Harmonic Analysis Homework Sheet 11

Exercise 11.1

Assume $A: \mathcal{D}(A) \rightarrow \mathcal{H}$ is a linear non-negative (i.e., in particular self-adjoint) operator in some Hilbert space \mathcal{H}. Suppose, we knew that a Hörmander spectral multiplier theorem held for this operator such as the following

Theorem 0.1. Let $\sigma>0$, fix $0 \not \equiv \omega \in C_{c}^{\infty}\left(\mathbb{R}_{+}\right)$, and suppose F is a bounded and measurable function on \mathbb{R} such that

$$
\begin{equation*}
\sup _{t>0}\|\omega(\cdot) F(t \cdot)\|_{H^{\sigma}(\mathbb{R})}<\infty \tag{1}
\end{equation*}
$$

Then $F(A)$ is $L^{p}\left(\mathbb{R}^{d}\right)$ bounded for all $1<p<\infty$.
Now, let $\Phi:[0, \infty) \rightarrow[0,1]$ be a smooth, compactly supported function such that

$$
\Phi(\lambda)=1 \text { for } 0 \leq \lambda \leq 1 \quad \text { and } \quad \Phi(\lambda)=0 \text { for } \lambda \geq 2 .
$$

For a dyadic number $N \in 2^{\mathbb{Z}}$, we define

$$
\Phi_{N}(\lambda)=\Phi(\lambda / N) \quad \text { and } \quad \Psi_{N}(\lambda)=\Phi_{N}(\lambda)-\Phi_{N / 2}(\lambda) \in C_{c}^{\infty}\left(\mathbb{R}_{+}\right)
$$

We see that $\left\{\Psi_{N}(\lambda)\right\}_{N \in 2^{Z}}$ constitutes a partition of unity for $\lambda \in \mathbb{R}_{+}$. Using these functions, we define the standard Littlewood-Paley projections (via the L^{2} functional calculus) as

$$
P_{N}:=\Psi_{N}(\sqrt{A}) .
$$

Using these projections, prove
Theorem 0.2 (Square function estimates). Let $s>0$ and $1<p<\infty$. Assume $k \in \mathbb{N}$ such that $2 k>s$. Then we have

$$
\left\|A^{\frac{s}{2}} f\right\|_{p} \sim\left\|\left(\sum_{N \in 2^{\mathbb{Z}}}\left|N^{s / 2}\left(P_{N}\right)^{k} f\right|^{2}\right)^{\frac{1}{2}}\right\|_{p}
$$

for all $f \in C_{c}^{\infty}\left(\mathbb{R}^{d}\right)$.

Exercise 11.2

Suppose $V \in L_{\mathrm{loc}}^{1}\left(\mathbb{R}^{d}\right)$ is such that $-\Delta+V$ can be realized as a linear, densely defined operator on $\mathcal{D}(-\Delta) \cap \mathcal{D}(V)$. Formally establish the following Duhamel formula,

$$
\mathrm{e}^{\Delta}-\mathrm{e}^{-(-\Delta+V)}=\int_{0}^{1} \mathrm{e}^{(1-s) \Delta} V \mathrm{e}^{-s(-\Delta-V)} d s
$$

(Hint: The fundamental theorem of calculus may be helpful.)

Exercise 11.3

Using the three-lines lemma, establish the following Phragmén-Lindelöf

Lemma 0.3. Let F be holomorphic on $\mathbb{C}_{+}:=\{z \in \mathbb{C}: \Re(z)>0\}$ and assume the bounds

$$
\begin{array}{r}
\left|F\left(r \mathrm{e}^{i \theta}\right)\right| \leq a_{1}(r \cos \theta)^{-\beta} \\
|F(r)| \leq a_{1} r^{-\beta} \exp \left(-a_{2} r^{-\alpha}\right)
\end{array}
$$

for some $a_{1}, a_{2}>0, \beta \geq 0,0<\alpha \leq 2$, all $r>0$, and $|\theta|<\pi / 2$. Then, the estimate

$$
\left|F\left(r \mathrm{e}^{i \theta}\right)\right| \leq a_{1} 2^{\beta}(r \cos \theta)^{-\beta} \exp \left(-\frac{1}{2} a_{2} \alpha r^{-\alpha} \cos \theta\right)
$$

holds for all $r>0$ and $|\theta|<\pi / 2$.

