Institut für Analysis und Algebra Technische Universität Braunschweig Prof. Dr. Volker Bach, Dr. Konstantin Merz

Lineare Algebra 1 3. Übungsblatt

Ausgabe am 22.11.2021, Abgabe bis zum 29.11.2021 um 9.00 Uhr, Besprechung in den kleinen Übungen vom 29.11.-03.12.2021

Aufgabe K3.1 (6 Punkte)

Gegeben Sei die Menge $K := \mathbb{R} \times \mathbb{R} := \{(x,y) \mid x,y \in \mathbb{R}\}$ zusammen mit der Addition

$$(x,y) + (x',y') := (x+x',y+y'),$$

sowie Multiplikation

$$(x,y) \cdot (x',y') := (xx' - yy', xy' + x'y).$$

Zeigen Sie, dass $(K,+,\cdot)$ einen Körper mit multiplikativem Inversen $(x,y)^{-1}:=(\frac{x}{x^2+y^2},\frac{-y}{x^2+y^2})$ bildet.

Anmerkung: Mit der Identifikation i := (0,1) bezeichnen wir K auch als Körper der komplexen Zahlen \mathbb{C} .

Aufgabe K3.2 (6 Punkte)

Betrachten Sie die Menge $\mathbb{Z} \times \mathbb{N}$ mitsamt der Relation $R : (\mathbb{Z} \times \mathbb{N}) \times (\mathbb{Z} \times \mathbb{N}) \to \{w,f\}$, definiert durch:

$$\forall (p,q), (r,s) \in \mathbb{Z} \times \mathbb{N}: \ (p,q) \sim (r,s) : \Leftrightarrow R((p,q),(r,s)) = \mathbb{w} : \Leftrightarrow ps = qr.$$

- (a) Zeigen Sie, dass R ist eine Äquivalenzrelation auf $\mathbb{Z} \times \mathbb{N}$ ist.
- (b) Damit seien nun die rationalen Zahlen $\mathbb{Q} := \mathbb{Z} \times \mathbb{N} / \mathbb{Z}$ definiert. Zeigen Sie die Wohldefiniertheit (Unabhängigkeit vom Repräsentanten) der folgenden Verknüpfungen auf \mathbb{Q} :

$$\forall [(p,q)], [(r,s)] \in \mathbb{Q} : [(p,q)] + [(r,s)] := [(ps+qr,qs)]$$
$$\forall [(p,q)], [(r,s)] \in \mathbb{Q} : [(p,q)] \cdot [(r,s)] := [(pr,qs)].$$

($\mathit{Hinweis}$: Die Wohldefiniertheit der Verknüpfungen + und \cdot ist durch folgende Aussage definiert:

$$F\ddot{u}r \ alle \ [(p,q)], [(r,s)], [(p',q')], [(r',s')] \in \mathbb{Q} \ mit \ [(p,q)] = [(p',q')] \ und \ [(r,s)] = [(r',s')] \ gelten \ [(ps+qr,qs)] = [(p's'+q'r',q's')] \ und \ [(pr,qs)] = [(p'r',q's')].)$$

Aufgabe K3.3 (6 Punkte)

Sei K eine Menge mit Verknüpfungen + und ·. Zeigen Sie, dass $(K, +, \cdot)$ noch kein Körper zu sein braucht, wenn die folgenden Axiome erfüllt sind:

(1) (K, +) ist eine abelsche Gruppe.

- (2) $(K \setminus \{0\}, \cdot)$ ist eine abelsche Gruppe.
- (3) $\forall a, b, c \in K : a(b+c) = ab + ac$.

(*Hinweis:* Finden Sie durch geeignete Wahl von $+, \cdot$ ein Gegenbeispiel für $K := \{0, 1\}.$)

Aufgabe K3.4 (6 Punkte)

Bestimmen Sie (bis auf Isomorphie) alle Körper mit genau 4 Elementen.

(*Hinweis*: Ohne Beschränkung der Allgemeinheit sei $K = \{0, 1, a, b\}$. Untersuchen Sie, inwieweit $(K, +, \cdot)$, d.h. K zusammen mit Addition und Multiplikation dann bereits durch die Körperaxiome notwendig bestimmt ist. Sie dürfen natürlich den Satz von Lagrange aus dem Tutorium verwenden, welcher besagt, dass die Ordnung |G| durch die Ordnung |U| jeder Untergruppe U von G geteilt wird. Insbesondere trifft dies auf die zyklischen Gruppen, die von Elementen von G erzeugt werden, zu.)