II. Konvergenz von Funktionenfolgen

Wir erinnern zunächst an den (abstrakten) Begriff einer Folge: Eine Folge $(a_n)_{n=1}^{\infty} \in \mathcal{A}^{\mathbb{N}}$ in einer Menge \mathcal{A} ist eine Abbildung

$$a_{(\cdot)}: \mathbb{N} \to \mathcal{A}, \quad n \mapsto a_n.$$
 (II.1)

Wir haben meistens $\mathcal{A} = \mathbb{K}$ oder $\mathcal{A} = \mathbb{K}^N$ verwendet, es besteht aber kein Grund, für \mathcal{A} nicht auch allgemeinere Mengen zu wählen. In diesem Kapitel werden wir für \mathcal{A} die reell- oder komplexwertigen Funktionen auf einer Menge M wählen, d.h. $\mathcal{A} := \mathcal{F}$ mit

$$\mathcal{F} := \{ f : M \to \mathbb{K} \}. \tag{II.2}$$

Wir wollen also Folgen $(f_n)_{n=1}^{\infty} \in \mathcal{F}^{\mathbb{N}}$ in \mathcal{F} studieren. Eine solche Folgen heißt **Funktionenfolge** auf M.

II.1. Punktweise und gleichmäßige Konvergenz

Definition II.1. Seien $M \neq \emptyset$ eine nichtleere Menge und $\mathcal{F} := \{f : M \to \mathbb{K}\}.$

(i) Eine Funktionenfolge $(f_n)_{n=1}^{\infty} \in \mathcal{F}^{\mathbb{N}}$ auf M heißt **punktweise konvergent (gegen** $\mathbf{f} \in \mathcal{F}$)

$$:\Leftrightarrow \quad \forall x \in M \ \exists f(x) \in \mathbb{K} : \quad \lim_{n \to \infty} f_n(x) = f(x), \tag{II.3}$$

und wir schreiben in diesem Fall auch

$$f_n \stackrel{\text{pktw.}}{\to} f, \quad n \to \infty.$$
 (II.4)

(ii) Eine Funktionenfolge $(f_n)_{n=1}^{\infty} \in \mathcal{F}^{\mathbb{N}}$ auf M heißt gleichmäßig konvergent (gegen $\mathbf{f} \in \mathcal{F}$)

$$:\Leftrightarrow \exists f \in \mathcal{F}: \quad \lim_{n \to \infty} \left\{ \sup_{x \in M} |f_n(x) - f(x)| \right\} = 0, \tag{II.5}$$

und wir schreiben in diesem Fall auch

$$f_n \stackrel{\text{glm.}}{\to} f, \quad n \to \infty.$$
 (II.6)

Bemerkungen und Beispiele.

• Wenn man die Definition der Konvergenz $\lim_{n\to\infty} a_n = 0$ der Zahlenfolge $a_n := \sup_{x\in M} |f_n(x) - f(x)|$ in (II.5) einsetzt, erhält man bei gleichmäßiger Konvergenz

$$\forall \varepsilon > 0 \ \exists n_0 \in \mathbb{N} \ \forall n \ge n_0 \ \forall x \in M : \quad |f_n(x) - f(x)| \le \varepsilon. \tag{II.7}$$

Zu einem vorgegebenem $\varepsilon > 0$ liegen also alle Funktionen f_n innerhalb einer ε -Umgebung um die Grenzfunktion f herum, sofern n genügend groß gewählt wird.

• Sind M = [-1, 1],

$$f(x) := \begin{cases} -1 & \text{falls } -1 \le x < 0, \\ 0 & \text{falls } x = 0, \\ 1 & \text{falls } 0 < x \le 1, \end{cases}$$
 (II.8)

und

$$f_n(x) := \tanh(nx) = \frac{e^{nx} - e^{-nx}}{e^{nx} + e^{-nx}},$$
 (II.9)

so gelten $f_n(0) = 0 = f(0)$ und $|f_n(-x) - f(-x)| = |f_n(x) - f(x)|$. Zur Klärung, ob $f_n \to f$ punktweise und/oder gleichmäßig konvergiert, genügt es also, x > 0 zu betrachten, sodass f(x) = 1. Für x > 0 ist

$$|f(x) - f_n(x)| = 1 - \frac{e^{nx} - e^{-nx}}{e^{nx} + e^{-nx}} = \frac{2e^{-nx}}{e^{nx} + e^{-nx}} \le e^{-nx} \to 0,$$
 (II.10)

für $n \to \infty$, also konvergiert $f_n \to f$ punktweise. Für $0 < x \le n^{-1}$ sind aber $e^{-nx} \ge e^{-1}$ und $e^{nx} + e^{-nx} \le 2e$. Also ist

$$\sup_{x \in M} |f(x) - f_n(x)| \ge |f(1/n) - f_n(1/n)| \ge e^{-2} \ge \frac{1}{8},$$
 (II.11)

und f_n konvergiert nicht gleichmäßig gegen f.

• In der Tat ist der Begriff der gleichmäßigen Konvergenz stärker als der der punktweisen Konvergenz,

$$(f_n \stackrel{\text{glm.}}{\to} f) \Rightarrow (f_n \stackrel{\text{pktw.}}{\to} f).$$
 (II.12)

Der Begriff der gleichmäßigen Konvergenz wird eingeführt, weil der (scheinbar natürliche) Begriff der punktweisen Konvergenz die Vertauschbarkeit des Limes $n \to \infty$ mit anderen Grenzprozessen nicht gewährleistet, wie wir an den folgenden Beispielen sehen.

• Seien $M = [0, 1] \subseteq \mathbb{R}$ und $f_n(x) := x^n$. Dann ist

$$\lim_{n \to \infty} f_n(x) = f(x) := \begin{cases} 0, & \text{falls } x \in [0, 1), \\ 1, & \text{falls } x = 1. \end{cases}$$
 (II.13)

Offensichtlich ist f unstetig bei x = 1, es ist also

$$\lim_{x \nearrow 1} \lim_{n \to \infty} f_n(x) = \lim_{x \nearrow 1} f(x) = f(1) = 1$$

$$\neq 1 = f(1) = 0 = \lim_{n \to \infty} f_n(1) = \lim_{n \to \infty} \lim_{x \nearrow 1} f_n(x),$$
(II.14)

d.h.

$$(f_n \text{ stetig}, f_n \stackrel{\text{pktw.}}{\to} f) \not\Rightarrow (f \text{ stetig}).$$
 (II.15)

Dies wird auch durch das in Glgn. (II.8)-(II.9) definierte Beispiel belegt.

• Seien $M = \mathbb{R}$ und $f_n(x) = n^{-\frac{1}{2}}\sin(nx), f'_n = n^{\frac{1}{2}}\cos(nx)$. Dann sind

$$f(x) := \lim_{n \to \infty} f_n(x) = 0, \quad f'(x) = 0,$$
 (II.16)

für alle $x \in \mathbb{R}$, d.h. die Nullfunktion $f = \lim_{n \to \infty} f_n$ ist punktweiser (und sogar gleichmäßiger) Limes der Funktionenfolge $(f_n)_{n=1}^{\infty}$, aber f'_n konvergiert nicht gegen f', denn

$$\lim_{n \to \infty} f'_n(0) = \lim_{n \to \infty} n^{\frac{1}{2}} = \infty \neq 0 = f'(0).$$
 (II.17)

Wir folgern, dass

$$\left(f_n \text{ differenzierbar}, f_n \stackrel{\text{pktw.}}{\to} f\right) \not\Rightarrow \left(f'_n \stackrel{\text{pktw.}}{\to} f'\right),$$
 (II.18)

und beobachten, dass auch bei gleichmäßiger Konvergenz diese Implikation i.A. falsch ist.

• Schließlich erinnern wir an das Beispiel der Dirichlet-Funktion $f_{\infty}:[0,1]\to\mathbb{R}$,

$$f_{\infty}(x) := \begin{cases} 1, & \text{falls } x \in \mathbb{Q} \cap [0, 1], \\ 0, & \text{falls } x \in [0, 1] \setminus \mathbb{Q}, \end{cases}$$
 (II.19)

Da f_{∞} punktweiser Limes einer R-integrablen Funktionenfolge $(f_M)_{n=1}^{\infty}$ und f_{∞} selbst nicht R-integrabel ist, konnten wir folgern, dass

$$\left(f_n \in \mathcal{R}[0,1], \ f_n \stackrel{\text{pktw.}}{\to} f\right) \not\Rightarrow \left(f \in \mathcal{R}[0,1]\right).$$
 (II.20)

Wir zeigen nun, dass die Konvergenz von $(f_n)_{n=1}^{\infty}$ bzw. von $(f'_n)_{n=1}^{\infty}$ in keinem der letzten drei Beispiele gleichmäßig ist:

(i) Für $0 < \varepsilon < \frac{1}{2}$ ist, mit $f_n(x) = x^n$ und f wie in (II.13),

$$|f_n(1-\varepsilon) - f(1-\varepsilon)| = |f_n(1-\varepsilon)| = (1-\varepsilon)^n$$

$$= \exp\left[n \cdot \ln(1-\varepsilon)\right] \ge \frac{1}{e} > 0,$$
(II.21)

vorausgesetzt, wir wählen $\varepsilon > 0$ so klein, dass

$$\left[n \cdot \ln(1 - \varepsilon) \ge -1 \right] \iff \left[\varepsilon \ge 1 - e^{-1/n} \right]. \tag{II.22}$$

Daher ist die Konvergenz von $f_n(x) = x^n$ nicht gleichmäßig.

- (ii) Zwar gilt im zweiten Beispiel mit $f_n(x) := n^{-1/2} \sin(nx)$, dass $f_n \stackrel{\text{glm}}{\to} f$, aber f'_n konvergiert nicht einmal punktweise, geschweige denn gleichmäßig.
- (iii) Offensichtlich ist im Beispiel der Dirichlet-Funktion, für alle $M \in \mathbb{N}$,

$$\sup_{x \in [0,1]} \left| f_{\infty}(x) - f_{M}(x) \right| \ge \left| \underbrace{f_{\infty}(a_{M+1})}_{=1} - \underbrace{f_{M}(a_{M+1})}_{=0} \right| = 1 > 0, \quad (II.23)$$

wobei $(a_m)_{m=1}^{\infty} \subseteq \mathbb{Q} \cap [0,1]$ eine Abzählung ist. Also auch hier gilt nur $f_M \stackrel{\text{pktw}}{\to} f_{\infty}$, aber nicht gleichmäßig.

Wie wir nun sehen werden, sind die für punktweise konvergente Folgen falschen Schlussfolgerungen (II.15), (II.18), und (II.20) für gleichmäßig konvergente Folgen durchaus richtig.

II.2. Gleichmäßige Konvergenz und Stetigkeit

Satz II.2. Seien (X, ρ) ein metrischer Raum, $M \subseteq X$ eine nichtleere Teilmenge, $x_0 \in \overline{M}$ und $(f_n)_{n=1}^{\infty} \in \mathcal{F}^{\mathbb{N}}$ eine gleichmäßig gegen $f \in \mathcal{F} := \{M \to \mathbb{K}\}$ konvergente Funktionenfolge auf M. Weiterhin existiere

$$\forall n \in \mathbb{N} : \quad a_n := \lim_{x \to x_0} f_n(x) . \tag{II.24}$$

Dann ist die Folge $(a_n)_{n=1}^{\infty} \in \mathbb{K}^{\mathbb{N}}$ konvergent, und es gilt

$$\lim_{n \to \infty} \{a_n\} =: a = \lim_{x \to x_0} f(x). \tag{II.25}$$

Mit anderen Worten,

$$\lim_{n \to \infty} \lim_{x \to x_0} f_n(x) = \lim_{n \to \infty} a_n = a = \lim_{x \to x_0} f(x) = \lim_{x \to x_0} \lim_{n \to \infty} f_n(x).$$
 (II.26)

Beweis. Seien $\varepsilon > 0$ und $n_0 \in \mathbb{N}$ so groß, dass für alle $n \geq n_0$

$$\sup_{x \in M} |f_n(x) - f(x)| \le \varepsilon. \tag{II.27}$$

Damit ist für alle $m \ge n \ge n_0$ auch

$$|a_m - a_n| = \lim_{x \to x_0} |f_m(x) - f_n(x)| \le \sup_{x \in M} |f_m(x) - f(x)| + \sup_{x \in M} |f(x) - f_n(x)| \le 2\varepsilon.$$
(II.28)

Also ist $(a_n)_{n=1}^{\infty} \in \mathbb{K}^{\mathbb{N}}$ konvergent, und im Limes $m \to \infty$ erhalten wir aus (II.28) außerdem

$$\forall n \ge n_0: \quad |a - a_n| \le 2\varepsilon, \tag{II.29}$$

wobei $a := \lim_{n \to \infty} a_n$. Wählen wir nun zu obigem $n_0 \in \mathbb{N}$ eine Zahl $\delta > 0$ so klein, dass

$$\forall x \in B_{\rho}(x_0, \delta) \cap M: \quad |f_{n_0}(x) - a_{n_0}| \le \varepsilon, \tag{II.30}$$

so folgt für alle $x \in B_{\rho}(x_0, \delta) \cap M$, dass

$$|f(x) - a| \le |f(x) - f_{n_0}(x)| + |f_{n_0}(x) - a_{n_0}| + |a_{n_0} - a| \le 5\varepsilon.$$
 (II.31)

Da $\varepsilon > 0$ beliebig klein gewählt werden kann, gilt somit $\lim_{x \to x_0} f(x) = a$.

Korollar II.3. Seien (M, ρ) ein metrischer Raum und $(f_n)_{n=1}^{\infty} \in \mathcal{F}_b^{\mathbb{N}}$ eine gleichmäßig gegen $f \in \mathcal{F} := \{M \to \mathbb{K}\}$ konvergente Funktionenfolge auf M. Seien weiterhin $x_0 \in M$ und f_n stetig in x_0 , für alle $n \in \mathbb{N}$. Dann ist auch f stetig in x_0 .

Beweis. Korollar II.3 folgt sofort aus Satz II.2 mit $a_n := f_n(x_0)$ und $a := f(x_0)$. (Man beachte, dass $x_0 \in M$ und nicht nur $x_0 \in \overline{M}$ vorausgesetzt wird.)

Vor der Formulierung eines weiteren Korollars aus Satz II.2 erinnern wir an an den Begriff eines Funktions(vektor)raums. Für jede nichtleere Menge $M \neq \emptyset$ -ob mit Metrik ausgestattet oder nicht- bildet die Familie $\mathcal{F} := \{M \to \mathbb{K}\}$ der auf M definierten Abbildungen mit Werten in \mathbb{K} bezüglich punktweiser Verknüpfungen einen \mathbb{K} -Vektorraum.

Wir beobachten, dass der Unterraum $\mathcal{F}_b \subseteq \mathcal{F}$,

$$\mathcal{F}_b = \{ f : M \to \mathbb{K} | f \text{ ist beschränkt} \} \subseteq \mathcal{F}$$
 (II.32)

der beschränkten Funktionen auf M bezüglich der **Supremumsnorm**

$$||f||_{\infty} = \sup_{x \in M} |f(x)| \tag{II.33}$$

ein Banach-Raum ist. Die gleichmäßige Konvergenz einer Funktionenfolge $(f_n)_{n=1}^{\infty} \in \mathcal{F}_b^{\mathbb{N}}$ gegen eine Grenzfunktion $f \in \mathcal{F}$ ist nämlich gleichwertig mit der Konvergenz von $(f_n)_{n=1}^{\infty} \in \mathcal{F}_b^{\mathbb{N}}$ im normierten Raum $(\mathcal{F}_b, \|\cdot\|_{\infty})$. Die Vollständigkeit von $(\mathcal{F}_b, \|\cdot\|_{\infty})$ bedeutet hier konkret, dass auch die Grenzfunktion f wieder beschränkt ist, $f \in \mathcal{F}_b$.

Die beschränkten Abbildungen in \mathcal{F}_b , die zusätzlich stetig in M sind, bilden wiederum einen Unterraum $C_b(M) \subseteq \mathcal{F}_b \subseteq \mathcal{F}$. Das nun folgende Korollar behauptet nun, dass auch dieser Unterraum ein Banach-Raum ist.

Korollar II.4. Ist (M, ρ) ein metrischer Raum, so ist der K-Vektorraum $C_b(M; \mathbb{K}) \subseteq \mathcal{F}_b$ der stetigen und beschränkten Funktionen $M \to \mathbb{K}$ ein bezüglich der Supremumsnorm (II.33) abgeschlossener Unterraum von \mathcal{F}_b und somit ein Banach(unter-)raum.

II.3. Das mathematische Pendel - ein Anwendungsbeispiel

Wir betrachten ein Fadenpendel der Länge $\ell > 0$ und Masse m > 0 der Kugel, die am Fadenende angebunden ist. Der Faden selbst sei masselos, Luft- und andere Reibungseffekte seien vernachlässigbar. Der Aufhängungspunkt des Pendels liege am Ursprung und der Auslenkungswinkel $\varphi \in \mathbb{R}$ werde von der Ruheposition (Pendel hängt unbeweglich nach unten) aus in mathematisch positiver Richtung (gegen den Uhrzeigersinn) gemessen. Die Bogenlänge der Auslenkung des Mittelpunkts der Kugel zum Zeitpunkt $t \in \mathbb{R}$ ist dann $L(t) = \ell \cdot \varphi(t)$ und die Kraft, die die Veränderung der Bogenlänge mit der Zeit bewirkt ist nach den Newtonschen Gesetzen durch

$$m \ddot{L}(t) = K[L(t)] = -m g \sin[\varphi(t)]$$
 (II.34)

gegeben, was auf die Differenzialgleichung

$$\ddot{\varphi}(t) = \frac{1}{\ell} \ddot{L}(t) = -\frac{g}{\ell} \sin[\varphi(t)] = -\kappa^2 \sin[\varphi(t)]$$
 (II.35)

führt, wobei $\kappa := \sqrt{g/\ell} > 0$ ist. Wir führen nun die (geeignet skalierte) Winkelgeschwindigkeit

$$\omega(t) := \kappa^{-1} \dot{\varphi}(t) \in \mathbb{R} \tag{II.36}$$

und den (Zeilen-)Vektor

$$\Theta(t) := (\varphi(t), \omega(t)) \in \mathbb{R}^2$$
 (II.37)

ein. Mit diesem Vektor lässt sich Differenzialgleichung (II.35) äquivalent umschreiben zu

$$\dot{\Theta}(t) = F[\Theta(t)], \qquad F[\varphi, \omega] := (\kappa \omega, -\kappa \sin[\varphi]).$$
 (II.38)

Ziel dieses Abschnitts ist es zu beweisen, dass nach Vorgabe eines Anfangswinkels φ_0 und einer Anfangswinkelgeschwindigkeit ω_0 , d.h. nach Vorgabe eines Anfangsvektors $\Theta_0 = (\varphi_0, \omega_0) \in \mathbb{R}^2$ es genau eine auf \mathbb{R}^+ stetige und auf \mathbb{R}^+ stetig differenzierbare Lösungsfunktion $\Theta : \mathbb{R}^+ \to \mathbb{R}^2$ so gibt, dass

$$\forall t > 0: \quad \dot{\Theta}(t) = F[\Theta(t)] \quad \text{und} \quad \Theta(0) = \Theta_0$$
 (II.39)

gelten. Aus dem Hauptsatz der Differenzial- und Integralrechnung folgern wir, dass die Existenz einer solchen Lösung der Differenzialgleichung (II.39) äquivalent ist zur Existenz einer auf \mathbb{R}_0^+ stetigen Lösungsfunktion $\Theta: \mathbb{R}_0^+ \to \mathbb{R}^2$, die der *Integralgleichung*:

$$\forall t \ge 0: \quad \Theta(t) = \Theta_0 + \int_0^t F[\Theta(s)] ds$$

$$:= \left(\varphi_0 + \int_0^t \kappa \omega(s) ds , \omega_0 + \int_0^t \kappa \sin[\varphi(s)] ds\right),$$
(II.40)

genügt.

Wir zeigen nun, dass es zu jeder Wahl von $\Theta_0 \in \mathbb{R}^2$ eine eindeutige Funktion $\Theta \in C(\mathbb{R}_0^+; \mathbb{R}^2)$ gibt, die (II.40) erfüllt. Dazu seien $\alpha > 0$ und

$$X_{\alpha} := \left\{ \Theta \in C(\mathbb{R}_0^+; \mathbb{R}^2) \, \middle| \, \left\| \Theta \right\|_{\alpha} < \infty \right\}, \tag{II.41}$$

wobei die Norm $\|\cdot\|_{\alpha}$ durch

$$\|\Theta\|_{\alpha} := \sup_{t \ge 0} \left\{ e^{-\alpha t} \|\Theta(t)\|_{\text{eukl}} \right\}$$
 (II.42)

definiert ist. Der Parameter α wird später geeignet festgelegt. Ähnlich wie Korollar II.3 und Korollar II.4 kann man beweisen, dass auch $(X_{\alpha}, \|\cdot\|_{\alpha})$ ein Banach-Raum ist; wir führen den Beweis hier nicht aus.

Für jedes $\Theta_0 \in \mathbb{R}^2$ und $\Theta \in X_\alpha$ definieren wir $\mathcal{G}[\Theta]$ durch

$$\forall t \ge 0: \quad \mathcal{G}[\Theta](t) := \Theta_0 + \int_0^t F[\Theta(s)] \, ds. \tag{II.43}$$

Wir beobachten, dass wegen $|\sin(\varphi)| \le |\varphi|$

$$\left\| \int_{0}^{t} F[\Theta(s)] ds \right\|_{\text{eukl}} \leq \int_{0}^{t} \left\| F[\Theta(s)] \right\|_{\text{eukl}} ds = \kappa \int_{0}^{t} \left(\omega(s)^{2} + \sin^{2}[\varphi(s)] \right)^{1/2} ds$$

$$\leq \kappa \int_{0}^{t} \left(\omega(s)^{2} + \varphi(s)^{2} \right)^{1/2} ds = \kappa \int_{0}^{t} e^{\alpha s} \left\{ e^{-\alpha s} \left\| \Theta(s) \right\|_{\text{eukl}} \right\} ds$$

$$\leq \kappa \left\| \Theta \right\|_{\alpha} \int_{0}^{t} e^{\alpha s} ds \leq \frac{e^{\alpha t} \kappa}{\alpha} \left\| \Theta \right\|_{\alpha}. \tag{II.44}$$

Also ist

$$\|\mathcal{G}[\Theta]\|_{\alpha} = \sup_{t \ge 0} \left\{ e^{-\alpha t} \|\mathcal{G}[\Theta](t)\|_{\text{eukl}} \right\} \le \sup_{t \ge 0} \left\{ e^{-\alpha t} \|\Theta_0\|_{\text{eukl}} + e^{-\alpha t} \|\int_0^t F[\Theta(s)] \, ds \|_{\text{eukl}} \right\}$$

$$\le \|\Theta_0\|_{\text{eukl}} + \frac{\kappa}{\alpha} \|\Theta\|_{\alpha}, \tag{II.45}$$

und insbesondere bildet \mathcal{G} den Banach-Raum X_{α} in sich ab,

$$\mathcal{G}: X_{\alpha} \to X_{\alpha}.$$
 (II.46)

Als Nächstes beobachten wir, dass für $\Theta_1, \Theta_2 \in X_\alpha$ wegen $|\sin(\varphi_2) - \sin(\varphi_1)| \le |\varphi_2 - \varphi_1|$

$$\left\| \int_{0}^{t} F[\Theta_{2}(s)] ds - \int_{0}^{t} F[\Theta_{1}(s)] ds \right\|_{\text{eukl}} \leq \int_{0}^{t} \left\| F[\Theta_{2}(s)] - F[\Theta_{1}(s)] \right\|_{\text{eukl}} ds$$

$$= \kappa \int_{0}^{t} \left(\left\{ \omega_{2}(s) - \omega_{1}(s) \right\}^{2} + \left\{ \sin[\varphi_{2}(s)] - \sin[\varphi_{1}(s)] \right\}^{2} \right)^{1/2} ds$$

$$\leq \kappa \int_{0}^{t} \left(\left\{ \omega_{2}(s) - \omega_{1}(s) \right\}^{2} + \left\{ \varphi_{2}(s) - \varphi_{1}(s) \right\}^{2} \right)^{1/2} ds$$

$$= \kappa \int_{0}^{t} e^{\alpha s} \left\{ e^{-\alpha s} \left\| \Theta_{2}(s) - \Theta_{1}(s) \right\|_{\text{eukl}} \right\} ds$$

$$\leq \kappa \left\| \Theta_{2} - \Theta_{1} \right\|_{\alpha} \int_{0}^{t} e^{\alpha s} ds \leq \frac{e^{\alpha t} \kappa}{\alpha} \left\| \Theta_{2} - \Theta_{1} \right\|_{\alpha}. \tag{II.47}$$

Deshalb ist

$$\|\mathcal{G}[\Theta_{2}] - \mathcal{G}[\Theta_{1}]\|_{\alpha} = \sup_{t \geq 0} \left\{ e^{-\alpha t} \|\mathcal{G}[\Theta_{2}](t) - \mathcal{G}[\Theta_{1}](t)\|_{\text{eukl}} \right\}$$

$$\leq \sup_{t \geq 0} \left\{ e^{-\alpha t} \| \int_{0}^{t} \left\{ F[\Theta_{2}(s)] - F[\Theta_{1}(s)] \right\} ds \|_{\alpha} \right\} \leq \frac{\kappa}{\alpha} \|\Theta_{2} - \Theta_{1}\|_{\alpha}.$$
(II.48)

Daher ist $\mathcal{G}: X_{\alpha} \to X_{\alpha}$ für jedes $\alpha > \kappa$ eine Kontraktion mit Kontraktionsrate κ/α . Nach Satz I.8, dem Banachschen Fixpunktsatz, besitzt \mathcal{G} einen eindeutigen Fixpunkt, $\Theta = \mathcal{G}[\Theta] \in X_{\alpha}$. Dies ist die gesuchte eindeutige Lösung von Integralgleichung II.40.

II.4. Gleichmäßige Konvergenz, Differentiation und Integration

Das Beispiel der Dirichlet-Funktion in Abschnitt II.1 zeigt, dass die Grenzfunktion einer punktweise konvergenten Folge Riemann-integrabler Funktionen im Allgemeinen nicht selbst wieder Riemann-integrabel ist. Dieser negative Befund wird durch folgenden Satz kontrastiert, das aussagt, dass die Grenzfunktion einer gleichmäßig konvergenten Folge Riemann-integrabler Funktionen selbst auch Riemann-integrabel ist.

Satz II.5. Seien $a, b \in \mathbb{R}$, a < b und $(f_n)_{n=1}^{\infty}$ eine gleichmäßig gegen f konvergente Funktionenfolge auf [a, b], so dass $f_n \in \mathcal{R}[a, b]$, für alle $n \in \mathbb{N}$. Dann ist auch $f \in \mathcal{R}[a, b]$, und es gilt

$$\lim_{n \to \infty} \int_a^b f_n(x) \, dx = \int_a^b f(x) \, dx. \tag{II.49}$$

Beweis. Siehe Ergänzung II.5.1.

Am Beispiel $f_n(x) = n^{-1/2} \sin(nx)$ auf \mathbb{R} , mit $n \in \mathbb{N}$, haben wir gesehen, dass Konvergenz der Funktionenfolge und Differenzierbarkeit der Folgeglieder nichts über die Differenzierbarkeit der Grenzfunktion impliziert – nicht einmal, wenn die Funktionenfolge gleichmäßig konvergiert wie in obigem Beispiel. Es kommt auf die gleichmäßige Konvergenz der *Ableitungen* an, wie der folgende Satz zeigt.

Satz II.6. Seien $a, b \in \mathbb{R}$, a < b, und $(f_n)_{n=1}^{\infty}$ eine Folge differenzierbarer Funktionen auf (a, b). Sei weiterhin $(f_n(x_0))_{n=1}^{\infty}$ konvergent, für ein gewisses $x_0 \in (a, b)$, und sei die Funktionenfolge $(f'_n)_{n=1}^{\infty}$ der Ableitungen auf (a, b) gleichmäßig konvergent. Dann gibt es eine differenzierbare Funktion $f:(a, b) \to \mathbb{R}$, so dass

$$f_n \stackrel{\text{glm.}}{\to} f \quad \text{und} \quad f'_n \stackrel{\text{glm.}}{\to} f'$$
 (II.50)

auf (a,b).

Beweis. Siehe Ergänzung II.5.2.

II.5. Ergänzungen

II.5.1. Beweis von Satz II.5

Sei $\varepsilon > 0$ vorgegeben. Wir wählen $n_0 \in \mathbb{N}$ so groß, dass

$$\forall n \ge n_0: \qquad \sup_{x \in [a,b]} \left\{ |f_n(x) - f(x)| \right\} \le \frac{\varepsilon}{2(b-a)}. \tag{II.51}$$

Da $f_n \in \mathcal{R}[a,b]$, können wir eine Partition $P = \{x_1, x_2, \dots, x_L\} \subseteq (a,b)$ finden, sodass mit $x_0 := a, x_{L+1} := b$ und

$$\overline{I}(f_n; P) = \sum_{j=0}^{L} (x_{j+1} - x_j) \cdot \sup \{ f_n(x) \mid x_j \le x \le x_{j+1} \}$$
 (II.52)

$$\underline{I}(f_n; P) = \sum_{j=0}^{L} (x_{j+1} - x_j) \cdot \inf \{ f_n(x) \mid x_j \le x \le x_{j+1} \}$$
 (II.53)

auch

$$\left| \overline{I}(f_n; P) - \int_a^b f_n(x) \, dx \right|, \, \left| \overline{I}(f_n; P) - \int_a^b f_n(x) \, dx \right| \leq \frac{\varepsilon}{2}$$
 (II.54)

gilt. Wegen

$$\sup_{x_{j} \le x \le x_{j+1}} \{ f(x) \} \le \sup_{x_{j} \le x \le x_{j+1}} \{ f_n(x) \} + \frac{\varepsilon}{2(b-a)}$$
 (II.55)

folgt

$$\overline{I}(f; P_0) \leq \overline{I}(f_n; P_0) + \sum_{j=0}^{L} \frac{\varepsilon (x_{j+1} - x_j)}{2(b-a)}$$

$$= \overline{I}(f_n; P_0) + \frac{\varepsilon}{2(b-a)} \leq \int_a^b f_n(x) dx + \varepsilon, \qquad (II.56)$$

für $n \geq n_0$. Analog erhält man

$$\underline{I}(f, P_0) \ge \int_a^b f_n(x) \, dx - \varepsilon \,, \tag{II.57}$$

für $n \geq n_0$. Daher ist

$$0 \leq \overline{\int_{a}^{b}} f(x) dx - \underline{\int_{a}^{b}} f(x) dx = \inf_{P \in \mathcal{P}[a,b]} \left\{ \overline{I}(f;P) \right\} - \sup_{P \in \mathcal{P}[a,b]} \left\{ \underline{I}(f;P) \right\}$$

$$\leq \overline{I}(f;P_{0}) - \underline{I}(f;P_{0}) \leq \left(\int_{a}^{b} f_{n}(x) dx + \varepsilon \right) - \left(\int_{a}^{b} f_{n}(x) dx - \varepsilon \right) = 2\varepsilon. \quad (II.58)$$

Da $\varepsilon > 0$ beliebig klein gewählt werden kann, folgt aus (II.49) die Gleichheit von Ober- und Unterintegral von f, also dass

$$f \in \mathcal{R}[a, b]. \tag{II.59}$$

Somit erhalten wir, für $n \geq n_0$,

$$\left| \int_{a}^{b} f_{n}(x) dx - \int_{a}^{b} f(x) dx \right| = \left| \int_{a}^{b} \{f_{n}(x) - f(x)\} dx \right|$$

$$\leq \int_{a}^{b} \left| f_{n}(x) - f(x) \right| dx \leq \frac{\varepsilon}{2(b-a)} \cdot \int_{a}^{b} dx = \frac{\varepsilon}{2},$$
(II.60)

was (II.49) impliziert.

II.5.2. Beweis von Satz II.6

Sei $\varepsilon > 0$, und wähle $n_0 \in \mathbb{N}$ so groß, dass, für alle $m \geq n \geq n_0$,

$$|f_m(x_0) - f_n(x_0)| \le \frac{\varepsilon}{2} \tag{II.61}$$

und
$$\sup_{t \in (a,b)} \left| f'_m(t) - f'_n(t) \right| \le \frac{\varepsilon}{2(b-a)}. \tag{II.62}$$

Wir setzen nun $F_{m,n}(x) := f_m(x) - f_n(x)$. Nach dem Mittelwertsatz der Differentialrechnung gibt es zu jedem $x \in (a,b)$ eine Zwischenstelle $y \in (x,x_0]$ (falls $x \leq x_0$) bzw. $y \in [x_0,x)$ (falls $x \geq x_0$), so dass

$$F_{m,n}(x) = F_{m,n}(x_0) + (x - x_0) \cdot F'_{m,n}(y).$$
 (II.63)

Damit erhalten wir, für alle $x \in (a, b)$ und $m \ge n \ge n_0$,

$$|f_m(x) - f_n(x)| \leq |f_m(x_0) - f_n(x_0)| + |x - x_0| \cdot |f'_m(y) - f'_n(y)|$$

$$\leq \frac{\varepsilon}{2} + \frac{|x - x_0|}{b - a} \cdot \frac{\varepsilon}{2} \leq \varepsilon.$$
(II.64)

also ist $(f_n)_{n=1}^{\infty}$ gleichmäßig konvergent auf (a,b),

$$f_n \stackrel{\text{glm.}}{\to} f := \lim_{n \to \infty} f_n$$
. (II.65)

Es bleibt zu zeigen, dass f differenzierbar auf (a,b) ist und dass $f'=g:=\lim_{n\to\infty}f'_n$. Dazu fixieren wir $x\in(a,b)$ und betrachten die Funktionenfolge $(\phi_n)_{n=1}^{\infty}$ auf $(a,b)\setminus\{x\}$ und die Funktion $\phi:(a,b)\setminus\{x\}\to\mathbb{R}$, definiert durch

$$\phi_n(t) := \frac{f_n(t) - f_n(x)}{t - x}, \qquad \phi(t) := \frac{f(t) - f(x)}{t - x}.$$
 (II.66)

Nun stellen wir fest, dass

$$\forall n \in \mathbb{N}: \quad \lim_{t \to x} \phi_n(t) = f'_n(x). \tag{II.67}$$

Weiterhin ist, für $m \ge n \ge n_0$ und $t \in (a, b) \setminus \{x\}$,

$$|\phi_{m}(t) - \phi_{n}(t)| = \frac{|F_{m,n}(t) - F_{m,n}(x)|}{|t - x|} = |F'_{m,n}(y')|$$

$$= |f'_{m}(y') - f'_{n}(y')| \le \frac{\varepsilon}{2(b - a)},$$
(II.68)

für eine geeignete Zwischenstelle y' zwischen t und x, abermals nach dem Mittelwertsatz der Differenzialrechung. Daher konvergiert $(\phi_n)_{n=1}^{\infty}$ gleichmäßig auf $(a,b) \setminus \{x\}$. Da f_n gegen f konvergiert, folgt

$$\phi_n \stackrel{\text{glm.}}{\to} \phi \quad \text{auf} \quad (a, b) \setminus \{x\} \,.$$
 (II.69)

Wir wenden nun Satz II.2 mit

$$f_n := \phi_n, \quad f := \phi, \quad M := (a, b) \setminus \{x\}, \quad \vec{x}_0 := x, \quad A_n := f'_n(x)$$
 (II.70)

an und folgern, dass

$$f'(x) = \lim_{t \to x} \phi(t) = \lim_{n \to \infty} A_n = \lim_{n \to \infty} f'_n(x)$$
 (II.71)

existiert und somit die gewünschte Gleichung $f' = \lim_{n \to \infty} f'_n$ gilt.