Institut für Analysis und Algebra Technische Universität Braunschweig Prof. Dr. Volker Bach, Dr. Konstantin Merz

Partielle Differentialgleichungen 2 3. Übungsblatt

Ausgabe am 11.11.2019, Abgabe am 18.11.2019 vor der Vorlesung

Aufgabe 3.1 (10 Punkte)

Bestimmen Sie die Fouriertransformationen von

- a) $h^{d/2}e^{-h|x|^2/2}$ in \mathbb{R}^d für h>0 sowie
- b) $|\xi|^{-\alpha}$ in \mathbb{R}^d für $0 < \alpha < d$ im Sinne temperierter Distributionen (sprich, berechnen Sie $\mathcal{F}[|\cdot|^{-\alpha}f](x)$ für $f \in \mathcal{S}$).

Aufgabe 3.2 (10 Punkte)

Sei $u \in W^{2,1}((0,1))$ mit u(0) = u'(0) = 0 und setze

$$v(x) := \begin{cases} \frac{u(x)}{x} & \text{falls } x \in (0, 1] \\ 0 & \text{falls } x = 0 \end{cases}.$$

Prüfen Sie, dass $v \in C([0,1])$ und zeigen Sie $v \in W^{1,1}((0,1))$. (Hinweise: Erinnern Sie sich an die zweite Aufgabe des ersten Blatts. Zeigen Sie die Gleichheit $v'(x) = x^{-2} \int_0^x y u''(y) \, dy$.)

Aufgabe 3.3 (10 Punkte)

- a) Zeigen Sie die Young-Ungleichung $||f*g||_r \le ||f||_p ||g||_q$ für 1+1/r=1/p+1/q. (Hinweis: Der Satz von Riesz–Thorin oder Fouriertransformation könnten nützlich sein.)
- b) Seien $f \in L^p(\mathbb{R}^d)$ und $g \in L^{p'}(\mathbb{R}^d)$ mit p, p' > 1 und 1/p + 1/p' = 1. Zeigen Sie, dass f * g stetig ist und es für alle $\varepsilon > 0$ ein $R_{\varepsilon} > 0$ gibt, sodass $\sup_{|x| > R_{\varepsilon}} |(f * g)(x)| < \varepsilon$. (In diesem Fall sagt man, dass f * g im starken Sinne im Unendlichen verschwindet.) (Hinweis: Sie dürfen verwenden, dass C_0^{∞} dicht in L^p ist.)

Aufgabe 3.4 (10 Punkte)

Sei $\Omega \subseteq \mathbb{R}^d$ ein offenes, beschränktes Gebiet (sprich $\overline{\Omega}$ ist kompakt) und seien $0 < \alpha < \beta \le 1$. Zeigen Sie $C^{\beta}(\overline{\Omega}) \in C^{\alpha}(\overline{\Omega})$ (kompakte Einbettung). (Hinweise: Zeigen Sie zunächst die stetige Einbettung. Zeigen Sie dann, dass eine in C^{β} beschränkte Folge die Voraussetzungen von Satz 0.1 erfüllt und wenden Sie ihn an. Zeigen Sie, dass das Grenzelement der gefundenen Teilfolge in C^{β} liegt und schließlich, dass die Teilfolge auch in der $\|\cdot\|_{C^{\alpha}}$ -Norm dagegen konvergiert.)

Satz 0.1 (Arzelà-Ascoli). Sei $\Omega \subset \mathbb{R}^d$ ein beschränktes Gebiet und $(u_n)_{n \in \mathbb{N}} \in C(\overline{\Omega})$ gleichmäßig beschränkt und gleichgradig stetig. Dann existiert eine gleichmäßig konvergente Teilfolge.