Harmonic Analysis Homework Sheet 7

Exercise 7.1

Recall the Dirichlet kernel

$$D_N(t) = \frac{\sin((2N+1)\pi t)}{\sin(\pi t)}$$

for $N \in \mathbb{N}$ and $t \in [0, 1]$. Prove $|1/t - 1/(\sin t)| \leq 1$ (by using, e.g., the fundamental theorem of calculus) for $|t| \leq \pi/2$ to show $||D_N||_{L^1([0,1])} \sim \log N$. (In fact, one can prove $|1/t - 1/(\sin t)| \leq 1 - 2/\pi$ and

$$\frac{4}{\pi^2} \sum_{k=1}^{N} \frac{1}{k} \le \|D_N\|_1 \le 3 - \frac{2}{\pi} + \frac{4}{\pi^2} \sum_{k=1}^{N} \frac{1}{k}$$

but this is not required here.)

Exercise 7.2

Prove the following

Lemma 0.1 (Weighted Schur test). Let (X, μ) and (Y, ν) be measure spaces and w(x, y) > 0be measurable on $X \times Y$. Suppose the kernel $K(x, y) : X \times Y \to \mathbb{C}$ satisfies

$$\sup_{x \in X} \int_{Y} w(x,y)^{1/p} |K(x,y)| \, d\nu(y) \equiv A_1 < \infty \quad and \quad \sup_{y \in Y} \int_{X} w(x,y)^{-1/p'} |K(x,y)| \, d\mu(x) \equiv A_2 < \infty$$

for some $1 , respectively <math>1 \le p \le \infty$ when $w(x, y) \equiv 1$. Then, the operator T defined by $(Tf)(x) = \int_Y K(x, y)f(y) d\nu(y)$ satisfies $\|Tf\|_{L^p(X)} \le A_1^{1/p'} A_2^{1/p} \|f\|_{L^p(Y)}$.

Exercise 7.3

Show the following transference-type

Lemma 0.2 (de Leeuw). Suppose that m is a smooth Fourier multiplier on \mathbb{R}^d and that the operator T defined by

$$\widehat{Tf}(\xi) = m(\xi)\widehat{f}(\xi)$$

is bounded on $L^p(\mathbb{R}^d)$. Then the operator T_0 defined by

$$\widehat{T_0g}(\xi') = m(\xi',0)\widehat{g}(\xi')$$

for $\xi' \in \mathbb{R}^{d-1}$ is bounded on $L^p(\mathbb{R}^{d-1})$.