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In this exercise we study the notion of convexity. Let X be a vector space over K. A subset
M ⊆ X is called convex, if for all p ∈ [0, 1] and all x, y ∈M we have that

p x + (1− p) y ∈ M . (1)

Let M ⊆ X be a convex set. A function F : M → R is called convex on M , if for all p ∈ [0, 1]
and all x, y ∈M we have that

F
[
p x + (1− p) y

]
≤ pF [x] + (1− p)F [y] . (2)

F is called concave, if −F is convex.

Problem 4.1 (6 Points): Let X be a K-vector space, M ⊆ X be a convex subset and
F : M → R be a convex function on M . Prove Jensen's inequality for the following special
case: Let N ∈ N and p1, p2, ..., pN ≥ 0 a probability distribution on ZN

1 , i.e.,
∑N

n=1 pn = 1. and
x1, x2, . . . , xN ∈M be an arbitrary collection of points in M . Then

F

[ N∑
n=1

pn xn

]
≤

N∑
n=1

pn F [xn] . (3)

Hint: Induction in N .

Solution. leer
We may assume w.l.o.g. that p1, . . . , pN > 0 are strictly positive. For N = 1 there is nothing to
prove. For N = 2 we have that p2 = 1− p1 and the assertion follows from (2) with p := p1,

F [p1x1 + p2x2] = F [p1x1 + (1− p1)x2] (4)

≤ p1 F [x1] + (1− p1)F [x2] = p1 F [x1] + p2 F [x2] .

Now assume (3) to hold true for N − 1 ≥ 2 and de�ne

p :=

N−1∑
n=1

pn ⇒ 1− p = pN . (5)

Eq. (2) implies that

F

[ N∑
n=1

pn xn

]
= F

[
p
(N−1∑

n=1

pn
p
xn

)
+ (1− p)xN

]
≤ pF

[N−1∑
n=1

pn
p
xn

]
+ (1− p)F [xN ]

= pF

[N−1∑
n=1

pn
p
xn

]
+ pN F [xN ] . (6)
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Moreover, {p1

p , . . . ,
p1

p } ⊆ (0, 1) is a probability distribution of N − 1 weights, and by induction
we obtain

pF

[N−1∑
n=1

pn
p
xn

]
+ pN F [xN ] ≤ p

N−1∑
n=1

pn
p
F [xn] + pN F [xN ] (7)

=

(N−1∑
n=1

pn F [xn]

)
+ pN F [xN ] =

N∑
n=1

pn F [xn] .

Problem 4.2 (12 Points): Let d ∈ N and H = Cd be the complex d-dimensional Hilbert
space with unitary scalar product. Furthermore let F : R→ R be a convex function.

(i) Show that the subset SA(H) := {A ∈ B(H)|A = A∗} ⊆ B(H) of self-adjoint operators on
H is a convex subset of B(H).

(ii) Let A ∈ SA(H) be a self-adjoint operator on H and x ∈ H a normalized vector. Show that

F
[
⟨x|Ax⟩

]
≤

〈
x
∣∣ F [A]x〉 . (8)

(iii) Show that the map SA(H) → R, A 7→ Tr[F (A)], is convex.

Solution. leer

(i) Let A,B ∈ SA(H) and p ∈ [0, 1]. Then [pA+(1−p)B]∗ = pA∗+(1− p)B∗ = pA+(1−p)B
and hence pA+ (1− p)B ∈ SA(H), so SA(H) is convex, indeed.

(ii) Since A = A∗ is self-adjoint, there is an ONB {φj}dj=1 ⊆ H of eigenvectors with corresponding
eigenvalues λ1, . . . , λd ∈ R such that

A =

d∑
j=1

λj |φj⟩⟨φj | . (9)

It follows that

⟨x|Ax⟩ =

d∑
j=1

λj ⟨x|φj⟩ ⟨φj |x⟩ =

d∑
j=1

λj |⟨x|φj⟩|2 . (10)

Moreover, since x ∈ H is normalized,

d∑
j=1

|⟨x|φj⟩|2 =

d∑
j=1

⟨x|φj⟩ ⟨φj |x⟩ = ⟨x|x⟩ = 1 , (11)

and p1, . . . , pd ∈ [0, 1] given by pj := |⟨x|φj⟩|2 de�ne a probability distribution. Applying
Jensen's inequality (3) with these weights and random variables λ1, . . . , λd, we obtain

F
[
⟨x|Ax⟩

]
= F

[ d∑
j=1

|⟨x|φj⟩|2 λj
]

≤
d∑

j=1

|⟨x|φj⟩|2 F [λj ]

=

〈
x

∣∣∣∣( d∑
j=1

F [λj ] |φj⟩⟨φj |
)
x

〉
=

〈
x
∣∣ F [A]x〉 , (12)

by the spectral theorem (functional calculus).

(iii) Let A,B ∈ SA(H) and p ∈ (0, 1). Since pA+ (1− p)B is self-adjoint, there exist an ONB
{xj}dj=1 ⊆ H of eigenvectors of pA+(1−p)B with corresponding eigenvalues µ1, . . . , µd ∈ R.
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We use this basis to calculate the trace of F [pA+(1−p)B], which is the sum of its eigenvalues
F [µj ],

Tr
(
F [pA+ (1− p)B]

)
=

d∑
j=1

F [µj ] =

d∑
j=1

F
[
⟨xj |[pA+ (1− p)B]xj⟩

]

=

d∑
j=1

F
[
p ⟨xj |Axj⟩ + (1− p)⟨xj |Bxj⟩

]
(13)

≤ p

d∑
j=1

F
[
⟨xj |Axj⟩

]
+ (1− p)

d∑
j=1

F
[
⟨xj |Bxj⟩

]
,

where the inequality is a consequence of the convexity of F . On the other hand, for j ∈ Zd
1,

Eq. (8) implies that

F
[
⟨xj |Axj⟩

]
≤

〈
xj
∣∣F [A]xj〉 and F

[
⟨xj |Bxj⟩

]
≤

〈
xj
∣∣F [B]xj

〉
. (14)

Summing these inequalities over j ∈ Zd
1, we arrive at

Tr
(
F [pA+ (1− p)B]

)
≤ p

d∑
j=1

F
[
⟨xj |Axj⟩

]
+ (1− p)

d∑
j=1

F
[
⟨xj |Bxj⟩

]

≤ p
d∑

j=1

〈
xj
∣∣F [A]xj〉 + (1− p)

d∑
j=1

〈
xj
∣∣F [B]xj

〉
= pTr

(
F [A]

)
+ (1− p) Tr

(
F [B]

)
, (15)

which is the asserted convexity of A 7→ Tr
(
F [A]

)
.

Problem 4.3 (6 Points): Let d ∈ N and H = Cd be the complex d-dimensional Hilbert space
with unitary scalar product and A,B ∈ SA(H) be two positive operators. Show that

Tr(AB) ≥ 0 and that
{
Tr(AB) = 0 ⇒ AB = 0

}
. (16)

Solution. leer
Since A = A∗ ≥ 0 is self-adjoint and positive, there is an ONB {φj}dj=1 ⊆ H of eigenvectors
with corresponding eigenvalues λ1, . . . , λd ≥ 0 such that

A =

d∑
j=1

λj |φj⟩⟨φj | . (17)

Using this basis to compute the trace of AB, we obtain

Tr(AB) =

d∑
j=1

λj ⟨φj |Bφj⟩ ≥ 0 , (18)

since ⟨φj |Bφj⟩ ≥ 0, as B = B∗ ≥ 0 is positive, too.

Since λj ⟨φj |Bφj⟩ ≥ 0, for every j ∈ Zd
1, we observe that Tr(AB) = 0 implies that

∀ j ∈ Zd
1 : λj

∥∥√Bφj

∥∥2 = λj ⟨φj |Bφj⟩ = 0 , (19)

where
√
B ≥ 0 denotes the square-root of B (de�ned by functional calculus). Hence, for k, ℓ ∈ Zd

1,
we have that

|⟨φk|AB φℓ⟩|2 = λ2k |⟨φk|B φℓ⟩|2 = λ2k
∣∣⟨√Bφk|

√
Bφℓ⟩|2 ≤ λ2k

∥∥√Bφk

∥∥∥∥√Bφℓ

∥∥ = 0 ,
(20)

by (19). Thus, all matrix elements ⟨φk|AB φℓ⟩ of AB w.r.t. the ONB {φj}dj=1 ⊆ H vanish.
Since any two vectors ψ, ϕ ∈ H are linear combinations of these basis vectors, it follows that

∀ψ, ϕ ∈ H : ⟨ψ|AB ϕ⟩ = 0 , (21)

which is equivalent to AB = 0.
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