Intersections of Amoebas

Definition of Amoebas

Let $I \subseteq \mathbb{C}\left[\mathbf{z}^{ \pm 1}\right]$ with variety $\mathcal{V}(I) \subset\left(\mathbb{C}^{*}\right)^{n}$. Define:

$$
\log |\cdot|:\left(\mathbb{C}^{*}\right)^{n} \rightarrow \mathbb{R}^{n}, \quad\left(\left|z_{1}\right| \cdot e^{i \cdot \phi_{1}}, \ldots,\left|z_{n}\right| \cdot e^{i \cdot \phi_{n}}\right) \mapsto\left(\log \left|z_{1}\right|, \ldots, \log \left|z_{n}\right|\right)
$$

The amoebs $\mathcal{A}(I)$ of I is the image of $\mathcal{V}(I)$ under the $\log |\cdot|$-map

- $\mathcal{A}(f):=\mathcal{A}(\langle f\rangle)$ is a closed set with convex components $E_{\alpha(j)}(f)$ of the complement
- Each component $E_{\alpha(j)}(f)$ of the complement of $\mathcal{A}(f)$ corresponds to a unique lattice point $\alpha(j)$ in $\operatorname{New}(f)$ via the ORDER MAP.

$$
f=z_{1}^{2} z_{2}+z_{1} z_{2}^{2}-4 \cdot z_{1} z_{2}+1
$$

Amoebas have countless applications in subjects like complex analysis, real algebraic geometry, dimers and crystal shapes, the geometry of polynomials, and tropical geometry.

Intersections of Amoebas

FACTS:
Theorem (Purbhoo '08). Let $I \subseteq \mathbb{C}\left[\mathbf{z}^{ \pm 1}\right]$ be an ideal. Then

- Amoebas of hypersurfaces have been studied intensively during the last years.
$\mathcal{A}(I)=\bigcap_{f \in I} \mathcal{A}(f)$.
- We know almost nothing about amoebas for the nonhypersurface case

KEY IDEA: Investigate intersections of amoebas to gain information about the non-hypersurface case

Observation: Intersections of amoebas behave like polytopes.

Theorem (Juhnke-Kubitzke, dW.). Let $\mathcal{F}:=\left\{f_{1}, \ldots f_{n}\right\} \subseteq \mathbb{C}\left[\mathbf{z}^{ \pm 1}\right]$ be a generic collection of Laurent polynomials. Let K be a connected component of $\mathcal{I}(\mathcal{F}):=\bigcap_{j=1}^{n} \mathcal{A}\left(f_{j}\right)$. Then:

[^0]3. P_{K} is simple

The Extension of the Order Map

Observation: The order map can be extended to intersections of amoebas:
Definition. Let $\mathcal{F}:=\left\{f_{1}, \ldots, f_{n}\right\} \subseteq \mathbb{C}\left[\mathbf{z}^{ \pm 1}\right]$ be a generic collection of Laurent polynomials. Let $V(\mathcal{F})$ be the vertices of $\mathcal{I}(\mathcal{F})$. We define the Generalized order map ord \mathcal{F} as

$$
\operatorname{ord}_{\mathcal{F}}: V(\mathcal{F}) \rightarrow \mathbb{Z}^{n \times n} \quad \mathbf{v} \mapsto\left(\operatorname{ord}_{1}(\mathbf{v}), \cdots, \operatorname{ord}_{n}(\mathbf{v})\right)^{T}
$$

Theorem (Juhnke-Kubitzke, dW.). Let $\mathcal{F}:=\left\{f_{1}, \ldots, f_{n}\right\} \subseteq \mathbb{C}\left[\mathbf{z}^{ \pm 1}\right]$ be a generic collection of Laurent polynomials. Let K be a connected component of $\mathcal{I}(\mathcal{F})$ and let P_{K} be the corresponding intersection polytope. Then:

1. $\operatorname{ord}_{\mathcal{F}}$ restricted to $V\left(P_{K}\right)$ is injective.
2. $\operatorname{ord}_{\mathcal{F}}$ restricted to the vertices of $\operatorname{conv}(V(\mathcal{F}))$ is injective

KEY QUESTION: How many connectivity components can $\mathcal{I}(\mathcal{F})$ have?

The Classical Bernstein Theorem

Theorem (Bernstein Theorem '75). Let

- $A_{1}, \ldots, A_{n} \subset \mathbb{Z}^{n}$ be finite sets such that their union generates \mathbb{Z}^{n} as an affine lattice.
- $P_{i} \subseteq \mathbb{R}^{n}$ be the convex hull of A_{i}, and
- $\mathbb{C}^{A_{i}}$ be the space of Laurent polynomials in z_{1}, \ldots, z_{n} with support set A_{i}

Then there exists a dense Zariski open subset $U \subseteq \mathbb{C}^{A_{1}} \times \cdots \times \mathbb{C}^{A_{n}}$ with the following property: For any $\left(f_{1}, \ldots, f_{n}\right) \in U$, the number of solutions of the system of equations

$$
f_{1}(\mathbf{z})=\cdots=f_{n}(\mathbf{z})=0
$$

in $\left(\mathbb{C}^{*}\right)^{n}$ equals the mixed volume $\operatorname{MV}\left(P_{1}, \ldots, P_{n}\right)$.

Main Result: The Amoeba Bernstein Theorem
Theorem (Juhnke-Kubitzke, dW.). Let $\mathcal{F}=\left\{f_{1}, \ldots, f_{n}\right\} \subseteq \mathbb{C}\left[\mathbf{z}^{ \pm 1}\right]$ be a generic collection of Laurent polynomials. The number of connected components of the intersection $\mathcal{I}(\mathcal{F})$ is bounded from above by the mixed volume $\operatorname{MV}\left(\operatorname{New}\left(f_{1}\right), \ldots, \operatorname{New}\left(f_{n}\right)\right)$ OSNABRUCK

[^0]: 1. K admits a face lattice.
 2. Let $V(K)$ be the vertices of K. The intersection polytope $P_{K}:=\operatorname{conv}(V(K))$ equals $\operatorname{conv}(K)$.
