The Configuration Space of Amoebas

Definition of Amoebas

Definition (Amoeba). Let $f \in \mathbb{C}\left[\mathbf{z}^{ \pm 1}\right]$ with variety $\mathcal{V}(f) \subset\left(\mathbb{C}^{*}\right)^{n}$. Define:
Log: $\left(\mathbb{C}^{*}\right)^{n} \rightarrow \mathbb{R}^{n}$,
($\left|z_{1}\right| \cdot e^{i \cdot \phi_{1}}, \ldots$
$\left.\left|z_{n}\right| \cdot e^{i \cdot \phi_{n}}\right) \mapsto\left(\log \left|z_{1}\right|, \ldots\right.$
, $\left.\log \left|z_{n}\right|\right)$

The amoeba $\mathcal{A}(f)$ of f is the image of $\mathcal{V}(f)$ under the Log-map.

- $\mathcal{A}(f)$ is a closed set with convex complement components $E_{\alpha(j)}(f)$.
- Each complement component $E_{\alpha(j)}(f)$ of $\mathcal{A}(f)$ corresponds uniquely to a lattice point $\alpha(j)$ in $\operatorname{New}(f)$ (via the ORDER MAP). Existence of certain $E_{\alpha(j)}(f)$ depends on the coefficients of f.
- Amoebas are connected to tropical hypersurfaces via SPine and Maslov dequantifization. \rightarrow See e.g. Forsberg, Gelfand, Kapranov, Mikhalkin, Passare, Rullgård, Tsikh, Zelevinsky et. al..

The Configuration Space of Amoebas

Definition (Configuration space). For $A:=\{\alpha(1), \ldots, \alpha(d)\} \subset \mathbb{Z}^{n}$ the Configuration space \mathbb{C}^{A} is

$$
\mathbb{C}^{A}:=\left\{f=\sum_{i=1}^{d} b_{i} \mathbf{z}^{\alpha(i)}: \alpha(i) \in A, b_{i} \in \mathbb{C}, \operatorname{New}(f)=\operatorname{conv}(A)\right\}
$$

In \mathbb{C}^{A} define for every $\alpha(j) \in \operatorname{conv}(A)$ the set

$$
U_{\alpha(j)}^{A} \quad:=\left\{f \in \mathbb{C}^{A}: E_{\alpha(j)}(f) \neq \emptyset\right\}
$$

- Each $U_{\alpha(j)}^{A}$ is open, full dimensional and semi-algebraic.
- The complement of each $U_{\alpha(j)}^{A}$ is connected along every \mathbb{C}-line in \mathbb{C}^{A}.

$$
\text { KEY QUESTION: IS EVERY } U_{\alpha(j)}^{A} \text { CONNECTED? }
$$

Minimally Sparse Polynomials

Definition (Minimally sparse). A supportset $A \in \mathbb{Z}^{n}$ is called minimally sparse if $A=\operatorname{conv}(A) \cap \mathbb{Z}^{n}$ Theorem. Let $n=1, A \subset \mathbb{Z}$ minimally sparse and $B \subseteq A$. Then $\bigcap_{\alpha(j) \in B} U_{\alpha(j)}^{A}$ is pathconnected. Conjecture. The upper theorem holds for arbitrary $n \in \mathbb{N}$.

Polynomials with Barycentric Simplex Newton Polytope

Definition. A supportset $A=\{\alpha(0), \ldots, \alpha(n+1)\} \in \mathbb{Z}^{n}$ is called barycentric with simplex Newton polytope if $\{\alpha(0), \ldots, \alpha(n)\}$ are the vertices of an n-simplex Δ and $\alpha(n+1)$ is the barycenter of Δ.
Theorem. Let $n \geq 2$ and $A \subset \mathbb{Z}^{n}$ barycentric with simplex Newton polytope. Then

- If $\beta \in \operatorname{conv}(A) \backslash A$, then $U_{\beta}^{A}=\emptyset$.
- For all $b_{1}, \ldots, b_{n} \in \mathbb{C}^{*}$ the set $U_{\alpha(n+1)}^{A} \cap\left\{\left(1, b_{1}, \ldots, b_{n}, c\right): c \in \mathbb{C}\right\}$ is pathconnected. Its complement is explicitly describeable.
- $U_{\alpha(n+1)}^{A}$ is pathconnected.

Proof. Let $f=\sum_{\alpha(j) \in A} b_{\alpha(j)} \mathbf{z}^{\alpha(j)}$.

- For $A \in \mathbb{Z}^{n}$ barycentric with simplex Newton polytope the tropical hypersurface $\mathcal{T}(f)$ given by $\bigoplus_{\alpha(j) \in A \backslash\left\{\alpha(j): E_{\alpha(j)}(f)=\emptyset\right\}} b_{\alpha(j)} \odot z^{\alpha(j)}$ is a deformation retract of $\mathcal{A}(f)$.
- If $f \in U_{\alpha(0)}$, then the unique vertex eq(f) of $\mathcal{T}\left(f-b_{\alpha(0)} \mathbf{z}^{\alpha(0)}\right)$ is contained in $E_{\alpha(0)}(f)$.

- Let $\mathbb{F}_{\text {eq }(f)}$ denote the fiber over eq (f) w.r.t. the Log-map. For all $b_{1}, \ldots, b_{n} \in \mathbb{C}^{*} \mathbb{F}_{\text {eq }(f)}$ intersects $\mathcal{V}(f)$ if and only if the coefficient $b_{n+1} \in \mathbb{C}$ is contained in a subset $S \subset \mathbb{C}$ bounded by the trajectory of a hypocycloid depending on the coefficients of f.
- The set S is simply connected.
- If for all $b_{1}, \ldots, b_{n} \in \mathbb{C}^{*}$ the set $\left(U_{\alpha(n+1)}^{A}\right)^{c} \cap\left\{\left(1, b_{1}, \ldots, b_{n}, c\right): c \in \mathbb{C}\right\}$ is simply connected, then $U_{\alpha(n+1)}^{A}$ is pathconnected.

Trinomials

Let $f=z^{s}+p+q z^{-t}$ a trinomial with $p \in \mathbb{C}, q \in \mathbb{C}^{*}$. Modulis of such trinomials were e.g. described by P. Bohl in 1908. But the geometrical and topological structure of \mathbb{C}^{A} is unknown so far.
Theorem. f has a root of modulus $|z|$ if and only if p is located on the trajectory of a certain hypotrochoid curve depeding on s, t, q and $|z|$ (see also e.g. Neuwirth).

Theorem. If $U_{j}^{A}=\emptyset$, then p is located on the $1-f a n\left\{\lambda e^{i \cdot(s \arg (q)+k \pi /(s+t))}: \lambda \in \mathbb{R}_{>0}, k \in\{0, \ldots, 2(s+t)-1\}\right\}$. If $j \neq 0$, then $U_{j}^{A} \cap\{(1, p, q): p \in \mathbb{C}\}$ is not connected

Example. Let $f=z^{2}+1.5 \cdot e^{i \cdot \arg (p)}+e^{i \cdot \arg (q)} z^{-1}$

- Aim: Construct a path γ in \mathbb{C}^{A} from $\left(p_{1}, q_{1}\right)=\left(1.5 \cdot e^{i \cdot \pi / 2}, 1\right)$ to $\left(p_{2}, q_{2}\right)=$ $\left(1.5 \cdot e^{-i \cdot \pi / 6}, 1\right)$ such that $\gamma \in U_{1}^{A}$.
- Impossible if $\arg (q)=0$ for every point on γ
- Possible along $\gamma:[0,1] \rightarrow \mathbb{C}^{A}, k \mapsto\left(1.5 \cdot e^{i(1 / 4+2 k / 3) \cdot \pi / 2}, e^{i \cdot 2 k \pi}\right)$

Conjecture. For trinomials the sets U_{j}^{A} are pathconnected but not simply con nected in \mathbb{C}^{A}

Corollary. For $f=\sum_{\alpha(j) \in A} b_{\alpha(j)} \mathbf{z}^{\alpha(j)}$ a complement component $E_{\alpha(j)}(f)$ is not monotonically growing in $\left|b_{\alpha(j)}\right|$ in general.

- $f_{p}=z^{2}-|p| \cdot e^{i \cdot \varepsilon \pi}+z^{-1}$ is a counterexample for $\varepsilon>0$ sufficiently small. The figure shows this for $|z|=|0.925|$.
goethe 量
$\underset{\substack{\text { URANKFEURT AM MAAT } \\ \text { FAIN }}}{ }$

