SUMMARY OF IONESCU-SCHLAG AND SOME OTHER THINGS

1. SUMMARY OF IONESCU—-SCHLAG [7]

Recall some notation.

e B={f: R? - C: ||fHQB = ZJZOQj fm|€[2]' 124] |f‘2 < oo} and B* = {g :
R — C : SUP;»0 27 [, 1cpi-1.0 1917 < 00} the classical Agmon-
Hormander spaces. Note B «— L < B*.

e S, : S'(RY) — S'(RY) with Spf = (1 —A)¥?2 =<V > f and a € C. (For

o
a € R this corresponds to fractional differentiation/integration)
Seu € LP} with ||u|lwer = ||Sau||r» denote the usual

/i¢ o« W = {u€ SR
(j- T Sobolev spaces. If p = 2, then W2 = H*,
5‘%”8 %4\4\ For ps = (2d 4 2)/(d + 3) the main Banach Spacei | here are
P X = W 5(B),fllx = int(1S-aenfills + 1S-falle
X+ = maX{||51/<d+1)9||Lp;i, 1519 5+}

ros . X =W 0 S, (BY), 9]

4
‘Vhﬂ heorem 1.1 (Combined LAR). Let § € (0,1], then

sup sup  |[Ro(A tie)||xox So 1.

[/q ’ > INE€(8,6-1) e€(—1,1)\0 —
e following is a weighted version thereof and will be used to estabhs}ﬂ

/ &)/ %70 discreteness of point spectrum in R\ 0 and

e rapid decay of eigenfunctions.

4
! i For N > 0 and v € (0, 1], let ,
s APE

:uN,’Y(x> < \/7’15 ~2N

which equals < x >2¥ for v — 0 and 1 for v = 1.

/\the that X* C H! and X — H~! and H' — X*. ~
29 (2‘:)7(—‘4_2—)

e

Theorem 1.2 (Weighted combined LAP). Let § € (0,1], then C

) lavaullxe Sne s (A = Nullx, [l € (8,67
whenever u € X* satisfies the mild decay condition (cf. Lemma

lim R~* / lul* =0.

R—o00
R<|z|<2R

LX: fast decay, low regularity — X*: slow decay, good regularity.

2Compare with [3] Theorem 14.2.4].
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Definition (Admissible ials). Let B(X*, X) denote the space of linear bounded
operators from X* to X. Then V is said to be admissible if

(1) VeB(X* X) and (¢, V) = (0. V) for any ¢, € S(RY).

(2) For alle >0 and N > 0 there exist Ay, Rne > 1 such that
AX
% X = |l Vallx < el yullx- + AN5HU1|9:|<RNJ|L2 uwe X",y e(01].

[/K%Observe what happens if u solves —A + Vu = \u in view of Theorem
(3) There exist J € Nsg and operators A;, B; € B(X*, L?) (j =1,2,...,J) Such

M/ 7 ;> that Crm—

&“/fﬂdﬁ V: ’4 (o, Vi) = J > (Bip, Aj), @€ X7

j=1

Moreover, considered as (unbounded) operators on L?, the A;, B; are c;)%d on

some domains satisfying D(A;), D(B;) 2 HY(R?) (which is natural in fiew of
H' < X*.) (Recall Kato smoothing theory in Section |2 l)

For instance V € ((4+1)/2[4/2 are admissible where K 5 )
% Y R
{4 IV lasagare = | SNV ™
Ly gy ey
and {Qs}scze is a collection of axis-parallel unit cubes such that RY = |J, Q5. The
exponent d/2 indicates the local integrability which is optimal to realize —A +V self-
adjointly, whereas the exponent (d + 1)/2 indicates its decay. (Note that 2/(d + 1) =

1/pa—1/p).)

Theorem 1.3 (Agmon-Hormander-Kato-Kuroda for admissible V'). Let V' be admis-
sible, then
—D(1) H=—~A+V defines a self-adjoint operator on D(H) = {u € H" : Hu € L?}.
Moreover, H > —c for some ¢ € R.
- (2) € :=0py \ 0 is discrete in R\ 0, i.e., ENT is finite for any compact I C R\ 0.
Moreover, each eigenvalue has at most finite multiplicity.
—) (3) The eigenfunctions uw of H decay rapidly, i.e., for each N > 0, one has that )
<z >N ue HY(RY).

X 1
(7 (4) We have a LAP for H, i.e., for compact I C (R\ 0)\ &, we have ’—6&%°

sup (A +V — (A tig) Hxox- Svsl.
Ael, ee(—1,1)\0 —_—

In particular, c(H) NI = 04,.(H)NI, i.e., the spectrum of H on I is purely ac.
(5) 0se(H) =0 and 0,.(H) = 04(—A) = [0,00).
——)\ (6) The generalized wave operators Q. (H, Hy) = s — limzoo eitH g=itHo p(O) g

Q4 (Ho, H) := s — limy+o, eitHog=itH pV) orist and are complete.

Remark (Embedded eigenvalues). In principle the theorem does not rule out point
spectrum in [0, 00). However, a deep result by Koch and Tataru [8] Theorem 3| actually
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3
says that for V € ((FD/2[4/2 there are no embedded eigenvalues. This is sharp in
view of the sequence of counterexample of lonescu—Jerison [6] satisfying

I&/ﬂ‘égﬂ D@ BM ps 4L (1.1)
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~n+ |4 2

L

and lim, o0 [| Vo || p ey = (El Cuenin/1] recently related that counterexample to Knapp’s
counterezample in || fls|lze < | flle ey which gave 1/q > (d + 1)/(p'(d — 1)). Let
a € R 6 < 1, and take f(z) = X{|a'—a’|<6-1, [zg—aqg|<6-2}(Z). Then f is morally sup-
ported on the dual rectangle Ry = {|¢'| < 6, |&a| < (52}ﬂ Now pave R?\ By(1) with
finitely overlapping rectangles of dimension (2/)%' x 47, let 1ga\ g1y () = 32551 X5(2),
andu(z) =3 iy 4=Niy(x) (being a superposition of Knapp examples). Then |u(z)| ~
(|2'|* + |za]) ™ and, since ¥DOs do not move the support too much,
T(Dyu(x) =Y 4 (T|g; + O(4))x;(x) ~ du(@) + O((|2'* + |aal) V")
Jjz1

where we expanded T(§) = X + (047(0))&a + O(|E?) around the aspired eigenvalue
A€ C. Thus, V. =—(T(D)— XNu/u is smooth and sastisfies pointwise bound in (1.1).
Lemma 4.1 (Analyticity of free resolvent and existence of boundary values).

(1) The map
C\ [0,00) = B(X, X7)
2z Ro(z)

1s analytic.
(2) For any X\ € (0,00) there are operators Ry(A £1i0) € B(X, X*) such that

|Ro(A £40)||xox+ Ss1, A€ (6,671),0€(0,1).

Moreover, for any sequences (Ay)nen C (0,00) and (e,)nen C [0, 00) with A, —
A and €, — 0, we have

(RO()‘n:tzgn)f790> — (R()()\ZEZO).]C,QO), f€X7 9068
1< r[Ro(An £ i) — Ro(A£i0)|f]| =0, feX, R>1.

(3) For A€ R\ 0 and ¢ > 0, we have
(A —(ANLie)Ry(ALtic)g=g, g€ X

in distributional sense, i.e., whenever the inner product with S functions is
taken.

Lemma 4.2. If V is admissible, then V : X* — X is compact.

3Their construction is analogous to that of Wigner and von Neumann [10].
4This is interesting in view of the Laptev—Safronov conjecture, cf. Frank-Simon [2].
5A Knapp example living at the south pole £; ~ 0.
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The following establishes the link between Fourier restriction and the existence of
boundary values of the free resolvent. See also Hormander [3] Theorem 14.2.2 and
Corollary 14.3.10] and Section

Lemma 4.3. Let ® € C°(RY) with ®(0) = 1 and ®(z) = 0 whenever |x| > 1. Then
for any A >0 and g € X, we have

g, R £ 10)g) =0 8) [ ()P o)

VAsd-1
: d .
fim [ R0 @PHE = eteb) [ iRl

where do(§) denotes the “canonical” surface measure, i.e., do(§) = dX(§)/(2[£]) where
dX (&) denotes the euclidean (Lebesque) surface measure.

Recall the Leray measure P*§y = d%(€)/|VP(€)| whenever P : R? — R with
VP #0, d € &(RY) is the usual d-dimensional Dirac distribution at the origin, and
d¥ is the euclidean surface measure on {£ € R?: P(£) = 0}, see also Hormander [4]
Theorem 6.1.5].

Next, the relation between eigenfunctions of H and solutions to (1x+ + Ro(A +
i0)V)f =0 (the “Lippmann—Schwinger equation”) is discussed. Let

EE={AeR\0:3f € X*\0s.t. (1x- +Ro(A£i0)V)f =0} =&
Ff={feX": (1x+ Ro(A+i0)V)f =0}.
Our goal is to show £ = € := opp(H)\ 0.

Lemma 4.4 (Rapid decay of solutions to “Lippmann-Schwinger”). Let A € € with
corresponding f € F/\i Then for any N > 0, we have

I<z > fllx Snwa llf]
Let ) ={u € D(H) : Hu = Mu} denote the vector space of eigenfunctions of H.

Lemma 4.5 (Preliminary relationship between £ and £).

(1) For any A € R\ 0 we have f;“UF/\_ C 9, and s0 £ CE.
(2) & is discrete in R\ 0, i.e., INE is finite for any compact I C R\ 0.
(3) For any A\ € R\ 0 the vector spaces Fy are finite-dimensional.

X* -

Lemma 4.6 (Uniform invertibility of 1x- + Ro(\ £ ie)V away from ). For any
A€ (R\0)\E the operators 1x« + Ro(A £ i)V are invertible on X* with

sup sup |[(Lx- + Ro(A£ie)V) Y xensx <r 1, IS (R\O)\E compact.
eI s€[0,1]

Lemma 5.1 (Resolvent formula for (H — 2)~! away from R). For any A € R and
e € R\ 0, the operator

Ry (A +ie) := (11 + Ro(A £ ie)V) ' Ro(A + i) : L* — D(H).
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1s well defined and bounded. Moreover, it is a right inverse, i.e.,
[H — (A +ie)|Ry(N +ig) =12
2. ELEMENTS OF KATO SMOOTHING THEORY
We recall some classic facts, cf. [9] Section XIIL.7].
Definition (H-smoothness). Let A be closed and H self-adjoint. Then Ais H-smooth
if and only if

) sup /(HAR(A Fie)g|l? + [JAR(A — ig)o||2) dA < 0o

e>0,lel=1 Jr Tty
or 4
— s ARG S0 < 0.
HER,[lol|=1

See also [9] Theorem XIII.25] for further characterizations of H-smoothness. Recall
that if

and A; are Hy-smooth and B; are H—smooth, then the Q. exist and are unitary [9)
Theorem XIII.24]. This assumption on V = Z;.le B} Aj leads to a boring situation as
it rules out o,,(H) (if 0(Hy) is purely ac, e.g.), so we will relax it now.

Definition (Local H-smoothness). A is called H-smooth on a Borel setf
is H-smooth. (Here Pr denotes the PVM associated to H.)
eorem XIII.30 (Sufficient criteria for local H-smoothness). Suppose that either

5 (1) SuPse SUPgopect [ AR + i) |2 < o0 or / /9/? (/e )4 + e

— (2) sup,e; SUPgce<1 [AR(A + i) A*[| < o0
x5 / 7-

hold. Then A is H-smooth on I. ///? (,/7“/5){// = ({ /7 /f/«r/ é] /? M/éé/

Define the local wave operators

e T itH —itHo p(0) e itHo ,—itH p(V )

Wi =s tilglooe e P, Wi =s tk;nooe e " P 2/6 47/ 78V (d-re)
Theorem XIII.31 (Existence and completeness of local wave operators). If H = — . (“/"”é‘()/
Hy + ZBJ"-‘AJ- and A; are Hy-smooth and B; are H-smooth on some open interval
I C R, then the local wave operators W and Wi exist and satisfy < W ///? 7f// K.

o __ . v
Wr=Wy, WaWwe=rP%,  w.w.=r"). KX
Z
Corollary (Paving large sets). Let S C R with S = UZZI@)whereaT‘e open bounded //{ /4
intervals and H = H0+Zj B} A;. Suppose A; are Hy-smooth and B; are H-smooth on /

Iy and that o(Hy) \ S and o(H)\ S have zero Lebesgue measure. Then the generalized

ZtHe—thoP
$ =l 0n) \ ¢

we exist and are Zomplete.
’3 @) (#)s &
\M/—/——}W e (1)
%

wave operators s — limy_, €
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3. DISTORTED FOURIER TRANSFORM

Let
H = Py(D) +V(z,D) in L*(R%)

where Py is real and simply Characteristicﬁ (see Hormander [3| Definition 14.3.1]),
opp(FPo) = {0}, and V (z, D) is a symmetric short range perturbation of Py in the sense
of Hérmander [3| Definition 14.4.1]. Recall the Agmon-Hormander spaces B and B*
and let

Z(Py) :=={N€R: Py(&) = X and dPy(€) = 0 for some ¢ € R?}  and
Sy = {£ € R: Py(¢) = \}.
Recall

[ 18 @EL 1. 5) = 1l = /R 1o(NS(Ro(A % ie) f, f) dA

_ / Do) [ 1€ dos,(©), S e L’

and the resolvent formula R(A £40)f = Ro(\ £10) frrio where f, = (1 + V Ry(2))7' f
is a continuous function of z € C*\ (0,,(H)U Z(P)) with values in B. Thus, we have

[16N@EL 10 = [ 3160 [ 1@ dos ), f€ B,
R S\
whenever QN (0,,(H) U Z(F)) = 0. This motivates

Definition 1. If f € B, then the L? functions defined by

(Fef)(€) = FIL+ VRy(A£40)) ' fI(€), €€ Sy (3.1)
_ Fl(1— VR £ i0)1(€) |

almost everywhere in Sy are called distorted Fourier transforms of f.

We recall the following properties of solutions of scattering states. Let Bp = {u :
Péa)u € B* for every a}.

Lemma 2 (Hérmander [3, Lemma 14.6.6]). Ifu € By, A & Z(F), and (Po(D)+V —
ANu = 0, then u is given by the solution of the Lippmann—Schwinger equation
u=uy — Ry(AFi0)Vu (3.2)
=(1—=RAFi10)V)ug,

where

U :Ui(5<P0—)\) :UidO'g)\(f), Uy € L2(S,\,d25>\>

6Examples are hypoelliptic operators (operators whose fundamental solutions E have
sing supp(E) = {0}) or operators of real principal type (operators whose principal symbol P, is
real and P/ (£) #0 for £ #0
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and
[ i =1 Pydos, (6) =0 (3.4
A
where dog, (§) = |VPy(&)|'d2s, (§) and dXs, (§) is the euclidean surface measure on
Sx. Moreover, if X ¢ (Z(Po) Uoy,(Po+V)), then
('FJrfaaﬁL):(‘F*aa*):(fau)a foeB (35>
Let us also recall

Theorem 3 (Hormander [3] Lemma 14.6.4 and Theorem 14.6.5]). F : E°L?(RY) —

—

L2(R4) is an isometric operator, which vanishes on EPPL*(R®), with

171 = [ IFer©Pae.
Moreover, the intertwining property
fieitH — eitPo(f)fi

holds for allt € R. In particular, the restriction of H to E°L? is absolutely continuous
(since Py has purely absolutely continuous spectrum,).

Moreover, Fy : E°L*(RY) — @) is actually unitary, i.e., the restriction of H to
E°L? is unitarily equivalent to Py, i.e., 0.(H) = 04.(H) = o(R). In particular, for
f € E¢(L*(RY)), we have

(FLHf)(E) = Po()(FLN)&), e, (Hf) ()= (FLPo()Fef)(z).
In particular, it follows that
./T"ifi = F° and fif:*t =1

The distorted Fourier transform (3.1) can be conveniently represented using the
solutions gy () (for () € Sy) of the Lippmann—Schwinger equation (3.2). In fact,
we have (see also Ikebe [5] and Yafaev [11] Sections 6.6-6.8])

(FeH©) =(pe. ), €€ |J S (3.6)

AE€oac(H)
Fow) = [ vewa@dc= [ o[ dos© v, G)

Moreover, we have the following expansion theorem (see also Ikebe [5, Theorem 5))

f= 3 Wt h+ [ ledteedyd (3.8)

Xeopp(H)

oac(H)

where {¢x}reo,, () denote the L*-normalized eigenfunctions of H, i.e., Hipy = \iy.
Moreover,

S Ao £+ [ Pulee) (e, 1) ds. (39

A€opp(H)
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The above results motivate in particular the following definition of the distorted
Fourier restriction and extension operators

(Fs [)(E) = (ge. f) = (FN)(E) . €€ Sy (3.10)
(F3.9)(z) = / dors, (€) Peon (2)9(€) (3.11)

which are defined with respect to the canonical measure dog,. In particular, we have
for any A C 0,.(H),

Bah) = [ teateddds = [ i [ dos© lo) (el = [ a3 P,

0
in a suitable weak sense and in particular, for A € o,.(H),

dEg (A :
ﬂ = / dasA (5) |s0§(,\)><90§(A)| = FSAFS)‘ ’
d\ Sy
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