
Chapter I. Mathematical Prerequisites

I. Mathematical Prerequisites

I.1. Analysis in one and several Real Variables

We list a few topics from analysis in one and in several real variables that we assume the reader

to be familiar with:

• Real numbers R, complex numbers C, and their d-fold cartesian products Rd and Cd,

d ∈ N.

• Real and complex sequences, series, their convergence, and criteria to decide for con-

vergence or divergence.

• Basic topological notions such as inner points, accumulation points, open sets, closed

sets, compact sets inR, C, Rd, and Cd.

• Continuity of maps and its various characterizations.

• Differentiability and basic rules of differentiation, such as Leibniz rule and the chain

rule.

• (Riemann) Integration, integration by parts, the fundamental theorem of calculus.

• Partial derivatives, gradient, and Jacobi matrix.

• Local extrema, local extrema under constraints, method of Lagrange multipliers.

• Integration of several variables.

• Basic inequalities: Cauchy-Schwarz, Hölder, Minkowski.

I.2. Introductory Linear Algebra

We also list a few topics from linear algebra that we assume the reader to be familiar with:

• Real numbers R, complex numbers C, and their d-fold cartesian products Rd and Cd,

d ∈ N.
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• Vector spaces, subspaces, linear span and their generating sets.

• Linear dependence, linear independence, basis, and dimension.

• Linear maps and their matrix representations.

• Matrices, matrix product, deteminants, equivalence of invertibility of a matrix to the

nonvanishing of its determinant.

• Eigenvalues and eigenvectors, diagonalizability.

I.3. Norms and Scalar Products

I.3.1. Banach Spaces

In this section we define Banach spaces and collect some of their basic properties. We recall

that K denotes the field R of real numbers or the field R of complex numbers. Statements

made involvingK hold for bothK = R andK = C.

Definition I.1. Let X be a K-vector space. A map ‖ · ‖ : X → R

+
0 is called Norm (on X)

:⇔

(i)

∀ x ∈ X :
{

‖x‖ = 0 ⇔ x = 0
}

(I.1)

(ii)

∀ x ∈ X, λ ∈ K : ‖λx‖ = |λ| · ‖x‖, (I.2)

(iii)

∀ x, y ∈ X : ‖x+ y‖ ≤ ‖x‖ + ‖y‖. (I.3)

In this case (X, ‖ · ‖) is said to be a normed (vector) space. We denote by

BX(x, r) :=
{

y ∈ X
∣

∣‖x− y‖ < r
}

(I.4)

the open ball about x ∈ X of radius r > 0.

Definition I.2. Let (X, ‖ · ‖) be a normed vector space overK.

(i) A sequence (xn)
∞
n=1 ∈ XN is convergent :⇔

∃x ∈ X ∀ε > 0 ∃n0 ∈ N ∀n ≥ n0 : ‖xn − x‖ ≤ ε. (I.5)

(ii) A sequence (xn)
∞
n=1 ∈ XN is called Cauchy sequence :⇔

∀ε > 0 ∃n0 ∈ N ∀m > n ≥ n0 : ‖xm − xn‖ ≤ ε. (I.6)
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(iii) If every Cauchy sequence in X is convergent, (X, ‖ · ‖) is said to be complete, and we

call (X, ‖ · ‖) a Banach space.

(iv) A subset S ⊆ X is dense, if S = X or, equivalently, if

∀ x ∈ X , ε > 0 ∃ yε ∈ S : ‖x− yε‖ ≤ ε . (I.7)

Remarks and Examples. We first list a few examples of Banach spaces.

• For d ∈ N the K-vector space
(

K

d, ‖ · ‖2
)

is a Banach space with respect to the

euclidean/unitary norm ‖x‖2 := 〈x|x〉1/2, with 〈x|y〉 :=
∑d

ν=1 xνyν (K = R) or

〈x|y〉 :=
∑d

ν=1 xνyν (K = C).

• For d ∈ N and 1 ≤ p < ∞, the vector space
(

K

d, ‖ · ‖p
)

is a K-Banach space with

respect to the p-norm ‖x‖p :=
(

|x1|
p+. . .+|xd|

p
)1/p

. The triangle inequality ‖x+y‖p ≤
‖x‖p + ‖y‖p is the classical Minkowski inequality in analysis.

• For d ∈ N, the vector space
(

K

d, ‖ · ‖∞
)

is a K-Banach space with respect to the

supremum norm or ∞-norm ‖x‖∞ := max
(

|x1|, . . . , |xd|
)

. This corresponds to the

case p = ∞.

• Recall that a subspace of a K-vector space X is a subset Z ⊆ X which itself is a K-

vector space. If
(

X, ‖ · ‖X
)

is a Banach space and Z ⊆ X is a subspace then
(

Z, ‖ · ‖X
)

is itself a Banach space if, and only if, it is a closed subset of X .

I.3.2. Linear Operators

Definition I.3. Let (X, ‖ · ‖X) and (Y, ‖ · ‖Y ) be twoK-Banach spaces. Wir denote by

B(X ; Y ) :=
{

A : X → Y
∣

∣

∣
A is linear, ‖A‖B(X;Y ) <∞

}

(I.8)

the space of bounded (linear) operators (from X to Y ), where

‖A‖B(X;Y ) := sup
x∈X\{0}

{

‖Ax‖Y
‖x‖X

}

= sup
x∈X,‖x‖X=1

{

‖Ax‖Y
}

(I.9)

is the operator norm of A. If no confusion is possible, we frequently write ‖ · ‖B(X;Y ) =:
‖ · ‖op.

Remarks and Examples.

•
(

B(X ; Y ), ‖ · ‖B(X;Y )

)

is itself a K-Banach space, where the vector space structure is

defined by (A+ λB)(x) := A(x) + λB(x).

• If (X, ‖ · ‖X) and (Y, ‖ · ‖Y ) are two Banach spaces over K and A : X → Y is linear,

then the following two statements are equivalent:

{

‖A‖B(X;Y ) < ∞
}

⇔
{

A : X → Y is continuous
}

. (I.10)
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I.3.3. Hilbert Spaces

In this section we define (complex) Hilbert spaces and collect some basic facts about these

and about the spectral theory of bounded operators on Hilbert spaces.

Definition I.4.

(i) Let X be an C-Vector space. A map 〈·|·〉 : X × X → R is called sesquilinear form

(on X)

:⇔ ∀α, β ∈ R ∀ x, y, w, z ∈ X : (I.11)

〈αx+ y | βw + z〉 = αβ〈x|w〉+ α〈x|z〉+ β〈y|z〉+ 〈y|z〉.

If furthermore

:⇔ ∀ x, y ∈ X : 〈x|y〉 = 〈y|x〉, (I.12)

holds true, the sesquilinear form 〈·|·〉 is called symmetric.

(ii) A symmetric sesquilinear form 〈·|·〉 : X ×X → C is called positiv definite

:⇔ ∀ x ∈ X \ {0} : 〈x|x〉 > 0. (I.13)

If only 〈x|x〉 ≥ 0 holds true, for all x ∈ X (but possibly there are x 6= 0 with 〈x|x〉 = 0),

then 〈·|·〉 : X ×X → C is called positiv semidefinite.

(iii) If X is a C-vector space and 〈·|·〉 : X × X → C is a symmetric, positive definite

sesquilinear form on X , then 〈·|·〉 is called scalar product ( X) and
(

X, 〈·|·〉
)

is called

a pre-Hilbert space.

Theorem I.5 (Cauchy-Schwarz Inequality). If X is a C-vector space equipped with a sym-

metric, positiv semidefinite sesquilinear form 〈·|·〉 : X ×X → C then

∀x, y ∈ X :
∣

∣〈x|y〉
∣

∣ ≤
√

〈x|x〉
√

〈y|y〉. (I.14)

Corollary I.6. If
(

H, 〈·|·〉
)

is a C-pre-Hilbert space then

‖ · ‖ : H → R

+
0 , ‖x‖ := 〈x|x〉1/2 (I.15)

defines a norm on H, the norm induced by 〈·|·〉.

Definition I.7. If a pre-Hilbert space
(

H, 〈·|·〉
)

over C is complete with respect to the norm

induced by 〈·|·〉, then we call
(

H, 〈·|·〉
)

a Hilbert space.

Remarks and Examples.
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• For d ∈ N, the space
(

C

d, 〈·|·〉unit
)

is a (complex) Hilbert space, where

∀ ~x = (x1, . . . , xd)
t , ~y = (y1, . . . , yd)

t ∈ Cd :
〈

~x
∣

∣~y
〉

unit
:=

d
∑

ν=1

xν yν (I.16)

defines the unitary scalar product.

• Let (Ω,A, µ) be a measure space. Then
(

L2(Ω;C), 〈·|·〉
)

is a Hilbert space with scalar

product

∀f, g ∈ L2(Ω;C) : 〈f |g〉 :=

∫

Ω

f(ω) g(ω) dµ(ω). (I.17)

Definition I.8. Suppose that
(

H, 〈·|·〉
)

is a Hilbert space.

(i) Two vectors x, y ∈ H are orthogonal, x ⊥ y :⇔ 〈x|y〉 = 0.

(ii) If A ⊆ H is a subset then

A⊥ :=
{

x ∈ H
∣

∣ ∀a ∈ A : 〈a|x〉 = 0
}

(I.18)

is the orthogonal complement to A.

(iii) A subset B ⊆ H is called orthonormal :⇔

∀x, y ∈ B, x 6= y : 〈x|x〉 = 〈y|y〉 = 1, 〈x|y〉 = 0. (I.19)

(iv) A subset E ⊆ H is called an orthonormal basis (ONB) (of H)

:⇔ E is orthonormal and span(E) = H

⇔ E is orthonormal and for any given x ∈ H and ε > 0 (I.20)

∃ e1, . . . , eN ∈ E , α1, . . . , αN ∈ C :
∥

∥

∥
x−

(

α1e1 + . . .+ αNeN
)

∥

∥

∥
≤ ε .

Remarks and Examples.

• For any subset A ⊆ H its orthogonal complement A⊥ is a closed subspace.

• For any subset A ⊆ H, we have that A ∩A⊥ ⊆ {0} is a closed subspace.

• If A ⊆ B ⊆ H then A⊥ ⊇ B⊥.

• If a subset A ⊆ H is orthonormal then it is linearly independent.

• The canonical basis {e1, . . . , ed} ⊆ Cd, with

e1 =

(

1
0
...
0

)

, e2 =

(

0
1
...
0

)

, · · · ed =

(

0
0
...
1

)

, (I.21)

is an ONB in Cd with respect to the euclidean or unitary scalar product, respectively.
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Theorem I.9 (Gram-Schmidt Orthonormalization Procedure). Suppose that
(

H, 〈·|·〉
)

is a

separable Hilbert space. Then there exists a countable ONB {en}
L
n=1 ⊆ H, where L =

dim
C

(H) ∈ N ∪ {∞} denotes the dimension of H. If {en}
L
n=1 ⊆ H is such an ONB, then

∀x ∈ H : x =

L
∑

n=1

〈en|x〉 en . (I.22)

Remarks and Examples.

• Eq. (I.22) says that the coefficients in the approximation (I.20) can be computed by

taking scalar products αn = 〈en|x〉.

• For ϕ, ψ ∈ H we use Dirac’s ket-bra notation and define |ϕ〉〈ψ| ∈ B(H) by

∀x ∈ H : |ϕ〉〈ψ|(x) := 〈ψ|x〉 ϕ . (I.23)

• Note that, given ϕ, ψ ∈ H and A ∈ B(H), we have for all x ∈ H that
[

A ◦ |ϕ〉〈ψ|
]

(x) = A
[

〈ψ|x〉 ϕ
]

= 〈ψ|x〉 A(ϕ) = |Aϕ〉〈ψ|(x) (I.24)

and
〈

y
∣

∣

∣
|ϕ〉〈ψ|(x)

〉

=
〈

y
∣

∣

∣
〈ψ|x〉ϕ

〉

= 〈ψ|x〉 〈y|ϕ〉 =
〈

〈ϕ|y〉ψ
∣

∣

∣
x
〉

=
〈

|ψ〉〈ϕ|(y)
∣

∣

∣
x
〉

.

(I.25)

Eqs. (I.24) and (I.25) imply that

A ◦ |ϕ〉〈ψ| = |Aϕ〉〈ψ| ,
(

|ϕ〉〈ψ|
)∗

= |ψ〉〈ϕ| , and |ϕ〉〈ψ| ◦ A = |ϕ〉〈A∗ψ| .
(I.26)

• If L ∈ N∪ {∞} and {ϕ1, . . . , ϕL} ⊆ H is an ONB then (I.22) can be written by means

of Dirac’s ket-bra notation as a decomposition of the identity,

1H =

L
∑

n=1

|ϕn〉〈ϕn| . (I.27)

• If N < ∞ and {m1, . . . , mN} ⊆ M is an ONB then the orthogonal projection P ∈
B(H) onto M is given by

P =

N
∑

n=1

|mn〉〈mn| . (I.28)

Theorem I.10 (Riesz Representation Theorem). Let
(

H, 〈·|·〉
)

be a Hilbert space and H∗ :=
B(H;C) its dual space (see Definition I.11). Then, for every bounded linear functional ℓ ∈
H∗, there exists exactly one vector yℓ ∈ H, such that ℓ = 〈yℓ|·〉, i.e.

∀x ∈ H : ℓ(x) = 〈yℓ|x〉. (I.29)

Furthermore ‖ℓ‖H∗ = ‖yℓ‖H and

∀x ∈ H : ‖x‖ = sup
{

|〈y|x〉|
∣

∣

∣
y ∈ H , ‖y‖ = 1

}

. (I.30)
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Proof. We only give a proof of Eq. (I.30) because the argument is instructive. Note that (I.30)

holds trivially true for x = 0, and we may assume that x 6= 0. We abbreviate the right side of

(I.30) by

N(x) := sup
{

|〈y|x〉|
∣

∣

∣
y ∈ H , ‖y‖ = 1

}

. (I.31)

If y ∈ H with ‖y‖ = 1 then the Cauchy-Schwarz inequality implies that

|〈y|x〉| ≤ ‖x‖ · ‖y‖ = ‖x‖ . (I.32)

Taking the supremum over all y ∈ H with ‖y‖ = 1, we obtain N(x) ≤ ‖x‖. Next we define

x̂ := 1
‖x‖
x ∈ H, which is possible thanks to x 6= 0, and observe that ‖x̂‖ = 1. Hence,

‖x‖ =
‖x‖2

‖x‖
=

〈x|x〉

‖x‖
= 〈x̂|x〉 ≤ |〈x̂|x〉| ≤ N(x) , (I.33)

which yields ‖x‖ ≤ N(x). Hence ‖x‖ = N(x).

I.4. SUPPLEMENTARY MATERIAL

I.4.1. Banach Spaces

Remarks and Examples.

• For a normed space (X, ‖ · ‖)

• Let (X, ‖ · ‖) be a normed space. The norm topology is the topology generated by the

system of open balls in X .

• Two norms ‖ · ‖1, ‖ · ‖2 : X → R

+
0 on a K-vector space X are called equivalent, if

there exists a constant c > 0, such that

∀ x ∈ X : c ‖x‖1 ≤ ‖x‖2 ≤ c−1 ‖x‖1 (I.34)

holds true. In this case ‖ · ‖1 and ‖ · ‖2 induce the same topology on X .

• If (X, ‖ · ‖) is a Banach space, which contains a countable dense set, then (X, ‖ · ‖) is

called separable.

Remarks and Examples. We illustrate the notion of separablity on examples.

• The subset of vectors (x1, . . . , xd) ∈ K
d with rational coefficients xν ∈ K

Q

is countable

and dense inKd. Here,K
Q

:= Q, ifK = R, andK
Q

:= Q+ iQ, ifK = C. Therefore,
(

K

d, ‖ · ‖2
)

is separable.
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Next, for 1 ≤ p <∞, we define

ℓp(N) :=

{

x ∈ KN
∣

∣

∣

∣

‖x‖p :=
(

∞
∑

ν=1

|xν |
p
)1/p

<∞

}

, (I.35)

ℓ∞(N) :=
{

x ∈ KN
∣

∣

∣
‖x‖∞ := sup

ν∈N
|xν | <∞

}

. (I.36)

Then
(

ℓp(N), ‖ · ‖p
)

is aK-Banach space, for 1 ≤ p ≤ ∞. We further define

cQfin(N) :=
{

x ∈ KN
Q

∣

∣

∣
∃ν0 ∈ N ∀ν ≥ ν0 : xν = 0

}

, (I.37)

cfin(N) :=
{

x ∈ KN
∣

∣

∣
∃ν0 ∈ N ∀ν ≥ ν0 : xν = 0

}

, (I.38)

c0(N) :=
{

x ∈ KN
∣

∣

∣
lim
ν→∞

xν = 0
}

, (I.39)

and observe that

cQfin(N) ⊆ cfin(N) ⊆ ℓp(N) ⊆ ℓp̃(N) ⊆ c0(N) ⊆ ℓ∞(N), (I.40)

where 1 ≤ p < p̃ <∞.

• Both
(

c0(N), ‖ · ‖∞
)

and
(

ℓ∞(N), ‖ · ‖∞
)

are Banach spaces with respect to the supre-

mum norm ‖ · ‖∞. Note that c0(N) ⊂ ℓ∞(N) is a strict inclusion because, e.g.,

(1, 1, 1, . . .) ∈ ℓ∞(N) \ c0(N).

• The set cQfin(N) =
⋃∞

d=1K
d
Q

is a countable union of countable sets and, hence, countable

itself.

• The countable subset cQfin(N) ⊆ cfin(N) is dense in cfin(N) with respect to the supremum

norm ‖ · ‖∞.

• If x ∈ c0(N) and ε > 0, there exists an N ∈ N, such that |xν | ≤ ε, for all ν > N .

Moreover, for all ν ∈ N and xν ∈ K, we can find a x̃ν ∈ K
Q

with |xν − x̃ν | ≤ ε.

Defining x̃ := (x̃1, x̃2, . . . , x̃N , 0, 0, . . .), we hence obtain x̃ ∈ cQfin(N) and ‖x− x̃‖∞ ≤
ε. In other words, cQfin(N) ⊆ c0(N) is dense, and the Banach space

(

c0(N), ‖ · ‖∞
)

is

separable.

• If x ∈ ℓp(N) and ε > 0, then there exists an N ∈ N, such that
∑∞

ν=N |xν |
p ≤ εp/2p.

Moreover, to every ν ∈ N and xν ∈ K we can find an x̃ν ∈ K
Q

, such that |xν − x̃ν | ≤
ε/2N . Setting x̃ := (x̃1, x̃2, . . . , x̃ν0, 0, 0, . . .), we observe that x̃ ∈ cfin(N) and

‖x− x̃‖p ≤

[ N
∑

ν=1

( ε

2N

)p
]1/p

+
ε

2
=

ε

2N (p−1)/p
+

ε

2
≤ ε. (I.41)

It follows that cQfin(N) ⊆ ℓp(N) is dense, and that the Banach space
(

ℓp(N), ‖ · ‖p
)

is

separable.
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• Let
{

x(k)
}∞

k=1
⊆ ℓ∞(N) be a countable subset, where x(k) =

(

x
(k)
ν

)∞

ν=1
. We define

x̃ = (x̃ν)
∞
ν=1 ∈ ℓ∞(N) by

x̃ν :=

{

2, if |x
(ν)
ν | ≤ 1,

0, if |x
(ν)
ν | > 1.

(I.42)

Then, for all k ∈ N, we have that

∥

∥x̃− x(k)
∥

∥

∞
≥
∣

∣x̃k − x
(k)
k

∣

∣ ≥ 1. (I.43)

Consequently,
{

x(k)
}∞

k=1
⊆ ℓ∞(N) is not dense. Since

{

x(k)
}∞

k=1
is an arbitrary count-

able subset, ℓ∞(N) cannot be separable.

I.4.2. Linear Operators

Definition I.11. Let (X, ‖ · ‖) be a Banach space over K. The K-Banach space B(X ;K)
of the bounded linear operators from X to K is called dual space X∗ := B(X;K) (of

X). Elements y∗ ∈ X∗ of X∗ are called bounded linear functionals or continuous linear

functionals [according to (I.10)]. For the value y∗(x) of y∗ ∈ X∗ at the point x ∈ X we write

x∗(x) =:
〈

x∗, x
〉

. (I.44)

Remarks and Examples.

• If y∗ ∈ X∗ then

‖y∗‖X∗ = sup
x∈X\{0}

{ |〈y∗, x〉|

‖x‖X

}

. (I.45)

• For X = Kd, with d ∈ N and norm ‖ · ‖, the dual space X∗ is isomorph zu X , that is

X∗ = Kd. More specifically,

• If
{

x1, . . . , xd
}

⊆ X is a basis then there exists a unique basis
{

x∗1, . . . , x
∗
d

}

⊆ X∗,

such that

∀ 1 ≤ i, j ≤ d : 〈x∗j , xi〉 = δij . (I.46)

This fact motivates the notation (I.44) x∗(x) =:
〈

x∗, x
〉

.

• If (X, ‖ · ‖) is aK-Banach space and Y ⊆ X is a closed subspace (and hence a Banach

space itself), then X∗ ⊆ Y ∗. Namely, if x∗ ∈ X∗ then x∗ ↿Y∈ Y ∗.

• AK-Banach space
(

X, ‖ · ‖
)

is reflexive, if the dual space of its dual space is X itself,
(

(X, ‖ · ‖)∗
)∗

= (X, ‖ · ‖).

• For d ∈ N, the Banach spaces
(

K

d, ‖ · ‖p
)

are reflexive, for all 1 ≤ p ≤ ∞, since
(

K

d, ‖ · ‖p
)∗

=
(

K

d, ‖ · ‖q
)

with 1
p
+ 1

q
= 1.
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• For 1 < p <∞, the Banach spaces
(

ℓp(N), ‖ · ‖p
)

are reflexive, with
(

ℓp(N), ‖ · ‖p
)∗

=
(

ℓq(N), ‖ · ‖q
)

with 1
p
+ 1

q
= 1. This is essentially a consequence of Hölder’s inequality,

∣

∣

∣

∣

∞
∑

ν=1

xν yν

∣

∣

∣

∣

≤

( ∞
∑

ν=1

|xν |
p

)1/p( ∞
∑

ν=1

|yν|
q

)1/q

. (I.47)

I.4.3. Hilbert Spaces

Lemma I.12. Suppose that
(

H, 〈·|·〉
)

is a Hilbert space, M ⊆ H is a closed subspace, and

x ∈ H. Then there is a unique vector z ∈ M, such that

‖x− z‖ = inf
y∈M

‖x− y‖. (I.48)

Theorem I.13. If
(

H, 〈·|·〉
)

is a Hilbert space and M ⊆ H is a closed subspace, then M is

complementable, namely,

H = M ⊕ M⊥. (I.49)

Corollary I.14. Suppose that
(

H, 〈·|·〉
)

is a Hilbert space and M ⊆ H a closed subspace.

Define P : H → H by P (x) ∈ M and ‖x−P (x)‖ = infy∈M ‖x−y‖. Then P = P 2 ∈ B(H)
is an idempotent bounded linear operator on H with RanP = M and ‖P‖op = 1, provided

M 6= {0}, and P = 0 otherwise. The operator P is called orthogonal projection onto M.
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