Trinomials

Investigate TRINOMIALS

 $f = z^{s+t} + pz^t + q, \quad p \in \mathbb{C}, q \in \mathbb{C}^*, \ s, t \in \mathbb{N}^*, \operatorname{gcd}(s, t) = 1.$

KEY QUESTION: How are the coefficients *p*, *q* related to the norms of roots?

- ⇒ Classical late 19th / early 20th century problem. E.g., Nekrassoff: "Ueber trinomische Gleichungen", 1883.
- \Rightarrow Algebraically solved by P. Bohl in "Zur Theorie der trinomischen Gleichungen" in 1908.
- ⇒ Geometrical / topological properties of coefficient space of trinomials are UNKNOWN.

Hypotrochoids

For R > r, a HYPOTROCHOID with parameters $R, r \in \mathbb{Q}_{>0}, d \in \mathbb{R}_{>0}$ is the parametric curve in $\mathbb{R}^2 \cong \mathbb{C}$ given by

 $(R-r) \cdot e^{i \cdot \phi} + d \cdot e^{i \cdot \left(\frac{r-R}{r}\right) \cdot \phi}, \quad \phi \in [0, 2\pi).$

Geometrically, it is the trajectory of some fixed point with distance d to the center of a circle with radius r rolling (from the interior) on a circle with radius R.

The Geometry of Norms of Trinomials

Theorem (Theobald, dW.). Let $f = z^{s+t} + pz^t + q$ be a trinomial with $p \in \mathbb{C}$ and $q \in \mathbb{C}^*$.

Thorsten Theobald

theobald@math.uni-frankfurt.de

http://www.math.uni-frankfurt.de/~theobald/

- 1. f has a root of norm v if and only if the coefficient p lies on a particular hypotrochoid depending on s, t, q and v.
- 2. There exist two roots of f with identical norm if and only if p is a singular point of the corresponding hupotrochoid. In detail:
 - (a) f has two distinct roots with identical norm v if and only if p is located on a real double point of the hypotrochoid.
 - (b) f has a root of multiplicity 2 with norm v if and only if the corresponding hypotrochoid is a hypocycloid and p is a cusp of it, and
 - (c) f has more than two roots with norm v if and only if p = 0 if and only if the hypotrochoid is a rhodonea curve with a multiple point of multiplicity s + t at the origin.

Example. Let $f = z^8 + pz^3 + \frac{1}{2}$, $g = z^7 + pz^2 + \frac{5}{2}$, $h = z^5 + pz + 1$. Then f, g, h has a root of norm 1 if and only if $p \in \mathbb{C}$ is located on the hypotrochoids with parameters (R, r, d) = (8/3, 5/3, 1/2), (7/2, 5/2, 5/2), (5, 4, 1).

UNIVERSITÄT

FRANKFURT AM MAIN

 \Rightarrow In the trinomial case a computation shows that f^v vanishes if and only if:

$$p \in \left\{ e^{i \cdot 2\pi \arg(q) \cdot s} \cdot \left((R-r) \cdot e^{i \cdot \phi} + d \cdot e^{i \cdot \left(\frac{r-R}{r}\right) \cdot \phi} \right) : \phi \in [0, 2\pi) \right\}$$

for suitable R, r, d depending on s, t, q, v. This is the parametric description of a hypotrochoid.

 \Rightarrow Bohl's results imply: if $p, q \neq 0$, then at most two roots have the same norms. Singularities correspond to: For a particular choice of p one finds two arguments ϕ_1, ϕ_2 for norm v such that $f(v \cdot e^{i\phi_1}) = f(v \cdot e^{i\phi_2}) = 0$.

 \Rightarrow A Laurent polynomial f has a root of norm v if and only if $\log |v| =$

 \Rightarrow The amoeba $\mathcal{A}(f)$ and Log $|\cdot|$ come with a fiber bundle $(S^1)^n \to (\mathbb{C}^*)^n \to$

 $f^{v}: (S^{1})^{n} \to \mathbb{C}$ depending on the coefficients p, q of f.

 $(\log |v_1|, \ldots, \log |v_n|)$ is contained in the AMOEBA $\mathcal{A}(f) := \log |\mathcal{V}(f)|$.

 \mathbb{R}^n , induced by holomorphic logarithm. This induces a fiber function

Corollary (Sommerville, 1920). Let $\gamma : [0, 2\pi) \to \mathbb{C}, \ \phi \mapsto v^s e^{i \cdot s\phi} + |q|v^{-t} e^{i \cdot (\arg(q) - t\phi)}$ be a hypotrochoid. Then the arguments of all singularities of γ are contained in $\{(\operatorname{sarg}(q) + k \cdot \pi)/(s+t) : k = 1, 2, \dots, s+t\}$.

The Topology of Norms of Trinomials

Let T_A denote the space of trinomials with support $A := \{0, t, s+t\}$. For $f \in T_A$ let $v_1^f \leq \cdots \leq v_{s+t}^f \in \mathbb{R}_{>0}$ be the norms of roots of trinomials and $U_i^A := \{f \in \mathbb{R}_{>0} \}$ $T_A : v_i^f \neq v_{i+1}^f \}.$

QUESTION: Is every set U_i^A connected or simply connected in T_A ?

- **Example.** Let $f = z^3 + 1.5 \cdot e^{i \cdot \arg(p)} z + e^{i \cdot \arg(q)}$.
- AIM: Construct a path γ in T_A from $(p_1,q_1) = (1.5 \cdot e^{i \cdot \pi/2}, 1)$ to $(p_2,q_2) =$ $(1.5 \cdot e^{-i \cdot \pi/6}, 1)$ such that $\gamma \in U_1^A$
- $\Rightarrow \ \ Possible \ along \ \gamma: [0,1] \rightarrow T_A, k \mapsto (1.5 \cdot e^{i(1/4 + 2k/3) \cdot 2\pi}, e^{i \cdot 2k\pi}).$

TEXAS A&M

Figure on the right: The situation in T_A restricted to |q| = 1.

Sketch of a Proof for the Geometry of Norms of Trinomials $\mathbf{w} \in \mathcal{A}(f) \Leftrightarrow \mathcal{V}(f) \cap \mathbb{F}_{\mathbf{w}} \neq \emptyset$ Log | ·

see ArXiv 1411.6552

dewolff@math.tamu.edu

Theorem (Theobald, dW.). For all $j \neq t$ the sets $U_i^A \subset T_A$ and

their complements can be deformation retracted to a K(s+t,s) torus

knot. In particular, they are connected, but not simply connected.

Timo de Wolff