
Intersections of Amoebas

Definition of Amoebas

Let I ⊆ C
[

z
±1

]

with variety V(I) ⊂ (C∗)n. Define:

Log | · | :
(

C
∗)n → R

n
, (|z1| · e

i·φ1 , . . . , |zn| · e
i·φn ) 7→ (log |z1|, . . . , log |zn|)

The amoeba A(I) of I is the image of V(I) under the Log | · |-map.

• A(f) := A(〈f〉) is a closed set with convex components Eα(j)(f) of the complement.

• Each component Eα(j)(f) of the complement of A(f) corresponds to a unique lattice point α(j) in New(f) via
the order map.
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Amoebas have countless applications in subjects like complex analysis, real algebraic geometry, dimers and crystal shapes,
the geometry of polynomials, and tropical geometry.

Intersections of Amoebas

FACTS:

• Amoebas of hypersurfaces have been studied intensively
during the last years.

• We know almost nothing about amoebas for the non-
hypersurface case.

Theorem (Purbhoo ’08). Let I ⊆ C[z±1] be an ideal. Then

A(I) =
⋂

f∈I

A(f).

KEY IDEA: Investigate intersections of amoebas to gain information about the non-hypersurface case.

Observation: Intersections of amoebas behave like polytopes.

Theorem (Juhnke-Kubitzke, dW.). Let F := {f1, . . . fn} ⊆ C[z±1] be a generic collection of Laurent polynomials. Let
K be a connected component of I(F) :=

⋂n
j=1 A(fj). Then:

1. K admits a face lattice.

2. Let V (K) be the vertices of K. The intersection polytope PK := conv(V (K)) equals conv(K).

3. PK is simple.

The Extension of the Order Map

Observation: The order map can be extended to intersections of amoebas:

Definition. Let F := {f1, . . . , fn} ⊆ C[z±1] be a generic collection of Laurent polynomials. Let V (F) be the vertices of
I(F). We define the generalized order map ordF as

ordF : V (F) → Z
n×n

v 7→ (ord1(v), · · · , ordn(v))
T

Theorem (Juhnke-Kubitzke, dW.). Let F := {f1, . . . , fn} ⊆ C[z±1] be a generic collection of Laurent polynomials. Let K
be a connected component of I(F) and let PK be the corresponding intersection polytope. Then:

1. ordF restricted to V (PK) is injective.

2. ordF restricted to the vertices of conv(V (F)) is injective.

KEY QUESTION: How many connectivity components can I(F) have?

The Classical Bernstein Theorem

Theorem (Bernstein Theorem ’75). Let

• A1, . . . , An ⊂ Z
n be finite sets such that their union generates Z

n as an affine lattice.

• Pi ⊆ R
n be the convex hull of Ai, and

• C
Ai be the space of Laurent polynomials in z1, . . . , zn with support set Ai.

Then there exists a dense Zariski open subset U ⊆ C
A1 × · · · × C

An with the following property:

For any (f1, . . . , fn) ∈ U , the number of solutions of the system of equations

f1(z) = · · · = fn(z) = 0

in (C∗)n equals the mixed volume MV(P1, . . . , Pn).

Geometric interpretation: Mixed subdivisions and mixed cells allow to compute mixed volumes.

Main Result: The Amoeba Bernstein Theorem

Theorem (Juhnke-Kubitzke, dW.). Let F = {f1, . . . , fn} ⊆ C[z±1] be a generic collection of Laurent polynomi-
als. The number of connected components of the intersection I(F) is bounded from above by the mixed volume
MV(New(f1), . . . ,New(fn)).

Martina Juhnke-Kubitzke

juhnke-kubitzke@uni-osnabrueck.de

tina.juhnix.net/

Timo de Wolff

dewolff@math.tamu.edu

http://www.math.tamu.edu/~dewolff/

see ArXiv

number

1510.08416.


