

Orthogonalization of Fermion k-Body Operators and Representabilty

Robert Rauch, 25 May 2018

Outline

- The Representabilty Problem in Quantum Chemistry
- Orthogonalization of k-body Operators

Section 1

The Representabilty Problem in Quantum Chemistry

Quantum Systems in Quantum Chemistry

- Quantum chemistry: molecules are usually modelled as finite-dimensional, non-relativistic, many-fermion quantum systems:
- Hilbert space: Fermion Fock space $\mathcal{F}=\bigoplus_{k \geqslant 0} \wedge^{k} \mathfrak{h}$ with
- finite dimensional 1-particle space \mathfrak{h}
- creation- and annihilation operators $c^{*}, c: \mathfrak{h} \rightarrow \mathcal{B}(\mathcal{F})$
- Hamiltonian: a 2-body observable

$$
\begin{equation*}
\mathbb{H}=\mathbb{H}^{*}=\underbrace{\sum_{i, j} t_{i j} c_{i}^{*} c_{j}}_{\text {free part }}+\underbrace{\sum_{i, j, k, l} v_{i j ; k l} c_{i}^{*} c_{j}^{*} c_{l} c_{k}}_{\text {interaction part }} \tag{1}
\end{equation*}
$$

- (normal) States $\varphi \in \mathcal{S}_{0}$ are represented by density matrices on \mathcal{F}, i.e. $\rho \in \mathcal{P} \doteq \mathcal{L}_{+}^{1}(\mathcal{F})$ of unit trace $\operatorname{tr} \rho=1$.

Model Problem

Typical Problem: Compute the ground state energy

$$
\begin{equation*}
E_{g s}=\inf _{\varphi \in S} \varphi(\mathbb{H})=\inf _{\substack{\rho \in \mathcal{P} \\ \operatorname{tr}\{\rho\}=1}} \operatorname{tr}\{\rho \mathbb{H}\} \tag{2}
\end{equation*}
$$

- Observe: density matrix ρ contains "too much" information - we only need the expectation values of 2-body observables A !
- Idea: Replace ρ by its reduced 2-particle density matrix (2-RDM)

Terminology I

Definition 1 (k-body operators)

A k-body operator is an element of

$$
\mathcal{O}_{k}^{\mathbb{C}}(\mathcal{F}) \doteq \operatorname{span}_{\mathbb{C}}\left\{c^{\#}\left(f_{1}\right) \cdots c^{\#}\left(f_{2 \prime}\right) \mid f_{1}, \ldots, f_{s} \in \mathfrak{h}, 0 \leqslant 2 l \leqslant 2 k\right\}
$$

$\pi_{k}^{\mathbb{C}}: \mathcal{L}^{2}(\mathcal{F}) \rightarrow \mathcal{L}^{2}(\mathcal{F})$ denotes the orthogonal projection onto $\mathcal{O}_{k}^{\mathbb{C}}(\mathcal{F})$.
Note: Orthogonality is understood in the Hilbert-Schmidt geometry:

$$
\langle a, b\rangle_{\mathcal{L}^{2}(\mathcal{F})} \doteq \operatorname{tr}\left\{a^{*} b\right\}
$$

Terminology II

Definition 2 (k-body observables, k-RDMs)

Elements of $\mathcal{O}_{k}^{\mathbb{R}}(\mathcal{F}) \doteq\left\{A \in \mathcal{O}_{k}^{\mathbb{C}}(\mathcal{F}) \mid A^{*}=A\right\}$ are called k-body observables. The (\mathbb{R}-linear) orthogonal projection onto $\mathcal{O}_{k}^{\mathbb{R}}(\mathcal{F})$ is denoted by

$$
\pi_{k}^{\mathbb{R}}: \mathcal{L}^{2}(\mathcal{F}) \rightarrow \mathcal{L}^{2}(\mathcal{F}) .
$$

For a density matrix ρ on \mathcal{F}, the image $\pi_{k}^{\mathbb{R}}(\rho)$ is called the reduced k-particle density matrix (k-RDM) of ρ.

Example 3

Let $\mathbb{H} \in \mathcal{O}_{k}^{\mathbb{R}}(\mathcal{F})$, then $\pi_{k}^{\mathbb{C}}(\mathbb{H})=\pi_{k}^{\mathbb{R}}(\mathbb{H})=\mathbb{H}$ and for any denity matrix ρ we have

$$
\begin{equation*}
\operatorname{tr}\{\rho \mathbb{H}\}=\langle\rho, \mathbb{H}\rangle_{\mathcal{L}^{2}(\mathcal{F})}=\left\langle\rho, \pi_{k}^{\mathbb{R}}(\mathbb{H})\right\rangle_{\mathcal{L}^{2}(\mathcal{F})}=\left\langle\pi_{k}^{\mathbb{R}}(\rho), \mathbb{H}\right\rangle_{\mathcal{L}^{2}(\mathcal{F})} \tag{3}
\end{equation*}
$$

Lesson:

- $\pi_{k}^{\mathbb{R}}(\rho)$ encodes precisely the expectation values of k-body observables in the state ρ.

Model Problem Revisited

Example 4

if ρ is a density matrix and $\mathbb{H} \in \mathcal{O}_{2}^{\mathbb{R}}(\mathcal{F})$, then

$$
\begin{equation*}
E_{g s}=\inf _{\substack{\rho \in \mathcal{L}_{+}^{1}(\mathcal{F}) \\ \operatorname{tr}\{\rho\}=1}} \operatorname{tr}\{\rho \mathbb{H}\}=\inf _{\substack{r \in \pi_{2}^{\mathbb{R}}(\mathcal{P}) \\ \operatorname{tr}\{r\}=1}}\langle r, \mathbb{H}\rangle_{\mathcal{L}^{2}(\mathcal{F})} \tag{4}
\end{equation*}
$$

Conclusion:

- By replacing ρ with $\pi_{k}^{\mathbb{R}}(\rho)$, the dimension of the linear program (4) is reduced dramatically $\left(O\left(2^{2 n}\right)\right.$ vs. $\left.O\left(n^{4}\right)\right)$
- However, a computationally efficient characterization of $\pi_{2}^{\mathbb{R}}(\mathcal{P})$ is still unknown (Representabilty Problem)

Conclusion

A fundamental role for the representabilty problem plays the orthogonal projection

$$
\pi_{k}^{\mathbb{R}}: \mathcal{L}^{2}(\mathcal{F}) \rightarrow \mathcal{L}^{2}(\mathcal{F})
$$

Section 2

Orthogonalization of k-body Operators

Goal \& Naive Approach

Goal

Diagonalize $\pi_{2}^{\mathbb{R}}$, i.e. find an \mathcal{L}^{2}-orthonormal basis of $\mathcal{O}_{2}^{\mathbb{R}}(\mathcal{F})$

- Naive approach: Gram-Schmidt orthogonalization, i.e.

1. Fix a starting basis $\mathfrak{B}_{0}=\left\{b_{1}, \ldots, b_{N}\right\}$ of $\mathcal{O}_{2}^{\mathbb{R}}(\mathcal{F})$
2. Iteratively compute

$$
\begin{equation*}
\tilde{b}_{i} \doteq b_{i}-\sum_{j=1}^{i-1} \frac{\left\langle b_{i}, \tilde{b}_{j}\right\rangle_{\mathcal{L}^{2}(\mathcal{F})}}{\left\langle\tilde{b}_{j}, \tilde{b}_{j}\right\rangle_{\mathcal{L}^{2}(\mathcal{F})}} \tilde{b}_{j} \tag{5}
\end{equation*}
$$

3. Result: $\mathfrak{B} \doteq\left\{\tilde{b}_{1}, \ldots, \tilde{b}_{N}\right\}$ is an orthogonal basis of $\mathcal{O}_{2}^{\mathbb{R}}(\mathcal{F})$

Drawbacks of Naive Approach

- systematic: obtained orthogonal basis \mathfrak{B} depends on
- the chosen starting basis \mathfrak{B}_{0}
- the dimension n of the 1-particle Hilbert space \mathfrak{h}
- computational: dimensions of \mathcal{F} and $\mathcal{O}_{2}^{\mathbb{R}}(\mathcal{F})$ grow very fast with n

Actual Approach

- Step 1: Fix \mathbb{C}-basis \mathfrak{B}_{0} of (various subspaces of) $\mathcal{O}_{k}^{\mathbb{C}}(\mathcal{F})$
- Step 2: Orthogonalization:
a) Determine Gram matrix with respect to \mathfrak{B}_{0}.
b) Apply Gram-Schmidt orthogonalization in small dimensions n using computer algebra system
- Step 3: Review results
- Step 4: Guess general conjecture (and prove it!)

Summary of Results

Theorem 5 (Main Result)

To every ONB of \mathfrak{h}, there is an associated ONB \mathfrak{B} of $\mathcal{L}^{2}(\mathcal{F})$ such that 1. \mathfrak{B} restricts to an $O N B \mathfrak{B}_{k}^{\mathbb{C}}$ of $\mathcal{O}_{k}^{\mathbb{C}}(\mathcal{F})$ for all $k \in \mathbb{N}_{0}$, i.e. \mathfrak{B} is adapted to the linear flag

$$
\begin{equation*}
0 \subsetneq \mathcal{O}_{0}^{\mathbb{C}}(\mathcal{F}) \subsetneq \cdots \subsetneq \mathcal{O}_{n}^{\mathbb{C}}(\mathcal{F}) \subsetneq \mathcal{L}^{2}(\mathcal{F}) \tag{6}
\end{equation*}
$$

2. By taking the non-zero real- and imaginary parts of $\mathfrak{B}_{k}^{\mathbb{C}}$, we obtain an orthogonal basis $\mathfrak{B}_{k}^{\mathbb{R}}$ of $\mathcal{O}_{k}^{\mathbb{R}}(\mathcal{F})$.

That means: We have diagonalized $\pi_{k}^{\mathbb{K}}$ simultaneously for all $k \in \mathbb{N}_{0}$!

Step 1: Choice of Starting Basis \mathfrak{B}_{0}

Definition 6

Let $\varphi_{1}, \ldots, \varphi_{n}$ be an ONB of \mathfrak{h} (an "orbital basis") and $\mathbb{N}_{n} \doteq\{1, \ldots, n\}$. To $I=\left\{i_{1}<\cdots<i_{l}\right\} \subseteq \mathbb{N}_{n}$ define $\varphi_{I} \doteq \varphi_{i_{1}} \wedge \cdots \wedge \varphi_{i_{l}}$ and

$$
\begin{equation*}
c_{l}^{*} \doteq c_{i_{1}}^{*} \cdots c_{i_{1}}^{*} \quad c_{l} \doteq\left(c_{l}^{*}\right)^{*}=c_{i_{1}} \cdots c_{i_{1}} \quad n_{l} \doteq c_{l}^{*} c_{l} \tag{7}
\end{equation*}
$$

- Observe: $\left\{c_{l}^{*} c_{J} \mid I, J \subseteq \mathbb{N}_{n}\right\}$ is a basis of $\mathcal{L}^{2}(\mathcal{F})$. However, it turns out that it's more convenient to choose

$$
\begin{equation*}
\mathfrak{B}_{0} \doteq\left\{n_{K} c_{l}^{*} c_{J} \mid I, K, J \subseteq \mathbb{N}_{n} \text { pairwise disjoint }\right\} \tag{8}
\end{equation*}
$$

Step 2a: Compute the Gram Matrix Elements

Theorem 7 (Trace Formula)

Let $K, A, B \subseteq \mathbb{N}_{n}$ and $L, C, D \subseteq \mathbb{N}_{n}$ be mutually disjoint, respectively. Then

$$
\begin{equation*}
\left\langle n_{K} c_{A}^{*} c_{B}, n_{L} c_{C}^{*} c_{D}\right\rangle_{\mathcal{L}^{2}(\mathcal{F})}=\delta_{A C} \delta_{B D} 2^{n-|A \cup B \cup K \cup L|} \tag{9}
\end{equation*}
$$

Proof.

1. For $I \subseteq \mathbb{N}_{n}$, the contributions $\left\langle\varphi_{I},\left(n_{K} c_{A}^{*} c_{B}\right)^{*} n_{L} c_{C}^{*} c_{D} \varphi_{I}\right\rangle_{\mathcal{F}}$ can be computed elementary
2. Non-zero contributions are all equal to 1 and occur if and only if

$$
A=C, B=D \text { and } B \cup K \cup L \subseteq I \subseteq \mathbb{N}_{n} \backslash A
$$

Step 2b: Applying the Gram Schmidt Algorithm

Using a CAS (SymPy), we applied Gram-Schmidt algorithm in the following context:

- dimension $n=\operatorname{dim} \mathfrak{h} \leqslant 6$
- vector space $=$ free \mathbb{C}-module over \mathfrak{B}_{0}
- inner product = defined by the trace formula (9)

Step 3: Review Results

Observation

The following elements are mutually orthogonal:

$$
\begin{equation*}
b_{K} \doteq \sum_{I \subseteq K}(-2)^{|l|} n_{l}, \quad K \subseteq \mathbb{N}_{n} \tag{10}
\end{equation*}
$$

Step 4: General Theorem

Theorem 8

An orthogonal basis of $\mathcal{L}^{2}(\mathcal{F})$ is given by

$$
\begin{equation*}
\mathfrak{B} \doteq\left\{b_{K} c_{l}^{*} c_{J} \mid K, I, J \subseteq \mathbb{N}_{n} \text { mutually disjoint }\right\} \tag{11}
\end{equation*}
$$

Proof.

- Orthogonality of \mathfrak{B} follows from the "magic formula"

$$
\begin{equation*}
\sum_{I \subseteq K} \sum_{J \subseteq L}(-2)^{|I|+|J|} 2^{-|U J|}=\delta_{K L} \quad \forall K, L \text { finite sets, } \tag{12}
\end{equation*}
$$

- Rest follows for dimensional reasons: $|\mathfrak{B}|=4^{n}=\operatorname{dim}_{\mathbb{C}} \mathcal{L}^{2}(\mathcal{F})$.

Orthogonalization of $\mathcal{O}_{k}^{\mathbb{C}}(\mathcal{F})$

Corollary 9

The basis \mathfrak{B} restricts to the orthogonal basis $\mathfrak{B}_{k}^{\mathbb{C}}$ of $\mathcal{O}_{k}^{\mathbb{C}}(\mathcal{F})$, which is explicitly given by

$$
\begin{aligned}
\mathfrak{B}_{k}^{\mathbb{C}} & \doteq \mathfrak{B} \cap \mathcal{O}_{k}^{\mathbb{C}}(\mathcal{F}) \\
& =\left\{b_{K} c_{l}^{*} c_{J} \left\lvert\, \begin{array}{c}
K, I, J \subset \mathbb{N}_{n} \text { pairwise disjoint, } \\
|I|+|J|+2|K|=2 \mid \text { with } 0 \leqslant 1 \leqslant k
\end{array}\right.\right\} .
\end{aligned}
$$

Proof.

- Orthogonality of $\mathcal{O}_{k}^{\mathbb{C}}(\mathcal{F})$ follows trivially,
- Rest follows from a dimensionality argument.

Orthogonalization of $\mathcal{O}_{k}^{\mathbb{R}}(\mathcal{F})$

Corollary 10

An orthogonal basis $\mathfrak{B}_{k}^{\mathbb{R}}$ of $\mathcal{O}_{k}^{\mathbb{R}}(\mathcal{F})$ is given by the non-vanishing realand imaginary parts of the elements of $\mathfrak{B}_{k}^{\mathbb{C}}$.

Thank you!

