Topics in PDE Homework Sheet 3

Exercise 3.1

Let $V : \mathbb{R}^d \to \mathbb{C}$ be measurable and $M_V : \mathcal{D}(M_V) \to L^2(\mathbb{R}^d)$ be the multiplication operator that acts as $(M_V \psi)(x) := V(x)\psi(x)$ for $\psi \in \mathcal{D}(M_V)$ and $x \in \mathbb{R}^d$. Show the following assertions.

- a) M_V is closed on its maximal domain $\mathcal{D}(M_V) = \{ \psi \in L^2(\mathbb{R}^d) : V\psi \in L^2(\mathbb{R}^d) \}.$
- b) The spectrum is the essential range, i.e.,

$$\sigma(M_V) = \operatorname{ess\,ran}(V) := \{ z \in \mathbb{C} : \forall \varepsilon > 0 : |\{ x \in \mathbb{R}^d : |V(x) - z| < \varepsilon \}| > 0 \}$$

where |A| denotes the Lebesgue measure of a subset $A \subseteq \mathbb{R}^d$.

- c) One has $M_V \in \mathfrak{B}(L^2(\mathbb{R}^d))$ if and only if $V \in L^\infty$ and in this case $||M_V|| = ||V||_\infty$.
- d) Let $\Omega \subseteq \mathbb{R}^d$ be open and $V : \Omega \to \mathbb{C}$ be continuous. Then $C_c(\Omega)$ is a core for M_V .
- e) Let $V : \mathbb{R}^d \to \mathbb{R}$ be continuous, $\varphi \in \mathcal{D}(M_V)$, and $b \in \mathbb{R}$. Show that

$$\left(\varphi, \lim_{\delta \searrow 0} \lim_{\varepsilon \searrow 0} \frac{1}{2\pi i} \int_{-\infty}^{b+\delta} ((M_V - \lambda - i\varepsilon)^{-1}\varphi - (M_V - \lambda + i\varepsilon)^{-1}\varphi) \, d\lambda\right)$$
$$= \int_{\mathbb{R}^d} |\varphi(x)|^2 \mathbf{1}_{\{x \in \mathbb{R}^d \colon V(x) \le b\}} \, dx \, .$$

Exercise 3.2

Let V be a real-valued function and M_V be the above multiplication operator defined on its maximal domain. Show that M_V is self-adjoint if this domain is dense in L^2 .

Exercise 3.3

Let V(x) = x and consider the multiplication operator M_0 in $L^2(\mathbb{R})$ defined on $\mathcal{D}(M_0) = \{f \in \mathcal{D}(M_V) : \int_{\mathbb{R}} f(x) dx = 0\}$ (Here $\mathcal{D}(M_V)$ is the maximal domain as in Exercise 3.1.) Show that M_0 is closed, i.e., in particular, $\mathcal{D}(M_0)$ is not a core for M_V .

Exercise 3.4

Let $c \in [0, 1]$, $\mathcal{H} = L^2(0, 1)$, and $f \in C([0, 1])$. Show that $q[f] := |f(c)|^2$ is a well-defined, non-negative quadratic form that is not closable. (Hint: Consider the sequence $f_n(x) := \max\{0, 1 - n|x - c|\}$.)