Definition of Amoebas

Let $I \subseteq \mathbb{C} \left[\mathbf{z}^{\pm 1} \right]$ with variety $\mathcal{V}(I) \subset (\mathbb{C}^*)^n$. Define:

$$\operatorname{Log} |\cdot| : (\mathbb{C}^*)^n \to \mathbb{R}^n, \quad (|z_1| \cdot e^{i \cdot \phi_1}, \dots, |z_n| \cdot e^{i \cdot \phi_n}) \mapsto (\log |z_1|, \dots, \log |z_n|)$$

The AMOEBA $\mathcal{A}(I)$ of I is the image of $\mathcal{V}(I)$ under the $\log|\cdot|$ -map.

- $\mathcal{A}(f) := \mathcal{A}(\langle f \rangle)$ is a closed set with convex components $E_{\alpha(j)}(f)$ of the complement.
- Each component $E_{\alpha(j)}(f)$ of the complement of $\mathcal{A}(f)$ corresponds to a unique lattice point $\alpha(j)$ in New(f) via the ORDER MAP.

 $f = z_1^3 z_2^3 - 9z_1^2 z_2^3 + z_1 z_2^5 - 4z_1 z_2^4 - 4z_1 z_2 + 1$

Amoebas have countless applications in subjects like complex analysis, real algebraic geometry, dimers and crystal shapes, the geometry of polynomials, and tropical geometry.

FACTS:

Intersections of Amoebas

Theorem (Purbhoo '08). Let $I \subseteq \mathbb{C}[\mathbf{z}^{\pm 1}]$ be an ideal. Then

- Amoebas of hypersurfaces have been studied intensively during the last years.
- We know almost nothing about amoebas for the nonhypersurface case.

KEY IDEA: Investigate intersections of amoebas to gain information about the non-hypersurface case.

Observation: Intersections of amoebas behave like polytopes.

Theorem (Juhnke-Kubitzke, dW.). Let $\mathcal{F} := \{f_1, \ldots, f_n\} \subseteq \mathbb{C}[\mathbf{z}^{\pm 1}]$ be a generic collection of Laurent polynomials. Let K be a connected component of $\mathcal{I}(\mathcal{F}) := \bigcap_{j=1}^n \mathcal{A}(f_j)$. Then:

- 1. K admits a face lattice.
- 2. Let V(K) be the vertices of K. The intersection polytope $P_K := \operatorname{conv}(V(K))$ equals $\operatorname{conv}(K)$.
- 3. P_K is simple.

Martina Juhnke-Kubitzke juhnke-kubitzke@uni-osnabrueck.de tina.juhnix.net/

The Extension of the Order Map

Observation: The order map can be extended to intersections of amoebas:

Definition. Let $\mathcal{F} := \{f_1, \ldots, f_n\} \subseteq \mathbb{C}[\mathbf{z}^{\pm 1}]$ be a generic collection of Laurent polynomials. Let $V(\mathcal{F})$ be the vertices of $\mathcal{I}(\mathcal{F})$. We define the GENERALIZED ORDER MAP $\operatorname{ord}_{\mathcal{F}}$ as

$$\operatorname{ord}_{\mathcal{F}}: V(\mathcal{F}) \to \mathbb{Z}^{n \times n} \qquad \mathbf{v} \mapsto (\operatorname{ord}_1(\mathbf{v}), \cdots, \operatorname{ord}_n(\mathbf{v}))^T$$

Theorem (Juhnke-Kubitzke, dW.). Let $\mathcal{F} := \{f_1, \ldots, f_n\} \subseteq \mathbb{C}[\mathbf{z}^{\pm 1}]$ be a generic collection of Laurent polynomials. Let K be a connected component of $\mathcal{I}(\mathcal{F})$ and let P_K be the corresponding intersection polytope. Then:

1. $\operatorname{ord}_{\mathcal{F}}$ restricted to $V(P_K)$ is injective.

2. $\operatorname{ord}_{\mathcal{F}}$ restricted to the vertices of $\operatorname{conv}(V(\mathcal{F}))$ is injective.

KEY QUESTION: How many connectivity components can $\mathcal{I}(\mathcal{F})$ have?

The Classical Bernstein Theorem

Theorem (Bernstein Theorem '75). Let

- $A_1, \ldots, A_n \subset \mathbb{Z}^n$ be finite sets such that their union generates \mathbb{Z}^n as an affine lattice.
- $P_i \subseteq \mathbb{R}^n$ be the convex hull of A_i , and
- \mathbb{C}^{A_i} be the space of Laurent polynomials in z_1, \ldots, z_n with support set A_i .

Then there exists a dense Zariski open subset $U \subseteq \mathbb{C}^{A_1} \times \cdots \times \mathbb{C}^{A_n}$ with the following property: For any $(f_1, \ldots, f_n) \in U$, the number of solutions of the system of equations

$$f_1(\mathbf{z}) = \cdots = f_n(\mathbf{z}) = 0$$

in $(\mathbb{C}^*)^n$ equals the mixed volume $MV(P_1, \ldots, P_n)$.

Geometric interpretation: Mixed subdivisions and mixed cells allow to compute mixed volumes.

Main Result: The Amoeba Bernstein Theorem

Theorem (Juhnke-Kubitzke, dW.). Let $\mathcal{F} = \{f_1, \ldots, f_n\} \subseteq \mathbb{C}[\mathbf{z}^{\pm 1}]$ be a generic collection of Laurent polynomials. The number of connected components of the intersection $\mathcal{I}(\mathcal{F})$ is bounded from above by the mixed volume $MV(New(f_1), \ldots, New(f_n))$.

Timo de Wolff dewolff@math.tamu.edu http://www.math.tamu.edu/~dewolff/ see ArXiv number 1510.08416.

