Approximation of Amoebas and Coamoebas by Sums of Squares

Definition: SDPs

Definition. Let C, A_{1}, \ldots, A_{m} be real, symmetric $n \times n$ matrices and $b_{1}, \ldots, b_{m} \in \mathbb{R}^{m}$. A Semidefinite optimization problem (SDP) is given by

$$
\begin{aligned}
& \inf \operatorname{Tr}(X, C) \text { s.t. } \\
& \operatorname{Tr}\left(A_{i}, X\right)=b_{i} \text { for } 1 \leq i \leq m
\end{aligned}
$$

$$
X \succeq 0
$$

where $X \succeq 0$ means that X is positive semidefinite.
Proposition. Let $g \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right], \operatorname{tdeg}(g)=2 d$ and Y the vector of all monomials in x_{1}, \ldots, x_{n} with degree $\leq d . g$ is sum of squares (SOS) iff there exists a matrix Q with $Q \succeq 0$ and

$$
g=Q^{T} Y Q
$$

Real Nullstellensatz

Proposition. For polynomials $g_{1}, \ldots, g_{r} \in \mathbb{R}[\mathbf{X}]$ and $I:=\left\langle g_{1}, \ldots, g_{r}\right\rangle \subset \mathbb{R}[\mathbf{X}]$ the following statements are equivalent:

- The real variety $\mathcal{V}_{\mathbb{R}}(I)$ is empty.
- There exist a polynomial $G \in I$ and a sum of squares polynomial H with

$$
G+H+1=0 .
$$

Amoeba Membership via Real Nullstellensatz

Let $f_{k}=\sum_{j=1}^{d_{k}} b_{k, j} \cdot \mathbf{z}^{\alpha(k, j)} \in \mathbb{C}[\mathbf{Z}]$ with $\alpha(k, 1), \ldots, \alpha\left(k, d_{k}\right) \in \mathbb{N}_{0}^{n}$ spanning \mathbb{R}^{n}. For any $\lambda \in(0, \infty)^{n}$ set $\mu_{k, j}:=\lambda^{\alpha(k, j)}=\lambda_{1}^{\alpha(k, j)_{1}} \cdots \lambda_{n}^{\alpha(k, j)_{n}}, \quad 1 \leq j \leq d$
Define the monomials $m_{k, j}:=\mathbf{z}^{\alpha(k, j)}=z_{1}^{\alpha(k, j)_{1}} \cdots z_{n}^{\alpha(k, j)_{n}}$
Write every $f(\mathbf{z})$ as $f(\mathbf{x}+i \cdot \mathbf{y})=f^{\mathrm{re}}(\mathbf{x}, \mathbf{y})+i \cdot f^{\mathrm{im}}(\mathbf{x}, \mathbf{y})$ with $f^{\mathrm{re}}, f^{\mathrm{im}} \in \mathbb{R}\left[X_{1}, \ldots, X_{n}, Y_{1}, \ldots, Y_{n}\right]$. Let $I:=\left\langle f_{1}, \ldots, f_{r}\right\rangle$, and $I^{\prime}, I^{*} \subset \mathbb{R}[\mathbf{X}, \mathbf{Y}]$ be generated by

$$
\begin{aligned}
I^{\prime} & :=\left\{f_{j}^{\mathrm{re}}, f_{j}^{\mathrm{im}}: 1 \leq j \leq r\right\} \cup\left\{x_{k}^{2}+y_{k}^{2}=\lambda_{j}^{2}: 1 \leq j \leq n\right\} \\
I^{*} & :=\left\{f_{j}^{\mathrm{re}}, f_{j}^{\mathrm{im}}: 1 \leq j \leq r\right\} \cup \bigcup_{k=1}^{r}\left\{\left(m_{k, j}^{\mathrm{re}}\right)^{2}+\left(m_{k, j}^{\mathrm{im}}\right)^{2}-\mu_{k, j}^{2}: 1 \leq j \leq d_{k}\right\}
\end{aligned}
$$

The unlog amoeba is defined as $\mathcal{U}(I):=\left\{\left(\left|z_{1}\right|, \ldots,\left|z_{n}\right|: \mathbf{z} \in \mathcal{V}(I)\right\}\right.$. Polynomial based formulation

Monomial based formulation
Either a point $\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ is contained in $\mathcal{U}(I)$ or there Either a point $\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ is contained in $\mathcal{U}(I)$, or there exist a $G \in I^{\prime}$ and and $\operatorname{SOS} H \in \mathbb{R}[\mathbf{X}, \mathbf{Y}]$ with
$G+H+1=0$. exist polynomials $G \in I^{*}$ and an $\operatorname{SOS} H \in \mathbb{R}[\mathbf{X}, \mathbf{Y}]$ with

Coamoeba Membership via Real Nullstellensatz

We have $0 \in \operatorname{co\mathcal {A}}(I) \Longleftrightarrow\left\{z=x+i y \in\left(\mathbb{C}^{*}\right)^{n}: z \in \mathcal{V}(I)\right.$ and $\left.x_{k} \geq 0, y_{k}=0 \forall k\right\} \neq \emptyset$. Replace " $x_{k} \geq 0$ " by considering x_{k}^{2} in arguments of f_{1}, \ldots, f_{r}. Then $0 \in \operatorname{complement}(c o \overline{\mathcal{A}}(I))$ iff there exists a polynomial identity

$$
\sum_{i=1}^{r} c_{i} \cdot f_{i}\left(\mathbf{x}^{2}, \mathbf{y}\right)^{\mathrm{re}}+\sum_{i=1}^{r} c_{i}^{\prime} \cdot f_{i}\left(\mathbf{x}^{2}, \mathbf{y}\right)^{\mathrm{im}}+\sum_{j=1}^{n} d_{j} \cdot y_{j}+H+1=0
$$

with $c_{i}, c_{i}^{\prime}, d_{j} \in \mathbb{R}[\mathbf{X}, \mathbf{Y}]$ and an $\operatorname{SOS} H$.

Amoeba and coamoeba of
$f:=z_{1}^{2} z_{2}+z_{1} z_{2}^{2}-4 \cdot z_{1} z_{2}+1$

Lopsidedness
Let $g \in \mathbb{C}[\mathbf{Z}]$ with $g(z)=\sum_{i=1}^{d} m_{i}(z)$. For $w \in \mathbb{R}^{n}$ define

$$
g\{w\}:=\left(\left|m_{1}\left(\log ^{-1}(w)\right)\right|, \ldots,\left|m_{d}\left(\log ^{-1}(w)\right)\right|\right)
$$

A list is called lopsided if one of the numbers is greater than the sum of al the others. Define

$$
\mathcal{L A}(g):=\left\{w \in \mathbb{R}^{n}: g\{w\} \text { is not lopsided }\right\}
$$

Note that $\mathcal{A}(g) \subseteq \mathcal{L} \mathcal{A}(g)$. Define

$$
\tilde{g}_{k}(z):=\prod_{j_{1}=0}^{k-1} \cdots \prod_{j_{d}=0}^{k-1} g\left(e^{2 \pi i j_{1} / k} z_{1}, \ldots, e^{2 \pi i j_{d} / k} z_{n}\right)
$$

Theorem (Purbhoo 08). For $k \rightarrow \infty$ the family $\mathcal{L} \mathcal{A}\left(\tilde{g}_{k}\right)$ converges uni formly to $\mathcal{A}(g)$. $\mathcal{A}(g)$ can be approximated by $\mathcal{L} \mathcal{A}\left(\tilde{g}_{k}\right)$ within an $\varepsilon>0$ if k is greater than some $N_{(\varepsilon, g)} \in \mathbb{N}$.

Main Results: Degree Bounds

Theorem. If $w=\mathbf{1} \in \operatorname{complement}(\mathcal{U}(f))$ with $f\{w\}$ lopsided, then there exists a certificate $\sum_{i=1}^{d+2} s_{i} g_{i}+H+1=0$ of total degree $2 \cdot \operatorname{tdeg}(f)$, where $g_{1}=\left|b_{1}\right|^{2}, \quad g_{i}=-\left|b_{i}\right| \cdot \sum_{k=2}^{d}\left|b_{k}\right|, \quad 2 \leq i \leq d$, $g_{d+1}=\left(-b_{1} \cdot z^{\alpha(1)}+\sum_{i=2}^{d} b_{i} \cdot z^{\alpha(i)}\right)^{\mathrm{re}}, \quad g_{d+2}=\left(-b_{1} \cdot z^{\alpha(1)}+\sum_{i=2}^{d} b_{i} \cdot z^{\alpha(i)}\right)^{\mathrm{im}}$,
$H=\sum_{2 \leq i<j \leq d}\left|b_{i}\right| \cdot\left|b_{j}\right| \cdot\left(\frac{b_{i}^{\mathrm{re}}}{\left|b_{i}\right|} \cdot\left(z^{\alpha(i)}\right)^{\mathrm{re}}-\frac{b_{j}^{\mathrm{re}}}{\left|b_{j}\right|} \cdot\left(z^{\alpha(j)}\right)^{\mathrm{re}}\right)^{2}+\left|b_{i}\right| \cdot\left|b_{j}\right| \cdot\left(\frac{b_{i}^{\mathrm{im}}}{\left|b_{i}\right|} \cdot\left(z^{\alpha(i)}\right)^{\mathrm{im}}-\frac{b_{j}^{\mathrm{im}}}{\left|b_{j}\right|} \cdot\left(z^{\alpha(j)}\right)^{\mathrm{im}}\right)^{2}$
Corollary. Let $r \in \mathbb{N}$.

1. For any $w \in \mathbb{R}^{n} \backslash \mathcal{L A}\left(\tilde{f}_{k}\right) \subset \mathbb{R}^{n} \backslash \mathcal{A}(f)$ there exists a certificate of degree at most $2 \cdot k^{n} \cdot \operatorname{deg}(f)$ which can be computed explicitly. In particular, for linear hyperplane amoebas in \mathbb{R}^{n}, any point in the complement of the amoeba has a certificate whose sum of squares is a sum of squares of affine functions.
2. The certificate determines the order of the complement component . to which w belongs.

Actual Computations

$f:=z_{1}+2 z_{2}+3$

white: SDP feasible, red: SDP infeasible, green: recognzied as infeasible, with numerical issues

Using SOSTools with SDP solver SeDuMi
$f:=z_{1}^{2} z_{2}+z_{1} z_{2}^{2}+c \cdot z_{1} z_{2}+1$ with $c=2$ and $c=-4$

white: SDP feasible, orange: recognized as feasible, with numerical issues, black: SDP infeasible, turquoise: recognized as infeasible, with numerical issues; degree bound: 3

GOETHE
UNIVERSITÄT

