Homework Problem Set 6 for the Lecture Introduction to Quantum Information Theory

Prof. Dr. Volker Bach TU Braunschweig, Institut für Analysis und Algebra

- problem sheet uploaded on 03-Jul-2025.
- admissible format of homework is a scan of a <u>handwritten</u> document converted to PDF,
- submission of homework by e-mail to <u>v.bach@tu-bs.de</u> until 15-Jul-2025,
- discussion of the solution in the tutorial on 18-Jul-2025.

Problem 6.1 (12 Points): Let $d \in \mathbb{N}$, $\mathcal{H} = \mathbb{C}^d$ and let $\mathcal{SA}(\mathcal{H}) = \{A \in \mathcal{B}(\mathcal{H}) | A = A^*\}$ be the set of self-adjoint operators on \mathcal{H} . Recall that for $A, B \in \mathcal{SA}$, we write $A \leq B$ if $B - A \geq 0$ is a positive operator.

(a) Prove that " \leq " defines a partial order on \mathcal{SA} , i.e., that for all $A, B, C \in \mathcal{SA}(\mathcal{H})$,

$$A \leq A \,, \qquad \qquad \text{(reflexivity)}$$

$$\{A \leq B \wedge B \leq A\} \Rightarrow A = B \,, \qquad \text{(antisymmetry)}$$

$$\{A \leq B \wedge B \leq C\} \Rightarrow A \leq C \,. \qquad \text{(transitivity)}$$

(b) Let $A, B \in \mathcal{SA}(\mathcal{H})$ be two positive operators and define

$$D := \frac{1}{2}(A+B) + \frac{1}{2}|A-B|. \tag{1}$$

Show that both $D \geq A$ and $D \geq B$ hold true.

(c) Show that D, as defined in (1), does not define an operator-valued supremum of A and B, in general. That is, show that $(E \ge A) \land (E \ge B)$ does not imply $E \ge D$.

To this end, let $\mathcal{H} = \mathbb{C}^2$ and

$$A := \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \quad \text{and} \quad B := \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}. \tag{2}$$

Compute D and construct $E \in \mathcal{SA}(\mathbb{C}^2)$ such that $E \geq A$ and $E \geq B$, but E - D is indefinite.

Solution.

(a) Reflexivity: For all $\psi \in \mathcal{H}$, we have $\langle \psi | A\psi \rangle \leq \langle \psi | A\psi \rangle$ which is equivalent to $A \leq A$.

Antisymmetry: Let $A \geq B$ and $A \leq B$. Then $\langle \psi | A\psi \rangle \geq \langle \psi | B\psi \rangle$ and $\langle \psi | A\psi \rangle \leq \langle \psi | B\psi \rangle$, for all $\psi \in \mathcal{H}$, which is equivalent to $\langle \psi | (A-B)\psi \rangle = 0$, for all $\psi \in \mathcal{H}$. As a self-adjoint operator is completely determined by diagonal matrix elements, this implies A-B=0.

Antisymmetry: Let $A \leq B$ and $B \leq C$. Then $\langle \psi | A\psi \rangle \leq \langle \psi | B\psi \rangle \leq \langle \psi | C\psi \rangle$, for all $\psi \in \mathcal{H}$. Ignoring the middle part of this chain of inequalities, we observe that this is equivalent to $A \leq C$.

(b) Let $\lambda \in \mathbb{R}$. Denoting $(\lambda)_+ := \max\{\lambda, 0\} \ge 0$ and $(\lambda)_- := \max\{-\lambda, 0\} = (-\lambda)_+ \ge 0$, we observe that $\lambda = (\lambda)_+ - (\lambda)_-$ and $|\lambda| = (\lambda)_+ + (\lambda)_-$. With this we obtain from functional calculus that

$$\pm (A - B) = \pm (A - B)_{+} \mp (A - B)_{-} \le (A - B)_{+} + (A - B)_{-} = |A - B|, \quad (3)$$

which implies that

$$D = \frac{1}{2}(A+B) + \frac{1}{2}|A-B| \ge \frac{1}{2}(A+B) + \frac{1}{2}(A-B) = A, \tag{4}$$

$$D = \frac{1}{2}(A+B) + \frac{1}{2}|A-B| \ge \frac{1}{2}(A+B) - \frac{1}{2}(A-B) = B.$$
 (5)

(c) Clearly, A + B = 1 and $A - B = \sigma^{(3)}$ which gives |A - B| = 1, so D = 1. Moreover,

$$A = \frac{1}{2}\mathbf{1} + \frac{1}{2}\vec{e}_3 \cdot \vec{\sigma} \quad and \quad B = \frac{1}{2}\mathbf{1} - \frac{1}{2}\vec{e}_3 \cdot \vec{\sigma}.$$
 (6)

Let $r, s \in \mathbb{R}$ and $E := (r+1)\mathbf{1} + \frac{1}{2}s\vec{e_1} \cdot \vec{\sigma}\mathcal{SA}(\mathbb{C}^2)$. Then

$$E - D = r\mathbf{1} + \frac{1}{2}s\,\vec{e}_1 \cdot \vec{\sigma}\,,\tag{7}$$

$$E - A = (r + \frac{1}{2})\mathbf{1} + \frac{1}{2}(s\vec{e}_1 - \vec{e}_3) \cdot \vec{\sigma}, \qquad (8)$$

$$E - B = (r + \frac{1}{2})\mathbf{1} + \frac{1}{2}(s\vec{e}_1 + \vec{e}_3) \cdot \vec{\sigma}. \tag{9}$$

Note that $\|s\vec{e}_1\pm\vec{e}_3\|_{\text{eukl}}=\sqrt{1+s^2}$, so $E-A\geq 0$ and $E-B\geq 0$, provided that $\frac{1}{2}\sqrt{1+s^2}\leq r+\frac{1}{2}$ which is equivalent to

$$s^2 \le 4r^2 + 4r \,. \tag{10}$$

Furthermore, the eigenvalues of E-D are $\mu_{\pm}=r\pm\frac{1}{2}s$, and $\mu_{-}<0$ for s>2r. So, for any r>0 and any

$$s \in \left(2r, \sqrt{4r^2 + 4r}\right],\tag{11}$$

the matrix $E = (r+1) \mathbf{1} + \frac{1}{2} s \vec{e}_1 \cdot \vec{\sigma}$ has the desired properties.

Problem 6.2 (6 Points):

(a) Let $x_1, x_2, y_1, y_2 \in [-1, 1]$ be real numbers. Show that

$$|x_1y_1 + x_1y_2 + x_2y_1 - x_2y_2| < 2. (12)$$

(b) Let Ω be a probability space, $f_1, f_2, g_1, g_2 : \Omega \mapsto [-1, 1]$ random variables and μ a probability measure on Ω . Prove that the correlations of these random variables satisfy

$$|\mathbb{E}[f_1g_1] + \mathbb{E}[f_1g_2] + \mathbb{E}[f_2g_1] - \mathbb{E}[f_2g_2]| \le 2,$$
 (13)

where

$$\mathbb{E}[f] = \int_{\Omega} f(\omega) \, d\mu(\omega) \tag{14}$$

denotes the expectation value of a random variable $f:\Omega\to\mathbb{R}$ w.r.t. μ .

Solution.

(a) For $-1 \le x_1, x_2, y_1, y_2 \le 1$, we have

$$|x_{1}y_{1} + x_{1}y_{2} + x_{2}y_{1} - x_{2}y_{2}| \leq |x_{1}| \cdot |y_{1} + y_{2}| + |x_{2}| \cdot |y_{1} - y_{2}| \leq |y_{1} + y_{2}| + |y_{1} - y_{2}|$$

$$= \mathbf{1}[y_{1} + y_{2} \geq 0] \cdot \mathbf{1}[y_{1} - y_{2} \geq 0] \cdot 2y_{1} + \mathbf{1}[y_{1} + y_{2} \geq 0] \cdot \mathbf{1}[y_{1} - y_{2} < 0] \cdot 2y_{2}$$

$$+ \mathbf{1}[y_{1} + y_{2} < 0] \cdot \mathbf{1}[y_{1} - y_{2} \geq 0] \cdot (-2y_{2}) + \mathbf{1}[y_{1} + y_{2} < 0] \cdot \mathbf{1}[y_{1} - y_{2} < 0] \cdot (-2y_{1})$$

$$\leq 2 \max\{|y_{1}|, |y_{2}|\} \leq 2.$$

$$(15)$$

Alternatively, one observes that $f: \mathbb{R}^4 \to \mathbb{R}^+_0$ given by $f(x_1, x_2, y_1, y_2) := |x_1y_1 + x_1y_2 + x_2y_1 - x_2y_2|$ is the composition of the linear map $(x_1, x_2, y_1, y_2) \mapsto x_1y_1 + x_1y_2 + x_2y_1 - x_2y_2$ and the convex map $\lambda \mapsto |\lambda|$ and, hence, convex itself. Therefore, the maximum of f restricted to the compact convex subset $[-1, 1]^4 \subseteq \mathbb{R}^4$ is attained on the extreme points of $[-1, 1]^4$, i.e., on $\{-1, 1\}^4$. But then $x_1^2 = x_2^2 = y_1^2 = y_2^2 = 1$ and $x_{12} = x_1x_2, y_{12} = y_1y_2 \in \{-1, 1\}$. Inspecting the value of f on these four possibilities yields

$$|x_1y_1 + x_1y_2 + x_2y_1 - x_2y_2| = |1 + y_{12} + x_{12} - x_{12}y_{12}| \in \{0, 2\},$$
 (16)

(b) By (15), we have that

$$\left| \mathbb{E}[f_1 g_1] + \mathbb{E}[f_1 g_2] + \mathbb{E}[f_2 g_1] - \mathbb{E}[f_2 g_2] \right| = \left| \mathbb{E}[f_1 g_1 + f_1 g_2 + f_2 g_1 + f_2 g_2] \right|$$

$$\leq \mathbb{E}(|f_1 g_1 + f_1 g_2 + f_2 g_1 + f_2 g_2|) \leq \mathbb{E}[2 \cdot \mathbf{1}] = 2.$$
(17)

Problem 6.3 (12 Points): Assume that we are given a system of two qubits, $\mathcal{H} = \mathbb{C}^2 \otimes \mathbb{C}^2$ which is prepared in the pure state $\rho = |\psi\rangle\langle\psi| \in \mathcal{DM}(\mathcal{H})$, with

$$\psi = \frac{1}{\sqrt{2}} (\uparrow \otimes \downarrow - \downarrow \otimes \uparrow) \in \mathcal{H}, \qquad (18)$$

where

$$\uparrow := \begin{pmatrix} 1 \\ 0 \end{pmatrix} \quad \text{and} \quad \downarrow := \begin{pmatrix} 0 \\ 1 \end{pmatrix} . \tag{19}$$

For $\vec{a} \in \mathbb{R}^3$, we define

$$\vec{\sigma} \cdot \vec{a} := a_1 \sigma^{(1)} + a_2 \sigma^{(2)} + a_3 \sigma^{(3)}, \tag{20}$$

where $\sigma^{(1)}, \sigma^{(2)}, \sigma^{(3)} \in \mathcal{SA}(\mathbb{C}^2)$ denote the Pauli matrices.

- (a) Compute the expectation values w.r.t. ρ of $\vec{\sigma} \cdot \vec{a} \otimes \mathbf{1}$ and $\mathbf{1} \otimes \vec{\sigma} \cdot \vec{a}$.
- (b) Let $\vec{a}, \vec{b} \in \mathbb{R}^3$ be two normalized vectors, $\|\vec{a}\|_{\text{eukl}} = \|\vec{b}\|_{\text{eukl}} = 1$. Show that

$$\left\langle \vec{\sigma} \cdot \vec{a} \otimes \vec{\sigma} \cdot \vec{b} \right\rangle_{\rho} = -\vec{a} \cdot \vec{b} \,. \tag{21}$$

(c) Find four unit vectors $\vec{a}_1, \vec{a}_2, \vec{b}_1, \vec{b}_2 \in \mathbb{R}^3$ such that the expectation values of $\vec{\sigma} \cdot \vec{a}_i \otimes \vec{\sigma} \cdot \vec{b}_j$, for $i, j \in \{1, 2\}$, violate inequality (13).

Solution.

We denote $\mathcal{H}_{12} := \mathcal{H} = \mathcal{H}_1 \otimes \mathcal{H}_2$ with $\mathcal{H}_1 = \mathcal{H}_2 = \mathbb{C}^2$, $\rho_{12} := \rho = |\psi\rangle\langle\psi| \in \mathcal{DM}(\mathcal{H}_{12})$, $\rho_1 := \operatorname{Tr}_2\rho_{12} \in \mathcal{DM}(\mathcal{H}_1)$, and $\rho_2 := \operatorname{Tr}_1\rho_{12} \in \mathcal{DM}(\mathcal{H}_2)$. Note that

$$\psi = \frac{1}{\sqrt{2}} (\uparrow \otimes \downarrow - \downarrow \otimes \uparrow) = \frac{1}{\sqrt{2}} \sum_{\tau} (-1)^{\tau} \tau \otimes \overline{\tau}, \qquad (22)$$

 $where \ the \ sum \ ranges \ over \ \tau \in \{\uparrow, \downarrow\}, \ (-1)^{\uparrow} = 1, \ (-1)^{\downarrow} = -1, \ \bar{\uparrow} := \downarrow, \ and \ \bar{\downarrow} := \uparrow.$

(a) We compute

$$\langle \vec{\sigma} \cdot \vec{a} \rangle_{\rho_{1}} = \langle \vec{\sigma} \cdot \vec{a} \otimes \mathbf{1} \rangle_{\rho_{12}} = \langle \psi | (\vec{\sigma} \cdot \vec{a} \otimes \mathbf{1}) \psi \rangle_{\mathcal{H}_{12}}$$

$$= \frac{1}{2} \sum_{\tau,\kappa} (-1)^{\tau} (-1)^{\kappa} \langle \tau \otimes \overline{\tau} | (\vec{\sigma} \cdot \vec{a} \otimes \mathbf{1}) \kappa \otimes \overline{\kappa} \rangle_{\mathcal{H}_{12}}$$

$$= \frac{1}{2} \sum_{\tau,\kappa} (-1)^{\tau} (-1)^{\kappa} \langle \tau | (\vec{\sigma} \cdot \vec{a}) \kappa \rangle_{\mathcal{H}_{1}} \delta_{\overline{\tau},\overline{\kappa}} = \frac{1}{2} \sum_{\tau} \langle \tau | (\vec{\sigma} \cdot \vec{a}) \tau \rangle_{\mathcal{H}_{1}}$$

$$= \frac{1}{2} \operatorname{Tr}_{\mathcal{H}_{1}} [\vec{\sigma} \cdot \vec{a}] = 0$$
(23)

and

$$\langle \vec{\sigma} \cdot \vec{b} \rangle_{\rho_{2}} = \langle \mathbf{1} \otimes \vec{\sigma} \cdot \vec{b} \rangle_{\rho_{12}} = \langle \psi | (\mathbf{1} \otimes \vec{\sigma} \cdot \vec{b}) \psi \rangle_{\mathcal{H}_{12}}$$

$$= \frac{1}{2} \sum_{\tau,\kappa} (-1)^{\tau} (-1)^{\kappa} \langle \tau \otimes \overline{\tau} | (\mathbf{1} \otimes \vec{\sigma} \cdot \vec{b}) \kappa \otimes \overline{\kappa} \rangle_{\mathcal{H}_{12}}$$

$$= \frac{1}{2} \sum_{\tau,\kappa} (-1)^{\tau} (-1)^{\kappa} \delta_{\tau,\kappa} \langle \overline{\tau} | (\vec{\sigma} \cdot \vec{b}) \overline{\kappa} \rangle_{\mathcal{H}_{2}} = \frac{1}{2} \sum_{\tau} \langle \overline{\tau} | (\vec{\sigma} \cdot \vec{b}) \overline{\tau} \rangle_{\mathcal{H}_{2}}$$

$$= \frac{1}{2} \operatorname{Tr}_{\mathcal{H}_{2}} [\vec{\sigma} \cdot \vec{b}] = 0.$$
(24)

(b) Similarly, we compute

$$\langle \vec{\sigma} \cdot \vec{a} \otimes \vec{\sigma} \cdot \vec{b} \rangle_{\rho_{12}} = \langle \psi | (\vec{\sigma} \cdot \vec{a} \otimes \vec{\sigma} \cdot \vec{b}) \psi \rangle_{\mathcal{H}_{12}}$$

$$= \frac{1}{2} \sum_{\tau,\kappa} (-1)^{\tau} (-1)^{\kappa} \langle \tau \otimes \overline{\tau} | (\vec{\sigma} \cdot \vec{a} \otimes \vec{\sigma} \cdot \vec{b}) \kappa \otimes \overline{\kappa} \rangle_{\mathcal{H}_{12}}$$

$$= \frac{1}{2} \sum_{\tau,\kappa} (-1)^{\tau} (-1)^{\kappa} \langle \tau | (\vec{\sigma} \cdot \vec{a}) \kappa \rangle_{\mathcal{H}_{1}} \langle \overline{\tau} | (\vec{\sigma} \cdot \vec{b}) \overline{\kappa} \rangle_{\mathcal{H}_{2}}$$

$$= \frac{1}{2} \sum_{\tau,\kappa} (-1)^{\tau} (-1)^{\kappa} \langle \tau | (\vec{\sigma} \cdot \vec{a}) \kappa \rangle_{\mathcal{H}_{1}} \langle \overline{\tau} | (\vec{\sigma} \cdot \vec{b}) \overline{\kappa} \rangle_{\mathcal{H}_{2}}$$

$$= \frac{1}{2} \Big(\langle \uparrow | (\vec{\sigma} \cdot \vec{a}) \uparrow \rangle_{\mathcal{H}_{1}} \langle \downarrow | (\vec{\sigma} \cdot \vec{b}) \downarrow \rangle_{\mathcal{H}_{2}} + \langle \downarrow | (\vec{\sigma} \cdot \vec{a}) \downarrow \rangle_{\mathcal{H}_{1}} \langle \uparrow | (\vec{\sigma} \cdot \vec{b}) \uparrow \rangle_{\mathcal{H}_{2}}$$

$$= \frac{1}{2} \Big(\langle \uparrow | (\vec{\sigma} \cdot \vec{a}) \uparrow \rangle_{\mathcal{H}_{1}} \langle \downarrow | (\vec{\sigma} \cdot \vec{b}) \uparrow \rangle_{\mathcal{H}_{2}} + \langle \downarrow | (\vec{\sigma} \cdot \vec{a}) \downarrow \rangle_{\mathcal{H}_{1}} \langle \uparrow | (\vec{\sigma} \cdot \vec{b}) \downarrow \rangle_{\mathcal{H}_{2}} \Big)$$

$$= \frac{1}{2} \Big(a_{3} (-b_{3}) + (-a_{3}) b_{3} - (a_{1} - ia_{2}) (b_{1} + ib_{2}) - (a_{1} + ia_{2}) (b_{1} - ib_{2}) \Big)$$

$$= -\vec{a} \cdot \vec{b}.$$
(25)

(c) Define four unit vectors $\vec{a}_1, \vec{a}_2, \vec{b}_1, \vec{b}_2 \in \mathbb{R}^3$ as

$$\vec{a}_1 := \vec{e}_1, \quad \vec{a}_2 := \vec{e}_2, \quad \vec{b}_1 := \frac{1}{\sqrt{2}} (-\vec{e}_1 - \vec{e}_2), \quad \vec{b}_2 := \frac{1}{\sqrt{2}} (-\vec{e}_1 + \vec{e}_2).$$
 (26)

Then $-1 \leq \vec{\sigma} \cdot \vec{a}_1, \vec{\sigma} \cdot \vec{a}_2, \vec{\sigma} \cdot \vec{b}_1, \vec{\sigma} \cdot \vec{b}_2 \leq 1$, since $(\vec{\sigma} \cdot \vec{v})^2 = \vec{v}^2 \mathbf{1} \leq 1$. Note that

$$\vec{a}_1 \cdot \vec{b}_1 = -\frac{1}{\sqrt{2}}, \quad \vec{a}_1 \cdot \vec{b}_2 = -\frac{1}{\sqrt{2}}, \quad \vec{a}_2 \cdot \vec{b}_1 = -\frac{1}{\sqrt{2}}, \quad \vec{a}_2 \cdot \vec{b}_2 = \frac{1}{\sqrt{2}}.$$
 (27)

Using (25) and (26), we observe that

$$\left| \left\langle \vec{\sigma} \cdot \vec{a}_{1} \otimes \vec{\sigma} \cdot \vec{b}_{1} \right\rangle_{\rho_{12}} + \left\langle \vec{\sigma} \cdot \vec{a}_{1} \otimes \vec{\sigma} \cdot \vec{b}_{2} \right\rangle_{\rho_{12}} + \left\langle \vec{\sigma} \cdot \vec{a}_{2} \otimes \vec{\sigma} \cdot \vec{b}_{1} \right\rangle_{\rho_{12}} - \left\langle \vec{\sigma} \cdot \vec{a}_{2} \otimes \vec{\sigma} \cdot \vec{b}_{2} \right\rangle_{\rho_{12}} \right|$$

$$= \frac{4}{\sqrt{2}} = 2\sqrt{2}.$$
(28)

This violates Inequality (13), which implies that, in general, no (classical) probability space Ω with probabilty measure μ exists such that quantum mechanical expectation values $\langle \cdot \rangle_{\rho}$ are given by (classical) expectation values $\mathbb{E}[\cdot] = \int_{\Omega} (\cdot) d\mu$.