Harmonic Analysis Homework Sheet 3

Exercise 3.1

Establish Theorem 1.3.4 in the case where one of the $q_i \leq 1$. The following lemma might be helpful.

Lemma 0.1. Let $\Lambda_{\lambda}(x, y) = (1 - \lambda)x + \lambda y$ for $0 \le \lambda \le 1$ and x, y > 0. Then,

$$\Lambda_{\alpha}(\Lambda_{\beta}(x,y),\Lambda_{\gamma}(x,y)) = \Lambda_{\Lambda_{\alpha}(\beta,\gamma)}(x,y).$$

Exercise 3.2

Let $A, B_0, B_1 \ge 0$ such that $A \le \min(B_0, B_1)$. Show that for all $\theta \in (0, 1)$ we have

$$A \le B_{\theta} \min(\frac{B_0}{B_1}, \frac{B_1}{B_0})^{\varepsilon}$$

for any sufficiently small $\varepsilon_{\theta} > 0$, where $B_{\theta} = B_0^{1-\theta} B_1^{\theta}$. Can you imagine a situation where this type of estimate is superior to the simpler estimate $A \leq B_{\theta}$?

Exercise 3.3

In Lemma 1.3.5, show that the sub-double exponential hypothesis $|f(z)| \leq_f \exp(\mathcal{O}_f(e^{(\pi-\delta)|z|}))$ for some $\delta > 0$ is completely sharp.

Exercise 3.4

Prove Hadamard's three circle theorem. Let g(z) be holomorphic on the annulus $A := \{z \in \mathbb{C} : r_1 \leq |z| \leq r_3\}$ for some $0 < r_1 < r_3$ and denote

$$M(r) := \max_{\theta \in [0,2\pi]} |g(re^{i\theta})| \text{ for } r \in (r_1, r_3).$$

Prove that

$$\log(\frac{r_3}{r_1})\log M(r_2) \le \log(\frac{r_3}{r_2})\log M(r_1) + \log(\frac{r_2}{r_1})\log M(r_3)$$

for any $r_1 < r_2 < r_3$, i.e., $\log M(r)$ is a convex function of $\log r$. (Hint: Convince yourself that there is a vertical strip which the exponential function maps onto the annulus A.) Compute both sides of the inequality when $g(z) = cz^{\lambda}$ for some constants $c \in \mathbb{C}$ and $\lambda \in \mathbb{Z}$.