Harmonic Analysis Homework Sheet 5

Exercise 5.1

Establish b) and d) in Theorem 2.6 in the notes.

Exercise 5.2

Compute $H\left(\mathbf{1}_{[a, b]}\right)(x)$ for $-\infty<a<b<\infty$.

Exercise 5.3

We establish another proof of $\widehat{H(\varphi)}=-i \operatorname{sgn}(\xi) \hat{\varphi}$ and another equivalent definition of the Hilbert transform. Let

$$
Q_{t}=\frac{1}{\pi} \frac{x}{x^{2}+t^{2}}
$$

be the conjugate Poisson kernel of the last sheet. Show that $\lim _{t \rightarrow 0} Q_{t}=\pi^{-1}$ p. v. $\left(x^{-1}\right)$ in \mathcal{S}^{\prime}, i.e.,

$$
\lim _{t \rightarrow 0}\left\langle Q_{t}, \varphi\right\rangle_{\mathcal{S}}=H(\varphi), \quad \varphi \in \mathcal{S}(\mathbb{R})
$$

(We will later on show L^{p} and pointwise a.e. convergence (by considering the corresponding maximal function) for $\varphi \in L^{p}$ with $p \in[1, \infty)$, thereby extending the Hilbert transform from \mathcal{S}.) By the continuity of the Fourier transform in \mathcal{S}^{\prime} and $\hat{Q}_{t}(\xi)=-i \operatorname{sgn}(\xi) \mathrm{e}^{-2 \pi t|\xi|}$ (from the last sheet), this shows once more

$$
\widehat{H(\varphi)}(\xi)=-i \operatorname{sgn}(\xi) \hat{\varphi}(\xi)
$$

which, in turn, allows us to define H in $L^{2}(\mathbb{R})$ by Plancherel's theorem. Show that

$$
\begin{array}{r}
\|H f\|_{2}=\|f\|_{2} \\
H(H f)=-f \\
H^{*}=-H \tag{3}
\end{array}
$$

Exercise 5.4

1. Let $0<a<b<\infty$. Show that $\left|\int_{a}^{b} x^{-1} \sin x d x\right| \leq 4$.
2. Consider the one-dimensional Laplace transform of $\sin (x) / x$, i.e.,

$$
I(a):=\int_{0}^{\infty} \mathrm{e}^{-a x} \frac{\sin x}{x} d x, \quad a>0 .
$$

Show that $I(a)$ is continuous at $a=0$ and differentiate with respect to a to conclude $I(a)=\pi / 2-\arctan (a)$ and $I(0)=\pi / 2 .(I(0)$ is known as the Dirichlet integral.) Finally, deduce

$$
\int_{\mathbb{R}} \frac{\sin (x \xi)}{x} d x=\pi \operatorname{sgn}(\xi) .
$$

(Hint: Integration by parts and $\partial_{x}(1-\cos x)=\sin x$ may be helpful.)

