$ fixed and $\mathcal{H} = \mathbb{C}^d$ equipped with the unitary scalar product (I.16).

If d ∈ N, {e₁,..., e_d} ⊆ H := C^d is the canonical ONB, and A ∈ B(C^d) is a (bounded) linear operator then

$$A = \mathbf{1}_{\mathcal{H}} A \mathbf{1}_{\mathcal{H}} = \sum_{m,n=1}^{d} |e_m\rangle \langle e_m| A |e_n\rangle \langle e_n| = \sum_{m,n=1}^{d} A_{m,n} |e_m\rangle \langle e_n|, \quad (\text{II.7})$$

where the matrix elements $A_{m,n}$ of A are given by $A_{m,n} = \langle e_m | A e_n \rangle$.

• In the finite-dimensional case, the spectrum $\sigma(A) \subseteq \mathbb{C}$ of $A \in \mathcal{B}(\mathbb{C}^d)$ coincides with the set of eigenvalues and these, in turn, with the zeroes of the characteristic polynomial,

$$\sigma(A) = \left\{ \lambda \in \mathbb{C} \mid \lambda \text{ is an eigenvalue of } A \right\} = \left\{ \lambda \in \mathbb{C} \mid \det[A - \lambda \cdot \mathbf{1}] = 0 \right\}.$$
(II.8)

Note that $\sigma(A)$ is a set of at most d numbers in the complex plane, and $\rho(A)$ is the entire complex plane except for these isolated points.

- In particular, $(A^*)_{m,n} = \overline{A_{n,m}}$, i.e., $A^* = \overline{A^t}$, for (finite-dimensional) matrices.
- If $A = A^* \in \mathcal{B}(\mathbb{C}^d)$ is self-adjoint then A is **diagonalizable**, i.e., there exists an ONB $\{\varphi_1, \ldots, \varphi_d\} \subseteq \mathcal{H} := \mathbb{C}^d$ of eigenvectors and d corresponding eigenvalues

 $\{\lambda_1,\ldots,\lambda_d\}\subseteq\mathbb{C}$ such that

$$A = \sum_{j=1}^{d} \lambda_j |\varphi_j\rangle \langle \varphi_j|.$$
 (II.9)

Moreover, all eigenvalues of a self-adjoint operator are real, $\sigma(A) \subseteq \mathbb{R}$.

• Furthermore, if $A = A^* \in \mathcal{B}(\mathbb{C}^d)$ is self-adjoint then

$$||A||_{\text{op}} = \max\left\{|\lambda| : \lambda \in \sigma(A)\right\}.$$
 (II.10)

Indeed, if $\{\varphi_1, \ldots, \varphi_d\} \subseteq \mathbb{C}^d$ is an ONB of eigenvectors with corresponding eigenvalues $\{\lambda_1, \ldots, \lambda_d\} = \sigma(A) \subseteq \mathbb{R}$ such that

$$A = \sum_{j=1}^{d} \lambda_j |\varphi_j\rangle \langle \varphi_j|, \qquad (II.11)$$

then $||A\varphi_j|| = |\lambda_j|$, for any $j \in \mathbb{Z}_1^d$, and hence $||A||_{\text{op}} = \sup_{\|\psi\|=1} ||A\psi|| \ge \max_{1 \le j \le d} |\lambda_j|$. Conversely, if $\varphi, \psi \in \mathbb{C}^d$ then

$$\begin{aligned} \left| \langle \varphi | A \psi \rangle \right| &\leq \sum_{j=1}^{d} \left| \lambda_{j} \right| \left| \langle \varphi | \varphi_{j} \rangle \left\langle \varphi_{j} | \psi \rangle \right| \\ &\leq \left(\max_{1 \leq j \leq d} \left| \lambda_{j} \right| \right) \left(\sum_{j=1}^{d} \left| \langle \varphi | \varphi_{j} \rangle \right|^{2} \right)^{1/2} \left(\sum_{j=1}^{d} \left| \langle \varphi_{j} | \psi \rangle \right|^{2} \right)^{1/2} \\ &= \left(\max_{1 \leq j \leq d} \left| \lambda_{j} \right| \right) \left\| \varphi \right\| \left\| \psi \right\|, \end{aligned} \tag{II.12}$$

which implies that $||A||_{\text{op}} \leq \max_{1 \leq j \leq d} |\lambda_j|$.

- Note that here and henceforth we count multiplicities, i.e., the eigenvalues are not necessarily distinct. For instance, the unit matrix (1_{C^d})_{m,n} = δ_{m,n} is self-adjoint, its eigenvalues are λ₁ = ... = λ_d = 1, and its spectrum consists of a single point σ(1) = {1}.
- More generally, if $K \in \mathbb{N}$ and $A_1 = A_1^*$, $A_2 = A_2^*$, ..., $A_K = A_K^* \in \mathcal{B}(\mathbb{C}^d)$ are mutually commuting self-adjoint operators,

$$\forall k, \ell \in \mathbb{Z}_1^K : \qquad [A_k, A_\ell] = A_k A_\ell - A_\ell A_k = 0, \qquad (II.13)$$

then A_1, A_2, \ldots, A_K are simultaneously diagonalizable. That is, there exists an ONB $\{\varphi_j | j \in \mathbb{Z}_1^d\} \subseteq \mathbb{C}^d$ of joint eigenvectors and $K \cdot d$ corresponding real eigenvalues $\sigma(A_k) = \{\lambda_{k,j} | j \in \mathbb{Z}_1^d\} \subseteq \mathbb{R}$ such that

$$A_k = \sum_{j=1}^d \lambda_{k,j} |\varphi_j\rangle \langle \varphi_j|.$$
 (II.14)

• The latter statement (II.14) for K = 2 implies that normal operators, i.e., those for which $AA^* = A^*A$, are diagonalizable, too.

Namely, defining the real part $\operatorname{Re}(A)$ and the imaginary part $\operatorname{Im}(A)$ of an operator $A \in \mathcal{B}(\mathcal{H})$ by

$$\operatorname{Re}(A) := \frac{1}{2} (A + A^*)$$
 and $\operatorname{Im}(A) := \frac{1}{2i} (A - A^*)$, (II.15)

we observe that

$$A = \operatorname{Re}(A) + i\operatorname{Im}(A), \qquad (II.16)$$

much like $z = \operatorname{Re}(z) + i\operatorname{Im}(z)$ for $z \in \mathbb{C}$ with $\operatorname{Re}(z), \operatorname{Im}(z) \in \mathbb{R}$. It is easy to check that the normality of A is equivalent to $[\operatorname{Re}(A), \operatorname{Im}(A)] = 0$. Hence, $\operatorname{Re}(A)$ and $\operatorname{Im}(A)$ are simultaneously diagonalizable, and there exists an ONB $\{\varphi_j | j \in \mathbb{Z}_1^d\} \subseteq \mathbb{C}^d$ of joint eigenvectors and 2d real eigenvalues $\{\alpha_1, \beta_1, \ldots, \alpha_d, \beta_d\} \subseteq \mathbb{R}$ such that $\operatorname{Re}(A) = \sum_{j=1}^d \alpha_j |\varphi_j\rangle\langle\varphi_j|$ and $\operatorname{Im}(A) = \sum_{j=1}^d \beta_j |\varphi_j\rangle\langle\varphi_j|$. Therefore, A is diagonalizable, namely,

$$A = \sum_{j=1}^{d} (\alpha_j + i\beta_j) |\varphi_j\rangle \langle \varphi_j|.$$
 (II.17)

- An important class of normal operators, besides self-adjoint ones, are unitary operators U ∈ U(H), since UU* = 1_H = U*U. It follows that unitary operators are diagonalizable and that their spectra are contained in the unit circle, σ(U) ⊆ {z ∈ C : |z| = 1}
- If A_{m,n} = ⟨e_m|Ae_n⟩ is the matrix representation of A with respect to the canonical ONB {e₁,..., e_d} ⊆ C^d then the self-adjointness of A is equivalent to A_{n,m} = A_{m,n}. Its diagonalizability is equivalent to the existence of a **unitary matrix** U ∈ U(C^d) such that

$$A = U^* D U, \qquad (II.18)$$

where $D \in \mathcal{B}(\mathbb{C}^d)$ is a diagonal matrix,

$$D_{i,j} = \langle e_i | De_j \rangle = \delta_{i,j} \lambda_j \quad \Leftrightarrow \quad D = \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & \lambda_d \end{pmatrix}.$$
(II.19)

Indeed, if U has the matrix representation $U_{i,n} = \langle e_i | U e_n \rangle$ then $U_{i,n} := \langle \varphi_i | e_n \rangle$ has the desired properties.

The general form to which any operator on a finite-dimensional Hilbert space can be transformed to is given by the **singular value decomposition** described in the following theorem. **Theorem II.2** (Singular Value Decomposition). Let $d \in \mathbb{N}$ and $(\mathcal{H} = \mathbb{C}^d, \langle \cdot | \cdot \rangle = \langle \cdot | \cdot \rangle_{\text{unit}})$ be the d-dimensional complex Hilbert space defined by the unitary scalar product and $A \in \mathcal{B}(\mathcal{H})$ a bounded operator on \mathcal{H} . Then there exist ONB $\{f_1, \ldots, f_d\}, \{g_1, \ldots, g_d\} \subseteq \mathcal{H}$ and nonnegative numbers $\rho_1, \ldots, \rho_d \in \mathbb{R}_0^+$ called singular values of A such that

$$A = \sum_{n=1}^{d} \rho_n |f_n\rangle \langle g_n|. \qquad (II.20)$$

Equivalently, if $A_{m,n} = \langle e_m | A e_n \rangle$ denote the matrix elements of A in the canonical ONB $\{e_1, \ldots, e_d\} \subseteq \mathcal{H}$ then there exist unitary matrices $U, V \in \mathcal{U}(\mathbb{C}^d)$ such that

$$A = U^* D V, \qquad (II.21)$$

where $D \in \mathcal{B}(\mathbb{C}^d)$ is the diagonal matrix,

$$D = \begin{pmatrix} \rho_1 & 0 & \cdots & 0 \\ 0 & \rho_2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & \rho_d \end{pmatrix},$$
(II.22)

with $\rho_1, \ldots, \rho_d \in \mathbb{R}_0^+$.

II.3. Positivity and Functional Calculus

Definition II.3 (Functional Calculus). Let $d \in \mathbb{N}$ and $(\mathcal{H} = \mathbb{C}^d, \langle \cdot | \cdot \rangle = \langle \cdot | \cdot \rangle_{\text{unit}})$ be the ddimensional complex Hilbert space defined by the unitary scalar product, $A = A^* \in \mathcal{B}(\mathcal{H})$ a self-adjoint operator on \mathcal{H} , and $\{\varphi_1, \ldots, \varphi_d\} \subseteq \mathcal{H}$ an ONB of eigenvectors of A with corresponding eigenvalues $\{\lambda_1, \ldots, \lambda_d\} = \sigma(A) \subseteq \mathbb{R}$, such that

$$A = \sum_{j=1}^{d} \lambda_j |\varphi_j\rangle \langle \varphi_j|.$$
 (II.23)

If $f \in C(\mathbb{R}; \mathbb{C})$ then define

$$f(A) := \sum_{j=1}^{d} f(\lambda_j) |\varphi_j\rangle \langle \varphi_j|.$$
 (II.24)

- It easy to check that f(A) defined by (II.24) is normal.
- If f(x) = α₀ + α₁x + ... + α_Nx^N is a complex polynomial, α₀, α₁, ..., α_N ∈ C, then f(A) defined by (II.24) coincides with α₀ + α₁A + ... + α_NA^N.

Suppose that (a_k)[∞]_{k=0} ∈ C^{N₀} is a complex sequence with lim sup_{k→∞} |a_k|^{1/k} := 1/R < ∞ and z₀ ∈ C. Then the power series f(z) := ∑[∞]_{k=0} a_k(z - z₀)^k converges absolutely in D(z₀, R) := {z ∈ C : |z - z₀| < R}. If σ(A) ⊆ D(z₀, R) then f(A) defined by (II.24) coincides with the norm-convergent power series

$$f(A) = \sum_{k=0}^{\infty} a_k (A - z_0)^k.$$
 (II.25)

• This way and with $z_0 = 0$ and $R = \infty$, we obtain many elementary functions of selfadjoint operators $A = A^*$, e.g., the matrix exponential function and many others,

$$\exp(A) := \sum_{k=0}^{\infty} \frac{A^k}{k!}, \qquad (II.26)$$

$$\sin(A) := \sum_{k=0}^{\infty} \frac{(-1)^k A^{2k+1}}{(2k+1)!}, \qquad (II.27)$$

$$\cos(A) := \sum_{k=0}^{\infty} \frac{(-1)^k A^{2k}}{(2k)!}.$$
(II.28)

Eqs. (II.26)-(II.28) define bounded operators on \mathcal{H} as norm-convergent power series.

Definition II.4 (Positivity). Let $(\mathcal{H}, \langle \cdot | \cdot \rangle)$ be a complex Hilbert space and $A = A^*, B = B^* \in \mathcal{B}(\mathcal{H})$ two self-adjoint operators on \mathcal{H} .

(i) A is called **positive**, $A \ge 0 : \Leftrightarrow \forall \varphi \in \mathcal{H} : \langle \varphi | A\varphi \rangle \ge 0$. (II.29)

(*ii*)
$$A \ge B : \Leftrightarrow A - B \ge 0.$$
 (II.30)

• Using the diagonal form

$$A = \sum_{j=1}^{d} \lambda_j |\varphi_j\rangle \langle \varphi_j|, \qquad (II.31)$$

one easily checks that

$$\left\{A \ge 0\right\} \quad \Leftrightarrow \quad \left\{\sigma(A) \subseteq \mathbb{R}_0^+\right\}. \tag{II.32}$$

- Hence, if $f \in C(\mathbb{R}_0^+; \mathbb{R})$ and A is positive then f(A) can be defined by (II.24).
- In particular, we have for positive A that

$$\sqrt{A} = \sum_{j=1}^{d} \sqrt{\lambda_j} |\varphi_j\rangle \langle \varphi_j|, \qquad (II.33)$$

$$A \ln(A) = \sum_{j=1}^{d} \lambda_j \ln(\lambda_j) |\varphi_j\rangle \langle \varphi_j |, \qquad (II.34)$$

where we use the convention that $0 \ln(0) = 0$, which is consistent with the continuity of $\lim_{r \searrow 0} \{r \ln(r)\} = 0$ at r = 0.

Next, let $d \in \mathbb{N}$ and $\mathcal{H} = \mathbb{C}^d$ be the *d*-dimensional complex Hilbert space endowed with the unitary scalar product and $A \in \mathcal{B}(\mathcal{H})$ a bounded operator on \mathcal{H} . According to Theorem II.2, there exist ONB $\{f_1, \ldots, f_d\}, \{g_1, \ldots, g_d\} \subseteq \mathcal{H}$ and nonnegative numbers $\rho_1, \rho_2, \ldots, \rho_d \ge 0$, such that A assumes its singular value decomposition

$$A = \sum_{n=1}^{d} \rho_n |f_n\rangle \langle g_n|.$$
 (II.35)

Then A^*A is positive,

$$A^*A = \sum_{m,n=1}^d \rho_m \rho_n |g_m\rangle \langle f_m | f_n \rangle \langle g_n | = \sum_{n=1}^d \rho_n^2 |g_n\rangle \langle g_n | \ge 0, \qquad \text{(II.36)}$$

which can also be seen directly, as $\langle \varphi | A^* A \varphi \rangle = \langle A \varphi | A \varphi \rangle = ||A \varphi|| \ge 0$. We can thus define the **absolute value** |A| of A by (II.33),

$$|A| := \sqrt{A^* A} = \sum_{n=1}^d \sqrt{\rho_n^2} |g_n\rangle \langle g_n|, = \sum_{n=1}^d \rho_n |g_n\rangle \langle g_n|.$$
(II.37)

Note that $|A|^* = |A|$, but $|A^*| = \sum_{n=1}^d \rho_n |f_n\rangle \langle f_n| \neq |A|$, in general. From these observations and taking $U := \sum_{n=1}^d |f_n\rangle \langle g_n|$, we obtain the polar decomposition of A,

Theorem II.5 (Polar Decomposition). Let $d \in \mathbb{N}$ and $(\mathcal{H} = \mathbb{C}^d, \langle \cdot | \cdot \rangle = \langle \cdot | \cdot \rangle_{\text{unit}})$ be the *d*dimensional complex Hilbert space defined by the unitary scalar product and $A \in \mathcal{B}(\mathcal{H})$ a bounded operator on \mathcal{H} . Then there exist a unitary operator $U \in \mathcal{U}(\mathcal{H})$ such that

$$A = U|A|. \tag{II.38}$$

The right side of (II.38) is called the polar decomposition of A.

II.4. Traces and Trace Norms

Definition II.6. Let $d \in \mathbb{N}$ and $(\mathcal{H} = \mathbb{C}^d, \langle \cdot | \cdot \rangle = \langle \cdot | \cdot \rangle_{\text{unit}})$ be the *d*-dimensional complex Hilbert space defined by the unitary scalar product, $\{\varphi_1, \ldots, \varphi_d\} \subseteq \mathcal{H}$ an ONB, and $A \in \mathcal{B}(\mathcal{H})$ a bounded operator on \mathcal{H} .

(i) The trace Tr(A) of A is defined as

$$\operatorname{Tr}(A) := \sum_{j=1}^{d} \langle \varphi_j | A \varphi_j \rangle.$$
 (II.39)

(ii) For $p \in [1, \infty)$ define the trace norm $||\mathbf{A}||_p$ of A by

$$||A||_p := [\operatorname{Tr}(|A|^p)]^{1/p}.$$
 (II.40)

Remarks and Examples.

• The trace $\operatorname{Tr}(A)$ of $A \in \mathcal{B}(\mathcal{H})$ is well-defined, i.e., independent of the choice of the ONB $\{\varphi_1, \ldots, \varphi_d\} \subseteq \mathcal{H}$. Indeed, if $\{f_1, \ldots, f_d\} \subseteq \mathcal{H}$ is any ONB and $A = \sum_{i,j=1}^N a_{i,j} |f_i\rangle\langle f_j|$ then

$$\operatorname{Tr}(A) = \sum_{i,j=1}^{d} a_{i,j} \langle f_j | f_i \rangle = \sum_{i=1}^{d} a_{i,i} = \sum_{i=1}^{d} \langle f_i | A f_i \rangle, \qquad (II.41)$$

independent of the choice of the ONB $\{f_1, \ldots, f_d\}$ in \mathcal{H} .

- If {λ₁,...,λ_d} ⊆ C are the zeros of the characteristic polynomial χ(λ) = det[A λ · 1] = (λ₁ λ) ··· (λ_d λ) (counting multiplicities), then Tr(A) = λ₁ + ... + λ_d is the sum of these zeroes. Indeed, it is easy to check that Tr(A) = -α_{d-1} = λ₁ + ... + λ_d, when writing χ(λ) = α₀ + ... + α_{d-1}λ^{d-1} + λ^d.
- If $\rho_1 \ge \rho_2 \ge \cdots \ge \rho_d \ge 0$ are the eigenvalues of |A|, then $||A||_p = \left(\sum_{n=1}^N \rho_n^p\right)^{1/p}$.
- If $\rho_1 \ge \rho_2 \ge \cdots \ge \rho_d \ge 0$ and $A \ne 0$ then $\rho_1 > 0$. If furthermore $1 \le q then$

$$|A||_{p}^{p} = \sum_{n=1}^{N} \rho_{n}^{p} = \rho_{1}^{p} \sum_{n=1}^{N} \left(\frac{\rho_{n}}{\rho_{1}}\right)^{p} \le \rho_{1}^{p} \sum_{n=1}^{N} \left(\frac{\rho_{n}}{\rho_{1}}\right)^{q} = \rho_{1}^{p-q} ||A||_{q}^{q}.$$
(II.42)

Theorem II.7. Let $(\mathcal{H} = \mathbb{C}^d, \langle \cdot | \cdot \rangle = \langle \cdot | \cdot \rangle_{\text{unit}})$ be a finite-dimensional complex Hilbert space and $A, B \in \mathcal{B}(\mathcal{H})$ two linear operators on \mathcal{H} .

(i)
$$||AB||_1 \leq ||A||_{\text{op}} \cdot ||B||_1;$$
 (II.43)

(*ii*)
$$||A||_{\text{op}} = \sup \{ \operatorname{Tr}(AB) \mid B \in \mathcal{L}^{1}(\mathcal{H}), ||B||_{1} = 1 \}.$$
 (II.44)

(*iii*)
$$A = A^* \Rightarrow ||A||_{\text{op}} = \sup \left\{ \operatorname{Tr}(\rho A) \mid \rho \in \mathcal{DM}(\mathcal{H}) \right\},$$
 (II.45)

where

$$\mathcal{DM}(\mathcal{H}) := \left\{ \rho \in \mathcal{L}^{1}(\mathcal{H}) \mid \rho = \rho^{*} \ge 0, \ \mathrm{Tr}(\rho) = 1 \right\} \subseteq \mathcal{L}^{1}(\mathcal{H})$$
(II.46)

is the convex subset of density matrices.

II.5. Tensor Products of Hilbert Spaces

In this section we define tensor products of Hilbert spaces and observe some basic facts about these. To this end we suppose that $(\mathcal{H}, \langle \cdot | \cdot \rangle)$ and $(\mathcal{H}', \langle \cdot | \cdot \rangle')$ are two (separable, complex) Hilbert spaces. For $f \in \mathcal{H}$ and $f' \in \mathcal{H}'$ we define a map $f \otimes f' : \mathcal{H} \times \mathcal{H}' \to \mathbb{C}$ by

$$\forall h \in \mathcal{H}, h' \in \mathcal{H}': \qquad (f \otimes f')[h, h'] := \langle h|f\rangle \langle h'|f'\rangle. \tag{II.47}$$

Obviously, $f\otimes f'$ is a bi-antilinear form,

$$(f \otimes f')[g + \alpha h, g' + \beta h'] = (f \otimes f')[g, g'] + \overline{\alpha} (f \otimes f')[h, g'] + \overline{\beta} (f \otimes f')[g, h'] + \overline{\alpha \beta} (f \otimes f')[h, h'].$$
 (II.48)

With these bi-antilinear forms we build a complex vector space $\mathcal{G}_{\rm fin}$ by the usual pointwise operations,

$$\left((f \otimes f') + \alpha(g \otimes g')\right)[h, h'] := \left(f \otimes f'\right)[h, h'] + \alpha\left(g \otimes g'\right)[h, h'].$$
(II.49)

This vector space contains all (finite) linear combinations of bilinear forms $f \otimes f'$,

$$\mathcal{G}_{\text{fin}} = \left\{ \left| \sum_{j=1}^{L} \alpha_j (f_j \otimes f'_j) \right| | L \in \mathbb{N}, \forall j \in \mathbb{Z}_1^L : \alpha_j \in \mathbb{C}, f_j \in \mathcal{H}, f'_j \in \mathcal{H}' \right\}.$$
(II.50)

We define a quadratic form $\langle \cdot | \cdot \rangle_{\mathcal{G}} : \mathcal{G}_{\mathrm{fin}} \times \mathcal{G}_{\mathrm{fin}} \to \mathbb{C}$ by continuation by antilinearity of

$$\langle f \otimes f' | g \otimes g' \rangle_{\mathcal{G}} := \langle f | g \rangle \langle f' | g' \rangle,$$
 (II.51)

i.e.,

$$\left\langle \sum_{i=1}^{L} \alpha_{i} f_{i} \otimes f_{i}' \right| \sum_{j=1}^{L} \beta_{j} g_{j} \otimes g_{j}' \right\rangle_{\mathcal{G}} := \sum_{i,j=1}^{L} \overline{\alpha_{i}} \beta_{j} \langle f_{i} | g_{j} \rangle \langle f_{i}' | g_{j}' \rangle.$$
(II.52)

Lemma II.8. The quadratic form $\langle \cdot | \cdot \rangle_{\mathcal{G}} : \mathcal{G}_{fin} \times \mathcal{G}_{fin} \to \mathbb{C}$ as in (II.51) defines a scalar product on \mathcal{G}_{fin} .

Proof. Sesquilinearity and symmetry of $\langle \cdot | \cdot \rangle_{\mathcal{G}}$ are trivial, and we concentrate on its positive definiteness. Let $\{\varphi_k\}_{k=1}^{\infty} \subseteq \mathcal{H}$ and $\{\varphi'_{\ell}\}_{\ell=1}^{\infty} \subseteq \mathcal{H}'$ be two ONB and assume that $\Psi = \sum_{j=1}^{L} \alpha_j (f_j \otimes f'_j) \in \mathcal{G}_{\text{fin}}$. Then

$$\langle \Psi | \Psi \rangle_{\mathcal{G}} = \sum_{i,j=1}^{L} \overline{\alpha_{i}} \alpha_{j} \langle f_{i} | f_{j} \rangle \langle f_{i}' | f_{j}' \rangle' = \sum_{k,\ell=1}^{\infty} \sum_{i,j=1}^{L} \overline{\alpha_{i}} \alpha_{j} \langle f_{i} | \varphi_{k} \rangle \langle \varphi_{k} | f_{j} \rangle \langle f_{i}' | \varphi_{\ell}' \rangle' \langle \varphi_{\ell}' | f_{j}' \rangle'$$

$$= \sum_{k,\ell=1}^{\infty} \left| \sum_{j=1}^{L} \alpha_{j} \left(f_{j} \otimes f_{j}' \right) [\varphi_{k}, \varphi_{\ell}'] \right|^{2} = \sum_{k,\ell=1}^{\infty} \left| \Psi [\varphi_{k}, \varphi_{\ell}'] \right|^{2}.$$
(II.53)

This proves that $\langle \Psi | \Psi \rangle_{\mathcal{G}} \geq 0$. Moreover, $\langle \Psi | \Psi \rangle_{\mathcal{G}} = 0$ implies that $\Psi [\varphi_k, \varphi'_{\ell}] = 0$, for all $k, \ell \in \mathbb{N}$. Since $\{\varphi_k\}_{k=1}^{\infty} \subseteq \mathcal{H}$ and $\{\varphi'_{\ell}\}_{\ell=1}^{\infty} \subseteq \mathcal{H}'$ are ONB, this in turn yields $\Psi = 0$. \Box

Definition II.9. Suppose that $(\mathcal{H}, \langle \cdot | \cdot \rangle)$ and $(\mathcal{H}', \langle \cdot | \cdot \rangle')$ are two separable, complex Hilbert spaces. Define \mathcal{G}_{fin} as in (II.50) and equip it with the scalar product $\langle \cdot | \cdot \rangle_{\mathcal{G}} : \mathcal{G}_{\text{fin}} \times \mathcal{G}_{\text{fin}} \to \mathbb{C}$ as in (II.51). We define a separable, complex Hilbert space $(\mathcal{G}, \langle \cdot | \cdot \rangle_{\mathcal{G}})$ as the completion

$$\mathcal{G} := \overline{\mathcal{G}_{\text{fin}}}^{\langle \cdot | \cdot \rangle_{\mathcal{G}}} \tag{II.54}$$

of \mathcal{G}_{fin} with respect to the norm induced by $\langle \cdot | \cdot \rangle_{\mathcal{G}}$. The Hilbert space \mathcal{G} is called the **tensor product** of \mathcal{H} and \mathcal{H}' , and we write $\mathcal{G} =: \mathcal{H} \otimes \mathcal{H}'$ and $\langle \cdot | \cdot \rangle_{\mathcal{G}} =: \langle \cdot | \cdot \rangle_{\mathcal{H} \otimes \mathcal{H}'}$.

Remarks and Examples.

- If $\{\varphi_k\}_{k=1}^{\infty} \subseteq \mathcal{H}$ and $\{\varphi'_{\ell}\}_{\ell=1}^{\infty} \subseteq \mathcal{H}'$ are ONB then so is $\{\varphi_k \otimes \varphi'_{\ell}\}_{k,\ell=1}^{\infty} \subseteq \mathcal{H} \otimes \mathcal{H}'$.
- Definition II.9 can be easily generalized to $N \in \mathbb{N}$ factors: If $(\mathcal{H}_n, \langle \cdot | \cdot \rangle_n)$ is a Hilbert space with an ONB $\{\varphi_{n;k}\}_{k=1}^{\infty} \subseteq \mathcal{H}_n$, for $n \in \mathbb{Z}_1^N$, then $\mathcal{H}_1 \otimes \cdots \otimes \mathcal{H}_N$ is the tensor product of $\mathcal{H}_1, \ldots, \mathcal{H}_N$ and $\{\varphi_{1;k_1} \otimes \cdots \otimes \varphi_{N;k_N} \mid k_1, \ldots, k_N \in \mathbb{N}\} \subseteq \mathcal{H}_1 \otimes \cdots \otimes \mathcal{H}_N$ is an ONB.
- Assume that (*H*, ⟨·|·⟩) is a separable, complex Hilbert space. Then the space *L*²(*H*) of Hilbert-Schmidt operators on *H* is a Hilbert space (*L*²(*H*), ⟨·|·⟩_{*L*²(*H*)}) with respect to the scalar product

$$\langle A|B\rangle_{\mathcal{L}^{2}(\mathcal{H})} := \operatorname{Tr}_{\mathcal{H}}(A^{*}B).$$
 (II.55)

• Assume that $(\mathcal{H}, \langle \cdot | \cdot \rangle)$ is a separable, complex Hilbert space. Then the Hilbert space $(\mathcal{L}^2(\mathcal{H}), \langle \cdot | \cdot \rangle_{\mathcal{L}^2(\mathcal{H})})$ of Hilbert-Schmidt operators is isomorphic to $(\mathcal{H} \otimes \mathcal{H}^*, \langle \cdot | \cdot \rangle_{\mathcal{H} \otimes \mathcal{H}^*})$, the isomorphism being

$$J: \mathcal{L}^{2}(\mathcal{H}) \to \mathcal{H} \otimes \mathcal{H}^{*}, \quad |\varphi\rangle \langle \psi| \mapsto \varphi \otimes \psi.$$
 (II.56)

If (Ω, 𝔄, μ) and (Ω', 𝔄', μ') are two measure spaces then L²(Ω × Ω', dμ ⊗ dμ') is isomorphic to L²(Ω, dμ) ⊗ L²(Ω', dμ'). The isomorphism I : L²(Ω, dμ) ⊗ L²(Ω', dμ') → L²(Ω × Ω', dμ ⊗ dμ') derives from the extension by linearity and continuity of

$$\varphi \otimes \varphi' \mapsto \varphi \cdot \varphi', \text{ where } (\varphi \cdot \varphi')[x, x'] := \varphi(x) \cdot \varphi'(x').$$
 (II.57)

II.6. SUPPLEMENTARY MATERIAL

II.6.1. Proof of Theorem II.2 - Singular Value Decomposition

Proof. We only prove (II.20). We may assume that $A \neq 0$. Observe that $A^*A \in \mathcal{B}(\mathcal{H})$ is a self-adjoint matrix and, hence, diagonalizable. In other words, there exists an ONB $\{g_1, \ldots, g_d\} \subseteq \mathcal{H}$ of eigenvectors of A^*A and corresponding real eigenvalues $\lambda_1, \ldots, \lambda_d \in \mathbb{R}$ such that

$$A^*A = \sum_{j=1}^d \lambda_j |g_j\rangle \langle g_j|.$$
(II.58)

Note that the eigenvalues $\lambda_j = \langle g_j | A^* A g_j \rangle = ||Ag_j||^2 \ge 0$ are nonnegative, and we may define $\rho_j \in \mathbb{R}^+_0$ by $\rho_j := \sqrt{\lambda_j} = ||Ag_j||$. Moreover, we may assume w.l.o.g. these numbers to be sorted in descending order such that $\rho_1 \ge \ldots \ge \rho_c > \rho_{c+1} = \ldots = \rho_d = 0$, for some $c \in \mathbb{Z}^d_1$. Hence, $\operatorname{Ker}(A) = \operatorname{span}\{g_{c+1}, \ldots, g_d\}$ and $\operatorname{dim} \operatorname{Ker}(A) = d - c$.

Next, by (I.26),

$$A = \sum_{j=1}^{d} |Ag_j\rangle\langle g_j| = \sum_{j=1}^{c} |Ag_j\rangle\langle g_j| = \sum_{j=1}^{c} \rho_j |f_j\rangle\langle g_j|, \qquad (II.59)$$

where $f_j := \rho_j^{-1} A g_j$, for $j \in \mathbb{Z}_1^c$, using that $\rho_j > 0$ in this case. Then $f_1, f_2, \ldots, f_c \in \mathcal{H}$ are normalized, by definition, and for all $1 \le m < n \le c$ we observe that

$$\langle f_m | f_n \rangle = \frac{\langle Ag_m | Ag_n \rangle}{\rho_m \rho_n} = \frac{\langle g_m | A^* Ag_n \rangle}{\rho_m \rho_n} = \frac{\rho_n \langle g_m | g_n \rangle}{\rho_m} = 0.$$
 (II.60)

It follows that $\{f_1, f_2, \ldots, f_c\} \subseteq \mathcal{H}$ is an orthonormal system which we can complement (e.g., using the Gram-Schmidt orthonormalization procedure) with vectors f_{c+1}, \ldots, f_d to an ONB $\{f_1, f_2, \ldots, f_d\} \subseteq \mathcal{H}$. Using that $\rho_{c+1} = \ldots = \rho_d = 0$, we finally obtain

$$A = \sum_{j=1}^{c} \rho_j |f_j\rangle\langle g_j| = \sum_{j=1}^{d} \rho_j |f_j\rangle\langle g_j|, \qquad (II.61)$$

as asserted.

II.6.2. Proof of Theorem II.5 - Polar Decomposition

Proof. Let $\{f_1, \ldots, f_d\}, \{g_1, \ldots, g_d\} \subseteq \mathcal{H}$ be ONB and $\rho_1, \rho_2, \ldots, \rho_d \ge 0$ nonnegative numbers of a polar decomposition of

$$A = \sum_{n=1}^{d} \rho_n |f_n\rangle \langle g_n|, \qquad (II.62)$$

which exists according to Theorem II.2. We define

$$U = \sum_{n=1}^{d} |f_n\rangle \langle g_n| \tag{II.63}$$

and observe that $U^* = \sum_{n=1}^d |g_n\rangle \langle f_n|$. Thus

$$U^* U = \sum_{m,n=1}^d |g_m\rangle \langle f_m | f_n \rangle \langle g_n | = \sum_{n=1}^d |g_n\rangle \langle g_n | = \mathbf{1}, \qquad (\text{II.64})$$

and similary $UU^* = 1$, so U is unitary. Moreover,

$$U|A| = \sum_{m,n=1}^{d} \rho_n |f_m\rangle \langle g_m|g_n\rangle \langle g_n| = \sum_{n=1}^{d} \rho_n |f_n\rangle \langle g_n| = A, \quad (\text{II.65})$$

as asserted.

II.6.3. Compact Operators, Trace Class Operators, Hilbert–Schmidt Operators

In this section we pass to infinite-dimensional Hilbert spaces, but we will restrict ourselves to compact operators, which are well-approximated by matrices (as opposed to the identity operator $1_{\mathcal{H}}$ on \mathcal{H} or differential operators like $-i\nabla$, say).

Definition II.10. Suppose that $(\mathcal{H}, \langle \cdot | \cdot \rangle)$ is a (separable, complex) Hilbert space.

(i) We define by

$$\mathcal{B}_{\text{fin}}(\mathcal{H}) := \left\{ \sum_{i,j=1}^{N} a_{i,j} |f_i\rangle \langle f_j| \ \middle| \ N \in \mathbb{N}, \ \{a_{i,j}\}_{i,j=1}^{N} \subseteq \mathbb{C}, \ \{f_i\}_{i=1}^{N} \subseteq \mathcal{H} \right\} \subseteq \mathcal{B}(\mathcal{H})$$
(II.66)

the space of linear operators (on \mathcal{H}) of **finite rank**.

(ii) The closure of $\mathcal{B}_{\mathrm{fin}}(\mathcal{H})\subseteq \mathcal{B}(\mathcal{H})$ in operator norm,

$$\operatorname{Com}(\mathcal{H}) := \overline{\mathcal{B}_{\operatorname{fin}}(\mathcal{H})}^{\|\cdot\|_{\operatorname{op}}} \subseteq \mathcal{B}(\mathcal{H}), \qquad (\operatorname{II.67})$$

defines the space of compact operators (on $\mathcal H).$

Remarks and Examples.

- The rank rk(A) of an operator A ∈ B(H) is defined to be the dimension of its range, rk(A) := dim[Ran(A)] ∈ N₀ ∪ {∞}.
- It follows that $\mathcal{B}_{fin}(\mathcal{H}) = \{A \in \mathcal{B}(\mathcal{H}) | \operatorname{rk}(A) + \operatorname{rk}(A^*) < \infty\}.$
- The set of finite-rank operators B_{fin}(H) is a subspace of B(H) which is not closed in the operator norm topology. Its closure is the space of compact operators Com(H). That is, A ∈ B(H) is compact iff for any ε > 0 there are N ∈ N, {a_{i,j}}^N_{i,j=1} ⊆ C, and {f_i}^N_{i=1} ⊆ H such that

$$\left\|A - \sum_{i,j=1}^{N} a_{i,j} |f_i\rangle \langle f_j|\right\|_{\text{op}} \leq \varepsilon.$$
 (II.68)

- Its closure, the set of compact operators Com(H), is a closed subspace of the Banach space (B(H), || · ||_{op}). and, hence, a Banach (sub-)space (Com(H), || · ||_{op}) itself. This Banach subspace Com(H) ⊆ B(H) cannot, however, be complemented by another closed subspace X ⊆ B(H), such that B(H) = Com(H) ⊕ X.
- Since this holds true for finite-rank operators, it follows that every compact operator A ∈ Com(H) possesses a singular value decomposition (SVD), i.e., there exist ONB {f_n}_{n=1}[∞], {g_n}_{n=1}[∞] ⊆ H and singular values {ρ_n}_{n=1}[∞] ⊆ ℝ₀⁺ of A with ρ_n ≥ ρ_{n+1} such that

$$A = \sum_{n=1}^{\infty} \rho_n |f_n\rangle \langle g_n|.$$
 (II.69)

It is here where the use of Dirac's ket-bra notation pays off: We never have to introduce and use infinitly extended matrices, but only let the summation range extend to infinitly many terms.

- For p ∈ [1,∞), the trace norm || · ||_p in (II.67) defines a norm, indeed, on the complex vector space B_{fin}(H) of finite-rank operators.
- The triangle inequality is the only nontrivial part of the latter statement. We only comment on the cases p = 1 and p = 2. For p = 1, it rests on the representation

$$||A||_1 = \sup\left\{\sum_{n=1}^{\infty} \left|\langle\psi_n | A\varphi_n\rangle\right| \ \left| \ \{\psi_m\}_{m=1}^{\infty}, \ \{\varphi_n\}_{n=1}^{\infty} \subseteq \mathcal{H} \text{ ONB}\right\}, \qquad \text{(II.70)}$$

while for p = 2, the key ingredient of the proof is the representation

$$||A||_2 = \sup\left\{\frac{\operatorname{Tr}(B^*A)}{\operatorname{Tr}(B^*B)^{1/2}} \mid B \in \mathcal{B}_{\operatorname{fin}}(\mathcal{H}) \setminus \{0\}\right\}.$$
 (II.71)

To see that (II.70) is the crucial input in the case p = 1, let $A, B \in \mathcal{B}_{fin}(\mathcal{H})$ and observe that

$$\|A + B\|_{1} = \sup\left\{\sum_{n=1}^{\infty} \left|\langle\psi_{n}|(A + B)\varphi_{n}\rangle\right| \left|\{\psi_{m}\}_{m=1}^{\infty}, \{\varphi_{n}\}_{n=1}^{\infty} \subseteq \mathcal{H} \text{ ONB}\right\}\right\}$$

$$\leq \sup\left\{\sum_{n=1}^{\infty} \left|\langle\psi_{n}|A\varphi_{n}\rangle\right| \left|\{\psi_{m}\}_{m=1}^{\infty}, \{\varphi_{n}\}_{n=1}^{\infty} \subseteq \mathcal{H} \text{ ONB}\right\}$$

$$+ \sup\left\{\sum_{n=1}^{\infty} \left|\langle\psi_{n}|B\varphi_{n}\rangle\right| \left|\{\psi_{m}\}_{m=1}^{\infty}, \{\varphi_{n}\}_{n=1}^{\infty} \subseteq \mathcal{H} \text{ ONB}\right\}$$

$$= \|A\|_{1} + \|B\|_{1}. \qquad (II.72)$$

The case p = 2 uses (II.71) in a similar way.

Definition II.11. Suppose that $(\mathcal{H}, \langle \cdot | \cdot \rangle)$ is a (separable, complex) Hilbert space and that $1 \leq p < \infty$. We define by

$$\mathcal{L}^{p}(\mathcal{H}) := \overline{\mathcal{B}_{\mathrm{fin}}(\mathcal{H})}^{\|\cdot\|_{p}} \subseteq \mathcal{B}(\mathcal{H}), \qquad (\mathrm{II.73})$$

the space of *p*-summable operators (on \mathcal{H}). Specifically, the Banach space $(\mathcal{L}^1(\mathcal{H}), \|\cdot\|_1)$ is called the space of trace class operators, and the Banach space $(\mathcal{L}^2(\mathcal{H}), \|\cdot\|_2)$ is called the space of Hilbert-Schmidt operators.

Theorem II.12. Let $(\mathcal{H} = \mathbb{C}^d, \langle \cdot | \cdot \rangle = \langle \cdot | \cdot \rangle_{unit})$ be a complex Hilbert space with an ONB $\{\varphi_j\}_{j=1}^{\infty} \subseteq \mathcal{H}$ and $A \in \mathcal{L}^1(\mathcal{H})$. Then the **trace of** A

$$\operatorname{Tr}(A) := \sum_{j=1}^{\infty} \langle \varphi_j | A \varphi_j \rangle$$
 (II.74)

exists and is independent of the ONB $\{\varphi_j\}_{j=1}^{\infty} \subseteq \mathcal{H}$. If $A_1, A_2, \ldots, A_L \in \mathcal{L}^1(\mathcal{H})$ then the trace is **cyclic**,

$$\operatorname{Tr}(A_1 A_2 \cdots A_{L-1} A_L) = \operatorname{Tr}(A_L A_1 A_2 \cdots A_{L-1} A_L).$$
 (II.75)

Proof. Due to (II.70), the sum on the right side of (II.74) exists and is bounded in absolute value by $||A||_1$,

$$\left|\sum_{j=1}^{\infty} \langle \varphi_j | A \varphi_j \rangle \right| \leq \|A\|_1.$$
 (II.76)

Let $\{\psi_k\}_{k=1}^{\infty} \subseteq \mathcal{H}$ be a second ONB. Given $\varepsilon > 0$, we can find a finite-rank operator $A_{\varepsilon} \in \mathcal{B}_{\text{fin}}(\mathcal{H})$ such that $||A - A_{\varepsilon}||_1 \leq \varepsilon$. Since A_{ε} is of finite rank,

$$\sum_{j=1}^{\infty} \langle \varphi_j | A_{\varepsilon} \varphi_j \rangle = \operatorname{Tr}(A_{\varepsilon}) = \sum_{k=1}^{\infty} \langle \psi_k | A_{\varepsilon} \psi_k \rangle.$$
(II.77)

It follows from (II.77) and an application of (II.76) to $A - A_{\varepsilon}$ that

$$\sum_{j=1}^{\infty} \langle \varphi_j | A\varphi_j \rangle - \sum_{k=1}^{\infty} \langle \psi_k | A\psi_k \rangle \bigg| = \bigg| \sum_{j=1}^{\infty} \langle \varphi_j | (A - A_{\varepsilon})\varphi_j \rangle - \sum_{k=1}^{\infty} \langle \psi_k | (A - A_{\varepsilon})\psi_k \rangle \bigg|$$

$$\leq 2 \|A - A_{\varepsilon}\|_1 \leq 2\varepsilon.$$
(II.78)

Since $\varepsilon > 0$ can be chosen arbitrarily small, (II.78) implies that

$$\sum_{j=1}^{\infty} \langle \varphi_j | A \varphi_j \rangle = \sum_{k=1}^{\infty} \langle \psi_k | A \psi_k \rangle.$$
 (II.79)

The proof of cyclicity is similar: First, one observes that it suffices to prove $\operatorname{Tr}(AB) = \operatorname{Tr}(BA)$ for two trace-class operators $A, B \in \mathcal{L}^1(\mathcal{H})$. Then both A and B are approximated by finite-rank operators A_{ε} and B_{ε} up to errors in trace norm of size $\varepsilon > 0$. For A_{ε} and B_{ε} the identity $\operatorname{Tr}(A_{\varepsilon}B_{\varepsilon}) = \operatorname{Tr}(B_{\varepsilon}A_{\varepsilon})$ is trivial. Hence,

$$\begin{aligned} \left| \operatorname{Tr}(AB) - \operatorname{Tr}(BA) \right| &\leq \left| \operatorname{Tr}(AB) - \operatorname{Tr}(A_{\varepsilon}B_{\varepsilon}) \right| + \left| \operatorname{Tr}(B_{\varepsilon}A_{\varepsilon}) - \operatorname{Tr}(BA) \right| \\ &\leq 2 \left| \operatorname{Tr}[A(B - B_{\varepsilon})] \right| + 2 \left| \operatorname{Tr}[(A - A_{\varepsilon})B_{\varepsilon}] \right| \\ &\leq 2 \varepsilon \left(\|A\|_{1} + \|B\|_{1} + \varepsilon \right), \end{aligned} \tag{II.80}$$

and $\operatorname{Tr}(AB) = \operatorname{Tr}(BA)$ follows in the limit $\varepsilon \to 0$.