
Harmonic Analysis (Winter term 2023/2024)

October 2, 2023

Lectures (four hours per week): ??? ??.??-??.?? (in ????) and ??? ??.??-
??.?? (in ????), starting on October ??, 2023

Exercises (two hours per week): ??? ??.??-??.?? (in ????)
Credits: 10
Prerequisites: Analysis 1-3.

Analysis in general tends to revolve around the study of general classes of
functions and operators. Real-variable harmonic analysis focuses in particular
on the relation between qualitative properties (such as measurability, bounded-
ness, differentiability, analyticity, integrability, decay at infinity, convergence,
etc.) and their quantification (i.e., what is the smallest upper bound on a func-
tion, how often is it differentiable, what is its Lp norm, what is the convergence
rate of a sequence, etc.). It is then natural to ask how quantitative properties of
such functions change when one applies various (often quite explicit) operators.
It turns out that quantitative estimates, such as Lp estimates on such operators,
provide an important route to establish qualitative results and in fact there are
a number of principles (such as the uniform boundedness principle or Stein’s
maximal principle [21]) which assert that this is the only route, in the sense
that a quantitative result must exist in order for the qualitative result to be
true.

Many arguments in harmonic analysis will, at some point, involve a combi-
natorial statement about certain types of geometric objects such as cubes, balls,
or tubes. One such useful statement is the Vitali covering lemma which asserts
that given a collection of balls B1, ..., Bk in Rd, then there exists a subcollection
of balls Bi1 , ..., Bim which are disjoint but contain a significant fraction of the

volume covered by the original balls, in the sense that |
⋃k

i=1 Bk| ≤ ad|
⋃m

j=1 Bij |
for some d-dependent constant ad.

One feature of harmonic analysis methods is that they tend to be local rather
than global. For instance, it is quite common to analyze a function f by applying
cutoff functions in either the spatial or the frequency variables to decompose f
into a number of somewhat localized pieces. One then estimates each of these
pieces separately and “glues” the estimates back together at the end. One rea-
son for this “divide and conquer” strategy is that generic functions tend to have
infinitely many degrees of freedom (f may for instance be very smooth but
slowly decaying at one place whereas at other places f may be highly singular

1



or oscillating very quickly) and it would be quite difficult to treat all of these
features at once. A well chosen decomposition can isolate these features from
each other, so that each component only has one salient feature that could cause
difficulty. In reassembling the estimates from the individual components, one
can use rather crude tools such as the triangle inequality, or more refined tools,
such as ones relying on (almost) orthogonality. The main drawback of decom-
position methods is however that one generally does not obtain the optimal
constants.

Another basic theme of harmonic analysis is the attempt to quantify the
elusive phenomenon of oscillation. Intuitively, if an expression oscillates wildly
in phase, then its average value should be relatively small in amplitude. This
leads to the principle of stationary phase and the Heisenberg uncertainty prin-
ciple which relates the decay and smoothness of a function to the smoothness
and the decay of its Fourier transform. The development of a robust theory
for oscillatory integrals is also one main ingredient to understand the interplay
between Lp estimates of certain Fourier multipliers (such as the Bochner–Riesz
means) and geometric properties of certain (smooth) manifolds, such as the
decay of the Fourier transform of the associated surface measure.

1. Lebesgue spaces, Lorentz spaces, interpolation (Riesz–Thorin, Marcinkiewicz
(in particular restricted weak-type formulation. See, e.g., Tao [26, Lecture
2] or Stein [25].

2. Covering lemmas (Vitali, Whitney, Calderón–Zygmund) and Calderón–
Zygmund decomposition. See, e.g., Stein [22, Chapter 1], Grafakos [14,
Proposition 2.1.20, Theorem 4.3.1] and Guzmán [9].

3. Maximal functions. See Stein [22, 24].

(a) Hardy–Littlewood maximal function and Lebesgue differentiation the-
orem. See Stein [22, Chapter 1] and [24, Chapter I, Section §3].

(b) Maximal functions and Lebesgue differentiation for more general sets
(instead of balls). See Guzmán [9] and Cordoba–Fefferman [8].

(c) Hardy–Littlewood p maximal function. See Blunck–Kunstmann [3,
1].

(d) Relation to convergence almost everywhere, first glance at Bochner–
Riesz summability (FAP1 and FAP2 in [17]. In this regard, see also
the “ergodic Hopf–Dunford–Schwartz” theorem [23, p. 48] respec-
tively Dunford–Schwartz [10] (Section XIII.6: Lemma 7 (p. 676),
Theorem 8 (p. 678); Section XIII.8: Lemma 6 (p. 690) Theorem 7
(p. 693); Section XIII.9: Exercise 3 (p. 717))).

4. Singular integrals following Stein [22, Chapter II], [24, Chapter I, Section
§5]. In particular, Hilbert transform and its application to partial sums
operators [22, Chapter IV, Section §4] and second glance at Bochner–Riesz
(box multiplier versus disc multiplier, see also Fefferman [12, 13]).
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5. Riesz transforms and Poisson integrals. See Stein [22, Chapter III] and
[23, Section §4.4].

6. Fourier series and Fourier transform.

(a) Basics and summation methods in one and higher dimensions. See
Krantz [17, Chapter 1–3], Wolff [29, Chapter 1–5] und Grafakos [14,
Chapter 3–4].

(b) Mikhlin–Hörmander multiplier theorem for Fourier multipliers [24,
Chapter VI, Section §4.4]

(c) (Optional) Bernstein estimates, and Littlewood–Paley inequalities
and their application in nonlinear PDEs.

7. (Optional) Introduction to pseudodifferential operators following Stein [24,
Chapter VI] (see also Martinez [18] (Chapter 2, in particular from Section
2.5 on)).

(a) Symbolic calculus, composition [24, Chapter VI, Section §3] and [18,
Sections 2.6, 2.7].

(b) L2 boundedness, Calderón–Vaillancourt theorem [24, Chapter VI,
Section §2] and [18, Section 2.8].

(c) Singular integral representation, bounds on integral kernels [24, Chap-
ter VI, Section §4.1-4.3].

(d) L2 boundedness of translation invariant Calderón–Zygmund opera-
tors [24, Chapter VI, Section §4.5].

(e) Estimates in Lp, Sobolev, and Lipschitz spaces [24, Chapter VI, Sec-
tion §5].

8. (Optional) Multiplier theorems for spectral multipliers. Fundamental works
by Hebisch [15], Duong–Ouhabaz–Sikora [11], Blunck–Kunstmann [3], and
Blunck [2] for Schrödinger and more general self-adjoint operators.

9. (Optional) Almost orthogonality following Stein [24, Chapter VII].

(a) Exotic and forbidden symbols, failure of L2 boundedness for symbols
in S0

1,1 [24, Chapter VII, Section §1].

(b) Cotlar–Stein lemma [24, Chapter VII, Section §2.1-2.3] and general-
ization to Schatten classes, see Carbery [7]

(c) Consequences of Cotlar–Stein for symbols in S0
ρ,ρ. (with 0 ≤ ρ < 1)

[24, Chapter VII, Section §2.4-2.5].

(d) L2 theory for Calderón–Zygmund operators [24, Chapter VII, Section
§3].

(e) More on the Cauchy integral [24, Chapter VII, Section §4].

10. (Optional) Oscillatory integrals following Stein [24, Chapter XIII, IX].
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(a) Oscillatory integrals of the first kind, stationary phase [24, Chapter
XIII, Section §1-2].

(b) Fourier transform of surface measures [24, Chapter XIII, Section
§3] and application to the lattice counting problem (improvement
of Weyl’s law for −∆ on Td) (Sogge [19, pp. 83-85]).

(c) Introduction to Fourier restriction [24, Chapter XIII, Section §4].

(d) Oscillatory integrals of the second kind, Carleson–Sjölin and Hörman-
der integral operators [24, Chapter IX, Section §1]. See also Bourgain
[4].

(e) Relation to Fourier restriction and Bochner–Riesz summability [24,
Chapter IX, Section §2], Sogge [20, Sections 2.2-2.3], Tao [26, 27, 28].

11. (Optional) Decoupling inequalities [5, 6, 16].
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