
Topics in PDE (Winter term 2020/21)

July 16, 2019

Lectures/Exercises: Wed/Thu 16.45-18.15, starting on October 21, 2020

Motivation

Physical systems on length scales of the order 10−10m are described by quantum
mechanics, i.e., their time evolution obeys Schrödinger’s equation which reads{

−i∂tψ(x, t) = (−∆ + V )ψ(x, t) , (x, t) ∈ Rd × R
ψ(·, 0) = ψ0

(1)

for one particle in the field of a potential V . Examples of such systems include
large atoms, molecules or (quasi)periodic systems such as metals, semiconduc-
tors, and insulators. However, due to the large number of involved degrees of
freedom (think of a single uranium atom for instance), solving the Schrödinger
equation for such systems is out of reach (both analytically and numerically). In
fact, already the Schrödinger equation for one nucleus at rest with two electrons
orbiting around it (Helium in the Born–Oppenheimer approximation) cannot
be solved analytically anymore and numerical schemes collapse already for 10
electrons or more. For this reason, one is in need of certain approximations.
Typically, one wishes the approximation to be a “one-particle theory” with
a certain “mean-field” which takes into account all the interactions between
all the involved particles. Although the approximating theory will then usu-
ally be non-linear (in the sense that the mean-field depends on the solution
of the Schrödinger equation, such as −i∂tψ = (−∆ + λ|ψ|3)ψ), the resulting
Schrödinger equation can be handled, e.g., using methods of functional analysis
and PDE.

In this course, we will already assume that we are given such a one-particle
theory. In fact, we will assume that the potential does not even depend on
the solution anymore! Our goal then is to understand properties of solutions
of Schrödinger’s equation (1). Unsurprisingly, the actual and the generalized
eigenfunctions of the Schrödinger operator H = −∆ + V play a crucial role in
this problem. These are the solutions of the stationary Schrödinger equation.
The main techniques involved in this quest stem from functional analysis and
partial differential equations. Our main goals here are two-fold.
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1. First we give a brief (but hopefully sufficient general) overview of spectral
theory of self-adjoint operators in Hilbert spaces. In particular, we discuss
different spectral types σac, σsc, σpp of self-adjoint operators (Lebesgue
decomposition and Borel–Stieltjes transform) and give dynamical (and
thereby intimately physical) characterizations (RAGE).

2. The second goal is to show that the “unphysical” part σsc is empty un-
der “physically reasonable conditions”. (Although the reader should be
warned that in fact the existence of singular continuous spectrum is (Baire-
type) generic, see, e.g., Del Rio et al [4] and Simon [10]!) This will be
established using techniques of scattering theory. The general goal of
scattering theory is to show that states that are “asymptotically free”
at times t = −∞ will be asymptotically free again after they scatter
away from the potential under suitable conditions on the potential. Phys-
ically, we want to show that for every vector f orthogonal to eigenvectors

of H there exists a vector f
(±)
0 orthogonal to eigenvectors of H0 such

that limt→±∞ ‖u(t) − u0(t)‖ = 0 where u0(0) = f
(±)
0 , u(t) = e−iHtf

and u0(t) = e−itf
(±)
0 solves the free equation −i∂tu0 = H0u0. Math-

ematically this corresponds to perturbation theory on the (absolutely)
continuous spectrum (which is in fact not very stable (unlike σess), see
the Theorem of Weyl and Neumann which is contained, e.g., in Kato
[7, Chapter X, Theorems 2.1-2.3]) and manifests itself in the existence
and completeness (whatever that means) of the Møller wave operators
Ω±(H,H0) = s − limt→±∞ eiHte−iH0tP ac0 and the existence of an eigen-
function expansion. The latter means that any vector f ∈ L2(Rd) can be
represented as

f =
∑
λ∈σpp

|ψλ〉〈ψλ|f〉+

∫
Rd
|φξ〉〈φξ|f〉 dξ

where ψλ are the L2-normalized eigenfunctions of H, i.e., Hψλ = λψλ,
and φξ solves the Lippman–Schwinger equation

φξλ = u± −R0(λ∓ i0)V φξλ

where

û± = v±δ(P0 − λ) = v±dσSλ v± ∈ L2(Sλ, |∇P0(ξ)|dσλ)

with Sλ = {ξ ∈ Rd : P0(ξ) = λ}. (In our situation, P0(ξ) = ξ2.) Writing∫
Rd
|φξ〉〈φξ|f〉 dξ =

∫ ∞
0

dλ

∫
Sλ

dσSλ(ξ) |φξ〉〈φξ|f〉 =

∫ ∞
0

dλ F ∗SλFSλf

with

(FSλf)(ξ) = 〈φξ, f〉 , ξ ∈ Sλ = {ξ ∈ Rd : P0(ξ) = λ}

(F ∗Sλg)(x) =

∫
Sλ

dσSλ(ξ) φξ(λ)(x)g(ξ) , x ∈ Rd
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reveals that scattering theory is intimately connected to the problem of
Fourier restriction, a fact that has been exploited in remarkable papers
by Agmon–Hörmander [1] and later Ionescu–Schlag [6]. Anyway, such
eigenfunction expansions are of ultimate interest in that they provide us
with a basis of solutions of the stationary Schrödinger equation that can
be used to understand solutions of the full Schrödinger equation (1).

(Preliminary) list of topics

1. Repetition on unbounded operators on Hilbert spaces (closed operators,
adjoint operators, self-adjoint operators, resolvents and spectra, Kato–
Rellich, quadratic forms (Friedrichs extension), KLMN) (Teschl [13, Sec-
tions 2.2-2.4, 6.1, 6.5] and Zenk [16, Sections 2.1-2.3, 3.5])

2. Borel measures and Lebesgue decomposition theorem (Amrein [3, Section
4.1], Reed–Simon [8, Section I.4], Teschl [13, Section 3.2])

3. Borel–Stieltjes transforms of measures (Simon [11, Section 11.1], Teschl
[13, Section 3.4])

4. Spectral measures, spectral calculus, and spectral theorem (Amrein [3,
Sections 4.2 and 4.4], Teschl [13, Section 3.1])

5. Spectral types, σac, σsc, and σpp (Amrein [3, Section 4.3], Teschl [13,
Section 3.3]

6. Dynamic characterization of the spectrum (Wiener, Strichartz–Last, RAGE)
(Aizenman–Warzel [2, Sections 2.2-2.4])

7. σdisc and σess (Weidmann [14, Section 8.5])

8. Perturbation theory (Weyl’s theorem, Kato’s analytic perturbation theory
of σdisc, Weyl–Neumann example on instability of σac, rank-one pertur-
bations, Aronszajn–Donoghue theory, Simon–Wolff criterion) (Kato [7],
Reed–Simon [9, Chapter XII], Simon–Wolff [12], Simon [11, Chapters 11-
12] Teschl [13, Sections 6.4], Weidmann [14, Sections 9.1-9.2])

9. Convergence of resolvents (Reed–Simon [8, Section VIII.7], Teschl [13,
Section 6.6], Weidmann [14, Section 9.3])

10. Scattering theory and absence of σsc for short range potentials (Agmon–
Hörmander [1], Hörmander [5, Chapter XIV], Ionescu–Schlag [6], Reed–
Simon [9, Sections XIII.6-7], Yafaev [15])
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