
SUMMARY OF IONESCU–SCHLAG AND SOME OTHER THINGS

1. Summary of Ionescu–Schlag [7]

Recall some notation.

• B = {f : Rd → C : �f�2B :=
�

j≥0 2
j
�
|x|∈[2j−1,2j ]

|f |2 < ∞} and B∗ = {g :

Rd → C : �g�2B∗ := supj≥0 2
−j

�
|x|∈[2j−1,2j ]

|g|2 < ∞} the classical Agmon–

Hörmander spaces. Note B �→ L2 �→ B∗.
• Sα : S �(Rd) → S �(Rd) with Sαf = (1 − Δ)α/2 ≡< ∇ >α f and α ∈ C. (For

α ∈ R this corresponds to fractional differentiation/integration).

• Wα,p = {u ∈ S �(Rd) : Sαu ∈ Lp} with �u�Wα,p = �Sαu�Lp denote the usual

Sobolev spaces. If p = 2, then Wα,2 ≡ Hα.

• For pd = (2d+ 2)/(d+ 3) the main Banach spaces1 here are

X = W−1/(d+1),pd + S1(B) , �f�X = inf
f=f1+f2

�S−1/(d+1)f1�Lpd + �S−1f2�B

X∗ = W 1/(d+1),p�d ∩ S−1(B
∗) , �g�X∗ = max{�S1/(d+1)g�Lp�

d
, �S1g�B∗}

Note that X∗ ⊆ H1
loc and X �→ H−1 and H1 �→ X∗.

Theorem 1.1 (Combined LAP). Let δ ∈ (0, 1], then

sup
|λ|∈(δ,δ−1)

sup
ε∈(−1,1)\0

�R0(λ± iε)�X→X∗ �δ 1 .

The following is a weighted version thereof and will be used to establish2

• discreteness of point spectrum in R \ 0 and

• rapid decay of eigenfunctions.

For N ≥ 0 and γ ∈ (0, 1], let

µN,γ(x) =
< x >2N

<
√
γx >2N

which equals < x >2N for γ → 0 and 1 for γ = 1.

Theorem 1.2 (Weighted combined LAP). Let δ ∈ (0, 1], then

�µN,γu�X∗ �N,δ �µN,γ(−Δ− λ)u�X , |λ| ∈ (δ, δ−1)

whenever u ∈ X∗ satisfies the mild decay condition (cf. Lemma 4.3)

lim
R→∞

R−1

�

R≤|x|≤2R

|u|2 = 0 .

1X: fast decay, low regularity — X∗: slow decay, good regularity.
2Compare with [3, Theorem 14.2.4].
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Definition (Admissible potentials). Let B(X∗, X) denote the space of linear bounded

operators from X∗ to X. Then V is said to be admissible if

(1) V ∈ B(X∗, X) and (ψ, V ϕ) = (ϕ, V ψ) for any ψ,ϕ ∈ S(Rd).

(2) For all ε > 0 and N ≥ 0 there exist AN,ε, RN,ε ≥ 1 such that

�µN,γV u�X ≤ ε�µN,γu�X∗ + AN,ε�u1|x|≤RN,ε
�L2 , u ∈ X∗ , γ ∈ (0, 1] .

(Observe what happens if u solves −Δ+ V u = λu in view of Theorem 1.2).

(3) There exist J ∈ N>0 and operators Aj, Bj ∈ B(X∗, L2) (j = 1, 2, ..., J) such

that

(ϕ, V ψ) =
J�

j=1

(Bjϕ, Ajψ) , ϕ,ψ ∈ X∗ .

Moreover, considered as (unbounded) operators on L2, the Aj, Bj are closed on

some domains satisfying D(Aj),D(Bj) ⊇ H1(Rd) (which is natural in view of

H1 �→ X∗.) (Recall Kato smoothing theory in Section 2.)

For instance V ∈ �(d+1)/2Ld/2 are admissible where

�V ��(d+1)/2Ld/2 =
��

s

�V �
d+1
2

L
d
2 (Qs)

� 2
d+1

and {Qs}s∈Zd is a collection of axis-parallel unit cubes such that Rd =
�

s Qs. The

exponent d/2 indicates the local integrability which is optimal to realize −Δ+V self-

adjointly, whereas the exponent (d+ 1)/2 indicates its decay. (Note that 2/(d+ 1) =

1/pd − 1/p�d.)

Theorem 1.3 (Agmon–Hörmander–Kato–Kuroda for admissible V ). Let V be admis-

sible, then

(1) H ≡ −Δ+ V defines a self-adjoint operator on D(H) = {u ∈ H1 : Hu ∈ L2}.
Moreover, H ≥ −c for some c ∈ R.

(2) E := σpp \ 0 is discrete in R \ 0, i.e., E ∩ I is finite for any compact I ⊆ R \ 0.
Moreover, each eigenvalue has at most finite multiplicity.

(3) The eigenfunctions u of H decay rapidly, i.e., for each N ≥ 0, one has that

< x >N u ∈ H1(Rd).

(4) We have a LAP for H, i.e., for compact I ⊆ (R \ 0) \ E, we have

sup
λ∈I, ε∈(−1,1)\0

�(−Δ+ V − (λ± iε))−1�X→X∗ �V,I 1 .

In particular, σ(H)∩ I = σac(H)∩ I, i.e., the spectrum of H on I is purely ac.

(5) σsc(H) = 0 and σac(H) = σac(−Δ) = [0,∞).

(6) The generalized wave operators Ω±(H,H0) := s − limt∓∞ eitHe−itH0P
(0)
ac and

Ω±(H0, H) := s− limt∓∞ eitH0e−itHP
(V )
ac exist and are complete.

Remark (Embedded eigenvalues). In principle the theorem does not rule out point

spectrum in [0,∞). However, a deep result by Koch and Tataru [8, Theorem 3] actually















SUMMARY — November 18, 2020 3

says that for V ∈ �(d+1)/2Ld/2 there are no embedded eigenvalues. This is sharp in

view of the sequence of counterexamples3 of Ionescu–Jerison [6] satisfying

Lp(Rd) � |Vn(x)| �
1

n+ |x�|2 + |xd|
, p >

d+ 1

2
(1.1)

and limn→∞ �Vn�Lp(Rd) = 04. Cuenin[1] recently related that counterexample to Knapp’s

counterexample in �f̂ |S�Lq � �f�Lp(Rd) which gave 1/q ≥ (d + 1)/(p�(d − 1)). Let

a ∈ Rd, δ � 1, and take f(x) = χ{|x�−a�|<δ−1, |xd−ad|<δ−2}(x). Then f̂ is morally sup-

ported on the dual rectangle R∗
δ = {|ξ�| < δ, |ξd| < δ2}5. Now pave Rd \ B0(1) with

finitely overlapping rectangles of dimension (2j)d−1×4j, let 1Rd\B0(1)(x) =
�

j≥1 χj(x),

and u(x) =
�

j≥1 4
−Njχj(x) (being a superposition of Knapp examples). Then |u(x)| ∼

(|x�|2 + |xd|)−N and, since ΨDOs do not move the support too much,

T (D)u(x) =
�

j≥1

4−Nj(T |R∗
j
+O(4−j))χj(x) ∼ λu(x) +O((|x�|2 + |xd|)−N−1)

where we expanded T (ξ) = λ + (∂dT (0))ξd + O(|ξ|2) around the aspired eigenvalue

λ ∈ C. Thus, V = −(T (D)−λ)u/u is smooth and sastisfies pointwise bound in (1.1).

Lemma 4.1 (Analyticity of free resolvent and existence of boundary values).

(1) The map

C \ [0,∞) → B(X,X∗)

z �→ R0(z)

is analytic.

(2) For any λ ∈ (0,∞) there are operators R0(λ± i0) ∈ B(X,X∗) such that

�R0(λ± i0)�X→X∗ �δ 1 , λ ∈ (δ, δ−1), δ ∈ (0, 1) .

Moreover, for any sequences (λn)n∈N ⊆ (0,∞) and (εn)n∈N ⊆ [0,∞) with λn →
λ and εn → 0, we have

(R0(λn ± iεn)f,ϕ) → (R0(λ± i0)f,ϕ) , f ∈ X, ϕ ∈ S
�1|x|≤R[R0(λn ± iεn)−R0(λ± i0)]f� → 0 , f ∈ X, R ≥ 1 .

(3) For λ ∈ R \ 0 and ε ≥ 0, we have

(−Δ− (λ± iε))R0(λ± iε)g = g , g ∈ X

in distributional sense, i.e., whenever the inner product with S functions is

taken.

Lemma 4.2. If V is admissible, then V : X∗ → X is compact.

3Their construction is analogous to that of Wigner and von Neumann [10].
4This is interesting in view of the Laptev–Safronov conjecture, cf. Frank–Simon [2].
5A Knapp example living at the south pole ξd ∼ 0.
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The following establishes the link between Fourier restriction and the existence of

boundary values of the free resolvent. See also Hörmander [3, Theorem 14.2.2 and

Corollary 14.3.10] and Section 3.

Lemma 4.3. Let Φ ∈ C∞
c (Rd) with Φ(0) = 1 and Φ(x) = 0 whenever |x| ≥ 1. Then

for any λ > 0 and g ∈ X, we have

�(g,R0(λ± i0)g) = c1(λ,±)

�
√
λSd−1

|ĝ(ξ)|2 dσ(ξ)

lim
R→∞

�

Rd

|(R0(λ± i0)g)(x)|2Φ( x
R
)
dx

R
= c2(λ,Φ,±)

�
√
λSd−1

|ĝ(ξ)|2 dσ(ξ)

where dσ(ξ) denotes the “canonical” surface measure, i.e., dσ(ξ) = dΣ(ξ)/(2|ξ|) where
dΣ(ξ) denotes the euclidean (Lebesgue) surface measure.

Recall the Leray measure P ∗δ0 = dΣ(ξ)/|∇P (ξ)| whenever P : Rd → R with

∇P �= 0, δ0 ∈ E �(Rd) is the usual d-dimensional Dirac distribution at the origin, and

dΣ is the euclidean surface measure on {ξ ∈ Rd : P (ξ) = 0}, see also Hörmander [4,

Theorem 6.1.5].

Next, the relation between eigenfunctions of H and solutions to (1X∗ + R0(λ ±
i0)V )f = 0 (the “Lippmann–Schwinger equation”) is discussed. Let

Ẽ± = {λ ∈ R \ 0 : ∃f ∈ X∗ \ 0 s.t. (1X∗ +R0(λ± i0)V )f = 0} = Ẽ
F±

λ = {f ∈ X∗ : (1X∗ +R0(λ± i0)V )f = 0} .
Our goal is to show Ẽ = E := σpp(H) \ 0.

Lemma 4.4 (Rapid decay of solutions to “Lippmann–Schwinger”). Let λ ∈ Ẽ with

corresponding f ∈ F±
λ . Then for any N ≥ 0, we have

� < x >2N f�X∗ �N,V,λ �f�X∗ .

Let Hλ = {u ∈ D(H) : Hu = λu} denote the vector space of eigenfunctions of H.

Lemma 4.5 (Preliminary relationship between E and Ẽ).
(1) For any λ ∈ R \ 0 we have F+

λ ∪ F−
λ ⊆ Hλ and so Ẽ ⊆ E.

(2) Ẽ is discrete in R \ 0, i.e., I ∩ Ẽ is finite for any compact I ⊆ R \ 0.
(3) For any λ ∈ R \ 0 the vector spaces F±

λ are finite-dimensional.

Lemma 4.6 (Uniform invertibility of 1X∗ + R0(λ ± iε)V away from Ẽ). For any

λ ∈ (R \ 0) \ Ẽ the operators 1X∗ +R0(λ± iε)V are invertible on X∗ with

sup
λ∈I

sup
ε∈[0,1]

�(1X∗ +R0(λ± iε)V )−1�X∗→X �I 1 , I ⊆ (R \ 0) \ Ẽ compact .

Lemma 5.1 (Resolvent formula for (H − z)−1 away from R). For any λ ∈ R and

ε ∈ R \ 0, the operator

R̃V (λ+ iε) := (1H1 +R0(λ± iε)V )−1R0(λ+ iε) : L2 → D(H) .
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is well defined and bounded. Moreover, it is a right inverse, i.e.,

[H − (λ+ iε)]R̃V (λ+ iε) = 1L2 .

2. Elements of Kato smoothing theory

We recall some classic facts, cf. [9, Section XIII.7].

Definition (H-smoothness). Let A be closed and H self-adjoint. Then A isH-smooth

if and only if

sup
ε>0,�ϕ�=1

�

R
(�AR(λ+ iε)ϕ�2 + �AR(λ− iε)ϕ�2) dλ < ∞

or

sup
µ/∈R,�ϕ�=1

�AR(µ)ϕ�2 · |�(µ)| < ∞ .

See also [9, Theorem XIII.25] for further characterizations of H-smoothness. Recall

that if

H = H0 +
J�

j=1

B∗
jAj

and Aj are H0-smooth and Bj are H-smooth, then the Ω± exist and are unitary [9,

Theorem XIII.24]. This assumption on V =
�J

j=1 B
∗
jAj leads to a boring situation as

it rules out σpp(H) (if σ(H0) is purely ac, e.g.), so we will relax it now.

Definition (Local H-smoothness). A is called H-smooth on a Borel set I ⊆ R if

API is H-smooth. (Here PI denotes the PVM associated to H.)

Theorem XIII.30 (Sufficient criteria for local H-smoothness). Suppose that either

(1) supλ∈I sup0<|ε|<1 |ε|�AR(λ+ iε)�2 < ∞ or

(2) supλ∈I sup0<|ε|<1 �AR(λ+ iε)A∗� < ∞
hold. Then A is H-smooth on I.

Define the local wave operators

W± = s− lim
t→∓∞

eitHe−itH0P
(0)
I , �W± = s− lim

t→∓∞
eitH0e−itHP

(V )
I .

Theorem XIII.31 (Existence and completeness of local wave operators). If H =

H0 +
�

B∗
jAj and Aj are H0-smooth and Bj are H-smooth on some open interval

I ⊆ R, then the local wave operators W± and �W± exist and satisfy

W ∗
± = �W± , �W±W± = P

(0)
I , W±�W± = P

(V )
I .

Corollary (Paving large sets). Let S ⊆ R with S =
�

�≥1 I� where I� are open bounded

intervals and H = H0+
�

j B
∗
jAj. Suppose Aj are H0-smooth and Bj are H-smooth on

I� and that σ(H0) \S and σ(H) \S have zero Lebesgue measure. Then the generalized

wave operators s− limt→∓∞ eitHe−itH0P
(0)
ac exist and are complete.
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3. Distorted Fourier transform

Let

H = P0(D) + V (x,D) in L2(Rd)

where P0 is real and simply characteristic6 (see Hörmander [3, Definition 14.3.1]),

σpp(P0) = {0}, and V (x,D) is a symmetric short range perturbation of P0 in the sense

of Hörmander [3, Definition 14.4.1]. Recall the Agmon–Hörmander spaces B and B∗

and let

Z(P0) := {λ ∈ R : P0(ξ) = λ and dP0(ξ) = 0 for some ξ ∈ Rd} and

Sλ := {ξ ∈ Rd : P0(ξ) = λ} .
Recall �

1Ω(λ)(dE
(0)
λ f, f) = ± lim

ε�0

1

π

�

R
1Ω(λ)�(R0(λ± iε)f, f) dλ

=

�

R
dλ1Ω(λ)

�

Sλ

|f̂(ξ)|2 dσSλ
(ξ) , f ∈ L2

and the resolvent formula R(λ± i0)f = R0(λ± i0)fλ±i0 where fz = (1 + V R0(z))
−1f

is a continuous function of z ∈ C± \ (σpp(H)∪Z(P0)) with values in B. Thus, we have
�

1Ω(λ)(dE
(V )
λ f, f) =

�

R
dλ1Ω(λ)

�

Sλ

|f̂λ±i0(ξ)|2 dσSλ
(ξ) , f ∈ B ,

whenever Ω ∩ (σpp(H) ∪ Z(P0)) = ∅. This motivates

Definition 1. If f ∈ B, then the L2 functions defined by

(F±f)(ξ) = F [(1 + V R0(λ± i0))−1f ](ξ) , ξ ∈ Sλ

= F [(1− V R(λ± i0))f ](ξ)
(3.1)

almost everywhere in Sλ are called distorted Fourier transforms of f .

We recall the following properties of solutions of scattering states. Let B∗
P0

= {u :

P
(α)
0 u ∈ B∗ for every α}.

Lemma 2 (Hörmander [3, Lemma 14.6.6]). If u ∈ B∗
P0
, λ /∈ Z(P0), and (P0(D)+V −

λ)u = 0, then u is given by the solution of the Lippmann–Schwinger equation

u = u± −R0(λ∓ i0)V u (3.2)

= (1−R(λ∓ i0)V )u± , (3.3)

where

û± = v±δ(P0 − λ) = v±dσSλ
(ξ) , v± ∈ L2(Sλ, dΣSλ

)

6Examples are hypoelliptic operators (operators whose fundamental solutions E have

sing supp(E) = {0}) or operators of real principal type (operators whose principal symbol Pm is

real and P �
m(ξ) �= 0 for ξ �= 0
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and �

Sλ

(|v+|2 − |v−|2) dσSλ
(ξ) = 0 (3.4)

where dσSλ
(ξ) = |∇P0(ξ)|−1dΣSλ

(ξ) and dΣSλ
(ξ) is the euclidean surface measure on

Sλ. Moreover, if λ /∈ (Z(P0) ∪ σpp(P0 + V )), then

(F+f, û+) = (F−, û−) = (f, u) , if f ∈ B . (3.5)

Let us also recall

Theorem 3 (Hörmander [3, Lemma 14.6.4 and Theorem 14.6.5]). F± : EcL2(Rd) →
�L2(Rd) is an isometric operator, which vanishes on EppL2(Rd), with

�Ecf�22 =
�

Rd

|F±f(ξ)|2 dξ .

Moreover, the intertwining property

F±e
itH = eitP0(ξ)F±

holds for all t ∈ R. In particular, the restriction of H to EcL2 is absolutely continuous

(since P0 has purely absolutely continuous spectrum).

Moreover, F± : EcL2(Rd) → �L2(Rd) is actually unitary, i.e., the restriction of H to

EcL2 is unitarily equivalent to P0, i.e., σc(H) = σac(H) = σ(P0). In particular, for

f ∈ Ec(L2(Rd)), we have

(F±Hf)(ξ) = P0(ξ)(F±f)(ξ) , i.e., (Hf)(x) = (F∗
±P0(·)F±f)(x) .

In particular, it follows that

F∗
±F± = Ec and F±F∗

± = 1�L2 .

The distorted Fourier transform (3.1) can be conveniently represented using the

solutions ϕξ(λ)(x) (for ξ(λ) ∈ Sλ) of the Lippmann–Schwinger equation (3.2). In fact,

we have (see also Ikebe [5] and Yafaev [11, Sections 6.6-6.8])

(F±f)(ξ) = �ϕξ, f� , ξ ∈
�

λ∈σac(H)

Sλ (3.6)

(F∗
±g)(x) =

�

Rd

ϕξ(x)g(ξ) dξ =

�

σac(H)

dλ

�

Sλ

dσSλ
(ξ) ϕξ(x)g(ξ) . (3.7)

Moreover, we have the following expansion theorem (see also Ikebe [5, Theorem 5])

f =
�

λ∈σpp(H)

|ψλ��ψλ, f�+
�

Rd

|ϕξ��ϕξ, f� dξ (3.8)

where {ψλ}λ∈σpp(H) denote the L2-normalized eigenfunctions of H, i.e., Hψλ = λψλ.

Moreover,

Hf =
�

λ∈σpp(H)

λ|ψλ��ψλ, f�+
�

Rd

P0(ξ)|ϕξ��ϕξ, f� dξ . (3.9)
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The above results motivate in particular the following definition of the distorted

Fourier restriction and extension operators

(FSλ
f)(ξ) = �ϕξ, f� = (F±f)(ξ) , ξ ∈ Sλ (3.10)

(F ∗
Sλ
g)(x) =

�

Sλ

dσSλ
(ξ) ϕξ(λ)(x)g(ξ) (3.11)

which are defined with respect to the canonical measure dσSλ
. In particular, we have

for any Λ ⊆ σac(H),

EH(Λ) =

�

P−1
0 (Λ)

|ϕξ��ϕξ| dξ =

�

Λ

dλ

�

Sλ

dσSλ
(ξ) |ϕξ(λ)��ϕξ(λ)| =

�

Λ

dλ F ∗
Sλ
FSλ

in a suitable weak sense and in particular, for λ ∈ σac(H),

dEH(λ)

dλ
=

�

Sλ

dσSλ
(ξ) |ϕξ(λ)��ϕξ(λ)| = F ∗

Sλ
FSλ

.
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