SUMMARY OF IONESCU-SCHLAG AND SOME OTHER THINGS

1. Summary of Ionescu-Schlag 7]

Recall some notation.

- $B=\left\{f: \mathbb{R}^{d} \rightarrow \mathbb{C}:\|f\|_{B}^{2}:=\sum_{j \geq 0} 2^{j} \int_{|x| \in\left[2^{j-1}, 2^{j}\right]}|f|^{2}<\infty\right\}$ and $B^{*}=\{g:$ $\left.\mathbb{R}^{d} \rightarrow \mathbb{C}:\|g\|_{B^{*}}^{2}:=\sup _{j \geq 0} 2^{-j} \int_{|x| \in\left[2^{j-1}, 2^{j}\right]}|g|^{2}<\infty\right\}$ the classical AgonHörmander spaces. Note $B \leftrightarrows L^{2} \hookrightarrow B^{*}$.
- $S_{\alpha}: \mathcal{S}^{\prime}\left(\mathbb{R}^{d}\right) \rightarrow \mathcal{S}^{\prime}\left(\mathbb{R}^{d}\right)$ with $S_{\alpha} f=(1-\Delta)^{\alpha / 2} \equiv<\nabla>^{\alpha} f$ and $\alpha \in \mathbb{C}$. (For $\alpha \in \mathbb{R}$ this corresponds to fractional differentiation/integration).

- For $p_{d}=(2 d+2) /(d+3)$ the main Banach spaces ${ }^{1}$ here are
$X=\underline{W^{-1 /(d+1), p_{d}}}+S_{1}(B), \quad\|f\|_{X}=\inf _{f=f_{1}+f_{2}}\left\|S_{-1 /(d+1)} f_{1}\right\|_{L^{p_{d}}}+\left\|S_{-1} f_{2}\right\|_{B}$
$\mathrm{rpg} . \sqrt{ } X^{*}=W^{1 /(d+1), p_{d}^{\prime}} \cap S_{-1}\left(B^{*}\right), \quad\|g\|_{X^{*}}=\max \left\{\| S_{1 /(d+1)} g\right.$
+ Censform 1 baled , that $X^{*} \subseteq H_{\mathrm{loc}}^{1}$ and $X \hookrightarrow H^{-1}$ and $H^{1} \hookrightarrow X^{*}$.
Theorem 1.1 (Combined LAP). Let $\delta \in(0,1]$, then

$\ell^{\text {P }}$ P discreteness of point spectrum in $\mathbb{R} \backslash 0$ and
- rapid decay of eigenfunctions.

For $N \geq 0$ and $\gamma \in(0,1]$, let

$$
\left.\mu_{N, \gamma}(x)=\frac{<x>^{2 N}}{<\sqrt{\gamma} x>^{2 N}} \xrightarrow{\gamma \rightarrow \varnothing}<\chi\right)^{2 w}
$$

which equals $<x>^{2 N}$ for $\gamma \rightarrow 0$ and 1 for $\gamma=1$.
Theorem 1.2 (Weighted combined LAP). Let $\delta \in(0,1]$, then

$$
\longrightarrow) \quad\left\|\mu_{N, \gamma} u\right\|_{X^{*}} \lesssim_{N, \delta}\left\|\mu_{N, \gamma}(-\Delta-\lambda) u\right\|_{X}, \quad|\lambda| \in\left(\delta, \delta^{-1}\right)
$$

whenever $u \in X^{*}$ satisfies the mild decay condition (cf. Lemma 4.3)

$$
\lim _{R \rightarrow \infty} R^{-1} \int_{D}|u|^{2}=0 .
$$

[^0]${ }^{2}$ Compare with [3, Theorem 14.2.4].

Definition (Admissible potentials). Let $\mathfrak{B}\left(X^{*}, X\right)$ denote the space of linear bounded operators from X^{*} to X. Then V is said to be admissible if
(1) $V \in \underline{\mathfrak{B}\left(X^{*}, X\right)}$ and $\underline{(\psi, V \varphi)=\overline{(\varphi, V \psi)}}$ for any $\psi, \varphi \in \mathcal{S}\left(\mathbb{R}^{d}\right)$.
$V \cdot X^{\boldsymbol{\lambda}} \xrightarrow{\text { 如 }} \stackrel{\text { (2) }}{\longrightarrow}\left\|\mu_{N, \gamma} V u\right\|_{X} \leq \varepsilon\left\|\mu_{N, \gamma} u\right\|_{X^{*}}+A_{N, \varepsilon}\left\|u \mathbf{1}_{|x| \leq R_{N, \varepsilon}}\right\|_{L^{2}}, \quad u \in X^{*}, \gamma \in(0,1]$.
iX ${ }_{\uparrow}^{\sim}$ Observe what happens if u solves $-\Delta+V u=\lambda u$ in view of Theorem 1.2).
(3) There exist $J \in \mathbb{N}_{>0}$ and operators $A_{j}, B_{j} \in \mathfrak{B}\left(X^{*}, L^{2}\right)(j=1,2, \ldots, J)$ such
$V=\mathbb{B}^{A} A \quad(\varphi, V \psi)=\sum_{j=1}^{J}\left(B_{j} \varphi, A_{j} \psi\right), \quad \varphi, \psi \in X^{*}$.
Moreover, considered as (unbounded) operators on L^{2}, the A_{j}, B_{j} are clos fd on some domains satisfying $\mathcal{D}\left(A_{j}\right), \mathcal{D}\left(B_{j}\right) \supseteq H^{1}\left(\mathbb{R}^{d}\right)$ (which is natural in flew of $H^{1} \hookrightarrow X^{*}$.) (Recall Kato smoothing theory in Section 2.)
For instance $V \in \ell^{(d+1) / 2} L^{d / 2}$ are admissible where

and $\left\{Q_{s}\right\}_{s \in \mathbb{Z}^{d}}$ is a collection of axis-parallel unit cubes such that $\mathbb{R}^{d}=\bigcup_{s} Q_{s}$. The exponent $d / 2$ indicates the local integrability which is optimal to realize $-\Delta+V$ selfadjointly, whereas the exponent $(d+1) / 2$ indicates its decay. (Note that $2 /(d+1)=$ $\left.1 / p_{d}-1 / p_{d}^{\prime}.\right)$

Theorem 1.3 (Agmon-Hörmander-Kato-Kuroda for admissible V). Let V be admissidle, then

$$
\text { - (1) } \frac{H \equiv-\Delta+V \text { defines a self-adjoint operator on } \mathcal{D}(H)}{\text { Moreover, } H \geq-c \text { for some } c \in \mathbb{R} .}=\left\{u \in H^{1}: H u \in L^{2}\right\} .
$$

Moreover, each eigenvalue has at most finite multiplicity.
\rightarrow (3) The eigenfunctions u of H decay rapidly, i.e., for each $N \geq 0$, one has that $<x>^{N} u \in H^{1}\left(\mathbb{R}^{d}\right)$.
\longrightarrow
(4) $\widetilde{\text { We have a } L A P ~ f o r ~} H$, i.e., for compact $I \subseteq(\mathbb{R} \backslash 0) \backslash \mathcal{E}$, we have

$$
\sup _{\lambda \in I, \varepsilon \in(-1,1) \backslash 0} \|(-\Delta+V-(\lambda \pm i \varepsilon))^{-1}{\underline{\underline{X \rightarrow X^{*}}}} \lesssim_{V, I} 1
$$

In particular, $\sigma(H) \cap I=\sigma_{a c}(H) \cap I$, ie., the spectrum of H on I is purely ac.
(5) $\sigma_{s c}(H)=0$ and $\sigma_{a c}(H)=\sigma_{a c}(-\Delta)=[0, \infty)$.
$\longrightarrow(6)$ The generalized wave operators $\Omega_{ \pm}\left(H, H_{0}\right):=s-\lim _{t \mp \infty} \mathrm{e}^{i t H} \mathrm{e}^{-i t H_{0}} P_{a c}^{(0)}$ and $\Omega_{ \pm}\left(H_{0}, H\right):=s-\lim _{t \mp \infty} \mathrm{e}^{i t H_{0}} \mathrm{e}^{-i t H} P_{a c}^{(V)}$ exist and are complete.

Remark (Embedded eigenvalues). In principle the theorem does not rule out point spectrum in $[0, \infty)$. However, a deep result by Koch and Tatar [8, Theorem 3] actually

$$
\frac{(H-z)^{-1}}{C_{\text {Lipmann-Schwinger }}}=\frac{\left(\mathbb{I}+R_{0}(z) V\right)^{-1}}{B_{0}(t)}
$$

K. 1
a) $\left(\underset{(0, \infty)}{[(t)} \rightarrow \operatorname{Lo}\left(x, x_{0}\right)\right.$ ist candytish
b) $\nVdash d \in(\theta, \infty)$, existieren Operatoren $R_{0}(\lambda+i 0)$

$$
\begin{aligned}
& \left\|R_{0}(x+i 0)\right\|_{x \rightarrow x^{x}} \leq 1 \\
& \left(R_{0}(\lambda+i \epsilon) g, \phi\right) \xrightarrow{\epsilon \rightarrow 0}\left(R_{0}(\lambda+i 0) g, \phi\right), g \in X, \phi \in S \\
& \left\|\mathbb{I}_{w \in R}\left[R_{0}(\lambda+i \epsilon)-R_{0}(d+i 0)\right] g\right\| \xrightarrow{a} 0
\end{aligned}
$$

c) $(-\Delta-1-i) R(d+i)^{x}=g \in X$.
c) $(-\Delta-d-i \epsilon) \mathbb{R}_{0}(d+i \epsilon) g^{\|}=g \quad$ im $\rho^{\prime}-$ Sanne

Pf
a) V
c) $1<0$, oder $\in \neq 0$.

$$
\hat{\lambda} \geqslant 0, \epsilon=0 \text { folift as } b \text {) }
$$

b) $f \in \rho \quad(-\Delta-z)^{-1} f(x)=T_{z} * f(x)$

$$
\left|(-4-z)^{-1}(x)\right| \underset{\operatorname{lgln}_{\ln } \operatorname{Im} z \quad|x|^{-(d-2)} \mathbb{f}_{|x|<1}+|x|^{-\frac{d-1}{2}} \mathbb{H}_{|x|>1} \hat{\operatorname{arb}}^{\prime}(x)}{l}
$$

$$
\begin{gathered}
T_{d+i \epsilon} \text { of }(x) \xrightarrow{\in \rightarrow 0} T_{b+i 0} \times f(x) \quad \text { (na poirsert) } \\
\left\|R_{0}(d+i 0) f\right\|_{x^{x}} \leq \lim _{\substack{\operatorname{tin}}}\left\|T_{d+i \epsilon} * f\right\|_{x^{*}} \\
\leq\|f\| x
\end{gathered}
$$

Printip \rightarrow FAP \rightarrow per Stetigheit won Fhte in x glm. Beschr.

$$
\left(R_{0}(d+i \epsilon) g, \phi\right) \rightarrow\left(\mathbb{R}_{0}(d+i 0) g, \phi\right) g \in X
$$

ges nit naj. Aon.
4.2 V: $X^{k} \rightarrow X$ hompuht
if $V=V_{1}^{R_{1}}+V_{2}$
G Rellich
4.3 $g \in X$
$\operatorname{Im}\left(g, R_{0}(d+i 0) g\right)=c_{1} \int_{|\xi|=\mid \lambda}|\hat{g}(\xi)|^{2} d \sigma(\xi)$

$\phi \quad \int_{\alpha_{0}}^{\infty} \phi\left(x+t_{\omega}\right) d t<\infty \quad \forall \quad x \in(1) ?, \quad \omega \in S^{a-1}$

If $j \in \rho \vee(\rightarrow$ Hormader I, II)
$\mathrm{f} \in \mathrm{X} \rightarrow$ mit TS oder Agmon-Hörmander

$$
\begin{aligned}
\text { 4.4 } & \frac{(l+-z)^{-1}}{}=\frac{\left(\mathbb{A}+R_{0}(z) V\right)^{-1}}{} \xrightarrow{R}(z) \\
\varepsilon & =\sigma_{p p}(H) 10 \\
\widetilde{\varepsilon} & \left.=\left\{\lambda \in \mathbb{K}: f f \in X^{*}: \mathbb{1}_{x^{k}}+R_{0}(d+r 0) V\right) f=0\right\} \\
\Rightarrow F_{\lambda} & \left.=\left\{f \in x^{k} ; \mathbb{1}_{x^{*}}+R_{0}(d+i 0) v\right) f=0\right\}
\end{aligned}
$$

Zied $\tilde{\varepsilon}=\varepsilon, \tilde{\varepsilon}$ dighet.

$$
\begin{aligned}
& \text { Gul Ser } u \in F_{\lambda} \Rightarrow\left\|\langle x\rangle^{N} u\right\|_{x^{*}} \leqslant\|n\|_{x^{a}} \text {. } \\
& \text { I }\left\|\langle x\rangle^{n} u\right\|_{x^{k}} \stackrel{122}{2}\left\|\langle x\rangle^{N}(a+1) u\right\|_{\tau} \\
& =-\lambda_{0}(\lambda+i=) \frac{v_{n}}{\in X} \\
& h_{1}=\left\|\langle x\rangle^{n} V_{n}\right\|_{x} \\
& \stackrel{V}{\stackrel{2 n}{ }<} \leq\left\|(x)^{n} n\right\|_{x^{k}}+a_{\epsilon}\|n\|_{x^{k}} \\
& \lim _{R \rightarrow \infty} \int_{|x|<\pi \mid}|u|^{2} \frac{d x}{R} \stackrel{k, 3}{=} \int_{|\xi|=\lambda} d \sigma(\xi)\left|\widehat{V_{n}}(\xi)\right|^{2} \\
& -R_{2} \stackrel{V_{u}}{=} \stackrel{4.3}{=} I_{m}(V_{n}, \underbrace{\left.R_{0}(d+i \sigma) V_{n}\right)}_{=-n} \\
& =0
\end{aligned}
$$

4.5 $\tilde{\varepsilon} \leqslant \varepsilon, \quad \tilde{\varepsilon}$ dishot $\quad\left(H^{\prime} c\right) / x^{k} \leq H_{\varepsilon 0}^{\prime}$

Pf $\quad\left(u_{x^{x}}+R_{0}(d+i 0) \widetilde{V}\right)_{u}^{x}=0, u \in F_{\lambda}$

Ang $f \infty$ EW d_{n} wit $u_{n} E L$.
Beab: $\left\|u_{n}\right\|_{H^{\prime}}=1$
Den i honv. Tf. vor u_{n} in H^{\prime}

$$
\begin{aligned}
& u_{n}=R_{0}(-1)\left[\left(d_{n}+1-v\right) u_{n}\right]
\end{aligned}
$$

$$
\begin{aligned}
& u_{n} \xrightarrow{\|^{\prime}} u_{\infty} \quad\left\|u_{\infty}\right\|_{\nmid t}=1 \\
& \left(u_{m}, u_{m}\right)=\delta_{n, m_{n}} \rightarrow y_{0}=0 \\
& \theta \\
& 4.6 \|(\mathbb{U}_{x * *}+\underbrace{\left.R_{0}(d+i \epsilon) V\right)^{-1} \|_{x^{*}, x^{*}} \approx 1, \quad \in \in[0,1]}_{\text {hompaht }} \begin{array}{lll}
\\
d \in \mathbb{R} 10
\end{array}
\end{aligned}
$$

\rightarrow amalytisch Frecholn bis arb einer

$$
\underline{\epsilon-0} \quad \widetilde{\varepsilon} \quad \in>0
$$

\& 1.3

$$
\begin{aligned}
\left\|(x)^{N} u\right\|_{x}+ & \stackrel{1.2}{\sim}\|\langle x\rangle^{N} \underbrace{(\Delta+\lambda) u}_{-N_{u}}\|_{x} \\
& <\in\left\|\langle x\rangle^{N} u\right\|_{x^{A}}+a_{G}\|n\|_{x^{x}}
\end{aligned}
$$

1) $\underbrace{\sigma_{p p}(0}_{\varepsilon}$ dishret

$$
\begin{aligned}
& \varepsilon \in \tilde{\varepsilon} \\
& (-\Delta-6) u+V u=0, \quad u \in H^{\prime} . \\
& \underbrace{R_{0}(b)(-a-d) u}_{\stackrel{?}{=} u}+R_{0}(b) V u=0 \\
& \mathbb{R}_{0}(d) \underbrace{(-\Delta-d) u^{H^{\prime}}}_{\in H^{\prime} \operatorname{G} X}=u^{\prime} \in X^{k} \quad<\Delta-\lambda
\end{aligned}
$$

$\ln x \quad(-\Delta-d)\left(u-u^{\prime}\right)=0$;

$$
\|u-n \cdot\|_{x} x^{(1.2)} \|(\Delta+6)\left(x-n^{\prime} \| x=0\right.
$$

$u \vee u \in D(4)$

$$
\left.\lim _{k \rightarrow \infty} \int_{k / L R} \ln ^{\prime}(x)\right|^{2} \frac{d x}{R} \stackrel{u_{3}}{=}-\left.\int_{|\xi|=\sqrt{\lambda}} \overbrace{(\alpha+k) u}(\xi)\right|^{2} d(\xi)
$$

$\Rightarrow \hat{u}^{u} C_{\infty}$ ällt shnell

$$
\begin{aligned}
& (H-z)^{-1}=(\underline{I}+\underbrace{R_{0}(z) V}_{\text {kompaht }})^{-1} \underbrace{R_{0}(z)}_{\text {LAP }} \\
& \rightarrow \quad\left\|(1+-z)^{-1}\right\|_{x, x^{n}} \lesssim 1, \quad z=1+1 \epsilon \\
& \epsilon>0 \\
& \Rightarrow \sigma_{s c}=\varnothing \\
& \theta_{a c}=[6, \infty) \\
& (\varphi, d E(t) \varphi) \\
& \text { Mpt } \\
& \int \frac{d \mu(d)}{d-z}=\mathrm{F}_{\mathrm{f}}^{\mathrm{f}} \mathrm{f} \text { (z)} \\
& \text { coo la rape }
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\ln _{n}}{\left(z_{n}\right)} \\
& \left.\downarrow(x-) x^{k}\right),-4,-\Delta t v \ldots \text { glm. in } \operatorname{ym} z \\
& \left\|\left(T-i_{t}+\right)^{-1}\right\|_{x \rightarrow x^{*}} \stackrel{y}{s} 1
\end{aligned}
$$

says that for $V \in \ell^{(d+1) / 2} L^{d / 2}$ there are no embedded eigenvalues. This is sharp in view of the sequence of counterexample $\sqrt{3}^{3}$ of Ionescu-Jerison [6] satisfying

and $\lim _{n \rightarrow \infty}\left\|V_{n}\right\|_{L^{p}\left(\mathbb{R}^{d}\right)}=q^{4}$. Cuenin[1] recently related that counterexample to Knapp's counterexample in $\left\|\left.\hat{f}\right|_{S}\right\|_{L^{q}} \lesssim\|f\|_{L^{p\left(\mathbb{R}^{d}\right)}}$ which gave $1 / q \geq(d+1) /\left(p^{\prime}(d-1)\right)$. Let $a \in \mathbb{R}^{d}, \delta \ll 1$, and take $f(x)=\chi_{\left\{\left|x^{\prime}-a^{\prime}\right|<\delta^{-1},\left|x_{d}-a_{d}\right|<\delta^{-2}\right\}}(x)$. Then \hat{f} is morally supported on the dual rectangle $R_{\delta}^{*}=\left\{\left|\xi^{\prime}\right|<\delta,\left|\xi_{d}\right|<\delta^{2}\right\}^{5}$. Now pave $\mathbb{R}^{d} \backslash B_{0}(1)$ with finitely overlapping rectangles of dimension $\left(2^{j}\right)^{d-1} \times 4^{j}$, let $\mathbf{1}_{\mathbb{R}^{d} \backslash B_{0}(1)}(x)=\sum_{j \geq 1} \chi_{j}(x)$, and $u(x)=\sum_{j \geq 1} 4^{-N j} \chi_{j}(x)$ (being a superposition of Knapp examples). Then $|u(x)| \sim$ $\left(\left|x^{\prime}\right|^{2}+\left|x_{d}\right|\right)^{-N}$ and, since $\Psi D O$ s do not move the support too much,

$$
T(D) u(x)=\sum_{j \geq 1} 4^{-N j}\left(\left.T\right|_{R_{j}^{*}}+O\left(4^{-j}\right)\right) \chi_{j}(x) \sim \lambda u(x)+O\left(\left(\left|x^{\prime}\right|^{2}+\left|x_{d}\right|\right)^{-N-1}\right)
$$

where we expanded $T(\xi)=\lambda+\left(\partial_{d} T(0)\right) \xi_{d}+O\left(|\xi|^{2}\right)$ around the aspired eigenvalue $\lambda \in \mathbb{C}$. Thus, $V=-(T(D)-\lambda) u / u$ is smooth and sastisfies pointwise bound in 1.1).
Lemma 4.1 (Analyticity of free resolvent and existence of boundary values).
(1) The map

$$
\begin{aligned}
\mathbb{C} \backslash[0, \infty) & \rightarrow \mathfrak{B}\left(X, X^{*}\right) \\
z & \mapsto R_{0}(z)
\end{aligned}
$$

is analytic.
(2) For any $\lambda \in(0, \infty)$ there are operators $R_{0}(\lambda \pm i 0) \in \mathfrak{B}\left(X, X^{*}\right)$ such that

$$
\left\|R_{0}(\lambda \pm i 0)\right\|_{X \rightarrow X^{*}} \lesssim \delta 1, \quad \lambda \in\left(\delta, \delta^{-1}\right), \delta \in(0,1)
$$

Moreover, for any sequences $\left(\lambda_{n}\right)_{n \in \mathbb{N}} \subseteq(0, \infty)$ and $\left(\varepsilon_{n}\right)_{n \in \mathbb{N}} \subseteq[0, \infty)$ with $\lambda_{n} \rightarrow$ λ and $\varepsilon_{n} \rightarrow 0$, we have

$$
\begin{array}{r}
\left(R_{0}\left(\lambda_{n} \pm i \varepsilon_{n}\right) f, \varphi\right) \rightarrow\left(R_{0}(\lambda \pm i 0) f, \varphi\right), \quad f \in X, \varphi \in \mathcal{S} \\
\left\|\mathbf{1}_{|x| \leq R}\left[R_{0}\left(\lambda_{n} \pm i \varepsilon_{n}\right)-R_{0}(\lambda \pm i 0)\right] f\right\| \rightarrow 0, \quad f \in X, R \geq 1
\end{array}
$$

(3) For $\lambda \in \mathbb{R} \backslash 0$ and $\varepsilon \geq 0$, we have

$$
(-\Delta-(\lambda \pm i \varepsilon)) R_{0}(\lambda \pm i \varepsilon) g=g, \quad g \in X
$$

in distributional sense, i.e., whenever the inner product with \mathcal{S} functions is taken.

Lemma 4.2. If V is admissible, then $V: X^{*} \rightarrow X$ is compact.

[^1]The following establishes the link between Fourier restriction and the existence of boundary values of the free resolvent. See also Hörmander [3, Theorem 14.2.2 and Corollary 14.3.10] and Section 3 .

Lemma 4.3. Let $\Phi \in C_{c}^{\infty}\left(\mathbb{R}^{d}\right)$ with $\Phi(0)=1$ and $\Phi(x)=0$ whenever $|x| \geq 1$. Then for any $\lambda>0$ and $g \in X$, we have

$$
\begin{aligned}
\Im\left(g, R_{0}(\lambda \pm i 0) g\right) & =c_{1}(\lambda, \pm) \int_{\sqrt{\lambda} \mathbb{S}^{d-1}}|\hat{g}(\xi)|^{2} d \sigma(\xi) \\
\lim _{R \rightarrow \infty} \int_{\mathbb{R}^{d}}\left|\left(R_{0}(\lambda \pm i 0) g\right)(x)\right|^{2} \Phi\left(\frac{x}{R}\right) \frac{d x}{R} & =c_{2}(\lambda, \Phi, \pm) \int_{\sqrt{\lambda} \mathbb{S}^{d-1}}|\hat{g}(\xi)|^{2} d \sigma(\xi)
\end{aligned}
$$

where $d \sigma(\xi)$ denotes the "canonical" surface measure, i.e., $d \sigma(\xi)=d \Sigma(\xi) /(2|\xi|)$ where $d \Sigma(\xi)$ denotes the euclidean (Lebesgue) surface measure.

Recall the Leray measure $P^{*} \delta_{0}=d \Sigma(\xi) /|\nabla P(\xi)|$ whenever $P: \mathbb{R}^{d} \rightarrow \mathbb{R}$ with $\nabla P \neq 0, \delta_{0} \in \mathcal{E}^{\prime}\left(\mathbb{R}^{d}\right)$ is the usual d-dimensional Dirac distribution at the origin, and $d \Sigma$ is the euclidean surface measure on $\left\{\xi \in \mathbb{R}^{d}: P(\xi)=0\right\}$, see also Hörmander 4, Theorem 6.1.5].

Next, the relation between eigenfunctions of H and solutions to $\left(\mathbf{1}_{X^{*}}+R_{0}(\lambda \pm\right.$ i0) $V) f=0$ (the "Lippmann-Schwinger equation") is discussed. Let

$$
\begin{aligned}
\tilde{\mathcal{E}}^{ \pm} & =\left\{\lambda \in \mathbb{R} \backslash 0: \exists f \in X^{*} \backslash 0 \text { s.t. }\left(\mathbf{1}_{X^{*}}+R_{0}(\lambda \pm i 0) V\right) f=0\right\}=\tilde{\mathcal{E}} \\
\mathcal{F}_{\lambda}^{ \pm} & =\left\{f \in X^{*}:\left(\mathbf{1}_{X^{*}}+R_{0}(\lambda \pm i 0) V\right) f=0\right\} .
\end{aligned}
$$

Our goal is to show $\tilde{\mathcal{E}}=\mathcal{E}:=\sigma_{p p}(H) \backslash 0$.
Lemma 4.4 (Rapid decay of solutions to "Lippmann-Schwinger"). Let $\lambda \in \tilde{\mathcal{E}}$ with corresponding $f \in F_{\lambda}^{ \pm}$. Then for any $N \geq 0$, we have

$$
\left\|<x>^{2 N} f\right\|_{X^{*}} \lesssim_{N, V, \lambda}\|f\|_{X^{*}}
$$

Let $\mathfrak{H}_{\lambda}=\{u \in \mathcal{D}(H): H u=\lambda u\}$ denote the vector space of eigenfunctions of H.
Lemma 4.5 (Preliminary relationship between \mathcal{E} and $\tilde{\mathcal{E}}$).
(1) For any $\lambda \in \mathbb{R} \backslash 0$ we have $\mathcal{F}_{\lambda}^{+} \cup \mathcal{F}_{\lambda}^{-} \subseteq \mathfrak{H}_{\lambda}$ and so $\tilde{\mathcal{E}} \subseteq \mathcal{E}$.
(2) $\tilde{\mathcal{E}}$ is discrete in $\mathbb{R} \backslash 0$, i.e., $I \cap \tilde{\mathcal{E}}$ is finite for any compact $I \subseteq \mathbb{R} \backslash 0$.
(3) For any $\lambda \in \mathbb{R} \backslash 0$ the vector spaces $\mathcal{F}_{\lambda}^{ \pm}$are finite-dimensional.

Lemma 4.6 (Uniform invertibility of $\mathbf{1}_{X^{*}}+R_{0}(\lambda \pm i \varepsilon) V$ away from $\left.\tilde{\mathcal{E}}\right)$. For any $\lambda \in(\mathbb{R} \backslash 0) \backslash \tilde{\mathcal{E}}$ the operators $\mathbf{1}_{X^{*}}+R_{0}(\lambda \pm i \varepsilon) V$ are invertible on X^{*} with

$$
\sup _{\lambda \in I} \sup _{\varepsilon \in[0,1]}\left\|\left(\mathbf{1}_{X^{*}}+R_{0}(\lambda \pm i \varepsilon) V\right)^{-1}\right\|_{X^{*} \rightarrow X} \lesssim_{I} 1, \quad I \subseteq(\mathbb{R} \backslash 0) \backslash \tilde{\mathcal{E}} \text { compact. }
$$

Lemma 5.1 (Resolvent formula for $(H-z)^{-1}$ away from \mathbb{R}). For any $\lambda \in \mathbb{R}$ and $\varepsilon \in \mathbb{R} \backslash 0$, the operator

$$
\tilde{R}_{V}(\lambda+i \varepsilon):=\left(\mathbf{1}_{H^{1}}+R_{0}(\lambda \pm i \varepsilon) V\right)^{-1} R_{0}(\lambda+i \varepsilon): L^{2} \rightarrow \mathcal{D}(H)
$$

is well defined and bounded. Moreover, it is a right inverse, ie.,

$$
[H-(\lambda+i \varepsilon)] \tilde{R}_{V}(\lambda+i \varepsilon)=\mathbf{1}_{L^{2}}
$$

2. Elements of Rato smoothing theory

We recall some classic facts, cf. [9, Section XIII.7].
Definition (H-smoothness). Let A be closed and H self-adjoint. Then A is H-smooth if and only if
$\longrightarrow \sup _{\text {or }} \int_{\varepsilon>0,\|\varphi\|=1}(\| A R(\underbrace{\lambda+i \varepsilon) \varphi \|^{2}}_{\mathbb{R}}+\|A R(\lambda-i \varepsilon) \varphi\|^{2}) d \lambda<\infty$

$$
\Longrightarrow \sup _{\mu \notin \mathbb{R},\|\varphi\|=1}\|A R(\mu) \varphi\|^{2} \cdot|\Im(\mu)|<\infty
$$

See also [9, Theorem XIII.25] for further characterizations of H-smoothness. Recall that if

$$
H=H_{0}+\sum_{j=1}^{J} B_{j}^{*} A_{j}
$$

and A_{j} are H_{0}-smooth and B_{j} are H-smooth, then the $\Omega_{ \pm}$exist and are unitary 19, Theorem XIII.24]. This assumption on $V=\sum_{j=1}^{J} B_{j}^{*} A_{j}$ leads to a boring situation as it rules out $\sigma_{p p}(H)$ (if $\sigma\left(H_{0}\right)$ is purely ac, e.g.), so we will relax it now.
Definition (Local H-smoothness). A is called H-smooth on a Bored set $I \subseteq \mathbb{R}$
$A P_{I}$ is H-smooth. (Here P_{I} denotes the $P V M$ associated to H.)
Theorem XIII. 30 (Sufficient criteria for local H-smoothness). Suppose that either
$\rightarrow(1) \sup _{\lambda \in I} \sup _{0<|\varepsilon|<1}|\varepsilon|\|A R(\lambda+i \varepsilon)\|^{2}<\infty$ or
 hold. Then A is H-smooth on \bar{I}.

Define the local wave operators

$$
\left\|R_{v}(d+i \epsilon) f\right\|_{L^{2}}^{2}=\left(f_{1} R_{v}(d+i \epsilon)^{k} R_{v}\left(d^{\prime} t\right)\right)
$$

$$
W_{ \pm}=s-\lim _{t \rightarrow \mp \infty} \mathrm{e}^{i t H} \mathrm{e}^{-i t H_{0}} P_{I}^{(0)}, \quad \widetilde{W}_{ \pm}=s-\lim _{t \rightarrow \mp \infty} \mathrm{e}^{i t H_{0}} \mathrm{e}^{-i t H} P_{I}^{(V)}=\frac{1}{2 \prime \in}\left(\mathcal{J}, \mathbb{R}_{\nu}(\lambda-i \epsilon)\right.
$$

 $H_{0}+\sum B_{j}^{*} A_{j}$ and A_{j} are H_{0}-smooth and B_{j} are H-smooth on some open interval $I \subseteq \mathbb{R}$, then the local wave operators $W_{ \pm}$and $\widetilde{W}_{ \pm}$exist and satisfy

$$
W_{ \pm}^{*}=\widetilde{W}_{ \pm}, \quad \widetilde{W}_{ \pm} W_{ \pm}=P_{I}^{(0)}, \quad W_{ \pm} \widetilde{W}_{ \pm}=P_{I}^{(V)}
$$

Corollary (Paving large sets). Let $S \subseteq \mathbb{R}$ with $S=\bigcup_{\ell \geq 1}$ (where (I I_{ℓ} are open bounded intervals and $H=H_{0}+\sum_{j} B_{j}^{*} A_{j}$. Suppose A_{j} are H_{0}-smooth and B_{j} are H-smooth on I_{ℓ} and that $\sigma\left(H_{0}\right) \backslash S$ and $\sigma(H) \backslash S$ have zero Lebesgue measure. Then the generalized wave operators $s-\lim _{t \rightarrow \mp \infty} \mathrm{e}^{i t H} \mathrm{e}^{-i t H_{0}} P_{a c}^{(0)}$ exist and are complete.

3. Distorted Fourier transform

Let

$$
H=P_{0}(D)+V(x, D) \quad \text { in } L^{2}\left(\mathbb{R}^{d}\right)
$$

where P_{0} is real and simply characteristif ${ }^{6}$ (see Hörmander [3, Definition 14.3.1]), $\sigma_{p p}\left(P_{0}\right)=\{0\}$, and $V(x, D)$ is a symmetric short range perturbation of P_{0} in the sense of Hörmander [3, Definition 14.4.1]. Recall the Agmon-Hörmander spaces B and B^{*} and let

$$
\begin{aligned}
Z\left(P_{0}\right) & :=\left\{\lambda \in \mathbb{R}: P_{0}(\xi)=\lambda \text { and } d P_{0}(\xi)=0 \text { for some } \xi \in \mathbb{R}^{d}\right\} \quad \text { and } \\
S_{\lambda} & :=\left\{\xi \in \mathbb{R}^{d}: P_{0}(\xi)=\lambda\right\}
\end{aligned}
$$

Recall

$$
\begin{aligned}
\int 1_{\Omega}(\lambda)\left(d E_{\lambda}^{(0)} f, f\right) & = \pm \lim _{\varepsilon \searrow 0} \frac{1}{\pi} \int_{\mathbb{R}} \mathbf{1}_{\Omega}(\lambda) \Im\left(R_{0}(\lambda \pm i \varepsilon) f, f\right) d \lambda \\
& =\int_{\mathbb{R}} d \lambda \mathbf{1}_{\Omega}(\lambda) \int_{S_{\lambda}}|\hat{f}(\xi)|^{2} d \sigma_{S_{\lambda}}(\xi), \quad f \in L^{2}
\end{aligned}
$$

and the resolvent formula $R(\lambda \pm i 0) f=R_{0}(\lambda \pm i 0) f_{\lambda \pm i 0}$ where $f_{z}=\left(1+V R_{0}(z)\right)^{-1} f$ is a continuous function of $z \in \mathbb{C}^{ \pm} \backslash\left(\sigma_{p p}(H) \cup Z\left(P_{0}\right)\right)$ with values in B. Thus, we have

$$
\int \mathbf{1}_{\Omega}(\lambda)\left(d E_{\lambda}^{(V)} f, f\right)=\int_{\mathbb{R}} d \lambda \mathbf{1}_{\Omega}(\lambda) \int_{S_{\lambda}}\left|\hat{f}_{\lambda \pm i 0}(\xi)\right|^{2} d \sigma_{S_{\lambda}}(\xi), \quad f \in B
$$

whenever $\Omega \cap\left(\sigma_{p p}(H) \cup Z\left(P_{0}\right)\right)=\emptyset$. This motivates
Definition 1. If $f \in B$, then the L^{2} functions defined by

$$
\begin{align*}
\left(\mathcal{F}_{ \pm} f\right)(\xi) & =\mathcal{F}\left[\left(1+V R_{0}(\lambda \pm i 0)\right)^{-1} f\right](\xi), \quad \xi \in S_{\lambda} \tag{3.1}\\
& =\mathcal{F}[(1-V R(\lambda \pm i 0)) f](\xi)
\end{align*}
$$

almost everywhere in S_{λ} are called distorted Fourier transforms of f.
We recall the following properties of solutions of scattering states. Let $B_{P_{0}}^{*}=\{u$: $P_{0}^{(\alpha)} u \in B^{*}$ for every $\left.\alpha\right\}$.

Lemma 2 (Hörmander [3, Lemma 14.6.6]). If $u \in B_{P_{0}}^{*}, \lambda \notin Z\left(P_{0}\right)$, and $\left(P_{0}(D)+V-\right.$ $\lambda) u=0$, then u is given by the solution of the Lippmann-Schwinger equation

$$
\begin{align*}
u & =u_{ \pm}-R_{0}(\lambda \mp i 0) V u \tag{3.2}\\
& =(1-R(\lambda \mp i 0) V) u_{ \pm} \tag{3.3}
\end{align*}
$$

where

$$
\hat{u}_{ \pm}=v_{ \pm} \delta\left(P_{0}-\lambda\right)=v_{ \pm} d \sigma_{S_{\lambda}}(\xi), \quad v_{ \pm} \in L^{2}\left(S_{\lambda}, d \Sigma_{S_{\lambda}}\right)
$$

[^2]and
\[

$$
\begin{equation*}
\int_{S_{\lambda}}\left(\left|v_{+}\right|^{2}-\left|v_{-}\right|^{2}\right) d \sigma_{S_{\lambda}}(\xi)=0 \tag{3.4}
\end{equation*}
$$

\]

where $d \sigma_{S_{\lambda}}(\xi)=\left|\nabla P_{0}(\xi)\right|^{-1} d \Sigma_{S_{\lambda}}(\xi)$ and $d \Sigma_{S_{\lambda}}(\xi)$ is the euclidean surface measure on S_{λ}. Moreover, if $\lambda \notin\left(Z\left(P_{0}\right) \cup \sigma_{p p}\left(P_{0}+V\right)\right)$, then

$$
\begin{equation*}
\left(\mathcal{F}_{+} f, \hat{u}_{+}\right)=\left(\mathcal{F}_{-}, \hat{u}_{-}\right)=(f, u), \quad \text { if } f \in B \tag{3.5}
\end{equation*}
$$

Let us also recall
Theorem 3 (Hörmander [3, Lemma 14.6.4 and Theorem 14.6.5]). $\mathcal{F}_{ \pm}: E^{c} L^{2}\left(\mathbb{R}^{d}\right) \rightarrow$ $\widehat{L^{2}\left(\mathbb{R}^{d}\right)}$ is an isometric operator, which vanishes on $E^{p p} L^{2}\left(\mathbb{R}^{d}\right)$, with

$$
\left\|E^{c} f\right\|_{2}^{2}=\int_{\mathbb{R}^{d}}\left|\mathcal{F}_{ \pm} f(\xi)\right|^{2} d \xi
$$

Moreover, the intertwining property

$$
\mathcal{F}_{ \pm} \mathrm{e}^{i t H}=\mathrm{e}^{i t P_{0}(\xi)} \mathcal{F}_{ \pm}
$$

holds for all $t \in \mathbb{R}$. In particular, the restriction of H to $E^{c} L^{2}$ is absolutely continuous (since P_{0} has purely absolutely continuous spectrum).

Moreover, $\mathcal{F}_{ \pm}: E^{c} L^{2}\left(\mathbb{R}^{d}\right) \rightarrow \widehat{L^{2}\left(\mathbb{R}^{d}\right)}$ is actually unitary, i.e., the restriction of H to $E^{c} L^{2}$ is unitarily equivalent to P_{0}, i.e., $\sigma_{c}(H)=\sigma_{a c}(H)=\sigma\left(P_{0}\right)$. In particular, for $f \in E^{c}\left(L^{2}\left(\mathbb{R}^{d}\right)\right)$, we have

$$
\left(\mathcal{F}_{ \pm} H f\right)(\xi)=P_{0}(\xi)\left(\mathcal{F}_{ \pm} f\right)(\xi), \quad \text { i.e., } \quad(H f)(x)=\left(\mathcal{F}_{ \pm}^{*} P_{0}(\cdot) \mathcal{F}_{ \pm} f\right)(x)
$$

In particular, it follows that

$$
\mathcal{F}_{ \pm}^{*} \mathcal{F}_{ \pm}=E^{c} \quad \text { and } \quad \mathcal{F}_{ \pm} \mathcal{F}_{ \pm}^{*}=\mathbf{1}_{\widehat{L^{2}}}
$$

The distorted Fourier transform (3.1) can be conveniently represented using the solutions $\varphi_{\xi(\lambda)}(x)$ (for $\xi(\lambda) \in S_{\lambda}$) of the Lippmann-Schwinger equation (3.2). In fact, we have (see also Ikebe [5] and Yafaev [11, Sections 6.6-6.8])

$$
\begin{align*}
& \left(\mathcal{F}_{ \pm} f\right)(\xi)=\left\langle\varphi_{\xi}, f\right\rangle, \quad \xi \in \bigcup_{\lambda \in \sigma_{a c}(H)} S_{\lambda} \tag{3.6}\\
& \left(\mathcal{F}_{ \pm}^{*} g\right)(x)=\int_{\mathbb{R}^{d}} \varphi_{\xi}(x) g(\xi) d \xi=\int_{\sigma_{a c}(H)} d \lambda \int_{S_{\lambda}} d \sigma_{S_{\lambda}}(\xi) \varphi_{\xi}(x) g(\xi) \tag{3.7}
\end{align*}
$$

Moreover, we have the following expansion theorem (see also Ikebe [5, Theorem 5])

$$
\begin{equation*}
f=\sum_{\lambda \in \sigma_{p p}(H)}\left|\psi_{\lambda}\right\rangle\left\langle\psi_{\lambda}, f\right\rangle+\int_{\mathbb{R}^{d}}\left|\varphi_{\xi}\right\rangle\left\langle\varphi_{\xi}, f\right\rangle d \xi \tag{3.8}
\end{equation*}
$$

where $\left\{\psi_{\lambda}\right\}_{\lambda \in \sigma_{p p}(H)}$ denote the L^{2}-normalized eigenfunctions of H, i.e., $H \psi_{\lambda}=\lambda \psi_{\lambda}$. Moreover,

$$
\begin{equation*}
H f=\sum_{\lambda \in \sigma_{p p}(H)} \lambda\left|\psi_{\lambda}\right\rangle\left\langle\psi_{\lambda}, f\right\rangle+\int_{\mathbb{R}^{d}} P_{0}(\xi)\left|\varphi_{\xi}\right\rangle\left\langle\varphi_{\xi}, f\right\rangle d \xi \tag{3.9}
\end{equation*}
$$

The above results motivate in particular the following definition of the distorted Fourier restriction and extension operators

$$
\begin{align*}
& \left(F_{S_{\lambda}} f\right)(\xi)=\left\langle\varphi_{\xi}, f\right\rangle=\left(\mathcal{F}_{ \pm} f\right)(\xi), \quad \xi \in S_{\lambda} \tag{3.10}\\
& \left(F_{S_{\lambda}}^{*} g\right)(x)=\int_{S_{\lambda}} d \sigma_{S_{\lambda}}(\xi) \varphi_{\xi(\lambda)}(x) g(\xi) \tag{3.11}
\end{align*}
$$

which are defined with respect to the canonical measure $d \sigma_{S_{\lambda}}$. In particular, we have for any $\Lambda \subseteq \sigma_{a c}(H)$,

$$
E_{H}(\Lambda)=\int_{P_{0}^{-1}(\Lambda)}\left|\varphi_{\xi}\right\rangle\left\langle\varphi_{\xi}\right| d \xi=\int_{\Lambda} d \lambda \int_{S_{\lambda}} d \sigma_{S_{\lambda}}(\xi)\left|\varphi_{\xi(\lambda)}\right\rangle\left\langle\varphi_{\xi(\lambda)}\right|=\int_{\Lambda} d \lambda F_{S_{\lambda}}^{*} F_{S_{\lambda}}
$$

in a suitable weak sense and in particular, for $\lambda \in \sigma_{a c}(H)$,

$$
\frac{d E_{H}(\lambda)}{d \lambda}=\int_{S_{\lambda}} d \sigma_{S_{\lambda}}(\xi)\left|\varphi_{\xi(\lambda)}\right\rangle\left\langle\varphi_{\xi(\lambda)}\right|=F_{S_{\lambda}}^{*} F_{S_{\lambda}}
$$

References

[1] Jean-Claude Cuenin. Embedded eigenvalues of generalized Schrödinger operators. J. Spectr. Theory, 10(2):415-437, 2020.
[2] Rupert L. Frank and Barry Simon. Eigenvalue bounds for Schrödinger operators with complex potentials. II. J. Spectr. Theory, 7(3):633-658, 2017.
[3] Lars Hörmander. The Analysis of Linear Partial Differential Operators. II, volume 257 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, 1983. Differential Operators with Constant Coefficients.
[4] Lars Hörmander. The Analysis of Linear Partial Differential Operators. I. Springer Study Edition. Springer-Verlag, Berlin, second edition, 1990. Distribution Theory and Fourier analysis.
[5] Teruo Ikebe. Eigenfunction expansions associated with the Schroedinger operators and their applications to scattering theory. Arch. Rational Mech. Anal., 5:1-34 (1960), 1960.
[6] A. D. Ionescu and D. Jerison. On the absence of positive eigenvalues of Schrödinger operators with rough potentials. Geom. Funct. Anal., 13(5):1029-1081, 2003.
[7] Alexandru D. Ionescu and Wilhelm Schlag. Agmon-Kato-Kuroda theorems for a large class of perturbations. Duke Math. J., 131(3):397-440, 2006.
[8] Herbert Koch and Daniel Tataru. Carleman estimates and absence of embedded eigenvalues. Comm. Math. Phys., 267(2):419-449, 2006.
[9] Michael Reed and Barry Simon. Methods of Modern Mathematical Physics, volume 4: Analysis of Operators. Academic Press, New York, 1 edition, 1978.
[10] J. von Neumann and E. P. Wigner. Über merkwürdige diskrete Eigenwerte, pages 291-293. Springer Berlin Heidelberg, Berlin, Heidelberg, 1993.
[11] D. R. Yafaev. Mathematical Scattering Theory, volume 158 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 2010. Analytic Theory.

[^0]: ${ }^{1} X$: fast decay, low regularity $-X^{*}$: slow decay, good regularity.

[^1]: ${ }^{3}$ Their construction is analogous to that of Wigner and von Neumann [10].
 ${ }^{4}$ This is interesting in view of the Laptev-Safronov conjecture, cf. Frank-Simon [2].
 ${ }^{5}$ A Knapp example living at the south pole $\xi_{d} \sim 0$.

[^2]: ${ }^{6}$ Examples are hypoelliptic operators (operators whose fundamental solutions E have $\operatorname{sing} \operatorname{supp}(E)=\{0\}$) or operators of real principal type (operators whose principal symbol P_{m} is real and $P_{m}^{\prime}(\xi) \neq 0$ for $\xi \neq 0$

