Orthogonalization of Fermion *k***-Body Operators and Representability** Robert Rauch (r.rauch@tu-braunschweig.de) Joint work with V. Bach

Abstract

The reduced k-particle density matrix of a density matrix on finite-dimensional, fermion Fock space can be defined as the image under the orthogonal projection in the Hilbert-Schmidt geometry onto the space of k-body observables. A proper understanding of this projection is therefore intimately related to the representability problem, a long-standing open problem in computational quantum chemistry. Given an orthonormal basis in the finite-dimensional one-particle Hilbert space, we explicitly construct an orthonormal basis of the space of Fock space operators which restricts to an orthonormal basis of the space of k-body operators for all k.

Motivation: The Representability Problem in Quantum Chemistry

In quantum chemistry, atoms or molecules are usually considered as manyfermion quantum systems:

Hilbert space: fermion Fock space

 $\mathcal{F} = \bigoplus_{N \ge 0}^{N} \bigwedge_{N \in \mathbb{N}} \mathfrak{h}$ with $\mathfrak{h} = 1$ -particle Hilbert space, e.g. $\mathfrak{h} = L^2(\mathbb{R}^3) \otimes \mathbb{C}^2$

• Hamiltonian: a 2-body operator $\mathbb{H} = \mathbb{H}^* = \bigoplus_{N>0} \mathbb{H}_N$, e.g.

$$\mathbb{H}_{N} = \sum_{i=1}^{N} \left(-\Delta_{i} - \sum_{i=1}^{K} \frac{Z_{j}}{|x_{i} - R_{i}|} \right) + \sum_{1 \leq i \leq N} \frac{1}{|x_{i} - x_{i}|}.$$

Goal & Results

In order to gain a deeper understanding of the representability problem and related questions, one would like to have a more concrete formula of the orthogonal projection

 $R_k: \mathcal{L}^2(\mathcal{F}) \to \mathcal{O}_k(\mathcal{F}) \subseteq \mathcal{L}^2(\mathcal{F}),$

e.g. by means of an orthogonal basis of $\mathcal{O}_k(\mathcal{F})$. **Theorem 1** Let dim $\mathfrak{h} \doteq n < \infty$ and $\varphi_1, \ldots, \varphi_n$ an orthonormal basis of \mathfrak{h} . Then an orthogonal basis of $\mathcal{L}^2(\mathcal{F})$ is given by

$$\mathfrak{B} \doteq \left\{ \sum_{L \subseteq K} (-2)^{|L|} \mathbf{c}_L^* \mathbf{c}_L \mathbf{c}_I^* \mathbf{c}_J \middle| \begin{array}{c} I, J, K \subseteq \{1, \dots, n\} \\ \text{mutually disjoint} \end{array} \right\}.$$

i=1 $(j=1 | m_l | 1 \leq i \leq j \leq N | m_l | 1 \leq i \leq j \leq N | m_l | 1 \leq j \leq N | m_l | m$

States of these systems are usually modeled as elements ρ of the set \mathcal{DM} of density matrices on \mathcal{F} . However, practically all physically relevant information can be obtained by expectation values of 2-body operators. Therefore, one would like to replace density density matrices ρ with its 2-body reductions $R_2(\rho)$, which encode precisely the 2-body expectation values of ρ . For example, the ground state energy is given by

 $E_0 \doteq \inf_{\rho \in \mathcal{DM}} \langle \rho, \mathbb{H} \rangle = \inf_{r \in R_2(\mathcal{DM})} \langle r, \mathbb{H} \rangle.$

In order to exploit this observation, one has to find a computationally efficient characterization of $R_2(\mathcal{DM})$, which is called the representability problem. When dim $\mathfrak{h} < \infty$, then $R_2(\rho)$ can be identified with the orthogonal projection of ρ onto the space of 2-body operators $\mathcal{O}_2(\mathcal{F})$ within the Hilbert-Schmidt geometry:

Here, $c^*, c: \mathfrak{h} \to \mathcal{B}(\mathcal{F})$ denote the creation- and annihilation operators and for $I = \{i_1 < \cdots < i_l\} \subseteq \{1, ..., n\}$ we define $\mathbf{c}_I^* \doteq c^*(\varphi_{i_1}) \cdots c^*(\varphi_{i_l})$ and $\mathbf{c}_I \doteq c(\varphi_{i_l}) \cdots c(\varphi_{i_l})$. **Corollary 1** Let $k \in \mathbb{N}_0$. Then an orthogonal basis of $\mathcal{O}_k(\mathcal{F})$ is given by $\mathfrak{B} \cap \mathcal{O}_k(\mathcal{F})$.

Current Research

The above results are an important first step for our current research. More specifically, we are currently working on

- 1. finding a characterization of of $\pi_k(\mathcal{DM})$ in terms of the orthogonal basis \mathfrak{B} ,
- 2. identifying classical representability conditions as boundary conditions,
- 3. obtaining new representability conditions, which are important for lower bound methods, and
- 4. studying the action of Bogoliubov transformations on

 $\mathcal{O}_2(\mathcal{F})$

the space of representability conditions.

