Harmonic Analysis
 Homework Sheet 3

Exercise 3.1

Establish Theorem 1.3.4 in the case where one of the $q_{i} \leq 1$. The following lemma might be helpful.

Lemma 0.1. Let $\Lambda_{\lambda}(x, y)=(1-\lambda) x+\lambda y$ for $0 \leq \lambda \leq 1$ and $x, y>0$. Then,

$$
\Lambda_{\alpha}\left(\Lambda_{\beta}(x, y), \Lambda_{\gamma}(x, y)\right)=\Lambda_{\Lambda_{\alpha}(\beta, \gamma)}(x, y)
$$

Exercise 3.2

Let $A, B_{0}, B_{1} \geq 0$ such that $A \leq \min \left(B_{0}, B_{1}\right)$. Show that for all $\theta \in(0,1)$ we have

$$
A \leq B_{\theta} \min \left(\frac{B_{0}}{B_{1}}, \frac{B_{1}}{B_{0}}\right)^{\varepsilon}
$$

for any sufficiently small $\varepsilon_{\theta}>0$, where $B_{\theta}=B_{0}^{1-\theta} B_{1}^{\theta}$. Can you imagine a situation where this type of estimate is superior to the simpler estimate $A \leq B_{\theta}$?

Exercise 3.3

In Lemma 1.3.5, show that the sub-double exponential hypothesis $|f(z)| \lesssim_{f} \exp \left(\mathcal{O}_{f}\left(\mathrm{e}^{(\pi-\delta)|z|}\right)\right)$ for some $\delta>0$ is completely sharp.

Exercise 3.4

Prove Hadamard's three circle theorem. Let $g(z)$ be holomorphic on the annulus $A:=\{z \in \mathbb{C}$: $\left.r_{1} \leq|z| \leq r_{3}\right\}$ for some $0<r_{1}<r_{3}$ and denote

$$
M(r):=\max _{\theta \in[0,2 \pi]}\left|g\left(r \mathrm{e}^{i \theta}\right)\right| \quad \text { for } r \in\left(r_{1}, r_{3}\right) .
$$

Prove that

$$
\log \left(\frac{r_{3}}{r_{1}}\right) \log M\left(r_{2}\right) \leq \log \left(\frac{r_{3}}{r_{2}}\right) \log M\left(r_{1}\right)+\log \left(\frac{r_{2}}{r_{1}}\right) \log M\left(r_{3}\right)
$$

for any $r_{1}<r_{2}<r_{3}$, i.e., $\log M(r)$ is a convex function of $\log r$. (Hint: Convince yourself that there is a vertical strip which the exponential function maps onto the annulus A.)
Compute both sides of the inequality when $g(z)=c z^{\lambda}$ for some constants $c \in \mathbb{C}$ and $\lambda \in \mathbb{Z}$.

