Topics in PDE
 Homework Sheet 5

Exercise 5.1

Compute the Fourier transform of
a) $h^{d / 2} \mathrm{e}^{-h|x|^{2} / 2}$ in \mathbb{R}^{d} for $h>0$ and
b) $|\xi|^{-\alpha}$ in \mathbb{R}^{d} for $0<\alpha<d$ in the sense of tempered distributions, i.e., compute $\mathcal{F}\left[|\cdot|^{-\alpha} f\right](x)$ for $f \in \mathcal{S}$.

Exercise 5.2

1. Let $m \in L^{\infty}\left(\mathbb{R}^{d}\right) \cap L^{2}\left(\mathbb{R}^{d}\right)$. Show that

$$
(m(-i \nabla) f)(x):=\mathcal{F}^{-1}[m \hat{f}](x)=\int_{\mathbb{R}^{d}} \check{m}(x-y) f(y) d y
$$

for all $f \in L^{2}\left(\mathbb{R}^{d}\right)$. In particular, the integral converges for all $x \in \mathbb{R}^{d}$. (Hint: Recall that \mathcal{S} is dense L^{2} and use Plancherel.)

2 . Let $t \in \mathbb{R}$ and $\varepsilon>0$. Show that

$$
\mathcal{F}\left[\mathrm{e}^{-i \pi(t-i \varepsilon) \xi^{2}}\right](x)=\frac{\mathrm{e}^{-\frac{|x|^{2}}{\varepsilon+i t}}}{(\varepsilon+i t)^{d / 2}}, \quad x \in \mathbb{R}^{d}
$$

Next, for $f \in L^{2}\left(\mathbb{R}^{d}\right)$ and $\check{f}=\mathcal{F}^{-1}[f]$ show that

$$
\mathcal{F}\left[\mathrm{e}^{-i \pi t \xi^{2}} \check{f}\right](x)=\lim _{R \rightarrow \infty} \int_{|y| \leq R} \frac{\mathrm{e}^{-\frac{|x-y|^{2}}{i t}}}{(i t)^{d / 2}} f(y) d y
$$

where the limit is understood in $L^{2}\left(\mathbb{R}^{d}\right)$ and $(i t)^{d / 2} \equiv\left((i t)^{1 / 2}\right)^{d}$ where $\operatorname{Re} z^{1 / 2}>0$ for $z \in \mathbb{C} \backslash(-\infty, 0]$.
3. Let $\kappa \in \mathbb{C}$ with $\operatorname{Re} \kappa>0$ and $f \in L^{2}\left(\mathbb{R}^{3}\right)$. Invoke part 1 . to show that

$$
\left[\left(-\Delta+\kappa^{2}\right)^{-1} f\right](x)=\pi \int_{\mathbb{R}^{3}} \frac{\mathrm{e}^{-2 \pi \kappa|x-y|}}{|x-y|} f(y) d y
$$

Exercise 5.3

Let $\mathcal{H}=L^{2}(0,1), A: \mathcal{D}(A) \rightarrow \mathcal{H}$ with $A=-d_{x}^{2}$ and $\mathcal{D}(A)=\left\{f \in H^{2}[0,1]: f(0)=f(1)=0\right\}$. Let

$$
q(f)=|f(c)|^{2}, \quad f \in H^{1}[0,1], \quad c \in(0,1)
$$

be the form associated to the Dirac distribution centered at c. Show that for $f \in \mathcal{Q}(A)=\{f \in$ $\left.H^{1}[0,1]: f(0)=f(1)=0\right\}, q$ is relatively form bounded with respect to q_{A} with arbitrary small form bound.

Definition 0.1 (Rollnik potential). A measurable function $V: \mathbb{R}^{3} \rightarrow \mathbb{R}$ is called Rollnik potential, whenever

$$
\|V\|_{R}^{2}:=\int_{\mathbb{R}^{3}} \int_{\mathbb{R}^{3}} \frac{|V(x)||V(y)|}{|x-y|^{2}} d x d y<\infty .
$$

The set of Rollnik potentials is denoted by R.
Show the following assertions.

1. Let $V \in L^{1} \cap L^{2}$. Then $V \in R$ with $\|V\|_{R} \leq \sqrt{3}(2 \pi)^{1 / 3}\|V\|_{1}^{1 / 3}\|V\|_{2}^{2 / 3}$.
2. Let $V \in R+L^{\infty}$ be compactly supported (i.e., there is $\rho>0$ such that $V(x)=0$ for all $|x|>\rho$). Then $V \in R \cap L^{1}$. In particular, any $V \in R+L^{\infty}$ is locally integrable. (Hint: Use the Hardy-Littlewood-Sobolev inequality.)
3. Let $V \in L^{1} \cap L^{2}$. Then, for any $a>0$, one has

$$
\int_{\mathbb{R}^{3}} \int_{\mathbb{R}^{3}} \frac{V(x) V(y)}{a^{2}+|x-y|^{2}} d x d y=\pi \int_{\mathbb{R}^{3}} \frac{|\hat{V}(\xi)|^{2}}{|\xi|} \mathrm{e}^{-2 \pi a|\xi|} d \xi
$$

4. Let $0 \leq V \in L^{1}\left(\mathbb{R}^{3}\right)$. Then $V \in R$ if and only if

$$
\int \frac{|\hat{V}(\xi)|^{2}}{|\xi|} d \xi<\infty
$$

If $V \in R \cap L^{1}$, then

$$
\int_{\mathbb{R}^{3}} \int_{\mathbb{R}^{3}} \frac{V(x) V(y)}{|x-y|^{2}} d x d y=\pi \int_{\mathbb{R}^{3}} \frac{|\hat{V}(\xi)|^{2}}{|\xi|} d \xi
$$

even if V is not assumed to be positive.
5. Let $V \in R$. Then

$$
\int_{\mathbb{R}^{3}} \int_{\mathbb{R}^{3}} \frac{V(x) V(y)}{|x-y|^{2}} d x d y \geq 0
$$

(Hint: Use the previous part of the exercise.)
6. Let $V \in R$. Then for any $a>0$ there is $b=b(a)>0$ such that

$$
\langle\psi,| V|\psi\rangle \leq a\langle\psi,-\Delta \psi\rangle+b\|\psi\|^{2}, \quad \psi \in C_{c}^{\infty}\left(\mathbb{R}^{3}\right) .
$$

