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Chapter I. Mathematical Prerequisites

I. Mathematical Prerequisites

I.1. Analysis in one and several Real Variables

We list a few topics from analysis in one and in several real variables that we assume the reader
to be familiar with:

• Real numbers R, complex numbers C, and their d-fold cartesian products Rd and Cd,
d ∈ N.

• Real and complex sequences, series, their convergence, and criteria to decide for con-
vergence or divergence.

• Basic topological notions such as inner points, accumulation points, open sets, closed
sets, compact sets in R, C, Rd, and Cd.

• Continuity of maps and its various characterizations.

• Differentiability and basic rules of differentiation, such as Leibniz rule and the chain
rule.

• (Riemann) Integration, integration by parts, the fundamental theorem of calculus.

• Partial derivatives, gradient, and Jacobi matrix.

• Local extrema, local extrema under constraints, method of Lagrange multipliers.

• Integration of several variables.

• Basic inequalities: Cauchy-Schwarz, Hölder, Minkowski.

I.2. Introductory Linear Algebra

We also list a few topics from linear algebra that we assume the reader to be familiar with:

• Real numbers R, complex numbers C, and their d-fold cartesian products Rd and Cd,
d ∈ N.

02-Jun-2025, Seite 3



Chapter I. Mathematical Prerequisites

• Vector spaces, subspaces, linear span and their generating sets.

• Linear dependence, linear independence, basis, and dimension.

• Linear maps and their matrix representations.

• Matrices, matrix product, deteminants, equivalence of invertibility of a matrix to the
nonvanishing of its determinant.

• Eigenvalues and eigenvectors, diagonalizability.

I.3. Norms and Scalar Products

I.3.1. Banach Spaces

In this section we define Banach spaces and collect some of their basic properties. We recall
that K denotes the field R of real numbers or the field R of complex numbers. Statements
made involvingK hold for bothK = R andK = C.

Definition I.1. Let X be a K-vector space. A map ∥ · ∥ : X → R+
0 is called Norm (on X)

:⇔
(i)

∀x ∈ X :
{
∥x∥ = 0 ⇔ x = 0

}
(I.1)

(ii)

∀x ∈ X, λ ∈ K : ∥λx∥ = |λ| · ∥x∥, (I.2)

(iii)

∀x, y ∈ X : ∥x+ y∥ ≤ ∥x∥+ ∥y∥. (I.3)

In this case (X, ∥ · ∥) is said to be a normed (vector) space. We denote by

BX(x, r) :=
{
y ∈ X

∣∣∥x− y∥ < r
}

(I.4)

the open ball about x ∈ X of radius r > 0.

Definition I.2. Let (X, ∥ · ∥) be a normed vector space overK.

(i) A sequence (xn)
∞
n=1 ∈ XN is convergent :⇔

∃x ∈ X ∀ε > 0 ∃n0 ∈ N ∀n ≥ n0 : ∥xn − x∥ ≤ ε. (I.5)

(ii) A sequence (xn)
∞
n=1 ∈ XN is called Cauchy sequence :⇔

∀ε > 0 ∃n0 ∈ N ∀m > n ≥ n0 : ∥xm − xn∥ ≤ ε. (I.6)
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Chapter I. Mathematical Prerequisites

(iii) If every Cauchy sequence in X is convergent, (X, ∥ · ∥) is said to be complete, and we
call (X, ∥ · ∥) a Banach space.

(iv) A subset S ⊆ X is dense, if S = X or, equivalently, if

∀x ∈ X , ε > 0 ∃ yε ∈ S : ∥x− yε∥ ≤ ε . (I.7)

Remarks and Examples. We first list a few examples of Banach spaces.

• For d ∈ N the K-vector space
(
Kd, ∥ · ∥2

)
is a Banach space with respect to the

euclidean/unitary norm ∥x∥2 := ⟨x|x⟩1/2, with ⟨x|y⟩ :=
∑d

ν=1 xνyν (K = R) or
⟨x|y⟩ :=

∑d
ν=1 xνyν (K = C).

• For d ∈ N and 1 ≤ p < ∞, the vector space
(
Kd, ∥ · ∥p

)
is a K-Banach space with

respect to the p-norm ∥x∥p :=
(
|x1|p+. . .+|xd|p

)1/p. The triangle inequality ∥x+y∥p ≤
∥x∥p + ∥y∥p is the classical Minkowski inequality in analysis.

• For d ∈ N, the vector space
(
Kd, ∥ · ∥∞

)
is a K-Banach space with respect to the

supremum norm or ∞-norm ∥x∥∞ := max
(
|x1|, . . . , |xd|

)
. This corresponds to the

case p = ∞.

• Recall that a subspace of a K-vector space X is a subset Z ⊆ X which itself is a K-
vector space. If

(
X, ∥ · ∥X

)
is a Banach space and Z ⊆ X is a subspace then

(
Z, ∥ · ∥X

)
is itself a Banach space if, and only if, it is a closed subset of X .

I.3.2. Linear Operators

Definition I.3. Let (X, ∥ · ∥X) and (Y, ∥ · ∥Y ) be twoK-Banach spaces. Wir denote by

B(X;Y ) :=
{
A : X → Y

∣∣∣ A is linear, ∥A∥B(X;Y ) <∞
}

(I.8)

the space of bounded (linear) operators (from X to Y ), where

∥A∥B(X;Y ) := sup
x∈X\{0}

{
∥Ax∥Y
∥x∥X

}
= sup

x∈X,∥x∥X=1

{
∥Ax∥Y

}
(I.9)

is the operator norm of A. If no confusion is possible, we frequently write ∥ · ∥B(X;Y ) =:
∥ · ∥op.

Remarks and Examples.

•
(
B(X;Y ), ∥ · ∥B(X;Y )

)
is itself a K-Banach space, where the vector space structure is

defined by (A+ λB)(x) := A(x) + λB(x).

• If (X, ∥ · ∥X) and (Y, ∥ · ∥Y ) are two Banach spaces over K and A : X → Y is linear,
then the following two statements are equivalent:{

∥A∥B(X;Y ) < ∞
}

⇔
{
A : X → Y is continuous

}
. (I.10)

02-Jun-2025, Seite 5



Chapter I. Mathematical Prerequisites

I.3.3. Hilbert Spaces

In this section we define (complex) Hilbert spaces and collect some basic facts about these
and about the spectral theory of bounded operators on Hilbert spaces.

Definition I.4.

(i) Let X be an C-Vector space. A map ⟨·|·⟩ : X × X → R is called sesquilinear form
(on X)

:⇔ ∀α, β ∈ R ∀x, y, w, z ∈ X : (I.11)
⟨αx+ y | βw + z⟩ = αβ⟨x|w⟩+ α⟨x|z⟩+ β⟨y|z⟩+ ⟨y|z⟩.

If furthermore

:⇔ ∀x, y ∈ X : ⟨x|y⟩ = ⟨y|x⟩, (I.12)

holds true, the sesquilinear form ⟨·|·⟩ is called symmetric.

(ii) A symmetric sesquilinear form ⟨·|·⟩ : X ×X → C is called positiv definite

:⇔ ∀x ∈ X \ {0} : ⟨x|x⟩ > 0. (I.13)

If only ⟨x|x⟩ ≥ 0 holds true, for all x ∈ X (but possibly there are x ̸= 0 with ⟨x|x⟩ = 0),
then ⟨·|·⟩ : X ×X → C is called positiv semidefinite.

(iii) If X is a C-vector space and ⟨·|·⟩ : X × X → C is a symmetric, positive definite
sesquilinear form on X , then ⟨·|·⟩ is called scalar product ( X) and

(
X, ⟨·|·⟩

)
is called

a pre-Hilbert space.

Theorem I.5 (Cauchy-Schwarz Inequality). If X is a C-vector space equipped with a sym-
metric, positiv semidefinite sesquilinear form ⟨·|·⟩ : X ×X → C then

∀x, y ∈ X :
∣∣⟨x|y⟩∣∣ ≤

√
⟨x|x⟩

√
⟨y|y⟩. (I.14)

Corollary I.6. If
(
H, ⟨·|·⟩

)
is a C-pre-Hilbert space then

∥ · ∥ : H → R+
0 , ∥x∥ := ⟨x|x⟩1/2 (I.15)

defines a norm on H, the norm induced by ⟨·|·⟩.

Definition I.7. If a pre-Hilbert space
(
H, ⟨·|·⟩

)
over C is complete with respect to the norm

induced by ⟨·|·⟩, then we call
(
H, ⟨·|·⟩

)
a Hilbert space.

Remarks and Examples.
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• For d ∈ N, the space
(
Cd, ⟨·|·⟩unit

)
is a (complex) Hilbert space, where

∀ x⃗ = (x1, . . . , xd)
t , y⃗ = (y1, . . . , yd)

t ∈ Cd :
〈
x⃗
∣∣y⃗〉

unit
:=

d∑
ν=1

xν yν (I.16)

defines the unitary scalar product.

• Let (Ω,A, µ) be a measure space. Then
(
L2(Ω;C), ⟨·|·⟩

)
is a Hilbert space with scalar

product

∀f, g ∈ L2(Ω;C) : ⟨f |g⟩ :=

∫
Ω

f(ω) g(ω) dµ(ω). (I.17)

Definition I.8. Suppose that
(
H, ⟨·|·⟩

)
is a Hilbert space.

(i) Two vectors x, y ∈ H are orthogonal, x ⊥ y :⇔ ⟨x|y⟩ = 0.

(ii) If A ⊆ H is a subset then

A⊥ :=
{
x ∈ H

∣∣ ∀a ∈ A : ⟨a|x⟩ = 0
}

(I.18)

is the orthogonal complement to A.

(iii) A subset B ⊆ H is called orthonormal :⇔

∀x, y ∈ B, x ̸= y : ⟨x|x⟩ = ⟨y|y⟩ = 1, ⟨x|y⟩ = 0. (I.19)

(iv) A subset E ⊆ H is called an orthonormal basis (ONB) (of H)

:⇔ E is orthonormal and span(E) = H

⇔ E is orthonormal and for any given x ∈ H and ε > 0 (I.20)

∃ e1, . . . , eN ∈ E , α1, . . . , αN ∈ C :
∥∥∥x− (α1e1 + . . .+ αNeN

)∥∥∥ ≤ ε .

Remarks and Examples.

• For any subset A ⊆ H its orthogonal complement A⊥ is a closed subspace.

• For any subset A ⊆ H, we have that A ∩A⊥ ⊆ {0} is a closed subspace.

• If A ⊆ B ⊆ H then A⊥ ⊇ B⊥.

• If a subset A ⊆ H is orthonormal then it is linearly independent.

• The canonical basis {e1, . . . , ed} ⊆ Cd, with

e1 =

(
1
0
...
0

)
, e2 =

(
0
1
...
0

)
, · · · ed =

(
0
0
...
1

)
, (I.21)

is an ONB in Cd with respect to the euclidean or unitary scalar product, respectively.
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Theorem I.9 (Gram-Schmidt Orthonormalization Procedure). Suppose that
(
H, ⟨·|·⟩

)
is a

separable Hilbert space. Then there exists a countable ONB {en}Ln=1 ⊆ H, where L =
dimC(H) ∈ N ∪ {∞} denotes the dimension of H. If {en}Ln=1 ⊆ H is such an ONB, then

∀x ∈ H : x =
L∑
n=1

⟨en|x⟩ en . (I.22)

Remarks and Examples.

• Eq. (I.22) says that the coefficients in the approximation (I.20) can be computed by
taking scalar products αn = ⟨en|x⟩.

• For φ, ψ ∈ H we use Dirac’s ket-bra notation and define |φ⟩⟨ψ| ∈ B(H) by

∀x ∈ H : |φ⟩⟨ψ|(x) := ⟨ψ|x⟩ φ . (I.23)

• Note that, given φ, ψ ∈ H and A ∈ B(H), we have for all x ∈ H that[
A ◦ |φ⟩⟨ψ|

]
(x) = A

[
⟨ψ|x⟩ φ

]
= ⟨ψ|x⟩ A(φ) = |Aφ⟩⟨ψ|(x) (I.24)

and〈
y
∣∣∣|φ⟩⟨ψ|(x)〉 =

〈
y
∣∣∣⟨ψ|x⟩φ〉 = ⟨ψ|x⟩ ⟨y|φ⟩ =

〈
⟨φ|y⟩ψ

∣∣∣x〉 =
〈
|ψ⟩⟨φ|(y)

∣∣∣x〉 .
(I.25)

Eqs. (I.24) and (I.25) imply that

A ◦ |φ⟩⟨ψ| = |Aφ⟩⟨ψ| ,
(
|φ⟩⟨ψ|

)∗
= |ψ⟩⟨φ| , and |φ⟩⟨ψ| ◦ A = |φ⟩⟨A∗ψ| .

(I.26)

• If L ∈ N∪{∞} and {φ1, . . . , φL} ⊆ H is an ONB then (I.22) can be written by means
of Dirac’s ket-bra notation as a decomposition of the identity,

1H =
L∑
n=1

|φn⟩⟨φn| . (I.27)

• If N < ∞ and {m1, . . . ,mN} ⊆ M is an ONB then the orthogonal projection P ∈
B(H) onto M is given by

P =
N∑
n=1

|mn⟩⟨mn| . (I.28)

Theorem I.10 (Riesz Representation Theorem). Let
(
H, ⟨·|·⟩

)
be a Hilbert space and H∗ :=

B(H;C) its dual space (see Definition I.11). Then, for every bounded linear functional ℓ ∈
H∗, there exists exactly one vector yℓ ∈ H, such that ℓ = ⟨yℓ|·⟩, i.e.

∀x ∈ H : ℓ(x) = ⟨yℓ|x⟩. (I.29)

Furthermore ∥ℓ∥H∗ = ∥yℓ∥H and

∀x ∈ H : ∥x∥ = sup
{
|⟨y|x⟩|

∣∣∣ y ∈ H , ∥y∥ = 1
}
. (I.30)
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Proof. We only give a proof of Eq. (I.30) because the argument is instructive. Note that (I.30)
holds trivially true for x = 0, and we may assume that x ̸= 0. We abbreviate the right side of
(I.30) by

N(x) := sup
{
|⟨y|x⟩|

∣∣∣ y ∈ H , ∥y∥ = 1
}
. (I.31)

If y ∈ H with ∥y∥ = 1 then the Cauchy-Schwarz inequality implies that

|⟨y|x⟩| ≤ ∥x∥ · ∥y∥ = ∥x∥ . (I.32)

Taking the supremum over all y ∈ H with ∥y∥ = 1, we obtain N(x) ≤ ∥x∥. Next we define
x̂ := 1

∥x∥x ∈ H, which is possible thanks to x ̸= 0, and observe that ∥x̂∥ = 1. Hence,

∥x∥ =
∥x∥2

∥x∥
=

⟨x|x⟩
∥x∥

= ⟨x̂|x⟩ ≤ |⟨x̂|x⟩| ≤ N(x) , (I.33)

which yields ∥x∥ ≤ N(x). Hence ∥x∥ = N(x).

I.4. SUPPLEMENTARY MATERIAL

I.4.1. Banach Spaces

Remarks and Examples.

• For a normed space (X, ∥ · ∥)
• Let (X, ∥ · ∥) be a normed space. The norm topology is the topology generated by the

system of open balls in X .

• Two norms ∥ · ∥1, ∥ · ∥2 : X → R+
0 on a K-vector space X are called equivalent, if

there exists a constant c > 0, such that

∀x ∈ X : c ∥x∥1 ≤ ∥x∥2 ≤ c−1 ∥x∥1 (I.34)

holds true. In this case ∥ · ∥1 and ∥ · ∥2 induce the same topology on X .

• If (X, ∥ · ∥) is a Banach space, which contains a countable dense set, then (X, ∥ · ∥) is
called separable.

Remarks and Examples. We illustrate the notion of separablity on examples.

• The subset of vectors (x1, . . . , xd) ∈ Kd with rational coefficients xν ∈ KQ is countable
and dense inKd. Here,KQ := Q, ifK = R, andKQ := Q+iQ, ifK = C. Therefore,(
Kd, ∥ · ∥2

)
is separable.
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Next, for 1 ≤ p <∞, we define

ℓp(N) :=

{
x ∈ KN

∣∣∣∣ ∥x∥p := ( ∞∑
ν=1

|xν |p
)1/p

<∞
}
, (I.35)

ℓ∞(N) :=
{
x ∈ KN

∣∣∣ ∥x∥∞ := sup
ν∈N

|xν | <∞
}
. (I.36)

Then
(
ℓp(N), ∥ · ∥p

)
is aK-Banach space, for 1 ≤ p ≤ ∞. We further define

cQfin(N) :=
{
x ∈ KNQ

∣∣∣ ∃ν0 ∈ N ∀ν ≥ ν0 : xν = 0
}
, (I.37)

cfin(N) :=
{
x ∈ KN

∣∣∣ ∃ν0 ∈ N ∀ν ≥ ν0 : xν = 0
}
, (I.38)

c0(N) :=
{
x ∈ KN

∣∣∣ lim
ν→∞

xν = 0
}
, (I.39)

and observe that

cQfin(N) ⊆ cfin(N) ⊆ ℓp(N) ⊆ ℓp̃(N) ⊆ c0(N) ⊆ ℓ∞(N), (I.40)

where 1 ≤ p < p̃ <∞.

• Both
(
c0(N), ∥ · ∥∞

)
and

(
ℓ∞(N), ∥ · ∥∞

)
are Banach spaces with respect to the supre-

mum norm ∥ · ∥∞. Note that c0(N) ⊂ ℓ∞(N) is a strict inclusion because, e.g.,
(1, 1, 1, . . .) ∈ ℓ∞(N) \ c0(N).

• The set cQfin(N) =
⋃∞
d=1K

d
Q is a countable union of countable sets and, hence, countable

itself.

• The countable subset cQfin(N) ⊆ cfin(N) is dense in cfin(N) with respect to the supremum
norm ∥ · ∥∞.

• If x ∈ c0(N) and ε > 0, there exists an N ∈ N, such that |xν | ≤ ε, for all ν > N .
Moreover, for all ν ∈ N and xν ∈ K, we can find a x̃ν ∈ KQ with |xν − x̃ν | ≤ ε.
Defining x̃ := (x̃1, x̃2, . . . , x̃N , 0, 0, . . .), we hence obtain x̃ ∈ cQfin(N) and ∥x− x̃∥∞ ≤
ε. In other words, cQfin(N) ⊆ c0(N) is dense, and the Banach space

(
c0(N), ∥ · ∥∞

)
is

separable.

• If x ∈ ℓp(N) and ε > 0, then there exists an N ∈ N, such that
∑∞

ν=N |xν |p ≤ εp/2p.
Moreover, to every ν ∈ N and xν ∈ K we can find an x̃ν ∈ KQ, such that |xν − x̃ν | ≤
ε/2N . Setting x̃ := (x̃1, x̃2, . . . , x̃ν0 , 0, 0, . . .), we observe that x̃ ∈ cfin(N) and

∥x− x̃∥p ≤
[ N∑
ν=1

( ε

2N

)p]1/p
+

ε

2
=

ε

2N (p−1)/p
+

ε

2
≤ ε. (I.41)

It follows that cQfin(N) ⊆ ℓp(N) is dense, and that the Banach space
(
ℓp(N), ∥ · ∥p

)
is

separable.
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• Let
{
x(k)
}∞
k=1

⊆ ℓ∞(N) be a countable subset, where x(k) =
(
x
(k)
ν

)∞
ν=1

. We define
x̃ = (x̃ν)

∞
ν=1 ∈ ℓ∞(N) by

x̃ν :=

{
2, if |x(ν)ν | ≤ 1,
0, if |x(ν)ν | > 1.

(I.42)

Then, for all k ∈ N, we have that∥∥x̃− x(k)
∥∥
∞ ≥

∣∣x̃k − x
(k)
k

∣∣ ≥ 1. (I.43)

Consequently,
{
x(k)
}∞
k=1

⊆ ℓ∞(N) is not dense. Since
{
x(k)
}∞
k=1

is an arbitrary count-
able subset, ℓ∞(N) cannot be separable.

I.4.2. Linear Operators

Definition I.11. Let (X, ∥ · ∥) be a Banach space over K. The K-Banach space B(X;K)
of the bounded linear operators from X to K is called dual space X∗ := B(X;K) (of
X). Elements y∗ ∈ X∗ of X∗ are called bounded linear functionals or continuous linear
functionals [according to (I.10)]. For the value y∗(x) of y∗ ∈ X∗ at the point x ∈ X we write

x∗(x) =:
〈
x∗, x

〉
. (I.44)

Remarks and Examples.

• If y∗ ∈ X∗ then

∥y∗∥X∗ = sup
x∈X\{0}

{ |⟨y∗, x⟩|
∥x∥X

}
. (I.45)

• For X = Kd, with d ∈ N and norm ∥ · ∥, the dual space X∗ is isomorph zu X , that is
X∗ = Kd. More specifically,

• If
{
x1, . . . , xd

}
⊆ X is a basis then there exists a unique basis

{
x∗1, . . . , x

∗
d

}
⊆ X∗,

such that

∀ 1 ≤ i, j ≤ d : ⟨x∗j , xi⟩ = δij. (I.46)

This fact motivates the notation (I.44) x∗(x) =:
〈
x∗, x

〉
.

• If (X, ∥ · ∥) is aK-Banach space and Y ⊆ X is a closed subspace (and hence a Banach
space itself), then X∗ ⊆ Y ∗. Namely, if x∗ ∈ X∗ then x∗ ↿Y∈ Y ∗.

• AK-Banach space
(
X, ∥ · ∥

)
is reflexive, if the dual space of its dual space is X itself,(

(X, ∥ · ∥)∗
)∗

= (X, ∥ · ∥).
• For d ∈ N, the Banach spaces

(
Kd, ∥ · ∥p

)
are reflexive, for all 1 ≤ p ≤ ∞, since(

Kd, ∥ · ∥p
)∗

=
(
Kd, ∥ · ∥q

)
with 1

p
+ 1

q
= 1.
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• For 1 < p <∞, the Banach spaces
(
ℓp(N), ∥ · ∥p

)
are reflexive, with

(
ℓp(N), ∥ · ∥p

)∗
=(

ℓq(N), ∥ · ∥q
)

with 1
p
+ 1

q
= 1. This is essentially a consequence of Hölder’s inequality,∣∣∣∣ ∞∑

ν=1

xν yν

∣∣∣∣ ≤
( ∞∑

ν=1

|xν |p
)1/p( ∞∑

ν=1

|yν |q
)1/q

. (I.47)

I.4.3. Hilbert Spaces

Lemma I.12. Suppose that
(
H, ⟨·|·⟩

)
is a Hilbert space, M ⊆ H is a closed subspace, and

x ∈ H. Then there is a unique vector z ∈ M, such that

∥x− z∥ = inf
y∈M

∥x− y∥. (I.48)

Theorem I.13. If
(
H, ⟨·|·⟩

)
is a Hilbert space and M ⊆ H is a closed subspace, then M is

complementable, namely,

H = M ⊕ M⊥. (I.49)

Corollary I.14. Suppose that
(
H, ⟨·|·⟩

)
is a Hilbert space and M ⊆ H a closed subspace.

Define P : H → H by P (x) ∈ M and ∥x−P (x)∥ = infy∈M ∥x−y∥. Then P = P 2 ∈ B(H)
is an idempotent bounded linear operator on H with RanP = M and ∥P∥op = 1, provided
M ≠ {0}, and P = 0 otherwise. The operator P is called orthogonal projection onto M.
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Chapter II. Bounded Linear Operators on Hilbert Spaces

II. Bounded Linear Operators on
Hilbert Spaces

II.1. Self-Adjoint, Normal, and Unitary Operators

In this section we collect some basic facts about the spectral theory of bounded linear operators
on Hilbert spaces. Note that any Hilbert space

(
H, ⟨·|·⟩

)
is, in particular, a Banach space with

norm ∥x∥ =
√

⟨x|x⟩. We recall from (I.8) that

B(H) =
{
A : H → H

∣∣∣ A is linear, ∥A∥B(H) <∞
}
, (II.1)

where

∥A∥B(H) := sup
x∈H\{0}

{
∥Ax∥
∥x∥

}
= sup

x∈H,∥x∥=1

{
∥Ax∥

}
= sup

x,y∈H,∥x∥=∥y∥=1

{∣∣⟨y|Ax⟩∣∣}
(II.2)

is the operator norm of A, where the last inequality follows from (I.30).

Fix A ∈ B(H). For any y ∈ H, the map ℓy(x) := ⟨y|Ax⟩ defines a bounded linear functional
ℓy ∈ H∗ with ∥ℓy∥H∗ ≤ ∥y∥ · ∥A∥op. By the Riesz representation theorem I.10 there exists a
unique vector zy ∈ H such that

∀x ∈ H : ⟨y|Ax⟩ = ℓy(x) = ⟨zy|x⟩ . (II.3)

Definition II.1. Let
(
H, ⟨·|·⟩

)
be a complex Hilbert space and A ∈ B(H) a bounded operator

on H.

(i) The map y 7→ zy =: A∗(y), where zy ∈ H is the unique vector in (II.3), is linear and
defines a bounded operator A∗ ∈ B(H) called the adjoint operator to A. This operator
is uniquely determined by

∀x, y ∈ H : ⟨y|Ax⟩ = ⟨A∗y|x⟩ . (II.4)
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(ii) If A = A∗ then A is called self-adjoint.

(iii) If AA∗ = A∗A then A is said to be normal.

(iv) A bounded operator A is called (bounded) invertible if there exists a bounded operator
A−1 ∈ B(H) such that AA−1 = A−1A = 1H. In this case the operator A−1 ∈ B(H)
is called the inverse of A. The set of bounded invertible operators on H form a group
with respect to composition, the automorphism group Aut(H) ⊆ B(H).

(v) The spectrum σ(A) ⊆ C and the resolvent set ρ(A) ⊆ C of a bounded operator
A ∈ B(H) are defined by

σ(A) :=
{
λ ∈ C

∣∣ A− λ · 1H is not bounded invertible
}
, (II.5)

ρ(A) :=
{
λ ∈ C

∣∣ A− λ · 1H is bounded invertible
}
, (II.6)

i.e., ρ(A) = C \ σ(A).
(vi) A bounded invertible operator U ∈ Aut(H) is called unitary if U−1 = U∗. The set of

unitary operators on H form a subgroup of Aut(H), the unitary group U(H).

II.2. Linear Operators on finite-dimensional Hilbert
Spaces

We first discuss the finite-dimensional case. Let d ∈ N fixed and H = Cd equipped with the
unitary scalar product (I.16).

• If d ∈ N, {e1, . . . , ed} ⊆ H := Cd is the canonical ONB, andA ∈ B(Cd) is a (bounded)
linear operator then

A = 1H A 1H =
d∑

m,n=1

|em⟩⟨em|A |en⟩⟨en| =
d∑

m,n=1

Am,n |em⟩⟨en| , (II.7)

where the matrix elements Am,n of A are given by

Am,n = ⟨em|Aen⟩ . (II.8)

• In the finite-dimensional case, the spectrum σ(A) ⊆ C of A ∈ B(Cd) coincides with
the set of eigenvalues and these, in turn, with the zeroes of the characteristic polynomial,

σ(A) =
{
λ ∈ C

∣∣ λ is an eigenvalue of A
}

=
{
λ ∈ C

∣∣ det[A− λ · 1] = 0
}
.

(II.9)

Note that σ(A) is a set of at most d numbers in the complex plane, and ρ(A) is the entire
complex plane except for these isolated points.

• In particular, (A∗)m,n = An,m, i.e., A∗ = At, for (finite-dimensional) matrices.
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• If A = A∗ ∈ B(Cd) is self-adjoint then A is diagonalizable, i.e., there exists an
ONB {φ1, . . . , φd} ⊆ H := Cd of eigenvectors and d corresponding eigenvalues
{λ1, . . . , λd} ⊆ C such that

A =
d∑
j=1

λj |φj⟩⟨φj| . (II.10)

Moreover, all eigenvalues of a self-adjoint operator are real, σ(A) ⊆ R.

• Furthermore, if A = A∗ ∈ B(Cd) is self-adjoint then

∥A∥op = max
{
|λ| : λ ∈ σ(A)

}
. (II.11)

Indeed, if {φ1, . . . , φd} ⊆ Cd is an ONB of eigenvectors with corresponding eigenval-
ues {λ1, . . . , λd} = σ(A) ⊆ R such that

A =
d∑
j=1

λj |φj⟩⟨φj| , (II.12)

then ∥Aφj∥ = |λj|, for any j ∈ Zd1, and hence ∥A∥op = sup∥ψ∥=1 ∥Aψ∥ ≥ max1≤j≤d |λj|.
Conversely, if φ, ψ ∈ Cd then

∣∣⟨φ|Aψ⟩∣∣ ≤
d∑
j=1

|λj|
∣∣⟨φ|φj⟩ ⟨φj|ψ⟩∣∣

≤
(
max
1≤j≤d

|λj|
)( d∑

j=1

∣∣⟨φ|φj⟩∣∣2)1/2( d∑
j=1

∣∣⟨φj|ψ⟩∣∣2)1/2

=
(
max
1≤j≤d

|λj|
)
∥φ∥ ∥ψ∥ , (II.13)

which implies that ∥A∥op ≤ max1≤j≤d |λj|.
• Note that here and henceforth we count multiplicities, i.e., the eigenvalues are not nec-

essarily distinct. For instance, the unit matrix (1Cd)m,n = δm,n is self-adjoint, its eigen-
values are λ1 = . . . = λd = 1, and its spectrum consists of a single point σ(1) = {1}.

• More generally, if K ∈ N and A1 = A∗
1, A2 = A∗

2, ..., AK = A∗
K ∈ B(Cd) are mutually

commuting self-adjoint operators,

∀ k, ℓ ∈ ZK1 : [Ak, Aℓ] = Ak Aℓ − AℓAk = 0 , (II.14)

then A1, A2, . . . , AK are simultaneously diagonalizable. That is, there exists an ONB
{φj|j ∈ Zd1} ⊆ Cd of joint eigenvectors and K · d corresponding real eigenvalues
σ(Ak) = {λk,j|j ∈ Zd1} ⊆ R such that

Ak =
d∑
j=1

λk,j |φj⟩⟨φj| . (II.15)
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• The latter statement (II.15) for K = 2 implies that normal operators, i.e., those for
which AA∗ = A∗A, are diagonalizable, too.

Namely, defining the real part Re(A) and the imaginary part Im(A) of an operator
A ∈ B(H) by

Re(A) :=
1

2

(
A+ A∗) and Im(A) :=

1

2i

(
A− A∗) , (II.16)

we observe that

A = Re(A) + iIm(A) , (II.17)

much like z = Re(z) + iIm(z) for z ∈ C with Re(z), Im(z) ∈ R. It is easy to
check that the normality of A is equivalent to [Re(A) , Im(A)] = 0. Hence, Re(A)
and Im(A) are simultaneously diagonalizable, and there exists an ONB {φj|j ∈ Zd1} ⊆
Cd of joint eigenvectors and 2d real eigenvalues {α1, β1, . . . , αd, βd} ⊆ R such that
Re(A) =

∑d
j=1 αj |φj⟩⟨φj| and Im(A) =

∑d
j=1 βj |φj⟩⟨φj|. Therefore, A is diagonal-

izable, namely,

A =
d∑
j=1

(αj + iβj) |φj⟩⟨φj| . (II.18)

• An important class of normal operators, besides self-adjoint ones, are unitary operators
U ∈ U(H), since UU∗ = 1H = U∗U . It follows that unitary operators are diagonaliz-
able and that their spectra are contained in the unit circle, σ(U) ⊆ {z ∈ C : |z| = 1}

• If Am,n = ⟨em|Aen⟩ is the matrix representation of A with respect to the canonical
ONB {e1, . . . , ed} ⊆ Cd then the self-adjointness of A is equivalent to An,m = Am,n.
Its diagonalizability is equivalent to the existence of a unitary matrix U ∈ U(Cd) such
that

A = U∗DU , (II.19)

where D ∈ B(Cd) is a diagonal matrix,

Di,j = ⟨ei|Dej⟩ = δi,j λj ⇔ D =


λ1 0 · · · 0

0 λ2
. . . ...

... . . . . . . 0
0 · · · 0 λd

 . (II.20)

Indeed, if U has the matrix representation Ui,n = ⟨ei|Uen⟩ then Ui,n := ⟨φi|en⟩ has the
desired properties.

The general form to which any operator on a finite-dimensional Hilbert space can be trans-
formed to is given by the singular value decomposition described in the following theorem.
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Theorem II.2 (Singular Value Decomposition). Let d ∈ N and
(
H = Cd, ⟨·|·⟩ = ⟨·|·⟩unit

)
be the d-dimensional complex Hilbert space defined by the unitary scalar product and A ∈
B(H) a bounded operator on H. Then there exist ONB {f1, . . . , fd}, {g1, . . . , gd} ⊆ H and
nonnegative numbers ρ1, . . . , ρd ∈ R+

0 called singular values of A such that

A =
d∑

n=1

ρn |fn⟩⟨gn| . (II.21)

Equivalently, if Am,n = ⟨em|Aen⟩ denote the matrix elements of A in the canonical ONB
{e1, . . . , ed} ⊆ H then there exist unitary matrices U, V ∈ U(Cd) such that

A = U∗DV , (II.22)

where D ∈ B(Cd) is the diagonal matrix,

D =


ρ1 0 · · · 0

0 ρ2
. . . ...

... . . . . . . 0
0 · · · 0 ρd

 , (II.23)

with ρ1, . . . , ρd ∈ R+
0 .

II.3. Positivity and Functional Calculus

Definition II.3 (Functional Calculus). Let d ∈ N and
(
H = Cd, ⟨·|·⟩ = ⟨·|·⟩unit

)
be the d-

dimensional complex Hilbert space defined by the unitary scalar product, A = A∗ ∈ B(H)
a self-adjoint operator on H, and {φ1, . . . , φd} ⊆ H an ONB of eigenvectors of A with
corresponding eigenvalues {λ1, . . . , λd} = σ(A) ⊆ R, such that

A =
d∑
j=1

λj |φj⟩⟨φj| . (II.24)

If f ∈ C(R;C) then define

f(A) :=
d∑
j=1

f(λj) |φj⟩⟨φj| . (II.25)

• It easy to check that f(A) defined by (II.25) is normal.

• If f(x) = α0 + α1x+ . . .+ αNx
N is a complex polynomial, α0, α1, . . . , αN ∈ C, then

f(A) defined by (II.25) coincides with α0 + α1A+ . . .+ αNA
N .
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• Suppose that (ak)∞k=0 ∈ CN0 is a complex sequence with lim supk→∞ |ak|1/k := 1/R <
∞ and z0 ∈ C. Then the power series f(z) :=

∑∞
k=0 ak(z − z0)

k converges absolutely
in D(z0, R) := {z ∈ C : |z − z0| < R}. If σ(A) ⊆ D(z0, R) then f(A) defined by
(II.25) coincides with the norm-convergent power series

f(A) =
∞∑
k=0

ak (A− z0)
k . (II.26)

• This way and with z0 = 0 and R = ∞, we obtain many elementary functions of self-
adjoint operators A = A∗, e.g., the matrix exponential function and many others,

exp(A) :=
∞∑
k=0

Ak

k!
, (II.27)

sin(A) :=
∞∑
k=0

(−1)kA2k+1

(2k + 1)!
, (II.28)

cos(A) :=
∞∑
k=0

(−1)kA2k

(2k)!
. (II.29)

Eqs. (II.27)-(II.29) define bounded operators on H as norm-convergent power series.

Definition II.4 (Positivity). Let
(
H, ⟨·|·⟩

)
be a complex Hilbert space andA = A∗, B = B∗ ∈

B(H) two self-adjoint operators on H.

(i) A is called positive, A ≥ 0 : ⇔ ∀φ ∈ H : ⟨φ | Aφ⟩ ≥ 0 . (II.30)

(ii) A ≥ B : ⇔ A−B ≥ 0 . (II.31)

• Using the diagonal form

A =
d∑
j=1

λj |φj⟩⟨φj| , (II.32)

one easily checks that {
A ≥ 0

}
⇔

{
σ(A) ⊆ R+

0

}
. (II.33)

• Hence, if f ∈ C(R+
0 ;R) and A is positive then f(A) can be defined by (II.25).

• In particular, we have for positive A that

√
A =

d∑
j=1

√
λj |φj⟩⟨φj| , (II.34)

A ln(A) =
d∑
j=1

λj ln(λj) |φj⟩⟨φj| , (II.35)
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where we use the convention that 0 ln(0) = 0, which is consistent with the continuity
of limr↘0{r ln(r)} = 0 at r = 0.

Next, let d ∈ N and H = Cd be the d-dimensional complex Hilbert space endowed with the
unitary scalar product and A ∈ B(H) a bounded operator on H. According to Theorem II.2,
there exist ONB {f1, . . . , fd}, {g1, . . . , gd} ⊆ H and nonnegative numbers ρ1, ρ2, . . . , ρd ≥ 0,
such that A assumes its singular value decomposition

A =
d∑

n=1

ρn |fn⟩⟨gn| . (II.36)

Then A∗A is positive,

A∗A =
d∑

m,n=1

ρm ρn |gm⟩⟨fm|fn⟩⟨gn| =
d∑

n=1

ρ2n |gn⟩⟨gn| ≥ 0 , (II.37)

which can also be seen directly, as ⟨φ|A∗Aφ⟩ = ⟨Aφ|Aφ⟩ = ∥Aφ∥ ≥ 0. We can thus define
the absolute value |A| of A by (II.34),

|A| :=
√
A∗A =

d∑
n=1

√
ρ2n |gn⟩⟨gn| , =

d∑
n=1

ρn |gn⟩⟨gn| . (II.38)

Note that |A|∗ = |A|, but |A∗| =
∑d

n=1 ρn|fn⟩⟨fn| ≠ |A|, in general. From these observations
and taking U :=

∑d
n=1 |fn⟩⟨gn|, we obtain the polar decomposition of A,

Theorem II.5 (Polar Decomposition). Let d ∈ N and
(
H = Cd, ⟨·|·⟩ = ⟨·|·⟩unit

)
be the d-

dimensional complex Hilbert space defined by the unitary scalar product and A ∈ B(H) a
bounded operator on H. Then there exist a unitary operator U ∈ U(H) such that

A = U |A| . (II.39)

The right side of (II.39) is called the polar decomposition of A.

II.4. Traces and Trace Norms

Definition II.6. Let d ∈ N and
(
H = Cd, ⟨·|·⟩ = ⟨·|·⟩unit

)
be the d-dimensional complex

Hilbert space defined by the unitary scalar product, {φ1, . . . , φd} ⊆ H an ONB, and A ∈
B(H) a bounded operator on H.

(i) The trace Tr(A) of A is defined as

Tr(A) :=
d∑
j=1

⟨φj | Aφj⟩ . (II.40)
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(ii) For p ∈ [1,∞) define the trace norm ∥A∥p of A by

∥A∥p :=
[
Tr
(
|A|p

)]1/p
. (II.41)

Remarks and Examples.

• The trace Tr(A) of A ∈ B(H) is well-defined, i.e., independent of the choice of
the ONB {φ1, . . . , φd} ⊆ H. Indeed, if {f1, . . . , fd} ⊆ H is any ONB and A =∑N

i,j=1 ai,j |fi⟩⟨fj| then

Tr(A) =
d∑

i,j=1

ai,j ⟨fj|fi⟩ =
d∑
i=1

ai,i =
d∑
i=1

⟨fi|Afi⟩ , (II.42)

independent of the choice of the ONB {f1, . . . , fd} in H.

• If {λ1, . . . , λd} ⊆ C are the zeros of the characteristic polynomial χ(λ) = det[A − λ ·
1] = (λ1 − λ) · · · (λd − λ) (counting multiplicities), then Tr(A) = λ1 + . . .+ λd is the
sum of these zeroes. Indeed, it is easy to check that Tr(A) = −αd−1 = λ1 + . . . + λd,
when writing χ(λ) = α0 + . . .+ αd−1λ

d−1 + λd.

• If ρ1 ≥ ρ2 ≥ · · · ≥ ρd ≥ 0 are the eigenvalues of |A|, then ∥A∥p =
(∑N

n=1 ρ
p
n

)1/p.
• If ρ1 ≥ ρ2 ≥ · · · ≥ ρd ≥ 0 and A ̸= 0 then ρ1 > 0. If furthermore 1 ≤ q < p <∞ then

∥A∥pp =
N∑
n=1

ρpn = ρp1

N∑
n=1

(
ρn
ρ1

)p
≤ ρp1

N∑
n=1

(
ρn
ρ1

)q
= ρp−q1 ∥A∥qq . (II.43)

Theorem II.7. Let
(
H = Cd, ⟨·|·⟩ = ⟨·|·⟩unit

)
be a finite-dimensional complex Hilbert space

and A,B ∈ B(H) two linear operators on H.

(i) ∥AB∥1 ≤ ∥A∥op · ∥B∥1 ; (II.44)

(ii) ∥A∥op = sup
{
Tr(AB)

∣∣ B ∈ L1(H) , ∥B∥1 = 1
}
. (II.45)

(iii) A = A∗ ⇒ ∥A∥op = sup
{
Tr(ρA)

∣∣ρ ∈ DM(H)
}
, (II.46)

where

DM(H) :=
{
ρ ∈ L1(H)

∣∣ ρ = ρ∗ ≥ 0 , Tr(ρ) = 1
}

⊆ L1(H) (II.47)

is the convex subset of density matrices.

II.5. Tensor Products of Hilbert Spaces

In this section we define tensor products of Hilbert spaces and observe some basic facts about
these. To this end we suppose that

(
H, ⟨·|·⟩

)
and

(
H′, ⟨·|·⟩′

)
are two (separable, complex)

Hilbert spaces. For f ∈ H and f ′ ∈ H′ we define a map f ⊗ f ′ : H×H′ → C by

∀h ∈ H, h′ ∈ H′ :
(
f ⊗ f ′)[h, h′] := ⟨h|f⟩ ⟨h′|f ′⟩ . (II.48)
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Obviously, f ⊗ f ′ is a bi-antilinear form,(
f ⊗ f ′)[g + αh, g′ + βh′] =

(
f ⊗ f ′)[g, g′] + α

(
f ⊗ f ′)[h, g′] + β

(
f ⊗ f ′)[g, h′]

+ αβ
(
f ⊗ f ′)[h, h′] . (II.49)

With these bi-antilinear forms we build a complex vector space Gfin by the usual pointwise
operations,(

(f ⊗ f ′) + α(g ⊗ g′)
)
[h, h′] :=

(
f ⊗ f ′)[h, h′] + α

(
g ⊗ g′

)
[h, h′] . (II.50)

This vector space contains all (finite) linear combinations of bilinear forms f ⊗ f ′,

Gfin =

{ L∑
j=1

αj(fj ⊗ f ′
j)

∣∣∣∣ L ∈ N, ∀ j ∈ ZL1 : αj ∈ C, fj ∈ H, f ′
j ∈ H′

}
. (II.51)

We define a quadratic form ⟨·|·⟩G : Gfin × Gfin → C by continuation by antilinearity of

⟨f ⊗ f ′|g ⊗ g′⟩G := ⟨f |g⟩ ⟨f ′|g′⟩ , (II.52)

i.e., 〈 L∑
i=1

αi fi ⊗ f ′
i

∣∣∣∣ L∑
j=1

βj gj ⊗ g′j

〉
G

:=
L∑

i,j=1

αi βj ⟨fi|gj⟩ ⟨f ′
i |g′j⟩ . (II.53)

Lemma II.8. The quadratic form ⟨·|·⟩G : Gfin×Gfin → C as in (II.52) defines a scalar product
on Gfin.

Proof. Sesquilinearity and symmetry of ⟨·|·⟩G are trivial, and we concentrate on its positive
definiteness. Let {φk}∞k=1 ⊆ H and {φ′

ℓ}∞ℓ=1 ⊆ H′ be two ONB and assume that Ψ =∑L
j=1 αj(fj ⊗ f ′

j) ∈ Gfin. Then

⟨Ψ|Ψ⟩G =
L∑

i,j=1

αi αj ⟨fi|fj⟩ ⟨f ′
i |f ′

j⟩′ =
∞∑

k,ℓ=1

L∑
i,j=1

αi αj ⟨fi|φk⟩ ⟨φk|fj⟩ ⟨f ′
i |φ′

ℓ⟩′ ⟨φ′
ℓ|f ′

j⟩′

=
∞∑

k,ℓ=1

∣∣∣∣ L∑
j=1

αj
(
fj ⊗ f ′

j

)
[φk, φ

′
ℓ]

∣∣∣∣2 =
∞∑

k,ℓ=1

∣∣Ψ[φk, φ
′
ℓ]
∣∣2 . (II.54)

This proves that ⟨Ψ|Ψ⟩G ≥ 0. Moreover, ⟨Ψ|Ψ⟩G = 0 implies that Ψ[φk, φ
′
ℓ] = 0, for all

k, ℓ ∈ N. Since {φk}∞k=1 ⊆ H and {φ′
ℓ}∞ℓ=1 ⊆ H′ are ONB, this in turn yields Ψ = 0.

Definition II.9. Suppose that
(
H, ⟨·|·⟩

)
and

(
H′, ⟨·|·⟩′

)
are two separable, complex Hilbert

spaces. Define Gfin as in (II.51) and equip it with the scalar product ⟨·|·⟩G : Gfin ×Gfin → C as
in (II.52). We define a separable, complex Hilbert space

(
G, ⟨·|·⟩G

)
as the completion

G := Gfin
⟨·|·⟩G (II.55)

of Gfin with respect to the norm induced by ⟨·|·⟩G . The Hilbert space G is called the tensor
product of H and H′, and we write G =: H ⊗ H′ and ⟨·|·⟩G =: ⟨·|·⟩H⊗H′ .
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Remarks and Examples.

• If {φk}∞k=1 ⊆ H and {φ′
ℓ}∞ℓ=1 ⊆ H′ are ONB then so is {φk ⊗ φ′

ℓ}∞k,ℓ=1 ⊆ H⊗H′.

• Definition II.9 can be easily generalized to N ∈ N factors: If
(
Hn, ⟨·|·⟩n

)
is a Hilbert

space with an ONB {φn;k}∞k=1 ⊆ Hn , for n ∈ ZN1 , then H1 ⊗ · · · ⊗ HN is the tensor
product of H1, . . . ,HN and

{
φ1;k1 ⊗ · · · ⊗φN ;kN

∣∣ k1, . . . , kN ∈ N
}
⊆ H1 ⊗ · · · ⊗HN

is an ONB.

• Assume that
(
H, ⟨·|·⟩

)
is a separable, complex Hilbert space. Then the space L2(H) of

Hilbert-Schmidt operators on H is a Hilbert space
(
L2(H), ⟨·|·⟩L2(H)

)
with respect to

the scalar product

⟨A|B⟩L2(H) := TrH
(
A∗B

)
. (II.56)

• Assume that
(
H, ⟨·|·⟩

)
is a separable, complex Hilbert space. Then the Hilbert space(

L2(H), ⟨·|·⟩L2(H)

)
of Hilbert-Schmidt operators is isomorphic to

(
H⊗H∗, ⟨·|·⟩H⊗H∗

)
,

the isomorphism being

J : L2(H) → H⊗H∗ , |φ⟩⟨ψ| 7→ φ⊗ ψ . (II.57)

• If (Ω,A, µ) and (Ω′,A′, µ′) are two measure spaces then L2(Ω × Ω′, dµ ⊗ dµ′) is iso-
morphic to L2(Ω, dµ)⊗ L2(Ω′, dµ′). The isomorphism I : L2(Ω, dµ)⊗ L2(Ω′, dµ′) →
L2(Ω× Ω′, dµ⊗ dµ′) derives from the extension by linearity and continuity of

φ⊗ φ′ 7→ φ · φ′ , where (φ · φ′)[x, x′] := φ(x) · φ′(x′) . (II.58)

II.6. SUPPLEMENTARY MATERIAL

II.6.1. Proof of Theorem II.2 - Singular Value Decomposition

Proof. We only prove (II.21). We may assume that A ̸= 0. Observe that A∗A ∈ B(H)
is a self-adjoint matrix and, hence, diagonalizable. In other words, there exists an ONB
{g1, . . . , gd} ⊆ H of eigenvectors of A∗A and corresponding real eigenvalues λ1, . . . , λd ∈ R
such that

A∗A =
d∑
j=1

λj |gj⟩⟨gj| . (II.59)

Note that the eigenvalues λj = ⟨gj|A∗Agj⟩ = ∥Agj∥2 ≥ 0 are nonnegative, and we may
define ρj ∈ R+

0 by ρj :=
√
λj = ∥Agj∥. Moreover, we may assume w.l.o.g. these numbers

to be sorted in descending order such that ρ1 ≥ . . . ≥ ρc > ρc+1 = . . . = ρd = 0, for some
c ∈ Zd1. Hence, Ker(A) = span{gc+1, . . . , gd} and dimKer(A) = d− c.
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Next, by (I.26),

A =
d∑
j=1

|Agj⟩⟨gj| =
c∑
j=1

|Agj⟩⟨gj| =
c∑
j=1

ρj |fj⟩⟨gj| , (II.60)

where fj := ρ−1
j Agj , for j ∈ Zc1, using that ρj > 0 in this case. Then f1, f2, . . . , fc ∈ H are

normalized, by definition, and for all 1 ≤ m < n ≤ c we observe that

⟨fm|fn⟩ =
⟨Agm|Agn⟩
ρmρn

=
⟨gm|A∗Agn⟩

ρmρn
=

ρn ⟨gm|gn⟩
ρm

= 0 . (II.61)

It follows that {f1, f2, . . . , fc} ⊆ H is an orthonormal system which we can complement (e.g.,
using the Gram-Schmidt orthonormalization procedure) with vectors fc+1, . . . , fd to an ONB
{f1, f2, . . . , fd} ⊆ H. Using that ρc+1 = . . . = ρd = 0, we finally obtain

A =
c∑
j=1

ρj |fj⟩⟨gj| =
d∑
j=1

ρj |fj⟩⟨gj| , (II.62)

as asserted.

II.6.2. Proof of Theorem II.5 - Polar Decomposition

Proof. Let {f1, . . . , fd}, {g1, . . . , gd} ⊆ H be ONB and ρ1, ρ2, . . . , ρd ≥ 0 nonnegative num-
bers of a polar decomposition of

A =
d∑

n=1

ρn |fn⟩⟨gn| , (II.63)

which exists according to Theorem II.2. We define

U =
d∑

n=1

|fn⟩⟨gn| (II.64)

and observe that U∗ =
∑d

n=1 |gn⟩⟨fn|. Thus

U∗ U =
d∑

m,n=1

|gm⟩⟨fm|fn⟩⟨gn| =
d∑

n=1

|gn⟩⟨gn| = 1 , (II.65)

and similary UU∗ = 1, so U is unitary. Moreover,

U |A| =
d∑

m,n=1

ρn |fm⟩⟨gm|gn⟩⟨gn| =
d∑

n=1

ρn |fn⟩⟨gn| = A , (II.66)

as asserted.
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II.6.3. Compact Operators, Trace Class Operators,
Hilbert–Schmidt Operators

In this section we pass to infinite-dimensional Hilbert spaces, but we will restrict ourselves
to compact operators, which are well-approximated by matrices (as opposed to the identity
operator 1H on H or differential operators like −i∇, say).

Definition II.10. Suppose that
(
H, ⟨·|·⟩

)
is a (separable, complex) Hilbert space.

(i) We define by

Bfin(H) :=

{ N∑
i,j=1

ai,j |fi⟩⟨fj|
∣∣∣∣ N ∈ N , {ai,j}Ni,j=1 ⊆ C , {fi}Ni=1 ⊆ H

}
⊆ B(H)

(II.67)

the space of linear operators (on H) of finite rank.

(ii) The closure of Bfin(H) ⊆ B(H) in operator norm,

Com(H) := Bfin(H)
∥·∥op ⊆ B(H) , (II.68)

defines the space of compact operators (on H).

Remarks and Examples.

• The rank rk(A) of an operator A ∈ B(H) is defined to be the dimension of its range,
rk(A) := dim[Ran(A)] ∈ N0 ∪ {∞}.

• It follows that Bfin(H) =
{
A ∈ B(H)

∣∣ rk(A) + rk(A∗) <∞}.

• The set of finite-rank operators Bfin(H) is a subspace of B(H) which is not closed in the
operator norm topology. Its closure is the space of compact operators Com(H). That
is, A ∈ B(H) is compact iff for any ε > 0 there are N ∈ N, {ai,j}Ni,j=1 ⊆ C, and
{fi}Ni=1 ⊆ H such that ∥∥∥∥A −

N∑
i,j=1

ai,j |fi⟩⟨fj|
∥∥∥∥
op

≤ ε . (II.69)

• Its closure, the set of compact operators Com(H), is a closed subspace of the Banach
space

(
B(H), ∥ · ∥op

)
. and, hence, a Banach (sub-)space

(
Com(H), ∥ · ∥op

)
itself. This

Banach subspace Com(H) ⊆ B(H) cannot, however, be complemented by another
closed subspace X ⊆ B(H), such that B(H) = Com(H)⊕X .

• Since this holds true for finite-rank operators, it follows that every compact operator
A ∈ Com(H) possesses a singular value decomposition (SVD), i.e., there exist ONB
{fn}∞n=1, {gn}∞n=1 ⊆ H and singular values {ρn}∞n=1 ⊆ R+

0 of A with ρn ≥ ρn+1 such
that

A =
∞∑
n=1

ρn |fn⟩⟨gn| . (II.70)
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It is here where the use of Dirac’s ket-bra notation pays off: We never have to introduce
and use infinitly extended matrices, but only let the summation range extend to infinitly
many terms.

• For p ∈ [1,∞), the trace norm ∥ · ∥p in (II.68) defines a norm, indeed, on the complex
vector space Bfin(H) of finite-rank operators.

• The triangle inequality is the only nontrivial part of the latter statement. We only com-
ment on the cases p = 1 and p = 2. For p = 1, it rests on the representation

∥A∥1 = sup

{ ∞∑
n=1

∣∣⟨ψn|Aφn⟩∣∣ ∣∣∣∣ {ψm}∞m=1, {φn}∞n=1 ⊆ H ONB
}
, (II.71)

while for p = 2, the key ingredient of the proof is the representation

∥A∥2 = sup

{
Tr(B∗A)

Tr(B∗B)1/2

∣∣∣∣ B ∈ Bfin(H) \ {0}
}
. (II.72)

To see that (II.71) is the crucial input in the case p = 1, let A,B ∈ Bfin(H) and observe
that

∥A+B∥1 = sup

{ ∞∑
n=1

∣∣⟨ψn|(A+B)φn⟩
∣∣ ∣∣∣∣ {ψm}∞m=1, {φn}∞n=1 ⊆ H ONB

}

≤ sup

{ ∞∑
n=1

∣∣⟨ψn|Aφn⟩∣∣ ∣∣∣∣ {ψm}∞m=1, {φn}∞n=1 ⊆ H ONB
}

+ sup

{ ∞∑
n=1

∣∣⟨ψn|Bφn⟩∣∣ ∣∣∣∣ {ψm}∞m=1, {φn}∞n=1 ⊆ H ONB
}

= ∥A∥1 + ∥B∥1 . (II.73)

The case p = 2 uses (II.72) in a similar way.

Definition II.11. Suppose that
(
H, ⟨·|·⟩

)
is a (separable, complex) Hilbert space and that

1 ≤ p <∞. We define by

Lp(H) := Bfin(H)
∥·∥p ⊆ B(H) , (II.74)

the space of p-summable operators (on H). Specifically, the Banach space
(
L1(H), ∥ · ∥1

)
is

called the space of trace class operators, and the Banach space
(
L2(H), ∥ · ∥2

)
is called the

space of Hilbert-Schmidt operators.

Theorem II.12. Let
(
H = Cd, ⟨·|·⟩ = ⟨·|·⟩unit

)
be a complex Hilbert space with an ONB

{φj}∞j=1 ⊆ H and A ∈ L1(H). Then the trace of A

Tr(A) :=
∞∑
j=1

⟨φj|Aφj⟩ (II.75)
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exists and is independent of the ONB {φj}∞j=1 ⊆ H. IfA1, A2, . . . , AL ∈ L1(H) then the trace
is cyclic,

Tr(A1A2 · · ·AL−1AL) = Tr(ALA1A2 · · ·AL−1AL) . (II.76)

Proof. Due to (II.71), the sum on the right side of (II.75) exists and is bounded in absolute
value by ∥A∥1, ∣∣∣∣ ∞∑

j=1

⟨φj|Aφj⟩
∣∣∣∣ ≤ ∥A∥1 . (II.77)

Let {ψk}∞k=1 ⊆ H be a second ONB. Given ε > 0, we can find a finite-rank operator Aε ∈
Bfin(H) such that ∥A− Aε∥1 ≤ ε. Since Aε is of finite rank,

∞∑
j=1

⟨φj|Aεφj⟩ = Tr(Aε) =
∞∑
k=1

⟨ψk|Aεψk⟩ . (II.78)

It follows from (II.78) and an application of (II.77) to A− Aε that∣∣∣∣ ∞∑
j=1

⟨φj|Aφj⟩ −
∞∑
k=1

⟨ψk|Aψk⟩
∣∣∣∣ =

∣∣∣∣ ∞∑
j=1

⟨φj| (A− Aε)φj⟩ −
∞∑
k=1

⟨ψk| (A− Aε)ψk⟩
∣∣∣∣

≤ 2 ∥A− Aε∥1 ≤ 2ε . (II.79)

Since ε > 0 can be chosen arbitrarily small, (II.79) implies that

∞∑
j=1

⟨φj|Aφj⟩ =
∞∑
k=1

⟨ψk|Aψk⟩ . (II.80)

The proof of cyclicity is similar: First, one observes that it suffices to prove Tr(AB) =
Tr(BA) for two trace-class operators A,B ∈ L1(H). Then both A and B are approximated
by finite-rank operators Aε and Bε up to errors in trace norm of size ε > 0. For Aε and Bε the
identity Tr(AεBε) = Tr(BεAε) is trivial. Hence,∣∣Tr(AB)− Tr(BA)

∣∣ ≤
∣∣Tr(AB)− Tr(AεBε)

∣∣ + ∣∣Tr(BεAε)− Tr(BA)
∣∣

≤ 2
∣∣Tr[A(B −Bε)]

∣∣ + 2
∣∣Tr[(A− Aε)Bε]

∣∣
≤ 2ε

(
∥A∥1 + ∥B∥1 + ε

)
, (II.81)

and Tr(AB) = Tr(BA) follows in the limit ε→ 0.
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III. Classical and Quantum
Frameworks

In this section we describe the basic ingredients of the mathematical framework of classical
and quantum computing in a somewhat peculiar way. That is, we first introduce the frame-
works for classical mechanics of point particles, then for classical mechanics formulated as
transport theory, and finally for quantum mechanics. Having introduced these we then develop
the notion of classical computing in parallel to the classical mechanics of point particles. Sim-
ilarly, we return to probabilistic methods of computation, such as simulated annealing, and
finally come to the basic rules of quantum computing.

This approach is somewhat unorthodox, as it does not start with Qubits as the generalizations
in quantum computing of bits. We hope, however, that basic concepts are clearer this way.

III.1. Classical and Quantum Mechanics
of Particles in Space

Classical Mechanics of Point Particles. Suppose we wish to describe the motion of
N ∈ N point particles moving in space R3. The motion of each particle is described by its
position q ∈ R3 and its momentum p ∈ R3 which is put together in a phase space coordinate
x = (q, p) ∈ Ω(1) := R3 × R3. Then xk(t) =

(
qk(t), pk(t)

)
∈ Ω(1) denotes the phase space

coordinates of the kth particle at a given time t ∈ R. Putting these coordinates together in one
N -tuple, the vector

x(t) :=
(
x1(t), x2(t), . . . , xN(t)

)
∈ Ω(N) := [Ω(1)]N , (III.1)

encodes the complete desciption of the particles’ phase space coordinates which we call phase
space configuration. For this reason Ω(N) is called the phase space of the system of N parti-
cles.

Almost two hundred years ago, Hamilton obtained a formulation of Newtonian mechanics
that determines the phase space configuration x(t) ∈ Ω(N) of the system at time t ∈ R under
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the assumption that the configuration x(s) ∈ Ω(N) is known for some s < t. For the sake of
simplicity, we assume that t > 0 = s. The dynamics of the particles is determined by the
Hamilton equations of motion which is a system of first-order ordinary differential equations,
namely,

∀ t > 0 : ẋ(t) = H ′[x(t)] , x(0) = x0 , (III.2)

where

H ′[x(t)] :=
(
∇pH[x(t)], −∇qH[x(t)]

)
(III.3)

is a (symplectic) gradient of the Hamiltonian function H ∈ C1(Ω(N); Ω(N)) of the system
whose precise form is immaterial for our purpose. We do not go into the fairly complicated
theory of existence and uniqueness of the solutions of Hamilton’s equation (III.2) of motion.
Instead we assume these two properties by demanding that there exists a flow (map) Φ ∈
C1(R× Ω(N); Ω(N)) such that

∀ (t, x0) ∈ R× Ω(N) : x(t) = Φt(x0) . (III.4)

That is, for any initial configuration x0 ∈ Ω(N) of spatial positions and momenta, the system
of N particles follows the trajectory

(
t 7→ Φt(x0)

)
∈ C1(R+

0 ; Ω
(N).

Suppose we are now given an observable, i.e., a measurable physical quantity represented by
a bounded, measurable real function A ∈ L∞(Ω(N);R) on phase space. A good example to
have in mind, although neither bounded nor real-valued, is the center of mass A : Ω(N) → R3

of the particles defined for x = (q1, . . . , qN , p1, . . . , pN) as

A[x] :=
1

N

N∑
k=1

qk . (III.5)

The center of mass At[x0] ∈ R3 of the particles at time t > 0 with initial configuration
x0 ∈ Ω(N) is then given by

At[x0] := A[x(t)] = A[Φt(x0)] . (III.6)

This equation holds true for any observable A ∈ L∞(Ω(N);R) - not only for the center of
mass.

Probabilistic Formulation of Classical Mechanics. We now broaden our perspective
and describe the system’s configurations at time t not by points x(t) in phase space but by
functions (or, more precisely, probability distributions) on phase space. For this, we replace
the initial configuration x0 ∈ Ω(N) by an initial phase space density, i.e., a probability distribu-
tion ρ0 ∈ L1(Ω(N);R+

0 ), with
∫
Ω(N) ρ0(x) dx = 1, where dx = dNq dNp is Lebesgue measure

on phase space Ω(N). The physical state of the system is now represented by the function
ρ0 : Ω(N) → R+

0 , not the point x0 ∈ Ω(N). As each of the points x0 ∈ Ω(N), considered a
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potential initial configuration, follows its trajectory, the state of the system at time t > 0 is
then given by

ρt = ρ0 ◦ Φ−t . (III.7)

(Note the minus sign in the time variable.) Since the flow Φt leaves the measure on phase
space invariant, ρt ∈ L1(Ω(N);R+

0 ) is a probability distribution, too. We now evaluate an
observable A ∈ L∞(Ω(N);R) at time t ≥ 0. Since ρt is a probability distribution, this is
actually an expectation value and is given by

⟨A⟩ρt :=

∫
Ω(N)

A[x] ρt(x) dx =

∫
Ω(N)

A[x] ρ0[Φ−t(x)] dx . (III.8)

Note that our first description in terms of phase space points is contained in this larger frame-
work if, slightly more generally, we allow ρ0 to be a probabilty measure -not necessarily
an integrable function- and assume A ∈ C(Ω(N);R) to be continuous. Namely, choosing
ρ0(x) := δ(x− x0), Eq. (III.8) yields

⟨A⟩ρt =

∫
Ω(N)

A[x] δ[Φ−t(x)− x0] dx =

∫
Ω(N)

A[x] δ[x− Φt(x0)] dx = A[Φt(x0)] ,

(III.9)

indeed. This computation also illustrates the necessity of the minus sign in (III.7).

The formulation in terms of functions (here: probability distributions) on phase space has two
decisive advantages.

• The first is that the (expectation) value ⟨A⟩ρt of an observable is a linear functional
of both the observable A ∈ L∞(Ω(N);R) and the function ρt ∈ L1(Ω(N);R+

0 ). More
precisely, for all functions ρ ∈ L1(Ω(N)), the expectation value(

A 7→ ⟨A⟩ρ
)
∈
[
L∞(Ω(N))

]∗ (III.10)

defines a continuous linear functional on L∞(Ω(N)). Conversely, if α ∈ (0, 1) and
ρ, ρ̃ ∈ L1(Ω(N);R+

0 ) are two probability densities on Ω(N) then so is [αρ+ (1− α)ρ̃] ∈
L1(Ω(N);R+

0 ), and for all observables A ∈ L∞(Ω(N)), the expectation value of αρ +
(1− α)ρ̃ is given by

⟨A⟩αρ+(1−α)ρ̃ = α ⟨A⟩ρ + (1− α) ⟨A⟩ρ̃ . (III.11)

• The second, more important, advantage is that the form ρt = ρ0 ◦ Φ−t of the solution
of the time evolution in terms of a flow map is special and rather rigid. Most of the
important evolution equations in physics and technology other than classical mechanics
do not posess solutions of this form. We illustrate this argument on the example of
the heat equation in R3. Given an initial temperature profile ρ0 ∈ L1(R3;R+

0 ), the
temperature profile at time t > 0 is the unique solution ut of the heat equation

∀ t > 0, x ∈ R3 : u̇t(x) = ∆xut(x) , u0(x) = ρ0(x) , (III.12)
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which can be explicitly computed by convolving the initial profile with the heat kernel,

∀ t > 0, x ∈ R3 : ut(x) =

∫
e−(x−y)2/(4t) ρ0(y)

d3y

(4πt)3/2
. (III.13)

There exists no flow map such that ut could be written in the form ut(x) = ρ0[Φt(x)],
for all x ∈ R3. (Nevertheless, the Ansatz ut(x) = ρ0[Φt(x)] is a useful method known
as the method of characteristics in PDE theory to construct approximate solutions for
small times.)

The corresponding generalization of Eq. (III.7) results from assuming that, given t > 0, there
exists a conditional probability distribution pt : Ω(N) × Ω(N) → R+

0 such that

∀x ∈ Ω(N) : ρt(x) =

∫
Ω(N)

pt(x|y) ρ0(y) dy . (III.14)

The requirement that pt be a conditional probability distribution reads

∀ y ∈ Ω(N) :

∫
Ω(N)

pt(x|y) dx = 1 , (III.15)

which ensures by Fubini that∫
ρt(x) dx =

∫∫
pt(x|y) ρ0(y) dx dy =

∫
ρ0(y) dy , (III.16)

i.e., if ρ0 ∈ L1(Ω(N);R+
0 ) is a probability distribution then so is ρt ∈ L1(Ω(N);R+

0 ). (Note that
we are generous about measure-theoretic details such as (III.15) that actually is only required
almost everywhere in Ω(N).)

We illustrate the formulation (III.14) by two examples.

• The original motion of N point particles can be formulated as in (III.14) if we set

pt(x|y) := δ[x− Φt(y)] , (III.17)

since, with this choice of pt, we obtain

ρt(x) =

∫
Ω(N)

δ[x− Φt(y)] ρ0(y) dy = ρ0[Φ−t(x)] . (III.18)

• The heat kernel pt(x|y) = (4πt)−3/2 exp[−(x − y)2/(4t)] used in (III.13) to solve the
heat equation is a second, typical example for such conditional probability distribution.
Indeed, for all y ∈ R3 and t > 0,∫

R3

pt(x|y) d3x =

∫
R3

e−(x−y)2/(4t) d3x

(4πt)3/2
=

∫
R3

e−x
2
d3x

π3/2
= 1 . (III.19)

Compared to quantum mechanics, the probablilistic formulation of classical mechanics has
the disadvantage that, unless we are in a special case like (III.17), the dynamics is irreversible:
Given ρ0, we can compute ρt for t > 0, but given t > 0 and ρt, the reconstruction of the initial
data ρ0 is a rather complicated and, in fact, in many cases impossible. For instance, if ut is the
solution of the heat equation according to (III.13) then it is not hard to see that ut ∈ C∞(R3)
is smooth. Consequently, if t > 0 and ut is lacking this high regularity, there is no initial
datum u0 for which ut is the solution of the heat equation at time t.
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Quantum Mechanics. Similar to the probabilistic description of mechanics, we do not
represent the state of the system of N point particles in quantum mechanics by a configuration
x(t) in phase space, but by a complex-valued function ψt on the space of configurations Ω(N).
We now go through the construction step by step.

• As opposed to classical mechanics, the configuration space of a quantum mechanical
particle contains only positions, not momenta. In a first step the state of a particle at time
t ∈ R is represented by a complex-valued, square-integrable function ψt : Ω(1) → C

of the particle’s position x ∈ Ω(1) := R3. Thanks to their square-integrability, these
functions are elements ψt ∈ h of the Hilbert space h := L2(R3).

• We further assume ψt to be normalized, i.e.,

∥ψt∥22 =

∫
Ω(1)

|ψt(x)|2 dx = 1 , (III.20)

so that the square of the absolute value |ψt|2 : R3 → R+
0 allows for the intepretation to

be the probability distribution of the particle at time t. I.e., Pt(A) :=
∫
A
|ψt(x)|2 d3x is

the probability to find the particle in a (measurable) subset A ⊆ Ω(1) of its configuration
space Ω(1).

• Similarly, the configuration space Ω(N) := [Ω(1)]N = (R3)N of N quantum mechan-
ical particles contains N positions in Ω(1) (and no momenta). The state of the N -
particle system at time t ∈ R is represented by a complex-valued, square-integrable
function Ψt : Ω(N) → C of the N -particle configurations x ∈ Ω(N). Again its
square-integrability ensures that this function Ψt ∈ H(N) belongs to the Hilbert space
H(N) := L2(Ω(N)).

• As a mathematical fact, if Ω = Ω1 × Ω2 = {(x1, x2)| x1 ∈ Ω1, x2 ∈ Ω2} is the
cartesian product of two sets Ω1 and Ω2 then L2(Ω) is isomorphic to the tensor product
L2(Ω1)⊗ L2(Ω1).

• This can be generalized toN factors: If (Ωn,An, µn) are measure spaces, for all n ∈ ZN1 ,
and

Ω = Ω1 × Ω2 × · · · × ΩN =
{
(x1, x2, . . . , xN)

∣∣ x1 ∈ Ω1, xN ∈ ΩN

}
(III.21)

is their cartesian product, then

L2(Ω) = L2(Ω1)⊗ L2(Ω2)⊗ · · · ⊗ L2(ΩN) . (III.22)

The dynamics of the N -particle system is given by the Schrödinger equation,

∀ t ∈ R : ψ̇t = −iHψt , ψ0 ∈ H(N) . (III.23)

Here, H = H∗ is the self-adjoint Hamiltonian operator acting on H(N)) (Very often H is
actually an unbounded operator, but we ignore the mathematical complication that comes
about with this unboundedness.) Thanks to its self-adjointness, H generates a one-parameter
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group (Ut)t∈R ⊆ U(H(N)) of unitary operators which is frequently called propagator, written
as Ut =: e−itH . The unique solution of the Schrödinger equation is given by

∀ t ∈ R : ψt = Ut ψ0 . (III.24)

The Schrödinger equation can also be formulated as an evolution equation for the propagator,
i.e.,

∀ t ∈ R : U̇t = −iHUt , U0 = 1H(N) . (III.25)

Note that the quantum evolution (III.24) is perfectly reversible, namely, ψ0 = U∗
t ψt, since

U−1
t = U∗

t , as Ut is unitary.

Observables in quantum mechanics are represented by self-adjoint operators A = A∗ ∈
B(H(N)). In fact, the HamiltonianH is an observable, too, namely the system’s energy. While
H is an unbounded operator, we may always assume w.l.o.g. a given observable A = A∗ ∈
B(H(N)) to be bounded. Its expectation value at time t ∈ R is defined to be the diagonal
matrix element

∀ t ∈ R : ⟨At⟩ψ0 = ⟨ψ0|Atψ0⟩ := ⟨ψt|Aψt⟩ = ⟨ψ0|(U∗
t AUt)ψ0⟩ . (III.26)

Note that this implies that At = U∗
t AUt. Hence, using (III.25), we obtain the Heisenberg

equation of motion

∀ t ∈ R : Ȧt = −i
[
H , At] , (III.27)

which is actually equivalent to the Schrödinger equation.

Embedded Systems in Quantum Mechanics and Density Matrices Summarizing
the framework of quantum mechanics presented so far, we note that states of a physical system
S at time t ∈ R are represented by vectors ψt ∈ HS in the system’s Hilbert space HS , which
typically is the space of complex-valued, square-integrable functions of the (classical spatial)
coordinates x ∈ ΩS of the system, i.e., HS = L2(ΩS).

Suppose now that S1 is a physical system with coordinate space Ω1 and quantum mechanical
states in H1 = L2(Ω1). If S1 is actually a subsystem of a larger total system S12 containing
another subsystem S2, besides S1, with classical coordinates in Ω2 then the coordinate space
of the total system S12 is naturally Ω12 = Ω1 × Ω2, and the corresponding Hilbert space of
states in S12 is L2(Ω12) = L2(Ω1)⊗ L2(Ω2).

More generally, tensor products appear in quantum mechanics whenever we have two physical
subsystems S1 and S2 and the total system S12 consists of these two subsystems. If the states
of S1 and S2 are vectors in a Hilbert space H1 and H2, respectively, then the states of the total
system are vectors in their tensor product H12 = H1 ⊗H2.

Remarks and Examples.
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• If S1 represents an electron and S2 represents a proton then Ω1 = Ω2 = R3 × {↑, ↓}
and H1 = H2 = L2(R3 × {↑, ↓}). The total system S12 contains an electron and a
proton and may be considered a hydrogen atom; its Hilbert space is H12 = H1 ⊗H2 =
L2(R3 × {↑, ↓})⊗ L2(R3 × {↑, ↓}).

• If S3 is the quantized photon field then its Hilbert space is the photon Fock space F(h)

over the one-photon Hilbert space h =
{
f ∈ L2(R3;R3)

∣∣ ∀ k⃗ ∈ R3 \ {⃗0} : f̂(k⃗) ⊥ k⃗
}

of square-integrable, divergent-free vector fields (Coulomb gauge).

• If the total system S123 consists of a hydrogen atom and the quantized radiation field
then its Hilbert space is H123 = H12 ⊗F(h).

We now consider a system S1 whose states are represented by normalized vectors ψ1 in a
Hilbert space H1. We wish to account for the possibility that S1 is a subsystem of a larger
system S12 whose states are represented by normalized vectors Ψ12 in a Hilbert space H12 =
H1 ⊗H2, where H2 is the Hilbert space for the other constituent of S12, namely, a subsystem
S2. For definiteness, we assume both H1 and H2 to be infinite dimensional.

If A1 = A∗
1 ∈ B(H1) is an observable of the system S1 then its expectation value in the state

Ψ12 ∈ H12 is given by

⟨A1⟩Ψ12 = ⟨Ψ12|(A1 ⊗ 12)Ψ12⟩12 . (III.28)

This expectation value is of the form ⟨A1⟩Ψ12 = ⟨ψ1|A1ψ1⟩H1 , for some ψ1 ∈ H1 if, and
only if, Ψ12 = ψ1 ⊗ ψ2. This is, however, unphysical because it is equivalent to assuming the
two subsystems S1 and S2 to be independent of each other and in absence of any interaction
between them.

Now we suppose that Ψ ∈ H12 is an arbitray normalized vector. We define a linear operator
ρ1 ∈ B(H1) by

〈
f
∣∣ ρ1 f ′〉

1
:=

∞∑
n=1

〈
f ⊗ gn

∣∣∣(|Ψ⟩⟨Ψ|
)
f ′ ⊗ gn

〉
12

=
∞∑
n=1

⟨f ⊗ gn|Ψ⟩12 ⟨Ψ|f ′ ⊗ gn⟩12 ,

(III.29)

where {gn}∞n=1 ⊆ H2 is an arbitrary ONB. A simple application of the Cauchy-Schwarz
inequality shows that (III.29) is convergent and independent of the ONB {gn}∞n=1. Obviously,
ρ1 ≥ 0 is positive. If {fm}∞m=1 ⊆ H1 is an ONB then

∞∑
m=1

〈
fm
∣∣ ρ1 fm〉1 :=

∞∑
m,n=1

〈
fm ⊗ gn

∣∣∣(|Ψ⟩⟨Ψ|
)
fm ⊗ gn

〉
12

= ∥Ψ∥2 = 1 . (III.30)

Hence, ρ1 ∈ DM(H1) is a density matrix, i.e., a positive trace class operator on a Hilbert
space H of trace one,

DM(H) :=
{
ρ ∈ L1(H)

∣∣∣ ρ ≥ 0 , Tr(ρ) = 1
}
. (III.31)
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We observe that DM(H) ⊆ L1(H) is closed and convex. In fact, DM(H) is the convex hull
of all pure states, i.e., density matrices of the form |ψ⟩⟨ψ|, with ψ normalized.

Moreover, if ρ12 ∈ DM(H12) is a density matrix of the total system S12 on the Hilbert space
H12 = H1 ⊗H2 and

∞∑
m=1

〈
fm
∣∣ ρ1 fm〉1 :=

∞∑
m,n=1

〈
fm ⊗ gn

∣∣∣ρ12 (fm ⊗ gn)
〉
12
, (III.32)

then ρ1 ∈ DM(H1) is a density matrix for the subsystem S1 of S12.

For this reason we replace wave functions by density matrices and represent states of physical
systems by the latter, henceforth. If A = A∗ ∈ B(H) is an observable of a system in a state
represented by a density matrix ρ ∈ DM(H) on a Hilbert space H, then its expectation value
is given by

⟨A⟩ρ := Tr(ρA) . (III.33)

If the density matrix ρt ∈ DM(H) at time t ∈ R is the pure state ρt = |ψt⟩⟨ψt|, then ρt results
from the initial value ρ0 by conjugation by the unitary propagator Ut ∈ U(H) of (III.24)-
(III.25), i.e.,

ρt = |Utψ0⟩⟨Utψ0| = Ut |ψ0⟩⟨ψ0|U∗
t = Ut ρ0 U

∗
t (III.34)

Taking convex combinations of such pure states, we derive the dynamical law for a general
density matrix ρt ∈ DM(H) representing the state of the system at time t ∈ R, given its value
ρ0 ∈ DM(H) at t = 0,

ρt = Ut ρ0 U
∗
t , ρ̇t = −i[H, ρt] . (III.35)

It is interesting to note that the equation of motion ρ̇t = −i[H, ρt] is (potentially) easier
to solve than the Schrödinger equation ψ̇t = −iHψt, because the former does not follow
oscillations of the phase in ψt anymore. Namely, for any choice of θ : R → R and with
ψ

(θ)
t := eiθ(t)ψt, the density matrix ρt = |ψ(θ)

t ⟩⟨ψ(θ)
t | is independent of θ.1

Another reason that lets density matrices appear superior to wave functions is that, while
a linear combination of wave functions is again a wave function, its normalization is not
preserved, in general. In contrast, the set DM(H) ⊆ L1(H) of density matrices over a Hilbert
space H is convex (and closed). So, given two density matrices ρ0, ρ1 ∈ DM(H) and α ∈
[0, 1], the operator ρα := (1− α)ρ0 + αρ1 ∈ DM(H) is a density matrix, as well.

Remarks and Examples. We exemplify this on a single qubit, i.e., H = C2. We analyze
the space SA(H) ⊆ B(H) ∼= C2×2 by first observing that if A ∈ B(H) is given by

A =

(
a b
c d

)
, (III.36)

1I thank Thierry Paul for sharing this observation with me.
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for some a, b, c, d ∈ C then A = A∗ iff a, d ∈ R and c = b̄. So, any self-adjoint complex
2× 2 matrix can be written as

A =

(
α + δ β + iγ
β − iγ α− δ

)
(III.37)

= α 1 + β σ(1) + γ σ(2) + δ σ(3) ,

for unique numbers α, β, γ, δ ∈ R, where 1 ∈ C2×2 is the unit and σ(1), σ(2), σ(3) ∈ C2×2 are
the self-adjoint Pauli matrices defined as

1 =

(
1 0
0 1

)
, σ(1) =

(
0 1
1 0

)
, σ(2) =

(
0 i
−i 0

)
, σ(3) =

(
1 0
0 −1

)
. (III.38)

It is convenient to equip the real vector space SA(C2) with the scalar product ⟨A,B⟩ :=
Tr(AB) which makes it a real Hilbert space

(
SA(C2), ⟨·, ·⟩

)
. Using the fact that

σ(j) σ(k) = δj,k · 1 + i

3∑
ℓ=1

εjkℓ σ
(ℓ) , (III.39)

where the totally antisymmetric symbol εjkℓ is defined by

∀ {j, k, ℓ} ⊆ {1, 2, 3} : εjkℓ :=

 sgn

(
1 2 3
j k ℓ

)
, for {j, k, ℓ} = {1, 2, 3} ,

0, for {j, k, ℓ} ≠ {1, 2, 3} ,
(III.40)

it is easy to check that {
1√
2
1, 1√

2
σ(1), 1√

2
σ(2), 1√

2
σ(3)
}

⊆ SA(C2) (III.41)

is orthonormal and thus an ONB, since dimR[SA(C2)] = 4. This implies that

∀A ∈ SA(C2) : A = 1
2
Tr(A)1 + 1

2
v⃗A · σ⃗ , (III.42)

where σ⃗ =
(
σ(1), σ(2), σ(3)

)t, v⃗A =
(
v
(1)
A , v

(2)
A , v

(3)
A

)t, and

Tr(A) = ⟨1, A⟩ and v
(j)
A = ⟨σ(j), A⟩ = Tr

(
σ(j)A

)
. (III.43)

Moreover, from (III.37) we see that

det(A) = α2 − β2 − γ2 − δ2 =
1

4

(
[Tr(A)]2 − |v⃗A|2

)
. (III.44)

Specifically, if ρ ∈ DM(C2) is a density matrix then it is positive, and therefore its determi-
nant is nonnegative. Thus |v⃗ρ| ≤ Tr(ρ) = 1, i.e., v⃗ρ ∈ B(0, 1) ⊆ R3 is a vector of length
less or equal to one in three-dimensional Euclidean space. Moreover, ρ has the eigenvalues
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λ, 1− λ ∈ [0, 1]. It follows that λ(1− λ) = det(ρ) = (1− v⃗2ρ)/4 which, in turn, is equivalent
to

σ(ρ) = {λ, 1− λ} =
{

1
2

(
1− |v⃗ρ|

)
, 1

2

(
1 + |v⃗ρ|

)}
. (III.45)

In summary, it follows that

DM(C2) =
{

1
2

(
1 + v⃗ · σ⃗

) ∣∣∣v⃗ ∈ R3 , |v⃗|eucl ≤ 1
}
, (III.46)

i.e., the convex set of density matrices on C2 can be identified with the closed unit ball in
R3. The unit sphere in R3 is called the Bloch sphere in this context. It contains all extremal
density matrices, i.e., all pure density matrices, i.e., all rank-one orthogonal projections. Any
density matrix can be written as a convex combination of pure density matrices, and here we
see that in the case of H = C2, any density matrix can be written as a convex combination of
(not more than) two pure density matrices.

III.2. Classical and Quantum Computation

Classical Computation. Now we turn away from physics but describe the framework
of classical computation (by a computer) as if this was a physical system. The role of the
particles is now played by bits (N = 1) or bytes (N ∈ N, N ≥ 2), which we intepret as
points σ = (σ1, . . . , σN) ∈ Ω(N) moving in the configuration space Ω(N) := {0, 1}N . A
computation is a change of such a byte in time. Since computations are carried out in steps -
not continuously, time is measured by integral numbers. That is, the state of a computation at
time t ∈ N0 is

σ(t) =
(
σ1(t), σ2(t), . . . , σN(t)

)
∈ Ω(N) . (III.47)

Computations are trajectories σ : N0 → Ω(N) of discrete time t ∈ N0, taking values in the
finite set Ω(N), |Ω(N)| = 2N . The computation proceeds by applying a dynamical law to
determine σ(t) from σ(t− 1),

∀ t ∈ N : σ(t) = Ft[σ(t− 1)] , (III.48)

where Ft : Ω(N) → Ω(N), for any t ∈ N. Any real-valued map A : Ω(N) → R on the
configuration space of all bytes defines an observable whose value at time t ∈ N0 for a given
initial value σ(0) ∈ Ω(N) is given by

At[σ(0)] := A[σ(t)] = At ◦ Ft ◦ Ft−1 ◦ · · · ◦ F1[σ(0)] (III.49)

Probability in Classical Computations. Many problems in computation are naturally
formulated in a probabilistic framework. One of these situations occurs in case our task is to
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determine the minimum E0 of a given function H : Ω(N) → R and the set M of minimizers,
i.e.,

M :=
{
σ ∈ Ω(N)

∣∣ H(σ) = E0

}
. (III.50)

Among the methods to compute E0 and M is Simulated Annealing or the Monte Carlo Algo-
rithm, which we briefliy describe here.

(1) One chooses a starting point σ(0) =
(
σ1(0), . . . , σN(0)

)
∈ Ω(N) and evaluates H[σ(0)].

(The choice of the starting point may be random, but for many problems it is decisive to
make a good guess which is not too far away from M .)

(2) For t ∈ N0 choose an index j ∈ Zn1 randomly and set σ′(t+1) =
(
σ′
1(t+1), . . . , σ′

N(t+

1)
)
∈ Ω(N) such that it differs from σ(t) exactly at the jth position. Explicitly,

∀ k ∈ ZN1 : σ′
k(t+ 1) :=

{
σk(t) , for k ̸= j ,

1− σk(t) , for k = j .
(III.51)

(3) Evaluate H[σ(t+ 1)].

(3a) If H[σ(t)] ≥ H[σ′(t+ 1)] then σ(t+ 1) := σ′(t+ 1).

(3b) Conversely, if H[σ(t)] < H[σ′(1)] then

σ(t+ 1) :=

{
σ′(t+ 1) with probability e−β{H[σ(t)]−H[σ′(t+1)]} ,

σ(t) with probability 1− e−β{H[σ(t)]−H[σ′(t+1)]} .

(III.52)

Now replace t by t+ 1 and repeat the procedure from (2) on.

It can be proved that the trajectory
(
σ(t)

)
t∈N0

generated by the algorithm above concentrates
on M . We do not go into detail here but only note that, while the framework is probabilistic,
the computations carried out here are classical.

Quantum Computations. For quantum computers, we proceed in analogy to quantum
mechanics: A configuration of the computer specified by a single bit σ ∈ Ω(1) = {0, 1} is
replaced by a complex function ψ(σ) ∈ C of this bit. The configuration space Ω(1) = {0, 1}
of the bit is hence replaced by the Hilbert space H(1) := ℓ2(Ω(1)) ∼= C2 and the configuration
ψ ∈ H(1) is called qubit. Here, V ∼= W denotes isomorphy of Hilbert spaces.

Likewise, the configuration space of N ∈ N bits is replaced by the Hilbert space of N qubits,

H(N) := ℓ2(Ω(N)) ∼= C2N ∼=
N⊗
C2 , (III.53)

The state of a quantum computer at time t ∈ N0 is described by a density matrix

ρ(t) ∈ DM
(
H(N)

)
. (III.54)
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A quantum computation of T ∈ N steps is a family u : ZT1 → U(H(N)) such that ρ(t) results
from ρ(t− 1) by conjugation with u(t) ∈ U(H(N)), for any time t ∈ ZT1 , that is

ρ(t) = u(t) ρ(t− 1)u∗(t) = u(t) · · ·u(1) ρ(0)u∗(1) · · ·u∗(t) . (III.55)

In particular, the final state is obtained from a unitary transformation of the initial state, too.
More specifically,

ρ(T ) = U(T ) ρ(0)U∗(T ) , with U(T ) := u(t) · · ·u(1) ∈ U(H(N)) . (III.56)

Expectation values of states of quantum computers are defined just as in quantum mechanics:
If M = M∗ ∈ B(H(N)) is a bounded self-adjoint operator representing an observable on N
qubits, its expectation value in the state ρ ∈ DM(H(N)) is given by

⟨M⟩ρ := Tr(ρM) . (III.57)

We also transfer the concept of measurement in quantum mechanics to quantum computation:
We can access the state ρ only by expectation values (III.57) of observables M = M∗ ∈
B(H(N)). If a measurement is carried out, the state ρ is changed in such a way that it contains
less information than before the measurements. We do not go into detail about this difficult
conceptual problem but simply note that we can usually make only one single measurement
with a given state. To obtain a reliable result one is bound to use redundancy, e.g., by preparing
many identical copies of the initial state, run the quantum computation and make the same
measurement many times, and eventually determine the correct result by using their statistics.
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IV. States, Observables, and
Statistics

In this chapter we turn to how measurements in quantum computing are mathematically de-
fined and statistically interpreted. Throughout we assume

(
H, ⟨·|·⟩

)
to be a complex Hilbert

space which is separable and often even finite-dimensional. We recall from (II.47) that quan-
tum states are represented by density matrices ρ ∈ DM(H), where

DM(H) =
{
ρ ∈ L1(H)

∣∣ ρ = ρ∗ ≥ 0 , Tr(ρ) = 1
}

⊆ L1(H) , (IV.1)

and that observables are represented by bounded self-adjoint operators A ∈ SA(H), where

SA(H) =
{
A ∈ B(H)

∣∣ A = A∗} ⊆ B(H) . (IV.2)

Note that SA(H) ⊆ B(H) is a real, but not a complex, subspace of B(H).

IV.1. Observables and Resolutions of the Identity

Given a density matrix ρ ∈ DM(H), we interpret the expectation value ⟨A⟩ρ := Tr(ρA) of
an observable A ∈ SA(H) to be the outcome of the measurement of the physical quantity
represented by A, e.g., the position of a particle or its spin. These measurements are the only
access to ρ we have.

Note that ρ ∈ DM(H) is determined by the collection
(
⟨A⟩ρ

)
A∈SA(H)

∈ RSA(H) of the mea-
surements of all observables. For if the measuments of two density matrices ρ, ρ̂ ∈ DM(H)
all coincide then Tr

[
(ρ − ρ̂)A

]
= ⟨A⟩ρ − ⟨A⟩ρ̂ = 0, for all A ∈ SA(H) which implies that

ρ− ρ̂ = 0.

We conclude that observables play the same role for states as random variables do for prob-
ability measures. A basic mathematical fact of stochastics is that a probability measure is
determined by the collection of expectation values of all its random variables, and we may
identify the probability measure with this collection. In practise, our access to observables
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is limited and we have to use some other information to determine the state as precisely as
possible.

We now suppose we have a set A of possible outcomes of a measurement. For simplicity, we
assume A to be finite. It is a good idea to think of A as to divide the scale of a meter into |A|
sectors. To each of these sectors a ∈ A we attribute a positive observable Ma ≥ 0, and we
require that these add to one,

∑
a∈AMa = 1H. The expectation value pa := Tr(ρMa) of Ma

in a given state ρ ∈ DM(H) then defines a probability distribution on A. The value pa is the
probability that ρ yields the outcome a. We formalize this now.

Definition IV.1. Let
(
H, ⟨·|·⟩

)
be a Hilbert space and A a finite set.

(i) A family M = {Ma}a∈A ⊆ SA(H) of positive observables Ma ≥ 0 such that∑
a∈A

Ma = 1H (IV.3)

is called resolution of the identity or probability operator-valued measure (POVM).
In this case, A is the set of (possible) outcomes a ∈ A.

(ii) IfM = {Ma}a∈A ⊆ SA(H) is a resolution of the identity andMa =M2
a are orthogonal

projections for all a ∈ A, then M is called orthogonal or sharp.

Remarks and Examples.

• As indicated above, if we are given a state ρ ∈ DM(H) on a Hilbert space H and a
probability operator-valued measure M = {Ma}a∈A ⊆ B(H) then we define p : A →
R+

0 by pa := Tr(ρMa) and observe that p is a probability distribution on A.

• If H is a Hilbert space of dimension D = dim(H) < ∞ and {fk}Dk=1 ⊆ H is an ONB
then

{
|fk⟩⟨fk|

}D
k=1

∈ B(H) is an orthogonal resolution of the identity.

In practise, our access to observables is limited and we have to use some other information to
determine the state as precisely as possible. One model instance is given as follows:

Let {ρa}a∈A ∈ DM(H) be a collection of density matrices on a Hilbert space H, where A is
a finite set, d := |A| ∈ N, d ≥ 2. We are given a random distribution of states ρ ∈ {ρa}a∈A,
where the probability that ρ = ρa equals πa, i.e.,

∑
a∈A πa = 1 and 0 < πa < 1 (we may

assume strict inequalities w.l.o.g. to avoid trivial cases). Given an observable B ∈ SA(H), its
expected (w.r.t. π) expectation value is given by

Eπ[⟨B⟩ρ] =
∑
a∈A

πa ⟨B⟩ρa =
∑
a∈A

πaTr(ρaB) = Tr(ρπ B) , (IV.4)

where ρπ :=
∑

a∈A πaρa ∈ DM(H) is the average density matrix.

We now suppose to be given a resolution of the identity M = {Ma}a∈A ⊆ SA(H). We relate
the expectation value of Ma to the outcome a ∈ A. More precisely, we define

p(a|b) := Tr(ρbMa) (IV.5)
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to be the conditional probability of the outcome a under the condition that the state is ρb. The
name is justified because, for any b ∈ A,∑

a∈A

p(a|b) =
∑
a∈A

Tr(ρbMa) = Tr(ρb) = 1 . (IV.6)

That is, p(a|b) is the prediction that the density matrix is ρa while it actually is ρb. The goal
is now to choose the resolution of the identity M = {Ma}a∈A ⊆ SA(H) such as to maximize
the conditional probabilities p(a|a) that predict the density matrix to be ρa when this is indeed
the case. To aim at a single number to maximize, we weigh these conditional probabilities
of correct prediction of ρa with the probability of the occurence of ρa and define the average
probability of making a correct decision

P(M) :=
∑
a∈A

πa p(a|a) =
∑
a∈A

πaTr(ρaMa) . (IV.7)

The above goal can now be formulated as the variational problem to determine a resolution of
the identity M̂ = {M̂a}a∈A ⊆ SA(H), such that P(M̂) = Pmax, where

Pmax := sup
{
P(M)

∣∣∣ M ∈ MA(H)
}

(IV.8)

and the system MA(H) of all resolutions of the identity is given by

MA(H) :=
{
M ∈ SA(H)A

∣∣∣ ∀a ∈ A : Ma ≥ 0 ,
∑
a∈A

Ma = 1
}
. (IV.9)

Remarks and Examples. Let A = Zd1 = {1, 2, . . . , d}, with d ∈ N, be a finite set and
Ω = ZN1 = {1, 2, . . . , N} be the configuration space such that H = ℓ2(Ω) ∼= CN is the
Hilbert space of states. Suppose that we have a collection {ρa}a∈A ⊆ DM(H) of mutually
commuting density matrices,

∀ a, b ∈ A : [ρa, ρb] = 0 . (IV.10)

Then there exists an ONB {fk}k∈Ω ⊆ H of joint eigenvectors of the ρa and nonnegative
corresponding eigenvalues µa(k) ≥ 0 such that

∑
k∈Ω µa(k) = 1, for all a ∈ A, and

∀ a ∈ A : ρa =
∑
k∈Ω

µa(k) |fk⟩⟨fk| . (IV.11)

Given the probability distribution π : A → [0, 1] for the random choice of ρ ∈ {ρa}a∈A, we
define wa(k) := πaµa(k) and

∀ a ∈ A : Wa =
∑
k∈Ω

wa(k) |fk⟩⟨fk| . (IV.12)

02-Jun-2025, Seite 41



Chapter IV. States, Observables, and Statistics

If M = {Ma}a∈A ⊆ SA(H) is a resolution of the identity, then

P(M) =
∑
a∈A

Tr(WaMa) =
∑
a∈A

∑
k∈Ω

wa(k) ⟨fk|Mafk⟩

≤
∑
a∈A

∑
k∈Ω

wmax(k) ⟨fk|Mafk⟩ =
∑
k∈Ω

wmax(k) , (IV.13)

using
∑

a∈AMa = 1H where

∀ k ∈ Ω : wmax(k) := max
a∈A

{wa(k)} . (IV.14)

Next we construct a resolution M̂ = {M̂a}a∈A ⊆ SA(H) of the identity for which P(M̂) =∑
k∈Ωwmax(k). To this end we assume to be given a disjoint partition {Ωa}a∈A ⊆ P(Ω) of Ω,

i.e., ⋃
a∈A

Ωa = Ω , ∀ a, b ∈ A , a ̸= b : Ωa ∩ Ωb = ∅ , (IV.15)

and define

∀ a ∈ A : M̂a =
∑
k∈Ω

1[k ∈ Ωa] |fk⟩⟨fk| . (IV.16)

Obviously, M̂a ≥ 0. Furthermore, we observe that, due to (IV.15), we have
∑

a∈A 1[k ∈
Ωa] = 1, for all k ∈ Ω, which implies that

∑
a∈A M̂a = 1H and hence that M̂ is a resolution

of the identity, in fact a sharp one.

P(M̂) =
∑
a∈A

∑
k∈Ω

wa(k) ⟨fk|Mafk⟩ =
∑
a∈A

∑
k∈Ω

wa(k)1[k ∈ Ωa] . (IV.17)

For a ∈ A, we now choose

Ωa :=
{
k ∈ Ω

∣∣∣ wa(k) = wmax(k) , ∀ b ∈ A , b < a : wb(k) < wmax(k)
}
, (IV.18)

where the condition that wb(k) < wmax(k), for b < a, ensures that a is the smallest element
in A with wa(k) = wmax(k) and therefore, for each k ∈ Ω, there is precisely one a ∈ A with
Ωa ∋ k. It follows that {Ωa}a∈A ⊆ P(Ω) is a disjoint partition of Ω in the sense of (IV.15),
and thus M̂ is an orthogonal resolution of the identity. Moreover,

P(M̂) =
∑
a∈A

∑
k∈Ω

wa(k)1[k ∈ Ωa] =
∑
a∈A

∑
k∈Ω

wmax(k)1[k ∈ Ωa]

=
∑
k∈Ω

wmax(k)

(∑
a∈A

1[k ∈ Ωa]

)
=
∑
k∈Ω

wmax(k) . (IV.19)
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It follows that

P(M) ≤
∑
k∈Ω

wmax(k) = P(M̂) = Pmax . (IV.20)

Finally, we define

Λ :=
∑
k∈Ω

wmax(k) |fk⟩⟨fk| . (IV.21)

Then obviously Λ ≥ Wa, for all a ∈ A, and Tr(Λ) =
∑

k∈Ωwmax(k) = Pmax. Thus P̃max =
Pmax, as asserted in Theorem IV.3 (iii), below.

We conclude that if the density matrices ρa mutually commute, then the average probability
of making a correct prediction is maximized by an orthogonal resolution of the identity.

In the above example, the assumption that the density matrices ρ1, ρ2, . . . , ρd are mutually
commuting is of key importance for the explicit determination of the optimal resolution M̂ of
the identity which maximizes the average probability P(M) of making a correct prediction
property.

There is a second special situation in which the optimal resolution of the identity can be
determined, namely, for d = 2, as is demonstrated in Theorem ??. Before going into this we
recall a few facts from matrix analysis. First we note that if A,B ∈ SA(H) with A,B ≥ 0
then A1/2BA1/2 ≥ 0 and hence

Tr(AB) = Tr
(
A1/2BA1/2

)
≥ 0 . (IV.22)

If furthermore B ≤ C then A1/2(C −B)A1/2 ≥ 0 and (IV.22) implies that

Tr(AB) = Tr
(
A1/2BA1/2

)
≤ Tr

(
A1/2CA1/2

)
= Tr(AC) . (IV.23)

Eqs. (IV.22) can alternatively be shown by using the spectral theorem forA =
∑D

j=1 λj|fj⟩⟨fj|,
where λj ≥ 0 are the eigenvalues and fj the orthonormal eigenvectors of A, respectively.

We also note that the positive part (·)+ ∈ C(R;R+
0 ) of a real number is defined by

∀λ ∈ R : (λ)+ := max{λ, 0} = λ1[λ > 0] =
1

2
|λ|+ 1

2
λ . (IV.24)

Theorem IV.2. Let U, V ∈ SA(H) be two positive operators, and define

P̃min := inf
{
Tr(Λ)

∣∣∣ Λ ∈ SA(H) , Λ ≥ U , Λ ≥ V
}
. (IV.25)

Then

Λ0 :=
1

2
(U + V ) +

1

2
|U − V | = V + (U − V )+ = U + (V − U)+ (IV.26)

defined by the functional calculus from Definition II.3, is the unique operator Λ0 ∈ SA(H)

obeying Λ0 ≥ U and Λ0 ≥ V , such that P̃min = Tr(Λ0). Moreover,

P̃min = Pmax = sup
{
Tr[UM + V (1−M)]

∣∣∣M ∈ SA(H) , 0 ≤M ≤ 1
}
. (IV.27)
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Proof. Define Λ0 by (IV.26) and note that Λ0 = V +(U−V )+ ≥ V and Λ0 = U+(V −U)+ ≥
U . We introduce the orthogonal projections

P+ := 1[U − V ≥ 0] and P− := P⊥
+ = 1[U − V < 0] = 1[V − U > 0] (IV.28)

and oberve that

P+ Λ0 P+ = P+ U P+ and P− Λ0 P− = P− V P− , (IV.29)

which implies that

F(U, V ) ≤ Tr(Λ0) = Tr(P+ U P+) + Tr(P− V P−) . (IV.30)

Next suppose that Γ ∈ SA(H) obeys Γ ≥ U and Γ ≥ W and minizimes Tr(Γ). Then

F(U, V ) = Tr(Γ) = Tr(P+ ΓP+) + Tr(P− ΓP−) (IV.31)

= Tr(Λ0) + Tr[P+ (Γ− U)P+] + Tr[P− (Γ− V )P−] ,

which implies that Λ0 is a minimizer, F(U, V ) = Tr(Λ0), indeed. Furthermore, it follows
from (IV.31) and (IV.29) that

P+ ΓP+ = P+ Λ0 P+ and P− ΓP− = P− Λ0 P− . (IV.32)

Now assume that Θ := Γ− Λ0 ̸= 0. Then Θ = P+ΘP− + P−ΘP+ and

Γ− U = Λ0 − U +Θ = (V − U)+ +Θ = P−(V − U)P− + P+ΘP− + P−ΘP+ .
(IV.33)

Since Θ ̸= 0, there exist φ± = P±φ± ̸= 0 such that ⟨φ−|Θφ+⟩ ̸= 0. For any ε > 0 and
|σ| = 1, we define ψε,σ := σφ+ + εφ− and observe that, thanks to (IV.33), we have

⟨ψε,σ|(Γ− U)ψε,σ⟩ = 2εRe
{
σ ⟨φ−|Θφ+⟩

}
+ ε2 ⟨φ−|(V − U)φ−⟩ . (IV.34)

Choosing σ such that σ ⟨φ−|Θφ+⟩ = −|⟨φ−|Θφ+⟩| < 0, we obtain

⟨ψε,σ|(Γ− U)ψε,σ⟩ < 0 , (IV.35)

for ε > 0 sufficiently small. This contradicts Γ ≥ U . It follows that Θ = 0 and hence the
uniqueness of the minimizer Λ0.

Finally, if 0 ≤M ≤ 1 then

Tr{UM + V (1−M)}

= Tr{V }+ Tr{(U − V )M} = Tr{V }+ Tr{M1/2(U − V )M1/2}

≤ Tr{V }+ Tr{M1/2(U − V )+M
1/2} = Tr{V }+ Tr{(U − V )

1/2
+ M(U − V )

1/2
+ }

≤ Tr{V }+ Tr{(U − V )+} = P̃min , (IV.36)
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which implies that Pmax ≤ P̃min. Conversely, if M̂ := 1[U − V ≥ 0] then

Tr{UM̂ + V (1− M̂)} = Tr{V + (U − V )M̂} = Tr{V + (U − V )+}

= Tr{Λ0} = P̃min , (IV.37)

hence P̃min ≤ Pmax.

Remarks and Examples. Let A = {0, 1} and again Ω = ZN1 = {1, 2, . . . , N} such
that H = ℓ2(Ω) ∼= CN is the Hilbert space of states. Suppose that we are given two density
matrices ρ0, ρ1 ∈ DM(H) that are chosen with probability π0 ∈ (0, 1) and π1 = 1 − π0,
respectively. We introduce W0 := π0ρ0 ≥ 0 and W1 := π1ρ1 ≥ 0, as before.

A resolutionM = {M0,M1} ⊆ SA(H) of the identity is necessarily of the formM1 = 1−M0

and hence fully determined by the choice of 0 ≤ M0 ≤ 1. Given M0, and hence M , we
observe that

P(M) = Tr[W0M0] + Tr[W1(1−M0)] = Tr[W1] + Tr[(W0 −W1)M0] . (IV.38)

Since W0 −W1 ∈ SA(H), there is an ONB {fk}k∈Ω ⊆ H of eigenvectors of W0 −W1 with
corresponding eigenvalues λk ∈ R such that

W0 −W1 =
∑
k∈Ω

λk |fk⟩⟨fk| (IV.39)

and, therefore,

Tr[(W0 −W1)M0] =
∑
k∈Ω

λk ⟨fk|M0fk⟩ =
∑
k∈Ω

(λk)+ , (IV.40)

using that ⟨fk|M0fk⟩ ∈ [0, 1], where the positive part (·)+ : R → R+
0 of a real number is

defined by

∀λ ∈ R : (λ)+ := max{λ, 0} = λ1[λ > 0] =
1

2
|λ|+ 1

2
λ . (IV.41)

By the functional calculus as in Definition II.3, we have that

Tr[(W0 −W1)M0] ≤ Tr[(W0 −W1)+] , (IV.42)

for any 0 ≤M0 ≤ 1, where

(W0 −W1)+ =
∑
k∈Ω

(λk)+ |fk⟩⟨fk| . (IV.43)

Again by the functional calculus as in Definition II.3, we define

M̂0 := 1[W0 −W1 > 0] =
∑
k∈Ω

1[λk > 0] |fk⟩⟨fk| . (IV.44)
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Then 0 ≤ M̂0 ≤ 1 and

Tr[(W0 −W1)M̂0] = Tr[(W0 −W1)+] , (IV.45)

which implies that M̂ = {M̂0,1− M̂0} ⊆ SA(H) is a (sharp) resolution of the identity which
maximizes the average probability of making a correct prediction,

P(M̂) = Tr[W1 + (W0 −W1)+] = Tr
(
W1 +

1
2
|W0 −W1|+ 1

2
(W0 −W1)

)
=

1

2
Tr
(
W0 +W1

)
+

1

2
Tr
(
|W0 −W1|

)
=

1

2

[
π0Tr(ρ0) + π1Tr(ρ1)

]
+

1

2
Tr
(
|π0ρ0 − π1ρ1|

)
=

1

2
+

1

2
∥π0ρ0 − π1ρ1∥L1(H) . (IV.46)

Now, we generalize Theorem IV.2 from d = 2 to general d ∈ N. In this general case, the
characterization of the optimal resolution of identity is, however, somewhat implicit.

Theorem IV.3. Let
(
H, ⟨·|·⟩

)
be a Hilbert space and A a finite set with at least two elements.

Further suppose that {ρa}a∈A ∈ DM(H) is a finite collection of density matrices on H and
π : A → (0, 1) is a probability distribution, such that πb is the probability that a random
density matrix ρ ∈ {ρa}a∈A assumes the value ρb and define Wa := πaρa, for all a ∈ A, and

P̃min := inf
{
Tr(Λ)

∣∣∣ ∀ a ∈ A : Λ ≥ Wa

}
. (IV.47)

(i) If M̂ = {M̂a}a∈A ∈ MA(H) is a resolution of the identity with maximal average
probability of making a correct decision, P(M̂) = Pmax. Then there exists Λ = Λ∗ ∈
B(H) such that

∀ a ∈ A :
(
Λ−Wa

)
M̂a = 0 , (IV.48)

∀ a ∈ A : Λ ≥ Wa . (IV.49)

(ii) Conversely, if a resolution of the identity M̂ = {M̂a}a∈A ∈ MA(H) and an operator
Λ = Λ∗ ∈ B(H) fulfill (IV.48) and (IV.49), then P(M̂) = Pmax.

(iii) There is a unique Λ̂ ∈ SA(H) obeying Λ̂ ≥ Wa, for all a ∈ A, such that

Pmax = P̃min = Tr(Λ̂) . (IV.50)

Proof. We first introduce

L(W ) :=
{
Λ ∈ SA(H)

∣∣∣ ∀ a ∈ A : Λ ≥ Wa

}
(IV.51)
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and define

F(M,Λ) :=
∑
a∈A

Tr
[
WaMa

]
− Tr

[
Λ
(∑
a∈A

Ma − 1
)]

(IV.52)

= Tr[Λ] −
∑
a∈A

Tr
[
(Λ−Wa)Ma

]
,

for M ∈ SA(H)A and Λ ∈ SA(H). Note that, for all Λ ∈ L(W ),

P̃(Λ) := sup
χ∈SA(H)A

F(χ2,Λ) = max
χ∈SA(H)A

F(χ2,Λ) = F(0,Λ) = Tr[Λ] , (IV.53)

writing (χ2)a := χ2
a. Conversely, for all Λ ∈ SA(H) \ L(W ), there is an ã ∈ A and φ ∈

H \ {0} such that Wã − Λ ≥ |φ⟩⟨φ|. Then, choosing χa = 0 except χã, which is chosen as
χã := µ|φ⟩⟨φ|, we obtain that

P̃(Λ) ≥ sup
µ∈R

{
µ2 ∥φ∥4

}
= ∞ . (IV.54)

So, if we define P̃ : SA(H) → R ∪ {∞}, with ∞ > x, for any x ∈ R, it follows that

P̃min = min
Λ∈SA(H)

{P̃(Λ)} = min
Λ∈L(W )

{P̃(Λ)} . (IV.55)

(i): Let χ̂ ∈ SA(H)A be such that M̂ = χ̂2 ∈ MA(H) is a maximizer of P , i.e.,

P(χ̂2) = max
M∈MA(H)

{P(M)} (IV.56)

= max

{
P(M)

∣∣∣∣M = (χ2
a)a∈A , ∀ a ∈ A : χa ∈ SA(H) ,

∑
a∈A

χ2
a = 1

}
.

The theory of extrema of multivariate functions under constraints implies that there is a family
of Lagrange mutlipliers which we can arrange as real and imaginary parts of the matrix entries
of a self-adjoint matrix Λ ∈ SA(H) such that SA(H)A ∋ χ 7→ F(χ2,Λ) ∈ R is stationary at
χ̂. Moreover, by results from convex analysis we may even assume that χ̂ is a maximizer of
SA(H)A ∋ χ 7→ F(χ2,Λ) ∈ R. Then, for all ε > 0 and all θ = (θa)a∈A ∈ SA(H)A,

0 ≤ F
[
χ̂2,Λ

]
− F

[
(χ̂+ εθ)2,Λ

]
(IV.57)

= ε
∑
a∈A

Tr
{[

(Λ−Wa)χ̂a + χ̂a(Λ−Wa)
]
θa

}
+ ε2

∑
a∈A

Tr
{
θa(Λ−Wa)θa

}
.

Since θ can be chosen arbitrarily, taking the limit ε→ yields

∀ a ∈ A : (Λ−Wa)χ̂a + χ̂a(Λ−Wa) = 0 . (IV.58)
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From this we obtain for all a ∈ A that (Λ −Wa)χ̂a = −χ̂a(Λ −Wa), which implies (Λ −
Wa)

2χ̂a = χ̂a(Λ−Wa)
2 and, hence, for all r > 0 that[

(Λ−Wa)
2 + r2

]−1
χ̂a = χ̂a

[
(Λ−Wa)

2 + r2
]−1

. (IV.59)

Using
√
A = A

π

∫∞
0
(A+ r2)−1 dr, we obtain

|Λ−Wa| χ̂a =
√
(Λ−Wa)2 χ̂a = χ̂a

√
(Λ−Wa)2 = χ̂a |Λ−Wa| , (IV.60)

and finally

(Λ−Wa)± χ̂a = 1
2
|Λ−Wa| χ̂a ± 1

2
(Λ−Wa) χ̂a (IV.61)

= χ̂a
1
2
|Λ−Wa| ∓ 1

2
χ̂a (Λ−Wa) = χ̂a (Λ−Wa)∓ .

On the other hand, inserting (IV.58) into (IV.57), we further obtain that

0 ≤ ε2
∑
a∈A

Tr
{
θa(Λ−Wa)θa

}
. (IV.62)

Since θa ∈ SA(H) is arbitrary, this implies that Λ ≥ Wa, for all a ∈ A, i.e., that

Λ ∈ L(W ) . (IV.63)

Moreover, Λ ≥ Wa is equivalent to (Λ−Wa)− = 0, which together with (IV.61) yields

∀ a ∈ A : (Λ−Wa)Ma = (Λ−Wa)+Ma = χ̂a (Λ−Wa)− χ̂a = 0 . (IV.64)

This completes the proof of (i).

(ii): Let Λ ∈ L(W ) and M = {Ma}a∈A ∈ MA(H) be a resolution of the identity. Then

P(M) =
∑
a∈A

Tr[WaMa] = Tr(Λ) −
∑
a∈A

Tr[(Λ−Wa)Ma] ≤ Tr(Λ) = P̃(Λ) .

(IV.65)

It follows that

Pmax = max
M∈MA(H)

P(M̂) ≤ min
Λ∈L(W )

P̃(Λ) = P̃min . (IV.66)

If M̂ = {M̂a}a∈A ∈ MA(H) additionally fulfills (IV.48) then

P(M̂) = Tr(Λ) −
∑
a∈A

Tr[(Λ−Wa)Ma] = Tr(Λ) = P̃(Λ) . (IV.67)

and hence P(M̂) = Pmax and P̃(Λ) = P̃min.

(iii): is obvious from what has been proven so far except the uniqueness of the minimizer
Λ̂ ∈ L(W ) of P̃(Λ), which we omit here.
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Remarks and Examples. We exemplify Theorem IV.3 on a single qubit, i.e., H = C2

and we assume that A = {1, 2, 3}. We are given π1, π2, π3 ∈ (0, 1) such that π1+π2+π3 = 1
and v⃗1, v⃗2, v⃗3 ∈ B(0, 1) ⊆ R3 that determine three density matrices ρ1, ρ2, ρ3 ∈ DM(H) and
operators Wa = πaρa by

ρa =
1

2

(
1 + v⃗a · σ⃗

)
, Wa =

πa
2

(
1 + v⃗a · σ⃗

)
. (IV.68)

We assume that Λ ∈ SA(H) is positive and hence determined by r > 0 and z⃗ ∈ B(0, r) as

Λ =
r

2
1 + z⃗ · σ⃗ . (IV.69)

We observe that, for a ∈ A,

Λ−Wa =
r − πa

2
1 +

(
z⃗ − πav⃗a

2

)
· σ⃗ , (IV.70)

so, if Λ −Wa ≥ 0 then necessarily r > πa and r − πa ≥ |z⃗ − πav⃗a|. The latter condition is
equivalent to

(r − πa)
2 ≥ |z⃗|2 + π2

a|v⃗a|2 − 2πaz⃗ · v⃗a . (IV.71)

Now we concretely choose π1 = π2 = π3 =
1
3

and

v⃗a :=

sin(4π
3
a)

0
cos(4π

3
a)

 , i.e., v⃗1 :=

1
2

√
3

0
−1

2

 , v⃗2 :=

−1
2

√
3

0
−1

2

 , v⃗3 :=

0
0
1

 ,

(IV.72)

which implies that |v⃗1| = |v⃗2| = |v⃗3| = 1 and simplifies the three conditions (IV.71) to a single
one, (

r − 1
3

)2 ≥ 1
9
+max

a∈A

{
|z⃗|2 − 2

3
z⃗ · v⃗a

}
. (IV.73)

Writing z⃗ = (z1, z2, z3)
t, we observe that

max
a∈A

{
|z⃗|2 − 2

3
z⃗ · v⃗a

}
= max

{
z21 + z22 + z23 − 1√

3
z1 +

1
3
z3 , z

2
1 + z22 + z23 +

1√
3
z1 +

1
3
z3 ,

z21 + z22 + z23 − 2
3
z3

}
= max

{
z21 + z22 + z23 +

1√
3
|z1|+ 1

3
z3 , z

2
1 + z22 + z23 − 2

3
z3

}
≥ z21 + z22 + z23 +

1
3
|z3| . (IV.74)

This, however, implies that z⃗ = 0⃗ is the best possible choice for z⃗ because it imposes the least
constraint on r in (IV.73). In turn, if z⃗ = 0⃗ then the smallest r > 1

3
fulfilling (IV.73) is r = 2

3
.

As Tr(Λ) = r, it follows that the optimal choice for Λ is

Λ =
1

3
1 and P̃min = Tr(Λ) =

2

3
. (IV.75)
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V. Sharp Resolutions of the Identity,
Purification, and Entanglement

V.1. Naimark’s Dilation

Our first topic is resolutions of the identity. If M = (Ma)a∈A ∈ MA(H) is a resolution of
the identity on a Hilbert space H then the operators Ma are positive and add to the identity
on H. Sharp resolution of the identity posses the addtional property, that each member Ma

is an orthogonal projection, Ma = M2
a . Naimark’s theorem below states that, conversely,

any resolution of the identity can be realized as a sharp one, provided the Hilbert space H is
embedded in a larger Hilbert space K by a suitable isometry V ∈ B(H;K).

To formulate the precise statement, we recall that the adjoint V ∗ ∈ B(K;H) of V ∈ B(H;K)
is the unique operator obeying

∀φ ∈ K, ψ ∈ H : ⟨V ∗φ | ψ⟩H = ⟨φ | V ψ⟩K (V.1)

and that a linear operator V from H to K is an isometry, if V ∗V = 1H, i.e.,

∀ψ, ψ′ ∈ H : ⟨V ψ | V ψ⟩K = ⟨ψ | ψ⟩H , (V.2)

which, by polarization, is equivalent to

∀ψ ∈ H : ∥V ψ∥K = ∥ψ∥H . (V.3)

Note that U ∈ B(H;K) is unitary if, and only if, both U ∈ B(H;K) and U∗ ∈ B(K;H)
are isometries. If H and K are finite dimensional and dim(H) < dim(K), then no unitary
operators from H → K exist, but isometries do.

Theorem V.1 (Naimark). Let H be a Hilbert space, A a finite set of measurement outcomes,
m := |A| ∈ N, and a resolution M = (Ma)a∈A ∈ MA(H) of the identity on H. Then there
exists a Hilbert space K of dimension dim(K) ≤ m · dim(H), an isometry V ∈ B(H;K), and
a sharp resolution E = (Ea)a∈A = (E2

a)a∈A ∈ MA(K) of the identity on K such that

∀ a ∈ A : Ma = V ∗Ea V . (V.4)
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Proof. We may w.l.o.g. assume that A = Zm1 . We first note that
(
Hm , ⟨·|·⟩Hm

)
is a Hilbert

space of dimension dim(Hm) = m · dim(H) with the scalar product〈φ1
...
φm

 ∣∣∣∣∣
ψ1

...
ψm

〉
Hm

= ⟨φ1|ψ1⟩+ . . .+ ⟨φm|ψm⟩ . (V.5)

We define block diagonal linear operators M, Ẽ1, . . . , Ẽm ∈ B(Hm) on the complex Hilbert
space Hm by

M =


M1 0 · · · 0

0 M2
. . . ...

... . . . . . . 0
0 · · · 0 Mm

 (V.6)

and

Ẽ1 =


1H 0 · · · 0

0 0
. . . ...

... . . . . . . 0
0 · · · 0 0

 , . . . , Ẽm =


0 0 · · · 0

0 0
. . . ...

... . . . . . . 0
0 · · · 0 1H

 . (V.7)

Equivalently,

M
[
(ψa)

m
a=1

]
:= (Maψa)

m
a=1 and Ẽb

[
(ψa)

m
a=1

]
:= (δb,aψa)

m
a=1 , (V.8)

for all b ∈ Zm1 . Clearly, Ẽb = Ẽ
∗
b = Ẽ

2

b and
∑m

b=1 Ẽb = 1Hm . In other words, Ẽ = (Ẽb)
m
b=1 is

a sharp resolution of the identity. Furthermore, we equip Hm with the quadratic form〈
(φa)

m
a=1

∣∣∣ (ψa)ma=1

〉
M

:=
〈
(φa)

m
a=1

∣∣∣M (ψa)
m
a=1

〉
Hm

=
m∑
a=1

⟨φa |Maψa⟩H . (V.9)

We observe that ⟨·|·⟩M is not positive definite, but only positive semidefinite, on Hm. That is,

N (M) :=
{
Ψ ∈ Hm

∣∣∣ ⟨Ψ|Ψ⟩M = 0
}

⊆ Hm (V.10)

may possibly be nontrivial, N (M) ̸= {0}. Introducing

Ker(M) =
{
Ψ ∈ Hm

∣∣MΨ = 0
}

=
{
(ψa)

m
a=1 ∈ Hm

∣∣ ∀ a ∈ A : Maψa = 0
}
, (V.11)

we observe that Ψ ∈ Ker(M) implies that ⟨Ψ|Ψ⟩M = ⟨Ψ|MΨ⟩Hm = ⟨Ψ|0⟩Hm = 0 and hence
Ψ ∈ N (M). Conversely, if Ψ = (ψa)

m
a=1 ∈ N (M) then

0 = ⟨Ψ|MΨ⟩Hm =
m∑
a=1

⟨ψa|Maψa⟩H =
m∑
a=1

∥∥√Ma ψa
∥∥2
H , (V.12)
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hence
√
Maψa = 0 and also Maψa =

√
Ma [

√
Ma ψa] = 0, for all a ∈ Zm1 , which implies that

Ψ ∈ Ker(M). It follows that

N (M) = Ker(M) . (V.13)

Now, let Ψ = (ψa)
m
a=1 ∈ Ker(M), i.e., Maψa = 0, for all a ∈ Zm1 . So, if b ∈ Zm1 then

ẼbΨ = (δb,aψa)
m
a=1 and MẼbΨ = (δb,aMaψa)

m
a=1 = 0. It follows that Ẽ1, Ẽ2, . . . , Ẽm all

leave Ker(M) invariant.

We define P ∈ B(Hm) to be the orthogonal projection onto the orthogonal complement

K := Ran[P ] =
[
Ker(M)

]⊥ ⊆ Hm (V.14)

of Ker(M) ⊆ H. If Ψ ∈ K \ {0} then ⟨⟨Ψ|Ψ⟩⟩ > 0. Consequently
(
K, ⟨⟨·|·⟩⟩

)
is a complex

Hilbert space. Moreover,

M = P M = M P = P M P and ẼbM = M Ẽb = ẼbM Ẽb , (V.15)

for all b ∈ Zm1 .

Next, we define J ∈ B(H;Hm) by (Jψ)a := ψ, i.e.,

Jψ :=

ψ...
ψ

 , and then V := P J ∈ B(H;K) . (V.16)

For ψ ∈ H, we observe that,

⟨⟨V ψ|V ψ⟩⟩ =
〈
(ψ)ma=1

∣∣ P M P (ψ)ma=1

〉
Hm =

〈
(ψ)ma=1

∣∣M(ψ)ma=1

〉
Hm

=
m∑
a=1

⟨ψ |Maψ⟩H = ⟨ψ|ψ⟩H , (V.17)

thanks to (V.15) and the fact that M is a resolution of the identity. Eq. (V.17) proves that
V ∈ B(H;K) is an isometry.

Moreover, defining Eb := PẼbP ∈ B(K) and using (V.15), we obtain for all φ, psi ∈ H and
all b ∈ Zm1 that

⟨⟨V φ|Eb V ψ⟩⟩ =
〈
(φ)ma=1

∣∣ P M P Ẽb P (ψ)
m
a=1

〉
Hm =

〈
(φ)ma=1

∣∣M (δb,aψ)
m
a=1

〉
Hm

=
〈
(φ)ma=1

∣∣ (δb,aMbψ)
m
a=1

〉
Hm = ⟨ψ|Mbψ⟩H , (V.18)

which implies

∀ a ∈ Zm1 : Ma = V ∗Ea V . (V.19)

Finally,
∑m

a=1Ea = P
∑m

a=1 Ẽa = P = 1K, and

E2
a = PẼ

2

aP = PẼaP = Ea = E∗
a , (V.20)

for all a ∈ Zm1 , so E = (Ea)a∈Zm
1
∈ MA(K) is an orthogonal resolution of the identity.
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V.2. Purification

Let H1 and H2 be two Hilbert spaces and H12 := H1 ⊗ H2 their tensor product. Given a
normalized vector Ψ12 ∈ H12, we observe that ρ12 = |Ψ12⟩⟨Ψ12| ∈ DM(H12) is a pure
density matrix, i.e., an orthogonal projection of rank one.

We have seen in previous chapter that taking the partial trace does not preserve this property,
and the density matrices ρ1 = Tr2[ρ12] ∈ DM(H1) and ρ2 = Tr1[ρ12] ∈ DM(H2) are not
pure, in general. The question, which conditions on ρ1 and ρ2 necessarily hold in case that
these derive from a pure state and which are sufficient to guarantee this comes up naturally.

In preparation for an answer we recall that, given a complex vector space V , its dual V ∗ :=
B(V ;C) is the complex vector space of bounded linear maps from V to C. A basic fact from
linear algebra is that (Cd)∗ can be naturally identified with Cd.

Another case in which the dual can naturally be identified with the vector space itself is the one
of Hilbert spaces: If H is a complex Hilbert space then, according to the Riesz representation
theorem,

I : H → H∗ , ψ 7→ ⟨ψ| · ⟩ (V.21)

is an antilinear bijection, which in physics is usually denoted as I
(
|ψ⟩
)
= ⟨ψ|. The an-

tilinearity of I results from the antilinearity of the scalar product in its left entry: Since
⟨φ+ αψ|x⟩ = ⟨φ|x⟩+ α⟨ψ|x⟩, for all x ∈ H, we have

I(φ+ αψ) = I(φ) + α I(ψ) . (V.22)

To avoid antilinear maps we compose I with an antiunitary involution. A map j : H → H is
an antiunitary involution if j2 = 1H and ⟨jφ|jψ⟩ = ⟨ψ|φ⟩. Note that antiunitary involutions are
antilinear. Given an antiunitary involution j on H, the bijection I ◦ j : H → H∗, |ψ⟩ 7→ ⟨jψ| is
linear and, in fact, a Hilbert space isomorphism.

Similarly, given two complex Hilbert spaces H1 and H2 and an antiunitary involution j2 :
H2 → H2, we define an isomorphism by (the linear and continuous extension of)

J12 : H1 ⊗H2 → L2(H2;H1) , ψ1 ⊗ ψ2 7→ |ψ1⟩⟨ j2ψ2| . (V.23)

The isomorphism J12 plays an important role in the analysis of the partial trace. A first sign
of this it the following theorem.

Theorem V.2 (Schmidt Decomposition). Let H1 and H2 be two Hilbert spaces of finite dimen-
sions d1 := dim(H1), d2 := dim(H2) ∈ N and H12 := H1⊗H2 their tensor product. Assume
that Ψ12 ∈ H12 is a normalized vector and define by ρ12 = |Ψ12⟩⟨Ψ12| ∈ DM(H12) the cor-
responding pure density matrix on H12 and ρ1 = Tr2[ρ12] ∈ DM(H1) and ρ2 = Tr1[ρ12] ∈
DM(H2) its partial traces. Then the strictly positive eigenvalues of ρ1 and ρ2 agree and have
the same multiplicites.
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Proof. Let {fi}d1i=1 ⊆ H1 and {gj}d2j=1 ⊆ H2 be ONB of eigenvectors of ρ1 and ρ2 with
corresponding eigenvalues µi and λj , i.e.,

ρ1 =

d1∑
i=1

µi|fi⟩⟨fi| and ρ2 =

d2∑
j=1

λj|gj⟩⟨gj| . (V.24)

Then {fi ⊗ gj| (i, j) ∈ Zd11 × Zd21 } ⊆ H1 ⊗ H2 is an ONB, too, and there exists complex
numbers A := (ai,j)(i,j)∈Zd1

1 ×Zd2
1

∈ Cd1×d2 such that

Ψ12 =

d1∑
i=1

d2∑
j=1

ai,j (fi ⊗ gj) . (V.25)

Viewing A as a complex d1 × d2 matrix, we observe that

1 = ∥Ψ12∥2 =

d1∑
i=1

d2∑
j=1

|ai,j|2 = TrCd2

[
A∗A

]
= TrCd1

[
AA∗] . (V.26)

Furthermore,

⟨fi| ρ1 fk⟩H1 =

d2∑
j=1

⟨fi ⊗ gj| ρ12 fk ⊗ gj⟩H12 =

d2∑
j=1

ai,j ai,j = (AA∗)i,k , (V.27)

for all i, k ∈ Zd11 , and

⟨gj| ρ2 gℓ⟩H1 =

d1∑
i=1

⟨fi ⊗ gj| ρ12 fi ⊗ gℓ⟩H12 =

d2∑
j=1

ai,j ai,ℓ = (A∗A)j,ℓ , (V.28)

for all j, ℓ ∈ Zd21 . By (V.24),

(AA∗)i,k = δi,k µi and (A∗A)j,ℓ = δj,ℓ λj , (V.29)

i.e., the canonical bases {e(1)i }d1i=1 ⊆ Cd1 and {e(2)j }d2j=1 ⊆ Cd2 are ONB of eigenvectors of
AA∗ ∈ Cd1×d1 and A∗A ∈ Cd2×d2 , respectively.

From here, the assertion is obtained from well-known statements of linear algebra, whose
proof we sketch here nevertheless. Fix a positive eigenvalue η > 0 of A∗A of multiplicity
1 ≤ n ≤ d2 and an ONB {ψ1, . . . , ψn} ⊆ Cd2 of eigenvectors of the corresponding spectral
subspace of A∗A, i.e., A∗Aψj = ηψj , and set φj := η−1/2Aψj ∈ Cd1 , for all j ∈ Zn1 . Then
each φj is an eigenvector of AA∗ corresponding to the eigenvalue η because

AA∗φj = η−1/2AA∗Aψj = η1/2Aψj = η φj . (V.30)

Moreover,

⟨φj|φℓ⟩Cd2 = η−1 ⟨ψj|A∗Aψℓ⟩Cd2 = δj,ℓ , (V.31)
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and {φ1, . . . , φn} ⊆ Cd1 is orthonormal, too. It follows that d1 ≥ n and that η is an eigenvalue
of AA∗ of multplicity m ∈ Zd1n .

The same argument, with A replaced by A∗, yields that, if η > 0 is an eigenvalue of AA∗ of
multiplicity m, then d2 ≥ m, and η is also an eigenvalue of multiplicity n ∈ Zd2m of A∗A.

Hence, the rank of A∗A and AA∗ is equal (regardless of whether d1 = d2 or not), A∗A and
AA∗ have the same strictly positive eigenvalues, and each of these are of the same multiplicity.

The following Corollary is, in some sense, the converse statement of Theorem V.2

Corollary V.3 (Purification). Let H1 be a Hilbert space of dimension d1 ∈ N∪{∞} and ρ1 ∈
DM(H1) a density matrix on H1. Then, for any Hilbert space H2 of dimension d2 ≥ rk(ρ1)
there exists a normalized vector Ψ12 ∈ H12 := H1 ⊗ H2 such that ρ1 = Tr2

(
|Ψ12⟩⟨Ψ12|

)
is

the partial trace of the pure state |Ψ12⟩⟨Ψ12| ∈ DM(H12).

Proof. Let r := rk(ρ1) be the rank of ρ1 and {fi}ri=1 ⊆ H1 be an ONB of eigenvectors of
Ran[ρ1] with corresponding eigenvalues µi > 0, i.e.,

ρ =
r∑
i=1

µi |fi⟩⟨fi| . (V.32)

By assumption, d2 ≥ r and there exists an orthonormal subset {gj}rj=1 ⊆ H2. Then the subset
{fi ⊗ gj| (i, j) ∈ Zr1 × Zr1} ⊆ H12 is orthonormal, too. Defining

Ψ :=
r∑
i=1

√
µi fi ⊗ gi ∈ H12 , (V.33)

we observe that Ψ is normalized,

∥Ψ∥2 =
r∑

i,j=1

√
µi µj ⟨fi ⊗ gi|fj ⊗ gj⟩ =

r∑
i=1

µi = 1 , (V.34)

and that its partial trace w.r.t the second tensor factor is ρ1, indeed, as for all k, ℓ ∈ Zd1, we
have that

⟨fk|ρ1 fℓ⟩ =
r∑

m=1

⟨fk ⊗ gm|Ψ⟩ ⟨Ψ|fℓ ⊗ gm⟩

=
r∑

i,j,m=1

√
µi µj ⟨fk ⊗ gm|fj ⊗ gj⟩⟨fi ⊗ gi|fℓ ⊗ gm⟩

=
r∑

i,j,m=1

√
µi µj δk,j δm,j δi,ℓ δi,m = δk,ℓ µk . (V.35)

02-Jun-2025, Seite 55



Chapter V. Sharp Resolutions of the Identity, Purification, and Entanglement

Next we introduce the notion of entanglement of a density matrix which is in close relation to
its purity, as we demonstrate right after.

Definition V.4. Let
(
H1, ⟨·|·⟩1

)
and

(
H2, ⟨·|·⟩2

)
be two Hilbert spaces, and assume that ρ12 ∈

DM(H12) is a density matrix. If there exist ρ1 ∈ DM(H1) and ρ2 ∈ DM(H2) such that
ρ12 = ρ1 ⊗ ρ2, then ρ12 is called not entangled. Conversely, if ρ12 ̸= ρ1 ⊗ ρ2, for any pair of
density matrices ρ1 ∈ DM(H1) and ρ2 ∈ DM(H2), then ρ12 is called entangled.
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