Topics in PDE Homework Sheet 4

Exercise 4.1

- 1. Show that $(-\Delta + 1)^{-1}$ is not compact on $L^2(\mathbb{R}^d)$, i.e., find a bounded sequence $(u_n)_{n \in \mathbb{N}}$ in $L^2(\mathbb{R}^d)$ such that $((-\Delta + 1)^{-1}u_n)_{n \in \mathbb{N}}$ has no convergent subsequence in $L^2(\mathbb{R}^d)$.
- 2. Let $B_x(R) = \{y \in \mathbb{R}^d : |x y| \leq R\}$. For which $\alpha \geq 0, d \in \mathbb{N}$, and $1 \leq p \leq \infty$ does $B_0(1) \to \mathbb{R} : x \mapsto |x|^{-\alpha}$ belong to $W^{1,p}(B_0(1))$?

(Remark: If $\{r_k\}_{k\in\mathbb{N}}$ is a countable, dense subset of $B_0(1)$ and $u(x) = \sum_{k=1}^{\infty} 2^{-k} |x - r_k|^{-\alpha}$ for $x \in B_0(1)$, then the example shows $u \in W^{1,p}(B_0(1))$ but is yet unbounded on each open subset of $B_0(1)$.)

Exercise 4.2 (Uncertainty principle I)

Let R > 0 and $f \in C_c^{\infty}(\mathbb{R})$ be such that $\operatorname{supp} f \subseteq \overline{B}_0(R) \equiv \{x \in \mathbb{R} : |x| \leq R\}$. Show that \hat{f} is holomorphic and satisfies $|\hat{f}(\xi)| \leq e^{2\pi R |\operatorname{Im} \xi|} ||f||_1$ for $\xi \in \mathbb{C}$. Conclude that $\operatorname{supp} \mathcal{F}[f]$ cannot be compact, unless $\hat{f} \equiv 0$.

Exercise 4.3 (Uncertainty principle II)

Let \mathcal{H} be a complex Hilbert space with dim $\mathcal{H} \geq 1$. Let P, Q be two self-adjoint operators on \mathcal{H} such that

$$(\varphi, [P,Q]\varphi) := (P\varphi, Q\varphi) - (Q\varphi, P\varphi) = \frac{1}{i} \|\varphi\|^2$$

for all $\varphi \in \mathcal{D}(P) \cap \mathcal{D}(Q)$. Show the following assertions.

- 1. One necessarily has dim $\mathcal{H} = \infty$. (Hint: Think of the trace of a commutator in the finite-dimensional setting.)
- 2. Assume that P and Q were bounded. Show that neither P nor Q can have an eigenvalue.
- 3. Show that neither P nor Q can be bounded. (Hint: Every self-adjoint operator has non-empty spectrum, see Exercise 2.4. Recall also Lemma 1.2.8.)

Exercise 4.4 (Uncertainty principle III / Hardy's inequality)

Let $3 \leq d \in \mathbb{N}$, $g \in C_c^{\infty}(\mathbb{R}^d)$, and $f(x) = \langle x \rangle_{\varepsilon}^{-\alpha} g(x)$ where $\langle x \rangle_{\varepsilon} := (|x|^2 + \varepsilon^2)^{1/2}$. Show that

$$\int_{\mathbb{R}^d} |\nabla f(x)|^2 \, dx \ge (-\alpha^2 + \alpha(d-2)) \int_{\mathbb{R}^d} \frac{|f(x)|^2}{|x|^2} \, dx$$

and show that the optimal value of α is given by (d-2)/2. (Hint: compute first $\|\nabla f\|_2^2$ and let then $\varepsilon \searrow 0$.)

Next, show that for $\psi \in H_0^1(\mathbb{R}_+)$, one has

$$\int_0^\infty |\psi'(r)|^2 \, dr - \frac{1}{4} \int_0^\infty \frac{|\psi(r)|^2}{r^2} \, dr \ge 0 \, .$$

(Hint: you may use that $C_c^{\infty}(\mathbb{R}_+)$ is dense in $H_0^1(\mathbb{R}_+)$.) Prove that there is no non-vanishing $\psi \in H_0^1(\mathbb{R}_+)$ that saturates the inequality, i.e., there is no ψ such that the left side identically vanishes. Moreover, show that the value 1/4 is optimal in the sense that an inequality where 1/4 is replaced by $1/4 + \varepsilon$ for some $\varepsilon > 0$ is generally false. (Recall that $H_0^s(\Omega) = \overline{C_c^{\infty}(\Omega)}$ for some $\Omega \subseteq \mathbb{R}^d$ where the closure is with respect to the H^s norm. In this case, this simplifies to $H_0^1(\mathbb{R}_+) = \{f \in H^1(\mathbb{R}_+) : f^{(j)}(0) = 0, j = 0, 1\}.$)