Approximation of Amoebas and Coamoebas by Sums of Squares

Definition: SDPs

 $n \times n$ matrices and $b_1, \ldots, b_m \in \mathbb{R}^m$. A SEMIDEFINITE and OPTIMIZATION PROBLEM (SDP) is given by

inf
$$\operatorname{Tr}(X, C)$$
 s.t.
 $\operatorname{Tr}(A_i, X) = b_i \text{ for } 1 \le i \le n$
 $X \succeq 0$

where $X \succeq 0$ means that X is positive semidefinite.

Proposition. Let $q \in \mathbb{R}[x_1, \ldots, x_n]$, $\operatorname{tdeg}(q) = 2d$ and Y the vector of all monomials in x_1, \ldots, x_n with degree $\leq d$. *a is sum of squares (SOS)* iff there exists a matrix Q with $Q \succeq 0$ and

$$g = Q^T Y Q.$$

Real Nullstellensatz

Proposition. For polynomials $g_1, \ldots, g_r \in \mathbb{R}[\mathbf{X}]$ and $I := \langle g_1, \ldots, g_r \rangle \subset \mathbb{R}[\mathbf{X}]$ the following statements are equivalent:

- The real variety $\mathcal{V}_{\mathbb{R}}(I)$ is empty.
- There exist a polynomial $G \in I$ and a sum of squares polynomial H with

G + H + 1 = 0.

Definition: Amoebas and Coamoebas

Definition. Let C, A_1, \ldots, A_m be real, symmetric **Definition.** Let $f \in \mathbb{C}[\mathbf{Z}]$ with variety $\mathcal{V}(f) \subset (\mathbb{C}^*)^n$

$$\log: (\mathbb{C}^*)^n \to \mathbb{R}^n,$$

 $(|z_1| \cdot e^{i \cdot \phi_1}, \dots, |z_n| \cdot e^{i \cdot \phi_n}) \mapsto (\log |z_1|, \dots, \log |z_n|)$ Arg : $(\mathbb{C}^*)^n \to [0, 2\pi)^n$,

 $(|z_1| \cdot e^{i \cdot \phi_1}, \dots, |z_n| \cdot e^{i \cdot \phi_n}) \mapsto (\phi_1, \dots, \phi_n)$

The AMOEBA $\mathcal{A}(f)$ of f is the image of $\mathcal{V}(f)$ under the Log-map; the COAMOEBA $co\mathcal{A}(f)$ is the image of $\mathcal{V}(f)$ under the Arg-map.

- A(f) is a closed set with convex complement components $E_{\alpha(i)}(f)$.
- Each $E_{\alpha(i)}(f)$ corresponds uniquely to a lattice point $\alpha(j)$ in New(f) (via ORDER MAP).

 \rightarrow For structural results on (co)amoebas see e.g. Forsberg, Nilsson, Nisse, Passare, Purbhoo, Rullgård, Tsikh

A Key Question: Membership

For given $f := \sum_{j=1}^{d} b_j \cdot \mathbf{z}^{\alpha(j)} \in \mathbb{C}[\mathbf{Z}]$ resp. $I \subseteq \mathbb{C}[\mathbf{Z}]$ membership is a key question on (co)amoebas:

Decide for $\lambda \in \mathbb{R}^n$ (resp. $\phi \in [0, 2\pi)^n$) wether $\lambda \in \mathcal{A}(I)$ (resp. $\phi \in co\mathcal{A}(I)$)

Amoeba Membership via Real Nullstellensatz

Let
$$f_k = \sum_{j=1}^{d_k} b_{k,j} \cdot \mathbf{z}^{\alpha(k,j)} \in \mathbb{C}[\mathbf{Z}]$$
 with $\alpha(k, 1), \dots, \alpha(k, d_k) \in \mathbb{N}_0^n$ spanning \mathbb{R}^n . For any $\lambda \in (0, \infty)^n$ set

$$\mu_{k,j} := \lambda^{\alpha(k,j)}_{1} = \lambda^{\alpha(k,j)}_{1} \cdots \lambda^{\alpha(k,j)}_{n}, \quad 1 \le j \le d$$

Define the monomials $m_{k,j} := \mathbf{z}^{\alpha(k,j)} = z_1^{\alpha(k,j)_1} \cdots z_n^{\alpha(k,j)_n}$.

Write every $f(\mathbf{z})$ as $f(\mathbf{x} + i \cdot \mathbf{y}) = f^{\text{re}}(\mathbf{x}, \mathbf{y}) + i \cdot f^{\text{im}}(\mathbf{x}, \mathbf{y})$ with $f^{\text{re}}, f^{\text{im}} \in \mathbb{R}[X_1, \dots, X_n, Y_1, \dots, Y_n]$. Let $I := \langle f_1, \ldots, f_r \rangle$, and $I', I^* \subset \mathbb{R}[\mathbf{X}, \mathbf{Y}]$ be generated by

$$\begin{split} I' &:= & \{f_j^{\mathrm{re}}, f_j^{\mathrm{im}} : 1 \leq j \leq r\} \cup \{x_k^2 + y_k^2 = \lambda_j^2 : 1 \leq j \leq n\} \\ I^* &:= & \{f_j^{\mathrm{re}}, f_j^{\mathrm{im}} : 1 \leq j \leq r\} \cup \bigcup_{k=1}^r \{(m_{k,j}^{\mathrm{re}})^2 + (m_{k,j}^{\mathrm{im}})^2 - \mu_{k,j}^2 : 1 \leq j \leq d_k\} \,. \end{split}$$

The UNLOG AMOEBA is defined as $\mathcal{U}(I) := \{(|z_1|, \ldots, |z_n| : \mathbf{z} \in \mathcal{V}(I)\}.$

POLYNOMIAL BASED FORMULATION

MONOMIAL BASED FORMULATION

Either a point $(\lambda_1, \ldots, \lambda_n)$ is contained in $\mathcal{U}(I)$ or there Either a point $(\lambda_1, \ldots, \lambda_n)$ is contained in $\mathcal{U}(I)$, or there exist polynomials $G \in I^*$ and an SOS $H \in \mathbb{R}[\mathbf{X}, \mathbf{Y}]$ with exist a $G \in I'$ and and SOS $H \in \mathbb{R}[\mathbf{X}, \mathbf{Y}]$ with

$$+H+1 = 0.$$

$$G + H + 1 = 0$$

We have $0 \in co\mathcal{A}(I) \iff \{z = x + iy \in (\mathbb{C}^*)^n : z \in \mathcal{V}(I) \text{ and } x_k \ge 0, y_k = 0 \forall k\} \neq \emptyset$. Replace " $x_k \ge 0$ " by considering x_{i}^{2} in arguments of f_{1}, \ldots, f_{r} . Then $0 \in \text{complement}(co\overline{\mathcal{A}}(I))$ iff there exists a polynomial identity

$$\sum_{i=1}^{r} c_i \cdot f_i(\mathbf{x}^2, \mathbf{y})^{\text{re}} + \sum_{i=1}^{r} c'_i \cdot f_i(\mathbf{x}^2, \mathbf{y})^{\text{im}} + \sum_{j=1}^{n} d_j \cdot y_j + H + 1 = 0$$

with $c_i, c'_i, d_i \in \mathbb{R}[\mathbf{X}, \mathbf{Y}]$ and an SOS *H*.

G

Thorsten Theobald theobald@math.uni-frankfurt.de http://www.math.uni-frankfurt.de/~theobald/

Amoeba and coamoeba of $f := z_1^2 z_2 + z_1 z_2^2 - 4 \cdot z_1 z_2 + 1$

Lopsidedness

Let $g \in \mathbb{C}[\mathbf{Z}]$ with $g(z) = \sum_{i=1}^{d} m_i(z)$. For $w \in \mathbb{R}^n$ define

$$g\{w\} := \left(\left| m_1 \left(\operatorname{Log}^{-1}(w) \right) \right|, \ldots, \left| m_d \left(\operatorname{Log}^{-1}(w) \right) \right| \right).$$

A list is called LOPSIDED if one of the numbers is greater than the sum of all the others. Define

$$\mathcal{LA}(g) := \{ w \in \mathbb{R}^n : g\{w\} \text{ is not lopsided} \}.$$

Note that $\mathcal{A}(g) \subseteq \mathcal{L}\mathcal{A}(g)$. Define

$$\tilde{g}_k(z) := \prod_{j_1=0}^{k-1} \cdots \prod_{j_d=0}^{k-1} g\left(e^{2\pi i \, j_1/k} z_1, \dots, e^{2\pi i \, j_d/k} z_n\right)$$

Theorem (Purbhoo 08). For $k \to \infty$ the family $\mathcal{LA}(\tilde{q}_k)$ converges uniformly to $\mathcal{A}(q)$. $\mathcal{A}(q)$ can be approximated by $\mathcal{L}\mathcal{A}(\tilde{q}_k)$ within an $\varepsilon > 0$ if k is greater than some $N_{(\varepsilon,q)} \in \mathbb{N}$.

Main Results: Degree Bounds

Theorem. If
$$w = 1 \in \text{complement}(\mathcal{U}(f))$$
 with $f\{w\}$ lopsided, then there exists a certificate
 $\sum_{i=1}^{d+2} s_i g_i + H + 1 = 0$ of total degree $2 \cdot \text{tdeg}(f)$, where $g_1 = |b_1|^2$, $g_i = -|b_i| \cdot \sum_{k=2}^{d} |b_k|$, $2 \le i \le d$,
 $g_{d+1} = \left(-b_1 \cdot z^{\alpha(1)} + \sum_{i=2}^{d} b_i \cdot z^{\alpha(i)}\right)^{\text{re}}$, $g_{d+2} = \left(-b_1 \cdot z^{\alpha(1)} + \sum_{i=2}^{d} b_i \cdot z^{\alpha(i)}\right)^{\text{im}}$,
 $H = \sum_{2 \le i < j \le d} |b_i| \cdot |b_j| \cdot \left(\frac{b_i^{\text{re}}}{|b_i|} \cdot \left(z^{\alpha(i)}\right)^{\text{re}} - \frac{b_j^{\text{re}}}{|b_j|} \cdot \left(z^{\alpha(j)}\right)^{\text{re}}\right)^2 + |b_i| \cdot |b_j| \cdot \left(\frac{b_i^{\text{im}}}{|b_i|} \cdot \left(z^{\alpha(i)}\right)^{\text{im}} - \frac{b_j^{\text{im}}}{|b_j|} \cdot \left(z^{\alpha(j)}\right)^{\text{im}}\right)^2$.

Corollary. Let $r \in \mathbb{N}$.

- 1. For any $w \in \mathbb{R}^n \setminus \mathcal{LA}(\tilde{f}_k) \subset \mathbb{R}^n \setminus \mathcal{A}(f)$ there exists a certificate of degree at most $2 \cdot k^n \cdot \deg(f)$ which can be computed explicitly. In particular, for linear hyperplane amoebas in \mathbb{R}^n , any point in the complement of the amoeba has a certificate whose sum of squares is a sum of squares of affine functions.
- 2. The certificate determines the order of the complement component. to which w belongs.

Actual Computations

Using SOSTools with SDP solver SeDuMi

 $f := z_1^2 z_2 + z_1 z_2^2 + c \cdot z_1 z_2 + 1$ with c = 2 and c = -4

white: SDP feasible, red: SDP

infeasible, green: recognized as

infeasible, with numerical issues

 $f := z_1 + 2z_2 + 3$

white: SDP feasible, orange: recognized as feasible, with numerical issues. black: SDP infeasible, turquoise: recognized as infeasible, with numerical issues; degree bound: 3

Timo de Wolff wolff@math.uni-frankfurt.de http://www.math.uni-frankfurt.de/~wolff/ see ArXiv 1101.4114

