Institut für Analysis und Algebra Technische Universität Braunschweig Prof. Dr. Volker Bach, Dr. Konstantin Merz

Partielle Differentialgleichungen 2 6. Übungsblatt

Ausgabe am 02.12.2019, Abgabe am 09.12.2019 vor der Vorlesung

Aufgabe 6.1 (10 Punkte)

Sei t > 0. Zeigen Sie die folgenden Aussagen.

- a) $\|\mathbf{e}^{t\Delta}f\|_{\infty} \lesssim t^{-d/2}\|f\|_1$ für $f \in L^1(\mathbb{R}^d)$.
- b) $\|e^{t\Delta}f\|_p \leq \|f\|_p$ für alle $p \in [1, \infty]$ und $f \in L^p(\mathbb{R}^d)$.
- c) $\|e^{t\Delta}f\|_2 \lesssim t^{-d/4}\|f\|_1$ für $f \in L^1(\mathbb{R}^d)$ und $\|e^{t\Delta}f\|_\infty \lesssim t^{-d/4}\|f\|_2$ für $f \in L^2(\mathbb{R}^d)$.

Aufgabe 6.2 (10 Punkte)

Sei \mathcal{H} ein komplexer Hilbertraum mit Skalarprodukt $\langle \cdot, \cdot \rangle$, das im rechten Eintrag linear und im linken Eintrag antilinear ist. Analog versehen wir $\mathcal{H} \oplus \mathcal{H}$ mit dem Skalarprodukt

$$\langle \cdot, \cdot \rangle : (\mathcal{H} \times \mathcal{H}) \times (\mathcal{H} \times \mathcal{H}) \to \mathbb{C}$$

 $((\varphi_1, \varphi_2), (\psi_1, \psi_2)) \mapsto \langle \varphi_1, \psi_1 \rangle + \langle \varphi_2, \psi_2 \rangle$

und mit der dadurch induzierten Norm

$$\|\cdot\|: \mathcal{H} \times \mathcal{H} \to [0, \infty)$$
$$(\varphi_1, \varphi_2) \mapsto (\|\varphi_1\|^2 + \|\varphi_2\|^2)^{1/2}$$

Zunächst gilt folgende Charakterisierung von Abgeschlossenheit.

Satz 0.1. Sei $T: \mathcal{D}(T) \to \mathcal{H}$ ein linearer Operator, dann sind folgende Aussagen äquivalent.

- 1. $T: \mathcal{D}(T) \to \mathcal{H} \text{ ist abgeschlossen.}$
- 2. Für jede Folge $(\varphi_n)_{n\in\mathbb{N}}\in\mathcal{D}(T)$ mit $\varphi_n\to\varphi$ und $T\varphi_n\to T\psi$ gilt $\varphi\in\mathcal{D}(T)$ und $T\varphi=\psi$.
- 3. Versehen mit der Graphennorm

$$\|\cdot\|_T : \mathcal{D}(T) \to [0, \infty)$$
$$\varphi \mapsto (\|\varphi\|^2 + \|T\varphi\|^2)^{1/2}$$

ist $(\mathcal{D}(T), \|\cdot\|_T)$ vollständig.

Wir möchten nun die Stabilität der Abgeschlossenheit von T unter Störungen untersuchen. Dazu müssen wir quantifizieren, was eine Störung überhaupt ist.

Definition 0.2. Seien $T: \mathcal{D}(T) \to \mathcal{H}$ und $S: \mathcal{D}(S) \to \mathcal{H}$ Operatoren. Dann heißt S relativ T-beschränkt genau dann, wenn

- $\mathcal{D}(T) \subseteq \mathcal{D}(S)$ und
- es gibt a, b > 0, sodass $||S\psi|| \le a||T\psi|| + b||\psi||$

für alle $\psi \in \mathcal{D}(T)$. In diesem Fall heißt

$$\inf\{a \geq 0 : Es \ gibt \ b \geq 0, \ sodass \ ||S\psi|| \leq a||T\psi|| + b||\psi|| \ f\ddot{u}r \ alle \ \psi \in \mathcal{D}(T) \ gilt\}$$

 $die\ T$ -Schranke von S.

Zeigen Sie dann die folgenden Aussagen.

- a) Angenommen, es gilt $||S\psi||^2 \le a^2 ||T\psi||^2 + b^2 ||\psi||^2$. Dann gilt $||S\psi|| \le a ||T\psi|| + b ||\psi||$.
- b) Angenommen, es gilt $||S\psi|| \le a||T\psi|| + b||\psi||$. Dann gilt $||S\psi||^2 \le a^2(1+\varepsilon^2)||T\psi||^2 + b^2(1+\varepsilon^{-1})||\psi||^2$ für alle $\varepsilon > 0$.
- c) Angenommen, S sei ein T-beschränkter Operator mit T-Schranke < 1. Dann ist T genau dann abgeschlossen, wenn $T + S : \mathcal{D}(T) \cap \mathcal{D}(S) = \mathcal{D}(T) \to \mathcal{H}$ abgeschlossen ist.

Aufgabe 6.3 (10 Punkte)

Seien $S: \mathcal{D}(S) \to \mathcal{H}$ und $T: \mathcal{D}(T) \to \mathcal{H}$ bijektive Operatoren mit beschränkten Inversen $S^{-1}, T^{-1} \in \mathcal{B}(\mathcal{H})$. Zeigen Sie die folgenden Aussagen.

- a) Ist $\mathcal{D}(S) \subseteq \mathcal{D}(T)$, so gilt $T^{-1} S^{-1} = T^{-1}(S T)S^{-1}$.
- b) Ist $\mathcal{D}(T) \subseteq \mathcal{D}(S)$, so gilt $T^{-1} S^{-1} = S^{-1}(S T)T^{-1}$.
- c) Ist $\mathcal{D}(T) = \mathcal{D}(S)$, so gilt $T^{-1} S^{-1} = T^{-1}(S T)S^{-1} = S^{-1}(S T)T^{-1}$.

Seien nun $S: \mathcal{D}(S) \to \mathcal{H}$ und $T: \mathcal{D}(T) \to \mathcal{H}$ abgeschlossene Operatoren in \mathcal{H} . Zeigen Sie die Resolventenformeln.

a) Für $w, z \in \rho(T)$ gilt

$$(T-z)^{-1} - (T-w)^{-1} = (z-w)(T-z)^{-1}(T-w)^{-1} = (z-w)(T-w)^{-1}(T-z)^{-1}$$
.

b) Ist $\mathcal{D}(S) = \mathcal{D}(T)$, dann gilt für $z \in \rho(T) \cap \rho(S)$,

$$(T-z)^{-1} - (S-z)^{-1} = (T-z)^{-1}(S-T)(S-z)^{-1} = (S-z)^{-1}(S-T)(T-z)^{-1}$$
.

Zeigen Sie schließlich für einen abgeschlossenen Operator $T:\mathcal{D}(T)\to\mathcal{H}$ die Abschätzung

$$||(T-z)^{-1}|| \ge \frac{1}{\operatorname{dist}(z, \sigma(T))}.$$

für alle $z \in \rho(T)$ mit Hilfe von

Satz 0.3 (Stabilität der stetigen Invertierbarkeit). Seien $S: \mathcal{D}(S) \to \mathcal{H}$ und $T: \mathcal{D}(T) \to \mathcal{H}$ lineare Operatoren. Angenommen T ist abgeschlossen und beschränkt invertierbar und es gilt $\mathcal{D}(T) \subseteq \mathcal{D}(S)$ mit $||ST^{-1}|| < 1$. Dann ist auch T + S beschränkt invertierbar.

Aufgabe 6.4 (10 Punkte)

Seien $V: \mathbb{R}^d \to \mathbb{C}$ eine messbare Funktion und $M_V: \mathcal{D}(M_V) \to L^2(\mathbb{R}^d)$ der Multiplikationsoperator, der wie $(M_V \psi)(x) := V(x)\psi(x)$ für $\psi \in \mathcal{D}(M_V) := \{\psi \in L^2(\mathbb{R}^d) : V\psi \in L^2(\mathbb{R}^d)\}$ und $x \in \mathbb{R}^d$ wirkt. Zeigen Sie die folgenden Aussagen.

- a) M_V ist auf dem maximalen Definitionsbereich $\mathcal{D}(M_V)$ abgeschlossen.
- b) Das Spektrum ist der wesentliche Bildbereich, sprich

$$\sigma(M_V) = \operatorname{ess\,ran}(V) := \left\{ z \in \mathbb{C} \mid \forall \varepsilon > 0 : |\{x \in \mathbb{R}^d : |V(x) - z| < \varepsilon\}| > 0 \right\},\,$$

wobei |A| das Lebesguemaß einer Teilmenge $A \subseteq \mathbb{R}^d$ meint.