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RESTRICTIONS OF FOURIER TRANSFORMS TO
QUADRATIC SURFACES AND DECAY OF SOLUTIONS

OF WAVE EQUATIONS

ROBERT S. STRICHARTZ

1. Introduction
Let S be a subset of IRn and d/z a positive measure supported on S and of

temperate growth at infinity. We consider the following two problems:

Problem A. For which values of p, _< p < 2, is it true that f Lv(IRn)
implies 3 has a well-defined restriction to S in L2(d/z) with

f \1/2

Problem B. For which values of q, 2 < q <- oo, is it true that the tempered
distribution Fdtz for each F LZ(dtz) has Fourier transform in L(") with

A simple duality argument shows these two problems are completely equiva-
lent ifp and q are dual indices, (]/) + (I/q) ]. ]nteresl in Problem A when
S is a sphere stems from the work of C. Fefferman [3], and in this case the
answer is known (see [l I]). Interest in Problem B was recently signalled by 1.
Segal [6] who studied the special case S {(x, y) yZ xz I} and gave
the interpretation of the answer as a space-time decay for solutions of the
Klein-Gordon equation with finite relativistic-invariant norm.

In this paper we give a complete solution when S is a quadratic surface given
by

(1.3) S {x IRn:R(x) r}

where R(x) is a polynomial of degree two with real coefficients and r is a real
constant. To avoid triviality we assume R is not a function of fewer than n
variables, so that aside from isolated points S is a n 1-dimensional C mani-
fold. There is a canonical measure d/z associated to the function R (not intrinsic
to the surface S, however) given by

(1.4) d/a, dx1 dxn-
IOR/Ox4
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OR
in any neighborhood in which --, 0 so that S may be described by giving X

as a function of Xl, x,_ .
In outline our solution follows closely the argument in the special case of the

sphere. We begin with an observation due to P. Tomas [11]"

LEMMA 1. Suppose we can prove

 1.5) II(d ) *gl[ - c llgll,,
for some p, <- p < 2, (l/q) + (l/p) 1. Then Problem A is true for that p,
and the same constant in (1.5) works in (1.1).

Proof. ObserveId/x =If(d/x)v =ff((d/x)^*f)so
f l]]Zdt <-Il,ll(d) *11

Next we use an interpolation idea due to E. M. Stein (unpublished). We con-
sider the analytic family of generalized function G(x) y(z)(R(x) r) for
an appropriate analytic function y(z) with a simple zero at z -1. From the
definition of d/zt (now we let r t vary) we have

fGz(x)p(x)dx= y(z)I( fs, pdlt)(t- r)z+dt

so it follows from the one-dimensional analysis of (t r)%(see [4]) that

lim IGz(x)q(x)dx= c ls odl.
Z

By analytic continuation we may extend G to the strip -h0 -< Re(z) _< 0 and
consider the associated analytic family of operators Tg -I(G) ,g.
Because G is bounded on Re(z) 0 we have

on this line. We will always choose y(z) so that [y(it)[ has at most eXponential
growth at infinity. As an immediate application of Stein’s interpolation theorem
(see [7]) we have

LEMMA 2. Suppose we can prove Jz is bounded for Re(z)= -ho with
Xo > and II& o / has at most exponential growth at infinity. Then (1.5)
holds for

2ho 2hop= q=
ho + 1 ho- 1"

The problem is then reduced to the explicit computation oft from which we
can read off the values of z for which it is bounded. We do this in a case-by-
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n+l
case manner in 2. We show that in most cases the value X0 2 will work

(this yields p 2(n / 1)/(n + 3)), with the exception of the cone Xl/ +
Xm Xm + Xm 0 (and equivalent surfaces) for which we must take
)0 (n/2) hence p 2n/(n / 2).
To show that our results are best possible, in the sense that we cannot in-

crease p or decrease q, we use the following idea due to A. W. Knapp (unpub-
lished):

LEMMA 3. Let S be an n- 1-dimensional C manifold embedded in IRn
and dlz any smooth non-vanishing measure on S. Then (1.1) cannot hold unless
p -< 2(n + 1)/(n + 3).

Proof. Consider a rectangular region in IR" with one side of length and
n 1 sides of length Move this region so that it is centered at a point of S
and rotate it so the side of length e lies normal to S. The characteristic function
of this region will be f in (1.1). Then S intersects the region in a set which
is roughly an n- 1-dimensional square with sides of length x/-, so

d -> cd"- as ---) 0. On the other hand, ignoring inessentials, f(x) is

sin e x sin X/--x sin X/Xn so a direct computation shows I1X X Xn

C P- (.- 1)(p- 1)/2. Thus (1.1) would imply e(" 1)/4 c(n + 1)/2q as e - 0
hence (n 1)/4 -> (n + 1)/2q which is equivalent to p -< 2(n + 1)/(n + 3).
The argument can be modified in the case of the cone by taking the side of the

rectangular region lying in the radial direction (the direction in which the cone

is fiat)to have length one. Then [d/z >-ce(n- )" while [[ <_ cev-i

e(n- )(- 1)/ so the same argument yields p <- 2n/(n + 2).
This completes the outline of our methods. The exact statement of results is

given in Theorem 1 in section 2. We give some applications to decay of solu-
tions of wave equations in section 3, including the generalization to higher di-
mensions of results of Segal [6] (actually we have a slight improvement of Se-
gal’s result even in one space dimension).
For unexplained notation the reader should consult [4].
We are grateful to Professor A. W. Knapp for explaining his unpublished

work and for permission to present it here.
Finally we want to point out that none of the methods used in this paper are

new; even the computations in section 2 can be found in some form in [4].

2. Computations of Fourier transforms
In this section we discuss three special cases"

Case I. S {x, Q’(x’, x’) 0} where x’ (Xl, xrt_ 1), Q’ is a non-
degenerate quadratic form on IR" of signature a, b
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(2.1) Q’(x’, x’) x21 -- -- x2a xga +1 x_ 1,

where a, b are non-negative integers such that a + b n 1.

Case II. S (Q(x, x) 0} where Q is a non-degenerate quadratic form on
IR of signature a, b

(2.2) Q(x, x) x + + x$ X$+l x,
where a, b are positive integers such that a + b n.

Case III. S (Q(x, x) 1} where Q is of the form (2.2) and a, b satisfy
a + b n,a

It is a simple exercise in algebra to show that any quadratic surface not con-
tained in an afline hyperplane can be transformed into one of these three cases
under an affine transformation. Since ane transformations don’t influence the
solution of problems A and B, it suffices to consider just these three cases.

Case I. We let

(x) r(z + )-(x- O’(x’, x’)).

The computation of the inverse Fourier transform of G is essentially well-
known. We give a formal outline:

First we begin with

oXe-’dx
ie’/F(z + 1)(-y + i0)--

(see [43], p. 360) from which we obtain

(2.3) l"(z + 1)-1 J_oo e-’.’.(x,,- Q’(x’, x’))_dx,

iezr/2eU,w;r’,;r’)(-yn + iO)-z- .
Next we use

e’te’’dx W/ 4rt Itl-X’e
Combining this with (2.3) we obtain

-i
4 sgnte-i214t"

(2-)-.r(z + 1)- frtn e-’" U(x,- Q’(x’, x’))Zdx

7r eizr/2e(ri/4)(b -a)e-i’(Y’Y)/4t

[y.[-<.- 1)/Z(_yn + iO)-- 1.
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This is clearly bounded if and only if Re(-z 1 -(n 1)/2) 0, in other
words Re(z) -(n + 1)/2 and the growth as Im(z) ---) 0 is exponential.

Case II. We let n -> 3 and Gz(x) F(z + 1)-aF(z + (n/2))-aQ(x, x)+ (if
n 2 then S is a pair of straight lines). The computation of the Fourier trans-
form may be found in Gelfand-Shilov [4], p. 365"

(2.4) z(Y) 2’ + Tr(n/)-l(2i)-a[e-i( +

(Q(y, y) io)-z -(n/z)_ ei(Z + (b/2)) (Q(y, y) + iO)-Z -(n/2)].

It is clear that we have
Re(z) -n/2.

the appropriate boundedness if and only if

Case II!. We let

Gz(x) h(z)I’(z + 1)-1(1 Q(x, x))_

where h(z) will be specified later. The computation of (z is also given in Gel-
fand-Shilov [4] p. 290 (an alternate derivation may be given following a similar
computation in 10] p. 516).

(2.5) (z(y) h(z)2 + (n/2)+ 17.(n/2)- 1. I--sinTr(z + (a/2)) K + (n/2)(Q(y, y)l_./2)
Q(y, y)(_l/2)(z + (n/2))

+ rr [sin 7r(z + a/2) J + (n/2)(Q(y, y)2)
2 sin 7r(z + (n/2)) L Q(y, y)(/.)( + (./2))

+sin 7rb/2 J-z- (,/2)(Q(y, y)V) ]l
Q(y, y)(1/2)(z+ + (.z)) jj.

Note that if Q is positive definite (b O) the first and third term are zero and
(2.5) reduces to the well-known formula for ((1 Ixl)) Taking h(z) we
obtain boundedness for Re(z) > -(n + 1)/2.
Next consider the ind,efinite case (a 0, b 0) and n-> 3. Choose

h(z) (z + (n/2))sinTr(z + (n/2)) if n is odd and h(z) (z + (n/2))
(g q- 1)-1 sin r(z + (n/2)) if n is even. Note that h(-1) 0 so G-1 is a

non-zero multiple of d/z. We claim ( is bounded if-n/2 >-Re(z)
->-(n + 1)/2. Note that the factor h(z) cancels the poles of (sin 7r(z +
(n/2)))-1 in this region (here we use n 2) so by setting ) =-z-
(n/2) and u Q(y, y)1+_/2 the problem reduces to the boundedness of uXJx(u),
uXJ_x(u) and huXKx(u) for 0 -< ReX -< 1/2. For the first two terms this follows
from the well-known estimates

0(ux) u 0
Jh(U) 0(U-1/2) U o

for the Bessel functions. For the last term we use the integral formula
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Kx(u) 1, cosh ht e-Uesntdt to obtain exponential decay as u---> ([12], p.

259) and the power series expansion ([12], p. 270)

(-1)XuK(u)
2 k=0 k!

X)(u/2) + xr(x-

to obtain boundedness for small u. Notice that the factor h cancels the poles of
the F-function at h 0.

Finally we consider the remaining case n 2, a b 1. Here we choose
h(z) (z + 1)-a sin r(z + 1). Here we have boundedness only for

-1 >Re(z)->-3/2

since when z -1 the K term has a pole. This completes the proof of the
affirmative part of

THEOREM 1. A necessary and sufficient condition for the affirmative solu-
tion to Problems A and B is

Case I. p 2(n + 1)/(n + 3)
q 2(n + 1)/(n- 1).

Case II. n-> 3and

p 2n/(n + 2)
q 2n/(n- 2).

Case III. (a) a n,b 0 and
1-<p-< 2(n + 1)/(n + 3)
2(n + 1)/(n- 1)-<q-<

(b) a O,bO,n-3 and
2n/(n + 2) -< p -< 2(n + 1)/(n + 3)
2(n + 1)/(n 1) <_ q <- 2n/(n 2).

(c) a b 1, n 2 and
< p -< 6/5

6_<q<.

Proof. The sufficiency follows from Lemma 2 and the above computations.
Furthermore Lemma 3 shows that upper bounds for p are necessary. The ne-
cessity of the lower bounds for p follows from elementary considerations in-
volving the growth of d/x at infinity.

Consider Case III(b). Choose

jy) (1 + [yl)<-

Thenf Lp provided ap < n 0ehas a singularity like ixl near zero and expo-
nential decay at infinity; see [7]). But
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f(y)l.dx(y) fy)[ dye.., dy._

By considering only large values of y for which lyl >- lyl/2 we can bound this
from below by a multiple of

(1 + V2dy’ly,l)-

which diverges if a (n + 2)/2. Thus for any p < 2n/(n + 2) we havef Lp

but f L2(dlx), proving the necessity of p >- 2n/(n + 2). The identical argu-
ment works for case II. There is nothing to prove in case III(a). In case III(c)
we have to show that (1.1) cannot hold for p 1. To do this consider
fly) e-t’’’2. Note that Ill i independent of t, so (1.1) and the monotone con-
vergence theorem would imply L(dtx) which is false since d/x is an infinite
measure.

Finally for case I we use a homogeneity argument with respect to the non-
isotropic dilations

tJX) jtx1, txz -1, txn)

Note that (tf)^(y) -n -lt-l))). Now I1,11 t-<n + l>Zll while

IIt--lat-lY)llL2(a")= t--l( f.- (t-ly"t-21Y’le)dY’) 1]2

Thus for (1.1) to hold we must equate the two powers of t, hence
p 2(n + 1)/(n + 3).

3. Estimates for solutions of wave equations
It is a simple matter to interpret to the solution to Problem B as a statement

about solutions of partial differential equations. We consider three "wave
equations" of mathematical physics, the free Schr6dinger equation, the Klein-
Gordon equation, and the acoustic wave equation.

COROLLARY 1. Let u(x, t) be a solution of the inhomogeneous free
Schr6dinger equation in n-space dimensions

(3.1) --O-i- (x, t) + hAxu(X, t) g(x, t)

for x IR, IR, h a non-zero real constant, with initial data

(3.2) u(x, O) fix).

Assume fL(IR") and gLP(IR" +1) for p 2(n+ 2)/(n +4). Then
u La(IR"+ 1) for q 2(n + 2)/n and Ilu[lo -< c(l12 / IIg[l).
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Proof. It is well-known that (3.1) and (3.2) have a unique solution which

may be written u(x, t) e- "g(., s)ds + c (y)e-" + xlldy. The es-

timate for the second term is an immediate consequence of Theorem (Prob-
lem B case I R(x, t) hlxl in n + dimensions). To estimate the first term

observe eitah(x) ct-n/2 Inrcn eilx- Ul2/4th(y)dy hence Ile"hll <_ cltl-n/.llhlll, while
aso Ile"hll-Ilhll. Interpolating these inequalities we obtain

le"hll _< cltl-llhl[ for r n(p-1- 2-1) n/(n + 2). Then

e -"’g(., s)ds -< c I l-llg( o, )ll,do We may apply
Lq(]Ftn)

the fractional integration theorem to obtain

_< cllgll because p-- q-= r 2/(n + 2).

Remark. It would be interesting to extend the result to Schr6dinger’s equa-
Ou

tion with potential (for suitable V(x)) i-[ + XzXu V(x)u. It is not hard to

modify the argument given in the proof of theorem to handle this equation
provided the key estimate

e’"+ V)hll <_ cltl-/llhll
can be established. The Feynman integral representation of the operator
eita + v) (see [1]) is very suggestive of such an estimate.

COROLLARY 2. (cf. Segal [6]) Let u(x, t) be a solution of the Klein-Gordon
(m > O)or d’Alembertian wave equation (m O)

(3.3)
O2u
Ot

(x, t) + Axu(x, t) mZu(x, t) g(x, t)

for x IRn, IR with Cauchy data

Oil
(3.4) u(x, O) fo(x), (x, O) fa(x).

Ot

Assume nl/2fo L2(IRn) and n-1/2fa L2(IRn) where B (m- A)1/2 and
g LP(IR, / a) (see below for restrictions on p). Then u Lq(IRn / 1) and

Ilull-< c(lln’foll / IIn-1/fal[ / Ilgll)" Here p-1 + q-a= and
(a) If rn > 0 we must have

2(n + 1)/(n + 3) _< p _< 2(n + 2)/(n + 4)

for n >- 2 and

2(n + 2)In <_ q <_ 2(n + 1)/(n 1)

<p-<6/5, 6--<q< for n 1;
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(b) if m 0 we must have n >- 2 and

p 2(n + 1)/(n + 3)

q 2(n + 1)/(n- 1).

Also in this case we must subtract a suitable constant from u (or else assume
that fo vanishes at infinity in a suitable sense.)

Proof. Consider the homogeneous equation g 0. It is well-known that
(3.3) and (3.4) have a unique solution which may be written (aside from a con-
stant in the case m 0)

(3.5) u(x, t)= e-i(x u+ vm2+ lul2 t)qg+(y)dy/ N/" m2 + lyl
/

+ flRn e-(x’-Vm2+ lulZ t)p+(y)dy/
where t (1/2)(0 + 1) and

_
(1/2)(Bf0 E). Thus u -l(Fd)

where dg is the measure (1.4) on the two-sheeted hyperboloid (m > 0) or cone
(m 0) [xl2 + m2 in n + dimensions and F on each sheet. Note
that

IIFII2 f / m + [y[2

by the Plancherel formula. Thus the desired estimate follows from theorem
(replacing n by n + 1) case II and case III.

Finally, for the inhomogeneous equation with zero Cauchy data the desired
estimates are already known, see [9] for m 0 and [10] for m > 0 (note that the
arguments on p. 515-517 of [10] actually prove the result for the values ofp and
q given here, even though the result is only stated for a more restricted set of
values). An arbitrary solution of (3.3) and (3.4) is a sum of two solutions of the
special kinds considered.

Remark. The conditions on the Cauchy data B/2fo L2 and B-V2fl L2

may be considered natural because (at least for g 0) they are Lorentz-in-
variant as well as being time independent. However for some problems it may
be convenient to use other norms on the Cauchy data which are time indepen-
dent, such as

For example, when s the norm squared has the interetation of energy.
Now it is an easy matter to see from the representation (3.5) that a solution of

+ Au- m2u 0
Ot2
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with Cauchy data with finite s-norm is obtained from a solution of the same
equation with finite 0-norm by applying a Bessel potential (m > 0) or Riesz
potential (m 0) of order s. Thus u L(IR" + a) when rn > 0, the usual Sobo-
lev space of Bessel potentials (see [7]), and u L(IR" + 1) when m 0, the
homogeneous Sobolev space of Riesz potentials (say for 0 < s < n/q to avoid
technicalities). Applying the fractional integration theorem (or Sobolev’s in-
equality) we obtain the estimate

I1, 11.  11O<o, f,)ll,.,
for s -> 0 and

(a) 2(n + 2)/n<-q<-2(n + 1)/(n- 1 2s) if s< (n- 1)/2

2(n + 2)/n_<q< if s (n- 1)/2

2(n + 2)/n<- q<- if s> (n- 1)/2 for rn>0

(b) q 2(n + 1)/(n 2s) if 0 -< s < (n 1)/2 for m 0.

These results are best possible when s -> 0 as can be seen by simple modifi-
cation of arguments already given. Also when rn 0 there can be no such
estimates for s < 0 since a homogeneity argument would require
q 2(n + 1)/(n + 1 2s) which contradicts the proof of Lemma 3. We leave
open the possibility of such estimates when m > 0 and 0 > s > -1/(n + 2).
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