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- problem sheet uploaded on 03-Jul-2025.

- admissible format of homework is a scan of a handwritten document converted to PDF,

- submission of homework by e-mail to v.bach@tu-bs.de until 15-Jul-2025,

- discussion of the solution in the tutorial on 18-Jul-2025.

Problem 6.1 (12 Points): Let d ∈ N,H = Cd and let SA(H) = {A ∈ B(H)|A = A∗} be the
set of self-adjoint operators on H. Recall that for A,B ∈ SA, we write A ≤ B if B −A ≥ 0 is a
positive operator.

(a) Prove that �≤� de�nes a partial order on SA, i.e., that for all A,B,C ∈ SA(H),

A ≤ A , (re�exivity)

{A ≤ B ∧B ≤ A} ⇒ A = B , (antisymmetry)

{A ≤ B ∧B ≤ C} ⇒ A ≤ C . (transitivity)

(b) Let A,B ∈ SA(H) be two positive operators and de�ne

D :=
1

2
(A+B) +

1

2
|A−B| . (1)

Show that both D ≥ A and D ≥ B hold true.

(c) Show that D, as de�ned in (1), does not de�ne an operator-valued supremum of A and B,
in general. That is, show that (E ≥ A) ∧ (E ≥ B) does not imply E ≥ D.

To this end, let H = C2 and

A :=

(
1 0
0 0

)
and B :=

(
0 0
0 1

)
. (2)

Compute D and construct E ∈ SA(C2) such that E ≥ A and E ≥ B, but E − D is
inde�nite.

Solution. leer

(a) Re�exivity: For all ψ ∈ H, we have ⟨ψ|Aψ⟩ ≤ ⟨ψ|Aψ⟩ which is equivalent to A ≤ A.

Antisymmetry: Let A ≥ B and A ≤ B. Then ⟨ψ|Aψ⟩ ≥ ⟨ψ|Bψ⟩ and ⟨ψ|Aψ⟩ ≤ ⟨ψ|Bψ⟩,
for all ψ ∈ H, which is equivalent to ⟨ψ|(A − B)ψ⟩ = 0, for all ψ ∈ H. As a self-adjoint
operator is completely determined by diagonal matrix elements, this implies A−B = 0.

Antisymmetry: Let A ≤ B and B ≤ C. Then ⟨ψ|Aψ⟩ ≤ ⟨ψ|Bψ⟩ ≤ ⟨ψ|Cψ⟩, for all ψ ∈ H.
Ignoring the middle part of this chain of inequalities, we observe that this is equivalent to
A ≤ C.
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(b) Let λ ∈ R. Denoting (λ)+ := max{λ, 0} ≥ 0 and (λ)− := max{−λ, 0} = (−λ)+ ≥ 0, we
observe that λ = (λ)+ − (λ)− and |λ| = (λ)+ + (λ)−. With this we obtain from functional
calculus that

±(A−B) = ±(A−B)+ ∓ (A−B)− ≤ (A−B)+ + (A−B)− = |A−B| , (3)

which implies that

D = 1
2 (A+B) + 1

2 |A−B| ≥ 1
2 (A+B) + 1

2 (A−B) = A , (4)

D = 1
2 (A+B) + 1

2 |A−B| ≥ 1
2 (A+B) − 1

2 (A−B) = B . (5)

(c) Clearly, A+B = 1 and A−B = σ(3) which gives |A−B| = 1, so D = 1. Moreover,

A = 1
21+ 1

2 e⃗3 · σ⃗ and B = 1
21− 1

2 e⃗3 · σ⃗ . (6)

Let r, s ∈ R and E := (r + 1)1+ 1
2se⃗1 · σ⃗SA(C2). Then

E −D = r1+ 1
2s e⃗1 · σ⃗ , (7)

E −A = (r + 1
2 )1+ 1

2

(
se⃗1 − e⃗3

)
· σ⃗ , (8)

E −B = (r + 1
2 )1+ 1

2

(
se⃗1 + e⃗3

)
· σ⃗ . (9)

Note that ∥se⃗1±e⃗3∥eukl =
√
1 + s2, so E−A ≥ 0 and E−B ≥ 0, provided that 1

2

√
1 + s2 ≤

r + 1
2 which is equivalent to

s2 ≤ 4r2 + 4r . (10)

Furthermore, the eigenvalues of E −D are µ± = r ± 1
2s, and µ− < 0 for s > 2r. So, for

any r > 0 and any

s ∈
(
2r ,

√
4r2 + 4r

]
, (11)

the matrix E = (r + 1)1+ 1
2se⃗1 · σ⃗ has the desired properties.

Problem 6.2 (6 Points):

(a) Let x1, x2, y1, y2 ∈ [−1, 1] be real numbers. Show that

|x1y1 + x1y2 + x2y1 − x2y2| ≤ 2 . (12)

(b) Let Ω be a probability space, f1, f2, g1, g2 : Ω 7→ [−1, 1] random variables and µ a
probability measure on Ω. Prove that the correlations of these random variables satisfy∣∣E[f1g1] + E[f1g2] + E[f2g1]− E[f2g2]∣∣ ≤ 2 , (13)

where

E[f ] =

∫
Ω

f(ω) dµ(ω) (14)

denotes the expectation value of a random variable f : Ω → R w.r.t. µ.

Solution. leer

(a) For −1 ≤ x1, x2, y1, y2 ≤ 1, we have

|x1y1+x1y2 + x2y1 − x2y2| ≤ |x1| · |y1 + y2| + |x2| · |y1 − y2| ≤ |y1 + y2| + |y1 − y2|

= 1[y1 + y2 ≥ 0] · 1[y1 − y2 ≥ 0] · 2y1 + 1[y1 + y2 ≥ 0] · 1[y1 − y2 < 0] · 2y2
+ 1[y1 + y2 < 0] · 1[y1 − y2 ≥ 0] · (−2y2) + 1[y1 + y2 < 0] · 1[y1 − y2 < 0] · (−2y1)

≤ 2 max
{
|y1| , |y2|

}
≤ 2 . (15)
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Alternatively, one observes that f : R4 → R+
0 given by f(x1, x2, y1, y2) := |x1y1 + x1y2 +

x2y1−x2y2| is the composition of the linear map (x1, x2, y1, y2) 7→ x1y1+x1y2+x2y1−x2y2
and the convex map λ 7→ |λ| and, hence, convex itself. Therefore, the maximum of f
restricted to the compact convex subset [−1, 1]4 ⊆ R4 is attained on the extreme points of
[−1, 1]4, i.e., on {−1, 1}4. But then x21 = x22 = y21 = y22 = 1 and x12 = x1x2, y12 = y1y2 ∈
{−1, 1}. Inspecting the value of f on these four possibilities yields

|x1y1 + x1y2 + x2y1 − x2 y2| = |1 + y12 + x12 − x12y12| ∈ {0, 2} , (16)

(b) By (15), we have that∣∣E[f1 g1] + E[f1 g2] + E[f2 g1]− E[f2 g2]∣∣ =
∣∣E[f1 g1 + f1 g2 + f2 g1 + f2 g2]

∣∣
≤ E

(
|f1 g1 + f1 g2 + f2 g1 + f2 g2|

)
≤ E[2 · 1] = 2 . (17)

Problem 6.3 (12 Points): Assume that we are given a system of two qubits, H = C2 ⊗ C2

which is prepared in the pure state ρ = |ψ⟩⟨ψ| ∈ DM(H), with

ψ =
1√
2

(
↑ ⊗ ↓ − ↓ ⊗ ↑

)
∈ H , (18)

where

↑ :=

(
1
0

)
and ↓ :=

(
0
1

)
. (19)

For a⃗ ∈ R3, we de�ne

σ⃗ · a⃗ := a1σ
(1) + a2σ

(2) + a3σ
(3) , (20)

where σ(1), σ(2), σ(3) ∈ SA(C2) denote the Pauli matrices.

(a) Compute the expectation values w.r.t. ρ of σ⃗ · a⃗⊗ 1 and 1⊗ σ⃗ · a⃗.

(b) Let a⃗, b⃗ ∈ R3 be two normalized vectors, ∥a⃗∥eukl = ∥⃗b∥eukl = 1. Show that〈
σ⃗ · a⃗⊗ σ⃗ · b⃗

〉
ρ

= −a⃗ · b⃗ . (21)

(c) Find four unit vectors a⃗1, a⃗2, b⃗1, b⃗2 ∈ R3 such that the expectation values of σ⃗ · a⃗i ⊗ σ⃗ · b⃗j ,
for i, j ∈ {1, 2}, violate inequality (13).

Solution. leer
We denote H12 := H = H1 ⊗ H2 with H1 = H2 = C2, ρ12 := ρ = |ψ⟩⟨ψ| ∈ DM(H12),
ρ1 := Tr2ρ12 ∈ DM(H1), and ρ2 := Tr1ρ12 ∈ DM(H2). Note that

ψ =
1√
2

(
↑ ⊗ ↓ − ↓ ⊗ ↑

)
=

1√
2

∑
τ

(−1)τ τ ⊗ τ , (22)

where the sum ranges over τ ∈ {↑, ↓}, (−1)↑ = 1, (−1)↓ = −1, ↑ :=↓, and ↓ :=↑.

(a) We compute〈
σ⃗ · a⃗

〉
ρ1

=
〈
σ⃗ · a⃗⊗ 1

〉
ρ12

=
〈
ψ
∣∣ (σ⃗ · a⃗⊗ 1)ψ

〉
H12

=
1

2

∑
τ,κ

(−1)τ (−1)κ
〈
τ ⊗ τ

∣∣ (σ⃗ · a⃗⊗ 1)κ⊗ κ
〉
H12

=
1

2

∑
τ,κ

(−1)τ (−1)κ ⟨τ | (σ⃗ · a⃗)κ⟩H1 δτ,κ =
1

2

∑
τ

⟨τ | (σ⃗ · a⃗) τ⟩H1

=
1

2
TrH1

[
σ⃗ · a⃗

]
= 0 (23)
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and 〈
σ⃗ · b⃗

〉
ρ2

=
〈
1⊗ σ⃗ · b⃗

〉
ρ12

=
〈
ψ
∣∣ (1⊗ σ⃗ · b⃗)ψ

〉
H12

=
1

2

∑
τ,κ

(−1)τ (−1)κ
〈
τ ⊗ τ

∣∣ (1⊗ σ⃗ · b⃗)κ⊗ κ
〉
H12

=
1

2

∑
τ,κ

(−1)τ (−1)κ δτ,κ ⟨τ | (σ⃗ · b⃗)κ⟩H2
=

1

2

∑
τ

⟨τ | (σ⃗ · b⃗) τ⟩H2

=
1

2
TrH2

[
σ⃗ · b⃗

]
= 0 . (24)

(b) Similarly, we compute〈
σ⃗ · a⃗ ⊗ σ⃗ · b⃗

〉
ρ12

=
〈
ψ
∣∣ (σ⃗ · a⃗⊗ σ⃗ · b⃗)ψ

〉
H12

=
1

2

∑
τ,κ

(−1)τ (−1)κ
〈
τ ⊗ τ

∣∣ (σ⃗ · a⃗⊗ σ⃗ · b⃗)κ⊗ κ
〉
H12

=
1

2

∑
τ,κ

(−1)τ (−1)κ ⟨τ | (σ⃗ · a⃗)κ⟩H1
⟨τ | (σ⃗ · b⃗)κ⟩H2

=
1

2

∑
τ,κ

(−1)τ (−1)κ ⟨τ | (σ⃗ · a⃗)κ⟩H1
⟨τ | (σ⃗ · b⃗)κ⟩H2

=
1

2

(
⟨↑ |(σ⃗ · a⃗) ↑⟩H1

⟨↓ |(σ⃗ · b⃗) ↓⟩H2
+ ⟨↓ |(σ⃗ · a⃗) ↓⟩H1

⟨↑ |(σ⃗ · b⃗) ↑⟩H2

− ⟨↑ |(σ⃗ · a⃗) ↓⟩H1
⟨↓ |(σ⃗ · b⃗) ↑⟩H2

− ⟨↓ |(σ⃗ · a⃗) ↑⟩H1
⟨↑ |(σ⃗ · b⃗) ↓⟩H2

)
=

1

2

(
a3 (−b3) + (−a3) b3 − (a1 − ia2)(b1 + ib2) − (a1 + ia2)(b1 − ib2)

)
= − a⃗ · b⃗ . (25)

(c) De�ne four unit vectors a⃗1, a⃗2, b⃗1, b⃗2 ∈ R3 as

a⃗1 := e⃗1 , a⃗2 := e⃗2 , b⃗1 := 1√
2

(
− e⃗1 − e⃗2

)
, b⃗2 := 1√

2

(
− e⃗1 + e⃗2

)
. (26)

Then −1 ≤ σ⃗ · a⃗1, σ⃗ · a⃗2, σ⃗ · b⃗1, σ⃗ · b⃗2 ≤ 1, since (σ⃗ · v⃗)2 = v⃗21 ≤ 1. Note that

a⃗1 · b⃗1 = − 1√
2
, a⃗1 · b⃗2 = − 1√

2
, a⃗2 · b⃗1 = − 1√

2
, a⃗2 · b⃗2 =

1√
2
. (27)

Using (25) and (26), we observe that∣∣∣〈σ⃗ · a⃗1 ⊗ σ⃗ · b⃗1
〉
ρ12

+
〈
σ⃗ · a⃗1 ⊗ σ⃗ · b⃗2

〉
ρ12

+
〈
σ⃗ · a⃗2 ⊗ σ⃗ · b⃗1

〉
ρ12

−
〈
σ⃗ · a⃗2 ⊗ σ⃗ · b⃗2

〉
ρ12

∣∣∣
=

4√
2

= 2
√
2 . (28)

This violates Inequality (13), which implies that, in general, no (classical) probability space
Ω with probabilty measure µ exists such that quantum mechanical expectation values ⟨·⟩ρ
are given by (classical) expectation values E[·] =

∫
Ω
(·) dµ.
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