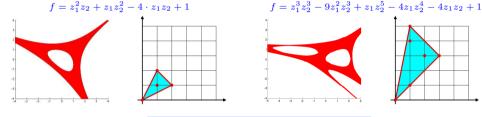
Definition of Amoebas

Definition (Amoeba). Let $f \in \mathbb{C} [\mathbf{z}^{\pm 1}]$ with variety $\mathcal{V}(f) \subset (\mathbb{C}^*)^n$. Define:

 $\operatorname{Log}: \left(\mathbb{C}^*\right)^n \to \mathbb{R}^n, \quad \left(|z_1| \cdot e^{i \cdot \phi_1}, \dots, |z_n| \cdot e^{i \cdot \phi_n}\right) \mapsto \left(\log |z_1|, \dots, \log |z_n|\right)$

The AMOEBA $\mathcal{A}(f)$ of f is the image of $\mathcal{V}(f)$ under the Log-map.

- $\mathcal{A}(f)$ is a closed set with convex complement components $E_{\alpha(j)}(f)$.
- Each complement component $E_{\alpha(j)}(f)$ of $\mathcal{A}(f)$ corresponds uniquely to a lattice point $\alpha(j)$ in New(f) (via the ORDER MAP). Existence of certain $E_{\alpha(j)}(f)$ depends on the coefficients of f.
- $\bullet\,$ Amoebas are connected to tropical hypersurfaces via SPINE and MASLOV DEQUANTIFIZATION.
- \rightarrow See e.g. Forsberg, Gelfand, Kapranov, Mikhalkin, Passare, Rullgård, Tsikh, Zelevinsky et. al..



The Configuration Space of Amoebas

Definition (Configuration space). For $A := \{\alpha(1), \ldots, \alpha(d)\} \subset \mathbb{Z}^n$ the CONFIGURATION SPACE \mathbb{C}^A is

 $\mathbb{C}^{A} := \left\{ f = \sum_{i=1}^{d} b_{i} \mathbf{z}^{\alpha(i)} : \alpha(i) \in A, b_{i} \in \mathbb{C}, \operatorname{New}(f) = \operatorname{conv}(A) \right\}.$

In \mathbb{C}^A define for every $\alpha(j) \in \operatorname{conv}(A)$ the set

$$U^{A}_{\alpha(j)} \quad := \quad \left\{ f \in \mathbb{C}^{A} : E_{\alpha(j)}(f) \neq \emptyset \right\}$$

- Each $U^{A}_{\alpha(j)}$ is open, full dimensional and semi-algebraic.
- The complement of each $U^A_{\alpha(j)}$ is connected along every \mathbb{C} -line in \mathbb{C}^A .

KEY QUESTION: IS EVERY $U^{A}_{\alpha(i)}$ CONNECTED?

Minimally Sparse Polynomials

Definition (Minimally sparse). A supportset $A \in \mathbb{Z}^n$ is called MINIMALLY SPARSE if $A = \operatorname{conv}(A) \cap \mathbb{Z}^n$. **Theorem.** Let $n = 1, A \subset \mathbb{Z}$ minimally sparse and $B \subseteq A$. Then $\bigcap_{\alpha(j) \in B} U^A_{\alpha(j)}$ is pathconnected. **Conjecture.** The upper theorem holds for arbitrary $n \in \mathbb{N}$.

Polynomials with Barycentric Simplex Newton Polytope

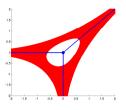
Definition. A supportset $A = \{\alpha(0), \ldots, \alpha(n+1)\} \in \mathbb{Z}^n$ is called <u>BARYCENTRIC WITH SIMPLEX NEWTON POLYTOPE</u> if $\{\alpha(0), \ldots, \alpha(n)\}$ are the vertices of an *n*-simplex Δ and $\alpha(n+1)$ is the barycenter of Δ .

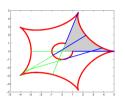
Theorem. Let $n \geq 2$ and $A \subset \mathbb{Z}^n$ barycentric with simplex Newton polytope. Then

- If $\beta \in \operatorname{conv}(A) \setminus A$, then $U_{\beta}^{A} = \emptyset$.
- For all $b_1, \ldots, b_n \in \mathbb{C}^*$ the set $U^A_{\alpha(n+1)} \cap \{(1, b_1, \ldots, b_n, c) : c \in \mathbb{C}\}$ is pathconnected. Its complement is explicitly describeable.
- $U^A_{\alpha(n+1)}$ is pathconnected.

Thorsten Theobald theobald@math.uni-frankfurt.de http://www.math.uni-frankfurt.de/~theobald/ **Proof.** Let $f = \sum_{\alpha(j) \in A} b_{\alpha(j)} \mathbf{z}^{\alpha(j)}$.

- For $A \in \mathbb{Z}^n$ barycentric with simplex Newton polytope the tropical hypersurface $\mathcal{T}(f)$ given by $\bigoplus_{\alpha(j)\in A\setminus\{\alpha(j): E_{\alpha(j)}(f)=\emptyset\}} b_{\alpha(j)} \odot \mathbf{z}^{\alpha(j)}$ is a deformation retract of $\mathcal{A}(f)$.
- If $f \in U_{\alpha(0)}$, then the unique vertex eq(f) of $\mathcal{T}(f b_{\alpha(0)}\mathbf{z}^{\alpha(0)})$ is contained in $E_{\alpha(0)}(f)$.
- Let $\mathbb{F}_{eq(f)}$ denote the fiber over eq(f) w.r.t. the Log-map. For all $b_1, \ldots, b_n \in \mathbb{C}^* \mathbb{F}_{eq(f)}$ intersects $\mathcal{V}(f)$ if and only if the coefficient $b_{n+1} \in \mathbb{C}$ is contained in a subset $S \subset \mathbb{C}$ bounded by the trajectory of a hypocycloid depending on the coefficients of f.
- The set S is simply connected.
- If for all b₁,..., b_n ∈ C* the set (U^A_{α(n+1)})^c ∩ {(1, b₁,..., b_n, c) : c ∈ C} is simply connected, then U^A_{α(n+1)} is pathconnected.



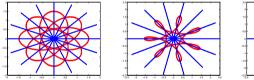


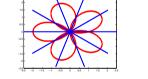
Trinomials

Let $f = z^s + p + qz^{-t}$ a trinomial with $p \in \mathbb{C}, q \in \mathbb{C}^*$. Modulis of such trinomials were e.g. described by *P. Bohl* in 1908. But the geometrical and topological structure of \mathbb{C}^A is unknown so far.

Theorem. f has a root of modulus |z| if and only if p is located on the trajectory of a certain hypotrochoid curve depeding on s, t, q and |z| (see also e.g. Neuwirth).

Theorem. If $U_j^A = \emptyset$, then p is located on the 1-fan $\{\lambda e^{i \cdot (s \arg(q) + k\pi/(s+t))} : \lambda \in \mathbb{R}_{>0}, k \in \{0, \dots, 2(s+t)-1\}\}$. If $j \neq 0$, then $U_i^A \cap \{(1, p, q) : p \in \mathbb{C}\}$ is not connected.

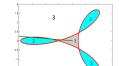




Example. Let $f = z^2 + 1.5 \cdot e^{i \cdot \arg(p)} + e^{i \cdot \arg(q)} z^{-1}$.

- AIM: Construct a path γ in \mathbb{C}^A from $(p_1, q_1) = (1.5 \cdot e^{i \cdot \pi/2}, 1)$ to $(p_2, q_2) = (1.5 \cdot e^{-i \cdot \pi/6}, 1)$ such that $\gamma \in U_1^A$.
- Impossible if $\arg(q) = 0$ for every point on γ .
- Possible along $\gamma: [0,1] \to \mathbb{C}^A, k \mapsto (1.5 \cdot e^{i(1/4 + 2k/3) \cdot \pi/2}, e^{i \cdot 2k\pi}).$

Conjecture. For trinomials the sets U_j^A are pathconnected but not simply connected in \mathbb{C}^A .



Corollary. For $f = \sum_{\alpha(j) \in A} b_{\alpha(j)} \mathbf{z}^{\alpha(j)}$ a complement component $E_{\alpha(j)}(f)$ is not monotonically growing in $|b_{\alpha(j)}|$ in general.

• $f_p = z^2 - |p| \cdot e^{i \cdot \varepsilon \pi} + z^{-1}$ is a counterexample for $\varepsilon > 0$ sufficiently small. The figure shows this for |z| = |0.925|.

Timo de Wolff wolff@math.uni-frankfurt.de http://www.math.uni-frankfurt.de/~wolff/

