
SOME NOTES ON RESTRICTION THEORY
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Abstract. In these notes, we review the state of progress on the restriction problem in
harmonic analysis with an emphasis on the developments of the past decade or so on the

euclidean space version of these problems for spheres and other hypersurfaces. As the field is

quite large, we will merely give the main ideas and developments in this area.
The restriction problem is connected to many other conjectures, most notably the Kakeya

and Bochner–Riesz conjectures, as well as PDE conjectures such as the local smoothing con-
jecture which will be discussed as well.

These notes are mostly based on Tao’s famous review [Tao04], his lecture notes on re-

striction problems [Tao99b], the lecture notes by Wolff on harmonic analysis [Wol03], recent
lecture notes by Hickman and Vitturi on decoupling theory [HV15], and the introductory

review [Sto19] by Stovall. An excellent recent survey of the field is given by Guth [Gut23].
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1. The restriction problem – some background

From now on, we fix d ≥ 2 and remark that all constants A or a are allowed to depend
on d (although it would be interesting to track the precise dependence of the constants on the
dimension as d→ ∞). The Fourier transform of a function f on Rd is formally defined as

f̂(ξ) :=

∫
Rd
f(x)e−2πix·ξ dx .

By the Riemann–Lebesgue lemma we know that f̂ is a continuous bounded function on Rd which
vanishes at infinity if f ∈ L1(Rd). In particular, f̂ can be meaningfully restricted to any subset
S of Rd, thereby creating a continuous bounded and continuous function on S.

For applications, the above definition needs to be extended to a larger class of functions.

For f ∈ L1 ∩ L2, the Plancherel theorem states that ∥f∥2 = ∥f̂∥2 and since L1 ∩ L2 is dense
in L2, the Fourier transform extends uniquely to a bounded linear operator of L2 onto itself.
By interpolation, we obtain the Hausdorff–Young inequality which states that for 1 ≤ p ≤ 2,

this extension maps Lp boundedly into Lp
′
and obeys ∥f̂∥p′ ≤ Ap,d∥f∥p. This range of Lp →

Lq estimates is the best possible; for the sharp constant Ap,d, see Beckner [Bec75] and for
extremizers, see Lieb [Lie90].

For f ∈ Lp, p > 1, f̂ is usually interpreted as an Lp
′
limit, f̂ = limn→∞ f̂n where fn is a

sequence of integrable functions converging to f in Lp. By the Hausdorff–Young inequality, one

can therefore restrict f̂ to any set S of positive measure. However, the above interpretation leads
to an obvious obstruction to restricting a Fourier transform to sets of Lebesgue measure zero.
Indeed Lp

′
consists of equivalence classes within which its members are allowed to differ off of

sets of measure zero, i.e., it makes no sense to define Fourier restriction to a set of measure zero
as a simple composition. In particular, there is no meaningful way to restrict L2 functions to
any set S of measure zero.

In 1967 Stein made the surprising discovery (unpublished work) that when such sets contain
“sufficient curvature” (see also Subsection 3.4), then one can indeed restrict the Fourier transform
of Lp functions for certain p > 1. This lead to the restriction problem [Ste79]: for which sets
S ⊆ Rd and which 1 ≤ p ≤ q ≤ ∞ can the Fourier transform of an Lp function be meaningfully
restricted, i.e.,

∥f̂ |S∥Lq(S) ≤ Ap,q,d∥f∥Lp(Rd)
for smooth, compactly supported f?

Of course, there are infinitely many such sets to consider, but we will focus on sets S which
are hypersurfaces, or compact subsets of hypersurfaces. In particular, we shall be interested in
the sphere

Ssphere := {ξ ∈ Rd : |ξ| = 1} ,
the paraboloid

Sparab := {ξ ∈ Rd : ξd = |ξ|2/2} ,
and the cone

Scone := {ξ ∈ Rd : ξd = |ξ|}
where ξ = (ξ, ξd) ∈ Rd−1 × R ≡ Rd. These three surfaces are model examples of hypersurfaces
with curvature, though of course the cone differs from the sphere and the paraboloid in that it
has one vanishing principal curvature. These three surfaces also enjoy a large group of symme-
tries (the orthogonal group, the parabolic scaling and Galilean groups, and the Poincaré group,
respectively). Moreover, these hypersurfaces are intimately related (via the Fourier transform) to
certain PDEs, namely the Helmholtz equation, the Schrödinger equation, and the wave equation,
respectively. This is going to be the topic of Section 14.
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Let us finally also remark there are various generalizations of the questions discussed in these
notes. For instance, we can ask for estimates for oscillatory integral operators, which can be
considered as the variable coefficient case of the Fourier restriction problem. See, e.g., Bourgain–
Guth [BG11] and Guth–Hickman–Iliopoulou [GHI19] for recent developments.

Organization. The rest of the notes is structured as follows. In the next section, we will use a
duality argument to reformulate the restriction problem as an “extension problem” which (as of
this writing) is a more convenient point of view to think of the problem. In Section 3, we will find
two necessary conditions for the restriction problem which lead to the restriction conjecture. In
Sections 7 and 8 we will describe two classical tools to tackle the restriction conjecture. A more
recent approach via Littlewood–Paley theory is discussed in Section 9. Connected to Littlewood–
Paley theory is a recently established tool by Bourgain and Demeter [BD15, BD17] (see also the
references in [HV15]), namely ℓ2 decoupling, which is the topic of Section 22. In Sections 14,
16, and 17 we will illuminate certain relations between the restriction problem and conjectures
concerning nonlinear, dispersive PDEs, the Kakeya, and the Bochner–Riesz conjectures.

2. Restriction and extension estimates

From now on let S be a compact subset (but with non-empty interior) of one of the above
surfaces Ssphere, Sparab, or Scone. We endow S with a canonical measure dσ. For the sphere, it
is the surface measure; for the paraboloid, it is the pullback of the d − 1-dimensional Lebesgue
measure dξ under the projection map ξ 7→ ξ; for the cone it is the pullback of dξ/|ξ| as it is
Lorentz invariant.

In order to restrict f̂ to S, it will suffice to prove an a priori “restriction estimate” of the
form

∥f̂ |S∥Lq(S,dσ) ≤ Ap,q,S∥f∥Lp(Rd) (2.1)

for all C∞
c or Schwartz functions f and some 1 ≤ q ≤ ∞, since one can then use density

arguments to obtain a continuous restriction operator from Lp(Rd) to Lq(S, dσ) which extends

the restriction operator R : f 7→ f̂ |S for such nice functions. (Finding the sharp value of Ap,q,S
in (2.1) is another interesting difficult problem, which has only been solved in a few cases so far).

We will denote by RS(p→ q) the statement that (2.1) holds for all f . From the introductory
remarks on the Hausdorff–Young inequality (the faster a function decays, i.e., f lives in low

Lp spaces, the smoother is its Fourier transform, i.e., f̂ lives in high Lq spaces), we see that
RS(1 → q) holds for all 1 ≤ q ≤ ∞ by Hölder’s inequality while RS(2 → q) fails for all
1 ≤ q ≤ ∞. The interesting question is what happens for intermediate values of p, i.e., our aim

is to find the highest value of p (the slowest decay of f) and q (greatest smoothness of f̂) such
that the restriction estimate (2.1) still holds. (Observe the implication RS(p→ q) ⇒ RS(p̃→ q̃)
for all p̃ ≤ p and q̃ ≤ q by Sobolev and Hölder inequalities.)

The dual of the restriction operator RS is the extension operator

(RS)
∗F (x) =: ESF (x) = (F dσ)∨ =

∫
S

F (ξ)e2πix·ξdσ(ξ) .

A simple duality argument based on Parseval’s identity (think of a change of variables to under-
stand (Fdσ)∨ better, too)

sup
∥f∥

Lp(Rd)=1

∥f̂ |S∥Lq(S,dσ) = sup
∥f∥

Lp(Rd)=1

sup
∥F∥

Lq
′
(S,dσ)

=1

∫
S

F (ξ)f̂(ξ) dσ(ξ)

= sup
∥F∥

Lq
′
(S,dσ)

=1

sup
∥f∥

Lp(Rd)=1

∫
Rd
(Fdσ)∨(x)f(x) dx = sup

∥F∥
Lq

′
(S,dσ)

=1

∥(Fdσ)∨∥Lp′ (Rd)
(2.2)
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shows that the restriction estimate (2.1) is equivalent to the following extension estimate

∥(Fdσ)∨∥Lp′ (Rd) ≤ Ap,q,d∥F∥Lq′ (S,dσ) (2.3)

for all smooth functions F on S. We use R∗
S(q

′ → p′) to denote the statement that the estimate
(2.3) holds. Due to the smoothness of F one may use stationary phase arguments to obtain
asymptotics for (Fdσ)∨, see also [Ste93, Chapter VIII, Proposition 6]. However, such asymptotics

depend on the smooth norms of F , not just the Lq
′
(S) norm, and so do not imply estimates

of the form (2.3). In this sense, one can think of extension estimates as a more general way to
control oscillatory integrals since only magnitude bounds on F (ξ) and no bounds on derivatives
are required.

Understanding the extension operator better. Let us clarify at this stage the meaning of
the restriction and extension operators. Suppose f ∈ Lp(Rd) and F ∈ Lq

′
(S, dσ) as in the above

duality argument. After rotating and translating S in the ambient space Rd, we may assume
(since S is compact) that S is given as the graph

ξd = φ(ξ1, ..., ξd−1)

where φ ∈ C∞
c (Rd−1). This allows us to write the measure as

dσ(ξ) = (1 + |∇φ|2)1/2dξ1, ..., dξd−1 ,

which is called the euclidean (or induced) surface measure. (Note that S is the level set of a
function Ψ : Rd → R and that the measure is actually given by

dσ(ξ) =
|(∇Ψ)(ξ1, ..., ξd)|

|∂Ψ/∂ξd|
dξ1, ..., dξd−1.

(Compare this to the “canonical measure” dΣλ(ξ) = |∇Ψ(ξ)|−1dσ(ξ) which equals, locally at
least, |∂Ψ/∂ξd|−1 dξ′ in Yafaev [Yaf10, Chapter 2, Formula (1.4) and p. 111].) Using ξd =

φ(ξ1, ..., ξd−1) and the chain rule (remember (∂ξd/∂ξi)
d−1
i=1 = ∇φ), we (formally) have( |(∇Ψ)(ξ1, ..., ξd)|

|∂Ψ/∂ξd|

)2

=

d∑
i=1

|∂Ψ/∂ξi|2
|∂Ψ/∂ξd|2

= 1 +

d−1∑
i=1

∣∣∣∣ ∂Ψ/∂ξi∂Ψ/∂ξd

∣∣∣∣2 = 1 +

d−1∑
i=1

∣∣∣∣∂ξd∂ξi

∣∣∣∣2 = 1 + |∇φ|2

which yields the previous representation. Alternatively, using the implicit function theorem,
we know that locally ξd = φ(ξ′), whenever (ξ′, ξd) ∈ S where S denoted the level set of Ψ :
Rd → R. Thus, locally, Ψ(ξ) = 0 = ξd − φ(ξ′) = 0, i.e., ∇Ψ(ξ) = (−∇φ(ξ′), 1) and ∂Ψ/∂ξd =
1 on S. Therefore, |∇Ψ(ξ)|/|∂Ψ/∂ξd| = (1 + |∇φ(ξ′)|2)1/2 and in particular dσ(ξ) = (1 +
|∇φ(ξ′)|2)1/2dξ′.)

Now, using the above representation, abbreviating ψ(ξ) =
√
1 + |∇φ(ξ)|2 and ξ̃ ≡ (ξ, ξd) =

(ξ1, ..., ξd−1, ξd) ∈ Rd, we may write the left side of (2.2) as∫
S

f̂(ξ)F (ξ) dσ(ξ) =

∫
Rd−1

f̂(ξ)F (ξ)ψ(ξ) dξ =

∫
Rd
f̂(ξ̃)F (ξ̃)ψ(ξ̃)1ξd=φ(ξ) dξ̃

where 1ξd=φ(ξ) is to be understood as the one dimensional Dirac delta function which forces

ξd = φ(ξ). Using Parseval’s theorem (in L2(Rd)), the right side of the last formula equals (with
x ∈ Rd) ∫

Rd
f(x)

(
Fψ1ξd=φ(ξ)

)∨
(x) dx
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where (using pullback)(
Fψ1ξd=φ(ξ)

)∨
(x) =

∫
Rd
F (ξ̃)ψ(ξ̃)1ξd=φ(ξ)e

2πix·ξ̃ dξ̃ =
∫
Rd−1

F (ξ)ψ(ξ)e2πi(x
′·ξ+xdφ(ξ)) dξ

=

∫
S

F (ξ)e2πix·ξ dσ(ξ) = (Fdσ)∨(x)

with the inconsistent notation x′ = (x1, ..., xd−1) ∈ Rd−1. This clarifies the computation in (2.2).

Remark 2.1. Had we started with a set of the form

Sλ := {ξ ∈ Rd : a(ξ) = λ}
for a function a : Rd → R with

∇a(ξ) ̸= 0 for ξ ∈ a−1(Λ) ,Λ ⊆ R ,
then we define the measure on Sλ by the equality

dΣλ(ξ) =
dσλ(ξ)

|∇a(ξ)|
where dσλ(ξ) is the euclidean (Lebesgue) surface measure on Sλ. We remark that dΣλ is some-
times also called the canonical measure associated to a (which is not intrinsic to Sλ, however),
see also Strichartz [Str77, p. 705]. In particular, the elementary volume dξ in Rd satisfies

dξ = dλdΣλ(ξ) .

Moreover, by the implicit function theorem, the equation a(ξ) = λ for λ close to some λ0 ∈ Λ ⊆ R
defines a function ξd = F (ξ′, λ) for ξ close to ξ(0) ∈ Sλ0

. Since the euclidean surface measure is
given by dσλ(ξ) = (1 + |∇ξ′F (ξ

′, λ)|2)1/2 dξ′ (as we have seen above), we have

dΣλ(ξ) =
dξ′

|∂a(ξ)/∂ξd|
.

Let us see the advantage of the introduction of dΣλ(ξ). If one defines the Fourier multiplier
H0 = F∗AF , where A is multiplication by the symbol a(ξ) and X ⊆ R is some Borel set, then
it is well known that its spectral projection is given by

E0(X) = F∗1{a−1(X)}F .

Thus, be the above discussion, we have

⟨ψ,E0(X)ψ⟩ =
∫
a−1(X)

|ψ̂(ξ)|2 dξ =
∫
X

dλ

∫
Sλ

|f̂(ξ)|2 dΣλ(ξ) .

In particular, for a given measurable function F : [0,∞) → R, we have

⟨ψ, F (H0)ψ⟩ =
∫
R+

dλ F (λ)

∫
Sλ

|ψ̂(ξ)|2 dΣλ(ξ) .

3. Necessary conditions

In this section, we will derive two common necessary conditions on p and q such that the
extension estimate ∥(Fdσ)∨∥Lp′ (Rd) ≲p,q,d ∥F∥Lq′ (S), i.e., R∗

S(q
′ → p′), holds. The restriction

conjecture asserts that these two conditions are in fact also sufficient. The conjecture has been
solved for the paraboloid and the sphere in two dimensions, and for the cone in up to four
dimensions, but see also [Tao04, Figures 1 and 2] for a more detailed [and probably out of

date] summary of progress on this problem. In fact, the restriction problems for the three
surfaces are related. Let us merely mention that the restriction conjecture of the sphere would
imply the conjecture for the paraboloid since one can parabolically rescale the sphere to approach
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the paraboloid, but see also Tao [Tao99a] (where the surprising fact that the Bochner–Riesz
conjecture implies the restriction conjecture is shown).

3.1. The trivial condition. By setting F ≡ 1, we immediately see that we need (dσ)∨ ∈
Lp

′
(Rd). In the case of the sphere and the paraboloid (which have non-vanishing Gaussian

curvature), stationary phase computations yield

|(dσ)∨(x)| ≲ (1 + |x|)−(d−1)/2 ,

i.e., we need p′ > 2d/(d−1), respectively p < 2d/(d+1). For the sphere, an explicit computation
using the Fourier–Bessel transform yields (dσ)∨ = 2π|ξ|(2−d)/2J(d−2)/2(2π|ξ|). On the other
hand, the asymptotics for the cone are slightly different, giving the condition p′ > 2(d−1)/(d−2).

3.2. Knapp’s example. We will sketch this example [Tom75, Str77] only for the sphere and
the paraboloid (more precisely its intersection with the d dimensional unit cube). Assume that
R ≫ 1 and take any interior point ξ0 of the surface S. By a Taylor expansion, one sees that
S contains a “cap” κ ⊆ S centered at ξ0 whose diameter is roughly R−1. The cap has surface
measure ∼ R−(d−1) and can be packed into a d dimensional disk D of diameter R−1 and thickness
R−2 which is oriented perpendicular to the unit normal of S at ξ0. Now, let F = 1κ be the
characteristic function of the cap κ and T be the tube dual toD. This is the tube which is centered
at the origin, aligned along the unit normal to S at ξ0 with length ∼ R2 and thickness ∼ R. By
the uncertainty principle (see also Appendix D), (Fdσ)∨ has magnitude ∼ σ(κ) ∼ R−(d−1) on a
large portion of T (since the phase function eix·ξ is basically constant for ξ ∈ D and x ∈ T ) and
decays rapidly outside of T . In particular, we have

∥(Fdσ)∨∥Lp′ (Rd) ≳ |T |1/p′R−(d−1) ∼ R(d+1)/p′−(d−1) .

On the other hand,

∥F∥Lq′ (S,dσ) ∼ |κ|1/q′ ∼ R−(d−1)/q′ .

Letting R→ ∞ thus leads to the second necessary condition

d+ 1

p′
≤ d− 1

q

for R∗
S(q

′ → p′) to hold. (Note that the Fourier transform d̂σ of the measure dσ associated to

Sd−1 decays like |x|−(d−1)/2, i.e., it is Lp
′
-bounded for any p′ > 2d/(d− 1). Thus the conjecture

says that this Lp
′
-boundedness also holds for F̂ dσ.)

One can formulate a Knapp counterexample for any smooth hypersurface. Of course, the
obtained necessary conditions become stronger as the surface becomes flatter. In the extreme
case where the surface is infinitely flat (e.g. when it is a hyperplane), there are no estimates.
In fact, the function g(x) := (1 + |x1|)−1 lies in Lp for any p > 1 but has an infinite Fourier
transform on every point of the hyperplane {ξ ∈ Rd : ξ1 = 0}.

Hence, we have the following conjectures, which are in fact all equivalent to each other [Mat15,
Section 19.3].

Conjecture 3.1. ∥ĝ dσ∥Lq(Rd) ≲ ∥g∥Lp(S) for q > 2d/(d− 1) and q = (d+ 1)p′/(d− 1).

Conjecture 3.2. ∥ĝ dσ∥Lq(Rd) ≲ ∥g∥L∞(S) for q > 2d/(d− 1).

Conjecture 3.3. ∥ĝ dσ∥Lq(Rd) ≲ ∥g∥Lq(S) for q > 2d/(d− 1).

Proposition 3.4. The above three conjectures are equivalent to each other.
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Proof. Clearly the third version implies the second by Hölder. Once one shows the converse (i.e.,
second implies third version), the equivalence between the first and second version follows from
interpolation. Observe that if q = 2d/(d− 1) and q = (d+1)p′/(d− 1), then p = q. For the rest,
see [Mat15, Theorem 19.8]. □

Before we come to the last example, we elaborate a bit on the situation of the paraboloid
and perform some explicit computations for the reader’s convenience. In fact, we will have a
first encounter with “wave packets”, an important tool that we will discuss in further detail in
Section 10.

Knapp’s example for the paraboloid - an explicit computation. Let F be a smooth,
non-negative function with supp F ⊆ {|ξ| < 0.1} and ∥F∥1 = 1. For |x|, |xd| < 1 the integral
defining Re ((Fdσ)∨(x)) has no cancellation (since the phase function is strictly positive in this
case), and hence |(Fdσ)∨(x)| is nearly as large as possible, i.e.,

|(Fdσ)∨(x)| ≥
∫
Rd

cos(x · (ξ, |ξ|2))F (ξ) dξ ≥
∫
Rd

cos(0.1 + 0.01)F (ξ) dξ ∼ 1 .

For large |x|, the integrand oscillates rapidly in ξ, leading to cancellation in the integral, and
hence a small contribution, i.e., |(Fdσ)(x)| ≪ 1 for |x| ≫ 1.

We will now rescale the above F such that “it lives on the paraboloid” by defining

FRξ0,x0
(ξ) = Rd−1e2πix0(ξ,|ξ|2)φ(R(ξ − ξ0))

for some R ≫ 1 where R−1 denotes the frequency scale of the parabolic subset (before it was
the disk D)

κRξ0 := {ξ ∈ P : 0 ≤ (ξ − ξ0) · νξ0 < 0.01R−2}
(centered at ξ0) of the paraboloid P, as before. Here, νξ0 = (−2ξ0, 1) denotes the upward normal
to P at ξ0. It is pretty clear that κRξ0 is contained in a R−1 × · · · ×R−1 ×R−2 rectangle centered
at ξ0 and whose short side is oriented along νξ0 . We finally note that, due to the additional
phase factor, (FRξ0,x0

dσ)∨ is going to be concentrated around x0 in real space.

By scaling, the extension of this almost characteristic function on the inflated cap κRξ0 is given
by

(FRξ0,x0
dσ)∨(x) = e2πi(x−x0)ξ0(Fdσ)(R−1((x− x0) + 2(x− x0)dξ0), R

−2(x− x0)d) .

By the estimates on (Fdσ)∨, we see that (Fξ0,x0
dσ)∨ ∼ 1 on the tube

TRξ0,x0
= {x ∈ Rd : |(x− x0) + 2(x− x0)dξ0| < R , |xd − (x0)d| < R2}

which is centered at x0, has width R and length R2, and is aligned along νξ0 . Off this tube,

(FRξ0,x0
dσ)∨ decays rapidly. This shows that ∥(FRξ0,x0

dσ)∨∥Lp′ (Rd) ≳ |T |1/p′ ∼ R(d+1)/p′ whereas

∥FRξ0,x0
∥Lq′ (P) ∼ R(d−1)/q which again shows that (d+ 1)/p′ ≤ (d− 1)/q is necessary.

For T = TRξ0,x0
and FT = FRξ0,x0

, the extension (FRξ0,x0
dσ)∨ is called a wave packet associated

to T . For any R≫ 1, a partition of unity directly decomposes the original function F as a sum
of (unmodulated) R-caps, indexed by a collection of O(Rd−1) tubes, i.e.,

F =
∑
T

cTFT , T = TRξ0,0 .

Most of the coefficients cT are of order R−(d−1) by scaling, the rest of them are even smaller.
The curvature of P implies that distinct tubes T, T ′ with directions νT and νT ′ are separated by
at least R−1 since

angle ∼ sin(angle) =
R−2

R−1
= R−1 .
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3.3. Hardy–Littlewood majorant conjecture. The derivation of this conjecture is similar to
the first (trivial) condition. Assume that F is a smooth function on S such that ∥F∥L∞(S) ≤ 1.
Since Fdσ is pointwise dominated by dσ, it seems intuitive that (Fdσ)∨ should be “smaller”
than (dσ)∨, too. The conjecture then states that the necessary conditions of the trivial condition
should in fact be sufficient to obtain R∗

S(∞ → p′) for completely general sets. It is known that
the conjecture is true when p′ is an even integer (using Plancherel’s theorem) but is false for
other values of p′. However, it may still be that the majorant conjecture is true if the set S is
“non-pathological”, e.g. in the cases for the sphere or the paraboloid.

3.4. Are there restriction estimates for the plane? We already mentioned in the intro-
duction, that curvature was crucial for Stein’s discovery of restriction estimates. Conversely, we
may ask what happens when the curvature is zero, i.e., are there restriction estimates for the
plane? Let us consider the hyperplane {ξd = 0}, or even only the subset

S = {ξ ∈ Rd : ξd = 0, |ξ| ≤ 1}
with the obvious surface measure dσ. Thus, by the Hölder and the Hausdorff–Young inequality,

we have ∥f̂∥Lq(S) ≲ ∥f∥p for p = 1 and arbitrary q ≥ 1. However, these are the only estimates
available.

Proposition 3.5. Suppose ∥f̂∥Lq(S) ≲ ∥f∥p holds for all test functions f and the above S. Then
one must have p = 1.

Proof. The idea is to consider functions whose Fourier transform is concentrated on and near S.

For this, let ψ ∈ S(Rd) with ψ̂ ∼ 1 near the origin and let

f(x1, ..., xd) = ψ(x1, ..., xd−1, xd/λ)

for large λ. Then ∥f∥p ∼ λ1/p and

f̂(ξ1, ..., ξd) = λψ̂(ξ1, ..., ξd−1, λξd) .

In particular, f̂ ∼ λ on the pancake with dimensions 1 × ... × 1 × λ−1 and f̂ |S ∼ λ. Thus,

∥f̂∥Lq(S) ∼ λ and for ∥f̂∥Lq(S) ≲ ∥f∥p, i.e., λ ≲ λ1/p to hold, we must have p = 1. □

In summary, there are no non-trivial restriction estimates for planes, even if we only consider

compact pieces. The reason for this failure is that the plane is so flat that one can easily find f̂
which are extremely large on and close to the plane.

3.5. Curved surfaces, Fourier transforms of measures. We just saw that there are no
non-trivial restriction estimates for pieces of flat planes. Obviously, one may ask “how much
restriction is possible, if we bend the plane a bit”?

As a starting point, suppose S has dimension d− 1 and has non-vanishing Gauss curvature at
every point. By that we mean the following. Let ξ0 be any point of S and consider a rotation and
translation of S such that ξ0 becomes the origin and that the tangent plane to S at ξ0 becomes
the hyperplane ξd = 0. Then, near the origin at least, S can be given as a graph

ξd = φ(ξ1, ..., ξd−1)

where φ ∈ C∞
c (Rd−1) and φ(0) = ∇φ(0) = 0. Now, consider the (d− 1)× (d− 1) Hessian of φ,

i.e., (
∂2φ

∂ξj∂ξk

)
j,k

(0) .

Its eigenvalues ν1, ..., νd−1 are called the principle curvatures of S at ξ0. The determinant of the

Hessian, i.e.,
∏d−1
j=1 νj is called the Gaussian curvature of S at ξ0. Then, the following decay
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estimate for the Fourier transform of the surface measure dσ of S can be proven via a stationary
phase argument, see Stein [Ste93, Chapter XIII, Section §3 and §5.7].

Proposition 3.6. Suppose S is a smooth hypersurface in Rd with associated surface measure
dσ. Assume ψ ∈ C∞

c (Rd) is a fixed function whose support intersects S in a compact subset of
S and let dµ = ψdσ. If S has nowhere vanishing Gaussian curvature, then

|(dµ)∨(x)| ≲ |x|−(d−1)/2 . (3.1)

Remarks 3.7. (1) Herz [Her62] showed that, for ψ = 1, the surface need only be C [(d−1)/2+2] to
obtain the above estimate on |(dµ)∨(x)|. If the surface is C [(d−1)/2+4], he obtained the leading
coefficient of the asymptotic expansion for |(dµ)∨(x)| as |x| → ∞. If ψ is not constant on S, one

can show (following the arguments of [Ste93, Chapter XIII, §3.1] that ψ ∈ C
⌈d/2⌉+2
c and that the

surface is C⌈d/2⌉+4 are sufficient conditions to obtain the above estimate on |(dµ)∨(x)|.
(2) For smooth hypersurfaces where only k of the d−1 principal curvatures are non-vanishing,

Littman [Lit63] showed |(dµ)∨(x)| ≲ |x|−k/2. (This is to be compared with the assertion in
Stein [Ste93, Chapter XIII, §3.2], where it is shown that |(dµ)∨(x)| ≲ |x|−1/k for hypersurfaces
vanishing to k-th order, i.e., φ(ξ1, ..., ξd−1) = O(|ξ|k). (One says that S has finite type k ∈
{2, 3, ...}.)
Proposition 3.8 ([Ste93, Chapter XIII, §3.2, Theorem 2]). Suppose S is a smoothm-dimensional
(1 ≤ m ≤ d− 1) manifold in Rd of finite type. Let dµ = ψdσ be as above. Then

|(dµ)∨(x)| ≲ |x|−1/k

where k is the type of S inside the support of ψ.

Using a T ∗T argument (with T being the restriction operator) and the Hardy–Littlewood–
Sobolev inequality, it is possible to establish the following (far from sharp) restriction estimate
for finite type hypersurfaces.

Theorem 3.9. Suppose S is a smooth m-dimensional (1 ≤ m ≤ d − 1) manifold in Rd of type
k. Then, one has RS(p→ 2) for any 1 ≤ p ≤ p0 with p0 = 2dk/(2dk − 1).

Although the theorem is not sharp, its main idea, namely exploiting cancellations through L2

estimates, is the basis of the proof of the Tomas–Stein theorem.

Proof. If f ∈ Lp(Rd), then the Lp(Rd) → L2(S, dσ)-boundedness of the restriction operator RS

is equivalent to the Lp → Lp
′
-boundedness of ESRS where ES is the extension operator which is

dual to RS . In particular, it suffices to show (cf. (4.10))

|⟨f, ESRSf⟩| ≲ ∥f∥2p .
Using the definition of Rs and ES , namely (RSf)(ξ) = f̂(ξ)|S and (ESg)(x) =

∫
S
eix·ξg(ξ)dσ(ξ),

we have ⟨f, ESRSf⟩ =
∫
f(x)K(x − y)f(y) dx dy (which also equals ⟨f̂ , f̂dσ⟩ = ⟨f, f ∗ (dσ)∨⟩ ≤

∥f∥p∥f ∗ (dσ)∨∥p′ ≤ ∥f∥2p∥(dσ)∨∥Lp′/2,∞ using the weak Young inequality) where

K(x− y) =

∫
S

eiξ·(x−y)dσ(ξ) = (dσ)∨(x− y) .

Since |(dσ)∨(x)| ≲ |x|−1/k, we have |⟨f, ESRSf⟩| ≲ ∥f∥2p by the Hardy–Littlewood–Sobolev
lemma if p = 2dk/(2dk − 1), i.e., p′ = 2dk. The assertion follows from interpolation with
p = 1. □

Extending the idea of Subsection 3.4, one can establish the following necessary condition for
surfaces vanishing to k-th order. This argument generalizes the Knapp example, see Subsection
3.2. The original “Knapp” condition is obviously restored for k = 2.
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Proposition 3.10. Suppose φ(ξ1, ..., ξd−1) = O(|ξ|k) for some k ≥ 2. Then, RS(p→ q) is only
possible if

p′ ≥ d+ k − 1

d− 1
q .

Proof. Let ψ be as in Proposition 3.5, i.e., ψ ∈ S(Rd) with ψ̂ ∼ 1 near the origin and let

f(x1, ..., xd) = ψ(x1/λ
1/k, ..., xd−1λ

1/k, xd/λ)

for some large λ, i.e., f is a bump function on the λ1/k × · · ·λ1/k × λ tube. In particular,

∥f∥Lp ∼ λ((d−1)/k+1)/p and f̂(ξ) = λ(d−1)/k+1ψ(λ1/kξ1, ..., λ
1/kξd−1, λξd). Since the volume of

the cap where f̂ does not decay rapidly is roughly λ−(d−1)/k, we have ∥f̂ |S∥Lq(S) ≳ λ(d−1)/k+1×
λ−(d−1)/(kq). Comparing this with ∥f∥p ∼ λ(d−1+k)/p, yields the claimed necessary condition. □

The last two results and in particular Subsection 3.4, i.e., the absence of non-trivial restric-
tion estimates on planes (which corresponds to the limit k → ∞) underline the importance of
curvature in restriction theory.

4. The Tomas–Stein restriction theorem

As far as positive results (besides the trivial L1 → L∞ estimate) go, we only have the following
theorem of Tomas [Tom75, Tom79] and Stein (1975, unpublished and [Ste86]) which says that
the restriction conjecture is indeed true for q = 2.

In fact, Stein gave two proofs of the restriction theorem. The first one relies on Tomas’ (two
pages long!) observation and on an extension of the classic Riesz–Thorin interpolation which
is unpublished. We will discuss this in more detail in the second subsubsection. The other
one establishes a theory of non-homogeneous oscillatory integral operators [Ste86] that we will
discuss in the next subsubsection. We emphasize that this approach uses ideas of Carleson and
Sjölin [CS72] who proved the restriction theorem for d = 3 and 1 ≤ p ≤ 4/3. The reader who
is interested in the history prior to the Tomas–Stein theorem is invited to consult Tomas’ paper
[Tom75].

Theorem 4.1. If 1 ≤ p ≤ 2(d+ 1)/(d+ 3), then RS(p→ 2) holds.

Remark 4.2. Bak and Seeger [BS11] extended the Tomas–Stein estimate to treat measures µ
that satisfy

sup
rad(B)≤1

µ(B)

rad(B)a
≤ A (4.1)

and

sup
|ξ|≥1

|ξ|b|µ̌(ξ)| ≤ C. (4.2)

The number inf{a : (4.1) holds for some A < ∞} is called the “dimension of µ”, whereas the
number inf{a : (4.2) holds for some C <∞} is called the “Fourier dimension”. For (sufficiently)
smooth hypersurfaces with non-vanishing Gauss curvature, one has a = 2b = d − 1. Bak and
Seeger proved that the Tomas–Stein theorem extends to the stronger Lorentz-type estimate

∥f̂∥L2(S) ≲d,a,b A
b

d−a+bC
d−a
d−a+b ∥f∥2Lpc,2(Rd) ,

where pc = 2(d−a+b)/(2(d−a)+b). One interesting application of this concerns surfaces where
only k of the d− 1 principal curvatures are non-vanishing. Littman [Lit63] showed |(dµ)∨(x)| ≲
|x|−k/2 for smooth hypersurfaces. In this case, pc = (2 + k)/(2 + k/2).
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As we shall see, the proof heavily relies on the fact q = 2 and it has been very difficult (though
not completely impossible) to push this argument beyond q < 2. We will now discuss the two
approaches of the proof of this theorem.

4.1. Non-homogeneous oscillatory integral operators. Following [Sog17, Chapter 2] and
Stein [Ste93, Sections IX.1 and IX.2], the first approach consists in establishing a robust theory
of non-homogeneous oscillatory integral operators of the form

I(λ) :=

∫
Rd

eiλφ(y)a(y) dy .

If φ has a non-degenerate critical point (i.e., ∇φ(y0) = 0 but det(∂2φ/∂yi∂yj) ̸= 0 when y = y0),
say at y0 = 0, and a is a smooth cutoff function having small support, one can easily check that

|I(λ)| ∼ λ−d/2 as λ→ +∞ ,

whenever a(0) ̸= 0, see, e.g., [Sog17, Theorem 1.1.4]. The situation can be naturally extended
by considering operators of the form1

(Tλf)(x) =

∫
Rd

eiλφ(x,y)a(x, y)f(y) dy , λ > 0.

Here, a ∈ C∞
c (Rm × Rd) is now a smooth cutoff function and φ ∈ C∞(Rm × Rd) is real. One

may then, e.g., ask whether Tλf belongs to some Lp. The most basic result occurs when m = d.
If φ is non-degenerate in the sense that the mixed Hessian satisfies the non-degeneracy condition

det

(
∂2φ

∂xj∂xk

)
̸= 0 ,

then we shall find that
∥Tλf∥L2(Rd) ≲ λ−d/2∥f∥L2(Rd) .

This result obviously has the same flavor as the estimates for I(λ), and, in fact, one can see that,
for every λ, there are functions for which ∥Tλf∥2/∥f∥2 ∼ (1 + λ)−d/2 if a is non-trivial.

However, there are many natural situations where the non-degeneracy condition is not met.
The most popular example is of course φ(x, y) = |x − y| for which the Hessian has only rank
d − 1! The Tomas–Stein theorem will immediately follow from estimates on oscillatory integral
operators with such phase functions.

4.1.1. Non-degenerate oscillatory integral operators. Let us however start with the simpler sit-
uation where the non-degeneracy condition is satisfied. The main theorem of this subsection is
the following

Theorem 4.3. Suppose φ is a real C∞ phase function satisfying the non-degeneracy condition

det

(
∂2φ

∂xj∂xk

)
̸= 0 (4.3)

on supp(a) where a ∈ C∞
c (Rd × Rd). Then for λ > 0,∥∥∥∥∫
Rd

eiλφ(x,y)a(x, y)f(y) dy

∥∥∥∥
L2(Rd)

≲ λ−d/2∥f∥L2(Rd) . (4.4)

If we let Tλ be the operator in (4.4), then clearly

∥Tλf∥∞ ≲ ∥f∥1 .
Thus, we obtain the following consequence by Riesz interpolation.

1When m = d and f(y) is replaced with f̂(y), then Tλ is called a Fourier integral operator (FIO).
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Corollary 4.4. If 1 ≤ p ≤ 2, then∥∥∥∥∫
Rd

eiλφ(x,y)a(x, y)f(y) dy

∥∥∥∥
Lp′ (Rd)

≲ λ−d/p
′∥f∥Lp(Rd) . (4.5)

Remark 4.5. Clearly, the phase function φ(x, y) = ⟨x, y⟩ leading to the standard Fourier trans-
form satisfies the hypotheses of Theorem 4.3. Furthermore, (4.5) implies that∥∥∥∥∫ ei⟨x,y⟩a(x/

√
λ, y/

√
λ)f(y) dy

∥∥∥∥
p′

≲ ∥f∥p ,

i.e., (4.5) leads to another proof of the Hausdorff–Young inequality ∥f̂∥p′ ≲ ∥f∥p.
Before we prove this theorem, we restate the non-degeneracy condition (4.3) in an equivalent

form. Expanding

∇x[φ(x, y)− φ(x, z)] =

(
∂2φ(x, y)

∂xj∂yk

)
(y − z) +O(|y − z|2) ,

it is immediate that (4.3) is equivalent to

|∇x[φ(x, y)− φ(x, z)]| ∼ |y − z| , |y − z| ≪ 1 . (4.6)

This is the form that we shall use in the proof of Theorem 4.3.

Proof of Theorem 4.3. Using a smooth partition of unity, we can decompose a(x, y) into a finite
number of pieces each of which has the property that (4.6) holds on its support. Thus, we may
assume without loss of generality that

|∇x[φ(x, y)− φ(x, z)]| ≳ |y − z| on supp(a)

holds. The assertion then follows from Young’s inequality for integral operators [Sog17, Theorem
0.3.1], once we show that

|Kλ(y, z)| ≲N (1 + λ|y − z|)−N for all N ∈ N
where

Kλ(y, z) =

∫
Rd

eiλ[φ(x,y)−φ(x,z)]a(x, y)a(x, z) dx

is the integral kernel of ⟨f, Tλf⟩L2(Rd). Since the above estimate just follows from a stationary
phase argument (using (4.6)), we are already done. □

4.1.2. Oscillatory integral operators related to the restriction theorem. The main result in this
subsection is that, under some natural additional geometric conditions on φ, we can prove that
Tλ also maps Lp(Rd−1) functions to Lq(Rd) functions with norm λ−d/q (see (4.5)).

As in the previous subsubsection, we will require a (modified) non-degeneracy condition of
the form

rank

(
∂2φ

∂yj∂zk

)
= d− 1 , (4.7)

i.e., the mixed Hessian associated to the phase function has maximal rank. This condition alone
would yield that Tλ : Lp(Rd−1) → Lq(Rd) is bounded with norm O(λ−(d−1)/q) if q ≥ 2 and
p ≥ q′. To get the better result O(λ−d/q), we need an additional condition, more precisely, a
curvature hypothesis.

To state it, we first notice that, since Cφ = {(z, φ′
z(z, y), y,−φ′

y(z, y))}, (4.7), and the constant
rank theorem imply that, for every z0 ∈ suppz(a), the image of y 7→ φ′

z(z0, y), i.e.,

Sz0 =
∏
T∗
z0

Rd
(Cφ) = {φ′

z(z0, y) : (z0, φ
′
z(z0, y), y,−φ′

y(z0, y)) ∈ Cφ}
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is a C∞ (immersed) hypersurface in T ∗
z0R

d. Clearly, one can identify T ∗
z0R

d with Rd. In this
case, the curvature hypothesis says that

Sz0 ⊆ T ∗
z0R

d has everywhere non-vanishing Gaussian curvature. (4.8)

Since changes of coordinates induce changes of coordinates in the cotangent bundle that are
linear in the fibers, one concludes that (4.8) is (like (4.7)) an invariant condition. Notice that
(4.7) is a condition involving second derivatives of the phase function whereas (4.8) is in fact a
condition involving third derivatives.

If the two conditions (4.7) and (4.8) are met, we shall say that the phase function satisfies
the Carleson–Sjölin condition. The main result of this subsubsection concerns estimates on
oscillatory integral operators with such phase functions. It is due to Carleson and Sjölin [CS72]
and Hörmander [Hör60] in the two-dimensional case and to Stein [Ste86, Theorem 10] in the
higher-dimensional case.

Theorem 4.6. Let Tλ as in (4.4) and suppose that the Carleson–Sjölin condition (i.e., the
non-degeneracy condition (4.7) and the curvature condition (4.8)) holds. Then

∥Tλf∥Lq(Rd) ≲p λ−d/q∥f∥Lp(Rd−1) (4.9)

if q = (d+ 1)p′/(d− 1) and

(1) 1 ≤ p ≤ 2 for d ≥ 3;
(2) 1 ≤ p < 4 for d = 2.

Bourgain [Bou91b] proved that the theorem can in fact not be improved beyond the range
1 ≤ p ≤ 2 when d ≥ 3. For the proof, we refer to [Sog17, Theorem 2.2.1], see also Stein [Ste86,
Theorem 10] or [Ste93, p. 380]. The details can also be found in Appendix A.2. Let us now
actually see why the Tomas–Stein theorem is an immediate consequence of this theorem.

Corollary 4.7. Suppose that S ⊆ Rd, d ≥ 2 is a C∞ hypersurface with everywhere non-vanishing
Gaussian curvature. Then, if dσ is the Lebesgue measure on S and if dµ = βdσ with β ∈ C∞

c ,
it follows that (∫

S

|f̂(ξ)|r dµ(ξ)
)1/r

≲S ∥f∥Ls(Rd) ,

provided that r = (d− 1)s′/(d+ 1) and

(1) 1 ≤ s ≤ 2(d+ 1)/(d+ 3) for d ≥ 3;
(2) 1 ≤ s < 4/3 for d = 2.

Notice that the exponents r and s are just conjugate to those in Theorem 4.6 which indicates
that we will in fact prove the dual assertion, i.e., an extension estimate.

Proof. Without loss of generality, we may rotate and translate S such that ξd = φ(ξ′) for some
φ ∈ C∞(Rd−1) where as usual ξ = (ξ′, ξd) ∈ Rd. We shall now actually prove the (dual) extension
estimate, i.e.,

∥(Fdµ)∨∥Ls′ (Rd) ≲ ∥F∥Lr′ (S)
where

(Fdµ)∨(x) =
∫
S

e2πix·ξF (ξ)dµ(ξ)

=

∫
Rd−1

e2πi(x
′·ξ′+xdφ(ξ′)F (ξ′, φ(ξ′))β(ξ′, φ(ξ′))(1 + |∇φ(ξ′)|2)1/2 dξ′
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and we used the pullback formula

dµ(ξ) = β(ξ′, φ(ξ′))(1 + |∇φ(ξ′)|2)1/2dξ′ ≡ Ψ(ξ′, φ(ξ′))dξ′

To apply the Carleson–Sjölin theorem, we merely need to verify the non-degeneracy condition of
Theorem 4.6. But this is easy since the Hessian of φ has rank d−1 and the curvature hypothesis
holds by assumption. Thus, Theorem 4.6 implies ∥Tλ∥Lp(Rd−1)→Lq(Rd) ≲ λ−d/q where Tλ is
defined by

(TλF )(x) :=

∫
Rd−1

eiλ⟨x,(ξ
′,φ(ξ′))⟩a(x, ξ′)F (ξ′, φ(ξ′)) ·Ψ(ξ′, φ(ξ′)) dξ′ .

By scaling x 7→ x/λ, this means that if p and q are as in Theorem 4.6, we have∥∥∥∥∫
Rd−1

e2πi⟨x,(ξ
′,φ(ξ′))⟩a(x/λ, ξ′)F (ξ′, φ(ξ′))Ψ(ξ′, φ(ξ′)) dy

∥∥∥∥
Lqx(Rd)

≲p ∥F (·, φ(·))Ψ(·, φ(·))∥Lp(Rd−1)

for every λ > 0. Using once more the pullback formula, we conclude∥∥∥∥∫
S

e2πix·ξF (ξ) dµ(ξ)

∥∥∥∥
Lqx(Rd)

≲p ∥F∥Lp(S) ,

thereby showing the assertion. □

4.2. The original arguments of Tomas and Stein. Following Tao [Tao99b, Lecture 2], we
will now outline the genesis of the Tomas–Stein theorem. In particular, we will encounter three
basic interpolation theorems which are vital tools in (harmonic) analysis in general.

Squaring the desired restriction estimate shows that we need to prove∫
S

|f̂(ξ)|2 dσ(ξ) ≲ ∥f∥2p .

We rewrite the left side as the L2 inner product, use the convolution theorem and Hölder’s
inequality to obtain∫

S

|f̂(ξ)|2 dσ(ξ) = ⟨f̂ , f̂dσ⟩ = ⟨f̂ ,F [f ∗ ďσ]⟩ = ⟨f, f ∗ ďσ⟩ ≤ ∥f∥p∥f ∗ ďσ∥p′ .

Thus, it suffices to prove

∥f ∗ ďσ∥p′ ≲ ∥f∥p . (4.10)

Note that this is just the TT ∗ method in disguise (i.e., showing that an operator T is Lp → L2-

bounded is equivalent to showing that T ∗T is Lp → Lp
′
-bounded). The above observation was

first made by Fefferman and Stein [Fef70, p. 33ff].
We will now outline three proofs of (4.10).

4.2.1. First attempt: fractional integration. The most obvious tool to attack (4.10) would of
course be to use the Hardy–Littlewood–Sobolev inequality (which is a special case of the “weak
Young inequality”).

Lemma 4.8. If 0 < α < d, 1 < p, q <∞, and

1

q
+ 1 =

1

p
+
α

d
,

then

∥f ∗ | · |−α∥q ≲ ∥f∥p
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The other tool that we shall use is an interpolation theorem for weak-type operators. It turns
out that the assumption that an operator has weak-type can be relaxed even a bit more. Recall
that, for some measure spaces X,Y , a linear operator T : X → Y is said to have weak-type (p, q)
if

|{x ∈ X : |(Tf)(x)| > λ}| ≲ λ−q∥f∥qp for all f ∈ Lp, λ > 0 .

One can weaken this by considering only characteristic functions. We say that T has restricted
weak-type (p, q) if

|{x ∈ X : |(T1E)(x)| > λ}| ≲ λ−q|E|p/q for all E ⊂ X,λ > 0 . (4.11)

It is convenient to rephrase this estimate in a more symmetric form.

Lemma 4.9. Suppose 1 < p, q <∞. Then T has restricted weak-type (p, q) if and only if

|⟨T1E ,1F ⟩| ≲ |E|1/p|F |1/q′ (4.12)

for all sets E ⊆ X, F ⊆ Y .

As a comparison, recall that, by duality, the strong-type (p, q) estimate is equivalent to

|⟨Tf, g⟩| ≲ ∥f∥p∥g∥q′
for all f ∈ Lp, g ∈ Lq

′
.

Proof. For our purposes, the necessity of the restricted weak-type estimate suffices which is why
we will only deal with this direction. (For the other direction, one applies (4.12) to the set
F = {Re(T1E) > λ}.)

Using the layer cake representation and Fubini, we have

|⟨T1E ,1F ⟩| ≤
∫
F

|T1E(x)| dx =

∫
F

∫ ∞

0

1{|T1E |>λ}(x) dλ dx =

∫ ∞

0

|{x ∈ F : |T1E(x)| > λ}| dλ .

Recalling the restricted weak-type hypothesis, the integrand can be estimated by

|{x ∈ F : |T1E(x)| > λ}| ≤ min{|F |, λ−q|E|q/p} .
Thus,

|⟨T1E ,1F ⟩| ≲
∫ ∞

0

min{|F |, λ−q|E|q/p} dλ ≲ |E|1/p|F |1/q′

by an elementary computation. □

Let us recall now

Lemma 4.10 (Marcinkiewicz interpolation). Suppose 1 < p0 < q0 < ∞, 1 < p1 < q1 < ∞,
p0 < p1, q0 < q1, and T is of restricted weak-types (p0, q0) and (p1, q1). Then, T is of strong-type
(pθ, qθ) for any θ ∈ (0, 1) where 1/pθ = (1− θ)/p0 + θ/p1 and similarly for qθ.

Proof. See Tao’s notes [Tao99b, Lecture 2, Lemma 2.3] or Grafakos [Gra14a, Theorem 1.4.19]
and Tao [Tao06, Lecture 1, Lemma 8.5] for a further enhanced version. □

Using the decay estimate (3.1) (from stationary phase)

|ďσ(x)| ≲ |x|−(d−1)/2 ,

and the Hardy–Littlewood–Sobolev inequality (Lemma 4.8) with 1/p′ + 1 = 1/p + 2/p′ and
2/p′ = (d− 1)/(2d), i.e., p′ = 4d/(d− 1) and p = 4d/(3d+ 1), we get

∥f ∗ ďσ∥p′ ≲ ∥f ∗ | · |−(d−1)/2∥p′ ≲ ∥f∥p .
In other words, we just proved the restriction estimate RS(4d/(3d + 1) → 2). By interpolation
with the trivial estimate RS(1 → 2), we thus get RS(p → 2) for any 1 ≤ p ≤ 4d/(3d+ 1). This
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is a non-trivial statement, however, it is far from the best possible. Recall that the restriction
conjecture says that p can go up to the endpoint 2(d+ 1)/(d+ 3).

The reason why we did not get a good estimate here is because we only performed pure size
estimates, i.e., we merely exploited the decay of the convolution kernel ďσ(x). However, due to
taking a Fourier transform, ďσ(x) actually also oscillates, in particular for large x. For instance,
we have

ďσ(x) = const J(d−2)/2(|x|)/
√

|x|
for the sphere by the Fourier–Bessel transform. (Recall that |Jν(x)| ≲ |x|−1/2 for |x| → ∞.) In
d = 3, this reduces to

sin(|x|)
|x| .

Crudely estimating these formulae by |x|−1 is very inefficient.

4.2.2. Second attempt: real interpolation. In [Tom75] Tomas introduced a very simple argument
that made use both of the decay and the oscillations of the kernel ďσ. This allowed him to get
within an ε of the sharp result. The idea was to decompose ďσ dyadically. This idea is a very
effective technique in harmonic analysis — break up your functions or kernels into many pieces in
such a way that the behavior close to the singularity or at infinity can be treated very precisely,
i.e., choose very small dyadic pieces where you need to obtain precise estimates. This approach
works quite well, except when one has to recombine, i.e., to glue, all the pieces back together.
In this way one often loses an ε, but rarely does one lose more than this.

Let us start with the main idea, i.e., the dyadic decomposition of ďσ. For this, let φ be a
radial bump function which equals 1 near 0 and is compactly supported. Then, define

ψk(x) := φ(2−kx)− φ(2−k+1x) .

Thus, ψk has size roughly 1 and is supported on the annulus |x| ∼ 2k. Moreover, the ψk are all
related to each other by

ψk(x) = ψ0(2
−kx)

and we have the telescopic identity

1 = φ(x) +
∑
k>0

ψk(x) .

Thus, one can break up f ∗ ďσ as

f ∗ ďσ = f ∗ (φďσ) +
∑
k>0

f ∗ (ψkďσ) .

Now, we may just use the triangle inequality, obtain

∥f ∗ ďσ∥p′ ≤ ∥f ∗ (φďσ)∥p′ +
∑
k>0

∥f ∗ (ψkďσ)∥p′ ,

and estimate each term separately. Note that one can (and should usually) be more sophisticated
than the triangle inequality and use almost orthogonality results such as the Cotlar–Stein lemma
(for operator norm bounds) or Carbery’s lemma [Car09] (for Schatten norm bounds).

Since dσ is a compactly supported measure, ďσ is a C∞ function (it’s complex analytic in
fact). Thus, φďσ ∈ C∞

c , i.e., the first term can be bounded by a constant times ∥f∥p by Young’s
inequality.

Next, our goal is to estimate

∥f ∗ (ψkďσ)∥p′ ≲ 2−εk∥f∥p (4.13)
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since this would sum up nicely. We will prove such an estimate by interpolating between and
L1 → L∞ and an L2 → L2 estimate. The latter is just the one that will capture the oscillations
of dσ!

Obtaining the L1 → L∞ estimate is easy because of the decay of the kernel ďσ and the fact
that ψk localizes to the region |x| ∼ 2k. We obtain

∥f ∗ (ψkďσ)∥∞ ≲ ∥f∥1∥ψkďσ∥∞ ≲ ∥f∥12−k(d−1)/2 . (4.14)

For the L2 → L2 estimate, we use Plancherel and obtain

∥f ∗ (ψkďσ)∥2 = ∥f̂ · (ψkďσ)∥2 ≲ ∥f∥2∥ψ̂k ∗ dσ∥∞ .

Since ψk is smooth and compactly supported and acts as a mollifier, we have the standard
estimate

|ψ̂k(ξ)| ≲
2dk

< 2kξ >N

for any N ∈ N. Thus, we obtain by scaling

|ψ̂k ∗ dσ(ξ)| =
∣∣∣∣∫
S

ψ̂k(ξ − η)dσ(η)

∣∣∣∣ ≲ 2k

since we are integrating over S, i.e., an d− 1-dimensional subset of Rd and therefore

∥f ∗ (ψkďσ)∥2 ≲ 2k∥f∥2 . (4.15)

Interpolating (using Riesz–Thorin) between (4.14) and (4.15) thus yields

∥f ∗ (ψkďσ)∥p′ ≲ 2−ε∥f∥p
for some ε, provided p < 2(d+ 1)/(d+ 3).

Thus, by exploiting oscillation (via the Fourier transform-based L2 → L2 estimate) and decay,
we get RS(p→ 2) for all 1 ≤ p < 2(d+1)/(d+3). This is almost, but not quite, the sharp result
as we are still missing the endpoint.

4.2.3. Last attempt: complex interpolation. In 1975 Stein (unpublished) obtained the endpoint
estimate RS(2(d + 1)/(d + 3) → 2) by extending the classic Riesz–Thorin interpolation “by
adding a single letter to the alphabet” [Fef95, p. 3]. Besides that, we will refuse to give in to
the triangle inequality as we did in the last section and we will also make a special assumption
on the localizing function ψ.

Theorem 4.11 (Stein’s interpolation theorem). Assume Tz is an operator depending analytically
on z in the strip 0 ≤ Re z ≤ 1. Suppose Tz is Lp0 → Lq0-bounded for Re z = 0 and Lp1 → Lq1-
bounded for Re z = 1. Then Tθ is Lpθ → Lqθ -bounded for 1/pθ = (1 − θ)/p0 + θ/p1, 1/qθ =
(1− θ)/q0 + θ/q1, and θ ∈ [0, 1].

Let p = 2(d+ 1)/(d+ 3) and recall that we want to prove

∥
∑
k>0

f ∗ (ψkďσ)∥p′ ≲ ∥f∥p .

At this endpoint, (4.13), i.e.,

∥f ∗ (ψkďσ)∥p′ ≲ 2−εk∥f∥p ,
only holds when ε = 0. In other words, to get the endpoint, we must not use the triangle
inequality at this stage. We will therefore show the following two enhanced versions of the
previous L1 → L∞ and L2 → L2 bounds, namely

∥
∑
k>0

2[
d−1
2 +it]kf ∗ (ψkďσ)∥∞ ≲ ∥f∥1 (4.16a)
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∥
∑
k>0

2[−1+it]kf ∗ (ψkďσ)∥2 ≲ ∥f∥2 (4.16b)

for all t ∈ R. These two estimates, together with Theorem 4.11, then yield the desired estimate.
(Note that, if we were only dealing with a fixed k, the above two estimates just correspond to
(4.14) and (4.15)!) Let us now prove (4.16a) and (4.16b) and begin with the former. Rewriting
it as

∥f ∗
∑
k>0

2[
d−1
2 +it]k(ψkďσ)∥∞ ≲ ∥f∥1 ,

we see that it suffices (by Young’s inequality) to prove

∥
∑
k>0

2[
d−1
2 +it]k(ψkďσ)∥∞ ≲ 1 .

But this just follows from the decay estimate |ďσ(x)| ≲ |x|−(d−1)/2 since ψk localizes onto the
dyadic region |x| ∈ [2k, 2k+1], i.e.,∑

k>0

2[
d−1
2 +it]kψk(x) = O(|x|(d−1)/2) .

Note how we are being more efficient here than in the proof of (4.14).
Now let us turn to (4.16b). By the same arguments as in the previous section (i.e., Plancherel

and Hölder), it suffices to prove

∥
∑
k>0

2[−1+it]k(ψ̂k ∗ dσ)∥∞ ≲ 1 .

Ignoring the cancellation coming from the 2itk factor (which would be helpful however for k ≫ 1),
we will obtain this from ∑

k>0

2−k|(ψ̂k ∗ dσ)(x)| ≲ 1 . (4.17)

In the previous section we already estimated |(ψ̂k ∗ dσ)(x)| ≲ 2k, which is however just not good
enough for our purpose. Instead, we shall establish the more sophisticated estimate

|(ψ̂k ∗ dσ)(x)| ≲
{
2k(2kd(x, S))−N for d(x, S) ≥ 2−k

2k + 2k(2kd(x, S)) for d(x, S) ≤ 2−k

where d(x, S) = |1 − |x|| is the distance of x to the unit sphere. Once we have this estimate,
(4.17) follows from a routine calculation. Our task is thus to estimate∣∣∣∣∫

Sd−1

ψ̂k(x− ω)dσ(ω)

∣∣∣∣ .
For d(x, S) ≥ 2−k the claimed estimate follows, e.g., from the rapid decay |ψ̂k(x)| ≲ 2kd(1 +

2k|x|)−Ñ (possibly with Ñ ≥ N + d), decomposing Sd−1 into regions where d(x, ω) ∼ 2k+j for
some j ≥ 0, and then summing in j.

Now, let us look at the region d(x, S) ≤ 2−k. If we just use the size estimate |ψ̂k(x)| ≲
2kd(1 + 2k|x|)−Ñ , we will end up with a bound of order O(2k) which is just not good enough.
Instead, we shall impose and exploit some moment conditions on ψk.

We first observe the Lipschitz bound

|∇(ψ̂k ∗ dσ)(x)| = 2k|((2−k∇ψ̂k) ∗ dσ)(x)| ≲ 22k
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where we used that also 2−k∇ψ̂k satisfies the above size estimate (by scaling) and that dσ is
supported on a d− 1-dimensional manifold. Thus, for y ∈ Sd−1,

(ψ̂k ∗dσ)(x)− (ψ̂k ∗dσ)(y)+(ψ̂k ∗dσ)(y) ≤ (ψ̂k ∗dσ)(y)+d(x, y)(∇ψ̂k ∗dσ)(z) ≲ 2k+22kd(x, y) .

Thus, it suffices to consider points x on the unit sphere. By rotational symmetry, we may assume
x = en, i.e., we need to show

|
∫
Sd−1

ψ̂k(en − ω)dσ(ω)| = O(1) .

Because of the rapid decay of ψ̂k we may as well restrict ourselves to the region, say, |en − ω| <
1/10. In this case, we parameterize ω ∈ Sd−1 as

ω = (ω,
√
1− |ω|2) , ω ∈ Rd−1 .

Since we restricted our attention to |en − ω| < 1/10, this means, it suffices to consider |ω| <√
1− (9/10)2 ≪ 1. Thus, we will estimate in the following∫

|ω|≪1

ψ̂k(ω, 1−
√
1− ω2)J(ω) dω

where J(ω) is the Jacobian appearing from our parameterization of ω. We may now rewrite this
as a constant times ∫

Rd−1

ψ̂k(ω,O(ω2))(1 +O(ω2)) dω (4.18)

modulo extremely tiny errors. We claim that this is quantity is∫
Rd−1

ψ̂k(ω, 0) dω +O(1) . (4.19)

If this were the case, then we can simply choose φ, and thus ψ0, so that∫
Rd−1

ψ̂0(ω, 0) dω = 0

and this will achieve the desired estimate.
To prove the claimed approximation, we first observe that

ψ̂k(ω,O(ω2)) = ψ̂k(ω, 0) +O
(

2(d+1)kω2

(1 + 2k|ω|)N
)

for all N > 0 by the rapid decay of ψ̂k and the mean value theorem. Thus, the error between
(4.18) and (4.19) is at most ∫

Rd−1

O
(

2(d+1)kω2

(1 + 2k|ω|)N
)
dω = O(1)

which follows by scaling.

4.3. Complex interpolation once more. We shall give one further proof of the Tomas–
Stein theorem which, however, does not use the dyadic decomposition of the kernel (dσ)∨.
The technique that we will outline here, is in particular useful to obtain “uniform” resolvent
estimates such as ∥(Q(D) − z)−1∥p→p′ ≲ 1 uniformly in z ∈ C for |z| ≥ 1, Im(z) ̸= 0,
Q(ξ) = −ξ21 − ξ22 − ... − ξ2j + ξ2j+1 + ... + ξ2d and p such that 2/(d + 1) ≤ 1/p − 1/p′ ≤ 2/d,

see, e.g., Kenig–Ruiz–Sogge [KRS87, Theorem 2.3] where one interpolates between the L2 →
L2 bounds of eζ

2

(Γ(d/2 + ζ))−1(Q(D) − z)ζ for Re(ζ) = 0 and the L1 → L∞ bounds of

eζ
2

(Γ(d/2 + ζ))−1(Q(D)− z)ζ for Re(ζ) ∈ [−(d+ 1)/2,−d/2].
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Theorem 4.12. Suppose S is a smooth hypersurface in Rd with non-zero Gaussian curvature.
Then (∫

S0

|f̂(ξ)|2 dσ(ξ)
)1/2

≲p,S0
∥f∥Lp(Rd)

holds for each f ∈ S(Rd), 1 ≤ p ≤ 2(d + 1)/(d + 3), whenever S0 is an open subset of S with
compact closure in S.

The proof can be found in Stein [Ste86, Theorem 3]. A more detailed exposition can be found
in Stein–Shakarchi [SS11, Chapter 8, Theorem 5.2].

Proof. Suppose 0 ≤ ψ ∈ C∞
c (Rd). It will then suffice to prove(∫

S

|f̂(ξ)|2ψ(ξ) dσ(ξ)
)1/2

≲p0 ∥f∥Lp(Rd) (4.20)

for p0 = 2(d + 1)/(d + 3), the other cases follow from interpolation 2. By covering the support
of ψ by sufficiently many small open sets, it will be enough to prove the restriction estimate
when (after a suitable rotation and translation of coordinates) the surface S is represented (in
the support of ψ) as the graph ξd = φ(ξ′). Now, with dµ = ψdσ, the usual Plancherel argument
implies ∫

S

|f̂(ξ)|2dµ(ξ) =
∫
Rd

(Tf)(x)f(x) dx

where (Tf)(x) = (K ∗ f)(x) with

K(x) =

∫
e2πix·ξ dµ(ξ) .

Thus, we are left to show the Lp0 → Lp
′
0 boundedness of the convolution kernel K. To do so, we

consider the family of kernels

Ks(x) :=
es

2

Γ(s/2)

∫
Rd

e2πix·ξ|ξd − φ(ξ′)|−1+sη(ξd − φ(ξ′))ψ̃(ξ′) dξ (4.21)

where η ∈ C∞
c (Rd) is a bump function sitting at the origin and we set ψ̃(ξ′) = ψ(ξ′, φ(ξ′))(1 +

|∇φ(ξ′)|2)1/2 so that

dµ(ξ) = ψ(ξ)dσ(ξ) = (1 + |∇φ(ξ′)|2)1/2ψ(ξ′, φ(ξ′))dξ′.
Now, the change of variables ξd 7→ ξd + φ(ξ′) in the above integrals shows that it equals

ζs(xd)

∫
Rd−1

e2πi(x
′·ξ′+xdφ(ξ′))ψ̃(ξ′) dξ′ = ζs(xd)K(x)

with

ζs(xd) =
es

2

Γ(s/2)

∫
R
e2πixdξd |ξd|−1+sη(ξd) dξd .

(Note that we now only need to study a “classical” function ζs(xd) and the “regularized” kernels
Ks since K0(x) = K(x) and we shall interpolate between K1+it and K−d/2+it for t ∈ R.) So, first
it is well known that ζs has an analytic continuation in s which is an entire function. Moreover,
ζ0 ≡ 1 (by an integration by parts, setting s = 0, and applying the fundamental theorem of
calculus using η(0) = 1) and |ζs(xd)| ≲< xd >

−Re(s), where the real part of s remains bounded
from below (see also Stein–Shakarchi [SS11, Chapter 8, Lemma 4.6]). From these facts it follows

2In fact, the interpolation argument shows that we can take q so that the restriction estimate holds where
the L2(S, dσ) norm is replaced by the Lq(S, dσ) norm with q = (d − 1)p′/(d + 1) which is the optimal relation
between p and q.



SOME NOTES ON RESTRICTION THEORY 23

thatKs has an analytic continuation to an entire function of s (whose values are smooth functions
of x1, ..., xd of at most polynomial growth). Moreover, one concludes

(1) K0(x) = K(x),
(2) K(1−d)/2+it is L1 → L∞ bounded with |K(1−d)/2+it(x)| ≤ |ζ(1−d)/2+it(xd)||K0(x)| ≲ 1

for all x ∈ Rd and t ∈ R, and
(3) K1+it is L

2 bounded with |K̂1+it(ξ)| ≲ 1 for all ξ ∈ Rd and t ∈ R.
In fact, (2) follows from the estimates |K0(x)| = |(dµ)∨(x)| ≲ |x|−(d−1)/2 and |ζ(1−d)/2+it(xd)| ≲
|xd|(d−1)/2 whereas (3) follows from the definition (4.21) of Ks. (The integrand in (4.21) is just

K̂s which is clearly bounded for s = 1.) Thus, we have shown that the analytic family Ts of
operators, defined by Tsf = Ks ∗ f satisfies

∥T(1−d)/2+itf∥∞ ≲ ∥f∥1 , t ∈ R
because of (2) and also

∥T1+itf∥2 ≲ ∥f∥2 , t ∈ R
because of (3) and Plancherel. Thus, by complex interpolation (0 = (1 − θ) + θ · (−d/2), i.e.,
θ = 2/(d + 1), 1 − θ = (d − 1)/(d + 1), and 1/p = (1 − θ)/2 + θ/1 = (d + 3)/(2d + 2), i.e.,

p = 2(d+ 1)/(d+ 3) = p0), we obtain the asserted Lp0 → Lp
′
0 boundedness. □

4.4. A final word on complex interpolation. Frank and Sabin [FS17a, Proposition 1] no-

ticed that once one proves the Lp(Rd) → Lp
′
(Rd) boundedness of some operator T on Rd

via complex interpolation, one not only obtains that W1TW2 is L2(Rd) bounded for arbitrary
W1,W2 ∈ L2p/(2−p)(Rd) (by Hölder’s inequality). In fact, W1TW2 also belongs to some trace
ideal Sp(L2(Rd)). We quote

Proposition 4.13 (Frank–Sabin [FS17a, Proposition 1]). Let Tz be an analytic family of oper-
ators in Rd in the sense of Stein defined on the strip −λ0 ≤ Rez ≤ 0 for some λ0 > 1. Assume
that the bounds

∥Tiy∥2,2 ≤M0e
a|y| , ∥T−λ0+iy∥1,∞ ≤M1e

b|y| , ∀y ∈ R (4.22)

hold for some a, b ≥ 0 and for some M0,M1 ≥ 0. Then, for all W1,W2 ∈ L2λ0(Rd : C), it holds
that W1T−1W2 ∈ S2λ0(L2(Rd)) with

∥W1T−1W2∥S2λ0 (L2(Rd)) ≤M
1−1/λ0

0 M
1/λ0

1 ∥W1∥L2λ0 (Rd)∥W2∥L2λ0 (Rd) . (4.23)

The basic idea is to use complex interpolation between Schatten spaces (cf. Simon [Sim05,
Theorem 2.9]) applied to the holomorphic family W−z

1 TzW
−z
2 for Re(z) ∈ [−λ0, 0]. One then

interpolates between the L2 → L2 bound and the Hilbert–Schmidt estimate

∥Wλ0−iy
1 T−λ0+iyW

λ0−iy
2 ∥2S2 =

∫
Rd
dx

∫
Rd
dy |W1(x)|2λ0 |W2(x)|2λ0 |T−λ0+iy(x, y)|2 .

Sometimes, there are better estimates for |T−λ0+iy(x, y)| available than a simple uniform bound.
This may, e.g., be the case when Tz is a differential operator such as (−∆− ζ)z. Then one may
use tools like the Hardy–Littlewood–Sobolev inequality and so on.

Proof. For Wj = |Wj |eiφj we have

∥W1T−1W2∥S2λ0 ≤ ∥eiφ1∥L2→L2∥|W1|T−1 |W2|∥S2λ0∥eiφ2∥L2→L2 ≤ ∥|W1|T−1 |W2|∥S2λ0 .

Thus, we can reduce to the case where W1,W2 are non-negative. Moreover, by a density argu-
ment, we may suppose W1,W2 to be simple functions. For simple W1,W2 ≥ 0 we now define the
family of operators

Sz :=W−z
1 TzW

−z
2
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which is still analytic in the sense of Stein in the strip −λ0 ≤ Re(z) ≤ 0 and satisfies S−1 =
W1T−1W2. On the right border of the strip, i.e., Re(z) = 0, we have

∥Sis∥L2→L2 ≤ ∥W−is
1 ∥∞∥W−is

2 ∥∞∥Tis∥L2→L2 ≤M0e
a|s| , s ∈ R .

On the left border, we prove that S−λ0+is is Hilbert–Schmidt. Indeed, we obtain

∥S−λ0+is∥2S2 =

∫
Rd
dx dyW1(x)

2λ0W2(y)
2λ0 |T−λ0+is(x, y)|2 ≤M2

1 e
2b|s|∥W1∥2λ0

2λ0
∥W2∥2λ0

2λ0
.

Thus, by complex interpolation for Schatten ideals (cf. Simon [Sim05, Theorem 2.9]), it follows
that S−1 ∈ S2λ0(L2(Rd)) with

∥S−1∥S2λ0 (L2(Rd)) ≤M
1−1/λ0

0 M
1/λ0

1 ∥W1∥2λ0
∥W2∥2λ0

.

This concludes the proof. □

If, in addition, the operator T−1 can be factorized in A∗A, we have the following duality
principle which is interesting in the context of many-fermion systems, where a one-particle density
matrix of orthonormal wave functions has the form

γ =
∑
j

νj |fj⟩⟨fj |

for some νj ≥ 0 satisfying
∑
j νj = 1 and orthonormal fj ∈ L2(Rd).

Lemma 4.14 (Frank–Sabin [FS17a, Lemma 3]). Let H be a separable Hilbert space. Assume

that A is a H → Lp
′
(Rd) bounded operator for some 1 ≤ p ≤ 2 and let α ≥ 1. Then the following

are equivalent.

(i) There is a constant C > 0 such that

∥WAA∗W∥Sα(L2(Rd))) ≤ C∥W∥2L2p/(2−p)(Rd) , ∀W ∈ L2p/(2−p)(Rd : C) . (4.24)

(ii) There is a constant C ′ > 0 such that for any orthonormal system (fj)j∈J ∈ H and any
sequence (νj)j∈J ⊆ C,∥∥∥∥∥∥

∑
j∈J

νj |Afj |2
∥∥∥∥∥∥
Lp′/2(Rd)

≤ C ′

∑
j∈J

|νj |α
′

1/α′

. (4.25)

Moreover, the values of the optimal constants C and C ′ coincide.

Applications of these principles include

• Tomas–Stein restriction estimates in Schatten spaces [FS17a, Theorems 2 (and 4) and 3
(and 5)] (the optimality of these results is shown in [FS17a, Theorem 6]),

• Strichartz estimates for the paraboloid S = {(ω, ξ) ∈ R × Rd , ω = −|ξ|2} (Schrödinger
with −∆) [FS17a, Theorems 7,8, and 9] , the cone S = {(ω, ξ) ∈ R × Rd , ω2 = |ξ|2}
(wave, respectively Schrödinger with

√
−∆) [FS17a, Theorem 10], and the two-sheeted

hyperboloid S = {(ω, ξ) ∈ R×Rd , ω2 = 1+|ξ|2} (Klein–Gordon, respectively Schrödinger
with

√
1−∆) [FS17a, Theorem 11], and

• uniform Sobolev inequalities à la Kenig–Ruiz–Sogge [KRS87] for −∆ (see [FS17a, The-
orems 12 and 13] and Subsection 18.5 later) and Cuenin [Cue17] for (m2 − ∆)s/2 −m

with 0 < s < d and
∑d
j=1 αj(−i∇j) + βm with m ≥ 0.

• Eigenvalue estimates for Schrödinger operators with complex potentials [FS17a, Theorem
16]. See also Frank–Laptev–Lieb–Seiringer [FLLS06], Frank [Fra11, Fra18], Frank–Simon
[FS17b], Laptev–Safronov [LS09], Safronov [Saf10].

For the sake of completeness we state the Tomas–Stein estimate for trace ideals here.
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Theorem 4.15. Let d ≥ 2, S ⊆ Rd be a smooth, compact surface with non-zero Gaussian
curvature. Then

∥W1F∗
SFSW2∥

S
(d−1)q
d−q (L2(Rd))

≲ ∥W1∥L2q(Rd)∥W2∥L2q(Rd) , q ∈ [1,
d+ 1

2
] . (4.26)

See also Theorem 19.4 for an alternative proof not relying on complex interpolation.

Sketch of the proof. By Proposition 4.13 and the proof of Theorem 4.12, one obtains the bound

∥W1F∗
SFSW2∥S 2p

2−p (L2(Rd))
≲ ∥W1∥

L
2p

2−p (Rd)
∥W2∥

L
2p

2−p (Rd)
, p ∈ [1,

2(d+ 1)

d+ 3
] .

The assertion in the theorem follows by interpolating this (with p = 2(d + 1)/(d + 3)) with the
trace bound

∥W1F∗
SFSW2∥S1(L2(Rd)) ≤ ∥W1F∗

S∥S2(L2(S),L2(Rd))∥W2F∗
S∥S2(L2(S),L2(Rd))

where

∥WF∗
S∥2S2(L2(S,dσ),L2(Rd)) =

∫
Rd

|W (x)|2
∫
S

dσ(ξ) = σ(S)∥W∥2L2(Rd) .

Here we used that the integral kernel of WF∗
S is given by W (x)e2πix·ξ. □

The “trace class restriction theorem” 4.15 is predated by an observation of Birman, Koplienko,
Krein, Kurda, and Yafaev (see also [BY81, BY84] for asymptotic results on the eigenvalues of the
scattering matrix, in particular of FSV F

∗
S in L2(S) and [Yaf10, Proposition 8.1.3] for a textbook

reference) in the context of scattering amplitudes. The proof uses the same strategy above by
interpolating in Schatten ideals between a bounded operator (when the potential decays like
|x|−1−ε) and a trace class operator (when the potential decays like |x|−d−ε).
Theorem 4.16 (Yafaev [Yaf10, Proposition 8.1.3]). Suppose |V (x)| ≲ (1+ |x|)−ρ for some ρ > 1
and let

Γ0(λ) : S(Rd) → S ′(Sd−1)

f 7→ 2−1/2λ(d−2)/4f̂(λ1/2·)
be the rescaled restriction operator on

√
λSd−1 (see [Yaf10, Formula (1.2.5)]) with adjoint Γ∗

0

(extension operator) given by

(Γ∗
0g)(x) = 2−1/2λ(d−2)/4

∫
Sd−1

e2πi
√
λx·ξg(ξ) dΣ(ξ)

where dΣ is the Lebesgue measure on Sd−1 (see [Yaf10, Formula (1.2.7) or Proposition 8.1.3]).
Then for all λ > 0 and p > (d− 1)/(ρ− 1) and p ≥ 1, one has

∥Γ0V Γ∗
0∥Sp(L2(Sd−1)) ≲ λ−1/2+(d−1)/(2p).

4.5. A simpler L2-based restriction theorem. Notice that the L2 estimate in Tomas’ argu-
ments was based only on dimensionality considerations. This suggests that there should be an

L2 bound for f̂dσ (similar to the classical trace lemma ∥ĝ∥L2(S) ≲ ∥g∥L2
σ(Rd) for all σ > 1/2)

valid under very general conditions.

Theorem 4.17. Let ν be a positive finite measure satisfying the dimensional condition3

ν(Bx(r)) ≤ Crα . (4.27)

3We only require one half of the Ahlfors–David regularity condition which would involve also a matching lower
bound.
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Then there is a bound

∥f̂dν∥L2(B0(R)) ≤ CR
d−α

2 ∥f∥L2(dν) . (4.28)

The proof relies on the following well known

Lemma 4.18 (Schur’s test). Let (X,µ) and (Y, ν) be measure spaces and K(x, y) a measurable
function on X × Y satisfying∫

X

|K(x, y)| dµ(x) ≤ A for all y ∈ Y ,∫
Y

|K(x, y)| dν(y) ≤ B for all x ∈ X .

Let TK : S(X) → S ′(Y ) defined by TKf(x) =
∫
Y
K(x, y)f(y) dν(y). Then, for f ∈ L2(dν), the

integral defining TKf converges dµ-a.e. and we have

∥TKf∥L2(dµ) ≤
√
AB∥f∥L2(dν) .

Proof of Theorem 4.17. Let φ ∈ S(Rd) such that φ(x) ≥ 1 on B0(1) and that φ̂ ∈ C∞
c (Rd).

Denote the scaled version by φR(x) = φ(x/R). Then,

∥f̂dν∥L2(B0(R)) ≤ ∥φR(x)f̂dν(−x)∥L2(dx) = ∥φ̂R ∗ (fdν)∥L2(Rd) .

We will now use Schur’s test to estimate the operator norm of the convolution operator φ̂R ∗ (·).
On the one hand, we have ∫

Rd
|Rdφ̂(R(ξ − η))| dξ = ∥φ̂∥L1(Rd) <∞

and on the other hand, ∫
|Rdφ̂(R(ξ − η))| dν(η) ≲ Rd−α

since φ̂ was assumed to be compactly supported and the dimensional condition on dν. Thus, by
Schur’s test,

∥f̂dν∥L2(B0(R)) ≲ R(d−α)/2∥f∥L2(dν) ,

thereby establishing the claim. □

4.6. Trace theorems. We recall some classical trace theorems—originally due to Gagliardo [Gag57]—
from PDE or scattering theory and follow Yafaev [Yaf10, Section 1.1]. Throughout, we assume
that S ⊆ Rd is a hypersurface, i.e., a codimension one manifold. We start with the case where S
can be parameterized by, say, a continuous function F : Ω → R where Ω ⊆ Rd−1 is an open set,
i.e., ξd = F (ξ′).

Proposition 4.19. Let α > 1/2, then∫
Ω

|û(ξ′, F (ξ′)|2 dξ′ ≲ 1

2α− 1

∫
Rd
(1 + x2d)

α|u(x)|2 dx ≤ 1

2α− 1
∥u∥2L2

α(Rd)
, (4.29)

where ∥u∥L2
α(Rd) = ∥u∥L2(Rd, <x>2α dx).

Proof. Let

ũ(ξ′, xd) :=
∫
Rd−1

e−2πix′·ξ′u(x′, xd) dx
′

and

û(ξ′, F (ξ′)) =
∫
Rd

e−2πi(x′·ξ′+xdF (ξ′))u(x′, xd) dx =

∫
R
e−2πixdF (ξ′)ũ(ξ′, xd) dxd .
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Then, by Schwarz

|û(ξ′, F (ξ′))|2 ≲
1

2α− 1

∫
R
< xd >

2α |ũ(ξ′, xd)|2 dxd

and therefore ∫
Ω

dξ′ |û(ξ′, F (ξ′))|2 ≲
1

2α− 1

∫
Ω

dξ′
∫
R
dxd < xd >

2α |ũ(ξ′, xd)|2

=
1

2α− 1

∫
Rd
< xd >

2α |u(x)|2 dx

where we used Plancherel in the prime variables in the final step. This concludes the proof. □

Remark 4.20. The proof also goes through when Rd in position space is replaced by Zd and
correspondingly Rd by Td = [−1/2, 1/2]d the d-dimensional torus in Fourier space. Of course
one needs that S is actually contained in Td.

Next we recall that the left side of (4.29) is actually Hölder continuous with respect to a
variation of the function F , i.e., with respect to perturbation of the surface in question.

Proposition 4.21. Let α > 1/2 and

θ =


α− 1/2 for α < 3/2

1− ε for any ε ∈ (0, 1) for α = 3/2

1 for α > 3/2

.

Then∫
Ω

|û(ξ′, F (ξ′))− û(ξ′, F̃ (ξ′))|2 dξ′ ≲α,θ sup
ξ′∈Ω

|F (ξ′)− F̃ (ξ′)|2θ
∫
Rd
(1 + x2d)

α|u(x)|2 dx . (4.30)

Proof. We use the same representation as before, i.e.,

ũ(ξ′, xd) :=
∫
Rd−1

e−2πix′·ξ′u(x′, xd) dx
′

which allows us to write for ξd, ξ̃d ∈ R,

û(ξ′, ξd)− û(ξ′, ξ̃d) =
∫
R

(
e−2πixdξd − e−2πixdξ̃d

)
ũ(ξ′, xd) dxd

and estimate

|û(ξ′, ξd)− û(ξ′, ξ̃d)|2 ≤
(∫

R
sin2(π(ξ̃d − ξd)xd) < xd >

−2α dxd

)
×
(∫

R
< xd >

2α |ũ(ξ′, xd)|2 dxd
)
.

using Schwarz. The first integral on the right side is bounded by a constant times |ξd − ξ̃d|2θ.
Thus, setting ξd = F (ξ′) and ξ̃d = F̃ (ξ′) yields

|û(ξ′, ξd)− û(ξ′, ξ̃d)|2 ≲ |F (ξ′)− F̃ (ξ′)|2θ
∫
R
< xd >

2α |ũ(ξ′, xd)|2 dxd .

Integrating this over ξ′ and using Plancherel as in the proof of Proposition 4.19 concludes the
proof. □
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The integral in (4.29) is actually taken over the hypersurface S given by the equation ξd =
F (ξ′). Clearly, the Lebesgue measure dξ′ can be replaced by any scaled version C(ξ′)dξ′ for any
C(ξ′) > 0. If, e.g., F ∈ C1

b (Ω) (i.e., F is continuously differentiable with bounded derivative),
then one can integrate over the Euclidean measure

dΣS(ξ
′) =

(
1 + |∇F (ξ′)|2

)1/2
dξ′ (4.31)

on S. Thus, Proposition 4.19 implies that

∥û∥2L2(S) ≲α ∥u∥2L2
α(Rd)

, α > 1/2 .

This inequality shows that sufficiently fast decaying functions have Fourier transforms that can
be meaningfully restricted to hypersurfaces; more precisely, this shows

L2
1/2+ε(R

d) ↪→ L2(S) .

Moreover, for the existence of a trace of a function, it suffices to have decay only in some directions
transversal to S. Moreover, the relation L2

1/2+ε(R
d) ↪→ L2(S) can be generalized as follows.

Proposition 4.22. Suppose a hypersurface can be covered by a finite number of hypersurfaces
Sj given in their own coordinate systems by functions ξd = Fj(ξ

′) where ξ′ belong to open sets
Ωj ⊆ Rd−1. Assume further that Fj ∈ C1

b (Ωj) for all j. Then, one has

∥û∥2L2(S) ≲
1

2α− 1
∥u∥2L2

α(Rd)
, α > 1/2

and hence L2
1/2+ε(R

d) ↪→ L2(S).

5. On the best constant in Fourier restriction and Strichartz inequalities

(1) Strichartz: Foschi [Fos07] and Hundertmark–Zharnitsky [HZ06]: For d = 1 and d = 2,
the sharp constants for Strichartz for eit∆ is computed and that the maximizers of these
inequalities must be (multiples of) Gaussians. Here is the precise result.

Theorem 5.1. (1) The sharp constants for the Strichartz inequality in one and two
dimensions are S1 = 12−1/12 and S2 = 2−1/2, respectively. Moreover, one has equality
in the Strichartz estimate in dimensions one and two if the initial condition is given by
a Gaussian.
(2) Let d = 1 or d = 2. The function f ∈ L2(Rd) is a maximizer for the Strichartz
inequality ∥u∥Lpx,t(Rd) ≤ Sd∥u∥L2

x(Rd) with p = 2 + 4/d, i.e.,

Sd =
∥f∥Lpx,t(Rd)
∥f∥L2

x(Rd)

if and only if f is a Gaussian, i.e.,

f(x) = A exp
(
−(λ+ iµ)|x− a|2 + b · x

)
,

where A ∈ C, λ > 0, µ ∈ R, a ∈ Rd, and b ∈ Cd.

Advantage for d = 1, 2 is that the Strichartz exponent 2(d+ 2)/d is even.
The reason why even the existence of maximizers has not been known until recently

is the invariance of the Strichartz inequality under the rather large group of Galilei
transformations and scaling. This makes the usual existence proof for maximizers via
minimizing sequences very hard, since they can very easily converge weakly to zero. The
usual method to circumvent this problem is the concentration compactness principle;
however, in this setting it has to be used twice, first in Fourier space, then in real
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space; see Kunze [Kun03]. However, Kunze’s approach gives no information about the
maximizer, not even smoothness.

Theorem 5.1 says, in particular, that the extremizer in two dimensions is the prod-
uct of two one-dimensional Gaussians. We cannot say anything about the three-and
higher-dimensional cases, except that Gaussians are solutions of the corresponding Euler-
Lagrange equation, hence extremizers. We expect the maximizers to be products of
one-dimensional Gaussians. In fact, following Lieb’s ideas [Lie90], showing that any
maximizer is a product of one-dimensional functions would immediately imply that ev-
ery maximizer is a Gaussian.

(2) Stein–Tomas:
• Christ–Shao [CS12]: existence of extremizers, any extremizing sequence of non-
negative functions has a subsequence converging to an extremizer. Proof via a
concentration compactness argument. They also show that constants are local
maximizers. A substatntial part of their analysis is to exclude that a maximiz-
ing sequence weakly converges to a Dirac mass ata single point or two Dirac masses
at two antipodal points.

• Foschi [Fos15]: For n = 3, Foschi obtained the sharp constant for Fourier re-
striction on sphere S2. That is, let R denote the best constant in the inequality
∥(f dσ)∨∥L4(R3) ≤ R∥f∥L2(S2). Then, we have

Theorem 5.2. A non-negative f ∈ L2(S2) satisfies ∥(f dσ)∨∥L4(R3) = R∥f∥L2(S2)
if and only if f equals a non-zero constant. Moreover, in certain units ( :−)),
we have R = 2π. Furthermore, the set of all complex-valued maximizers for the
Stein–Tomas inequality equals{

keiθeix·ξ : k > 0, θ ∈ [0, 2π), x ∈ R3
}
.

Again, the advantage in this case is that the Stein–Tomas exponent is even, in fact
4. The more important technical ingredient is an interesting geometric feature of
the sphere: When the sum ω1 +ω2 +ω3 of three unit vectors is again a unit vector,
then we have |ω1 + ω2|2 + |ω1 + ω3|2 + |ω2 + ω3|2 = 4. More precisely, the strategy
is:

– The exponent 4 is an even integer and we can view the L4 norm as an L2 norm
of a product, which becomes, through the Fourier transform, an L2 norm of
a convolution. We write the L2 norm of a convolution of measures supported
on the sphere as a quadrilinear integral over a submanifold of (S22)4.

– A careful application of the Cauchy–Schwarz inequality over that submanifold
allows us to control the quadrilinear integral by some bilinear integral over
(S2)2.

– Finally, by a spectral decomposition of the bilinear integral using spherical
harmonics will show that the optimal bounds for the bilinear integral are
obtained when we consider constant data.

• Frank–Lieb–Sabin [FLS16b] give necessary and sufficient conditions for precom-
pactness of all optimizing sequences for Stein–Tomas. In particular, existence of
an optimizer is proved if the sharp constant for Fourier restriction on the sphere is
strictly bigger than a certain multiple of the sharp constant for Strichartz for eit∆.
The result of Frank–Lieb–Sabin is valid in any dimension.

6. Randomized restriction in Z2

We follow Bourgain [Bou03]. Let Γ ⊆ Π2 be a smooth, compact hypersurface with nowhere
vanishing Gaussian curvature. We could in principle work in any dimension if Γ satisfied these
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assumptions, however in the model case where Γ is the level set

Γλ = {m(ξ) := 2(cos(2πξ1) + cos(2πξ2)) = λ} , |λ| ∈ (τ, 4− τ) , 0 < τ ≪ 1 ,

this is only satisfied in d = 2. We denote by Σλ the arclength-measure of Γλ. Thus, by stationary
phase,

|d̂Σλ(n)| ≲ (1 + |n|)−1/2 , n ∈ Z2

and so by Stein’s proof (using complex interpolation), we have

Lemma 6.1. Let µ be a measure supported on Γλ such that µ ≪ Σλ and dµ/dΣλ ∈ L2(Γ, dΣ).
Then

∥µ̂∥ℓ6(Z2) ≲ ∥ dµ

dΣλ
∥L2(Γ,dΣλ) .

Now suppose

Vω(n) := ωn|n|−εv(n)
where {ωn : n ∈ Z2} are independent Bernoulli or normalized Gaussian random variables, and
v ∈ ℓp(Z2) and some p ≥ 1. By Hölder and the above Tomas–Stein estimate, we obtain the
deterministic estimate

∥FSt2 vF
∗
St1

∥L2(Γt1 ,dΣt1 ),L
2(Γt2 ,dΣt2 )

≲ ∥v∥ℓ3/2(Z2) .

(As usual FSt and F ∗
St

denote the Fourier restriction and extension operators with respect to
(Γt, dΣt).) However, the randomness of Vω allows us to relax the decay condition on v(n)
substantially.

Theorem 6.2. Let Vω(n) := ωn|n|−εv(n) =
∑
ℓ≥0 Vℓ with v ∈ ℓ3(Z2), V0(n) = V 10(n) and

Vℓ(n) = V 12ℓ−1≤|n|≤2ℓ(n). Then

Eω
[
∥FSVℓF ∗

S∥L2(Γ,dΣ),L2(Γ,dΣ)

]
≲ ∥v∥ℓ3(Z2) · 2−cℓ , some 0 < c < ε . (6.1)

If Vω(n) := ωnw(n) with w ∈ ℓ3−ε(Z2), then

Eω
[
∥FSt2VℓF

∗
St1

∥L2(Γt1 ,dΣt1 ),L
2(Γt2 ,dΣt2 )

]
≲ ∥w∥ℓ3−ε(Z2) · 2−cℓ , some c = c(ε) > 0 . (6.2)

To prepare the proof we collect some classic results in geometry of Banach spaces and prob-
ability theory. The crucial ingredients going into the proof of Theorem 6.2 are the “dual to
Sudakov bound” (Theorem 6.7) and “Dudley’s Lψ2 estimate4” (Corollary 6.29). The proof will
be concluded in Subsection 6.5.

The above statement continues to hold for potentials Vω in Rd.

Theorem 6.3. Let d ∈ N\{1}, {ωn : n ∈ Zd} be independent Bernoulli or normalized Gaussian
random variables, and

Vω(x) =
∑
n∈Zd

vnω(n)1Qn(x) , x ∈ Rd

with Qn = [0, 1)d + n and n ∈ Zd. Suppose that either (vn)n∈Zd ⊆ ℓd+1−ε(Zd) or vn = |n|−εwn
with (wn)n∈Zd ⊆ ℓd+1(Zd). Let Γt ⊆ Rd be a family of smooth and compact codimension one
manifolds whose Gaussian curvatures never vanish and FSt and F ∗

St
denote the corresponding

Fourier restriction and extension operators. Then we have

Eω∥FSt2VωF
∗
St1

∥L2(Γt1 ,dΣt1 ),L
2(Γt2 ,dΣt2 )

≲ min{∥v∥d+1−ε, ∥w∥d+1} .

4ψ2 stands for the Orlicz function ey
2
.



SOME NOTES ON RESTRICTION THEORY 31

The proof of this theorem follows the lines of that of Theorem 6.2 and will also be given in
Subsection 6.5.

Since Tomas–Stein theorems also give rise to resolvent estimates (see, e.g., Cuenin [Cue20])
there are various applications of this result that are discussed in Subsection 6.6.

6.1. Facts in geometry of Banach spaces and entropy bounds. We mainly follow Pajor
and Tomczak–Jaegermann [PTJ86] and Bourgain–Lindenstrauss–Milman [BLM89].

The main question we pursue here is the following: suppose we are given two subsets D and
B of a linear space. What is the minimal number of dilated translates of B needed to cover D?
I.e., for given t > 0 we want to find good upper bounds on

N(D,B, t) := min{k ∈ N : ∃(xi)ki=1 s.t. D ⊆
k⋃
i=1

xi + tB} . (6.3)

Sometimes we will use a slightly different terminology, e.g., in the following more concrete situ-
ation. Suppose that (T, d) is a compact metric space, then

N(T, d, ε) := smallest number of ε-balls needed to cover T . (6.4)

Example 6.4. If T is the unit ball in an n-dimensional Banach space, such as ℓpd ≡ (Rd, ∥ · ∥p),
then

N(T, d, ε) ≤ (1 + 2/ε)n . (6.5)

See, e.g., Figiel–Lindenstrauss–Milman [FLM77, Lemma 2.4] or Bourgain–Lindenstrauss–Milman
[BLM89, Lemma 2.4].

The main estimate we are interested here is the “dual to Sudakov estimate” due to Pajor and
Tomczak–Jaegermann [PTJ86]. We will recast their estimate in a different form that will be
useful in our context and follow Bourgain et al [BLM89].

Let ∥| · |∥ := [·, ·]1/2 denote the euclidean norm and scalar product on Rn with Bn its unit ball
and Sn−1 its boundary, the euclidean sphere. Suppose ∥ · ∥ is another norm on Rn and denote
by X = (Rn, ∥ · ∥) and X∗ = (Rn, ∥ · ∥∗) the corresponding Banach space and its dual. Here,

∥ψ∥∗ := sup{|[ψ,φ]| : φ ∈ X with ∥φ∥X ≤ 1} .
Since all norms on Rn are equivalent to each other there exist a, b > 0 such that

a−1∥|x|∥ ≤ ∥x∥ ≤ b∥|x|∥ . (6.6)

If, e.g., ∥| · |∥ = ∥ · ∥2 and ∥ · ∥ = ∥ · ∥1, then a = 1 and b = n1/2. By interpolation, we obtain
a = 1 and b = n1/p−1/2 if ∥ · ∥ = ∥ · ∥p and 1 ≤ p ≤ 2. By duality, we have a = n1/2−1/p and
b = 1 for p ∈ [2,∞].

Next, define the median Mr of r(x) := ∥x∥ on Sn−1 by

µ({x ∈ Sn−1 : r(x) ≥Mr}) ≥
1

2
and µ({x ∈ Sn−1 : r(x) ≤Mr}) ≥

1

2
(6.7)

where µ is the associated normalized, rotation invariant Haar measure on Sn−1. Moreover, the
average Ar of r(x) = ∥x∥ on Sn−1 is given by

Ar :=

∫
Sn−1

∥x∥dµ(x) . (6.8)

We record the following lemma on the comparability of Ar and Mr.

Lemma 6.5. If b ≤ √
n in (6.6), then there is C > 0 such that |Ar −Mr| < C. If additionally

ab ≤ √
n in (6.6), then 1/2 ≤ Ar/Mr ≤ C.

Proof. See Milman–Schechtman [MS86, Lemma 5.1]. □
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Next, we rewrite Ar using homogeneity and polar coordinates as

Ar =
an

(2π)n/2

∫
Rn

∥x∥ exp(−∥|x|∥2
2

) dx , an ∼ n−1/2 . (6.9)

A probabilistic way to write this is to consider n independent and normalized Gaussian variables
{gj(ω)}nj=1 on some probability space (Ω, ρ). Then [BLM89, (4.4)]

Ar = an

∫
Ω

∥∥∥∥∥∥
n∑
j=1

gj(ω)ej

∥∥∥∥∥∥ dρ(ω) , an ∼ n−1/2 (6.10)

where {ej}nj=1 denotes an orthonormal basis in Rn.
We are now in position to state two answers to the question posed at the beginning of this

section. The first gives an upper bound on the minimal number of euclidean t-balls needed to
cover BX , the unit ball in X = (Rn, ∥ · ∥).
Proposition 6.6 (Sudakov [Sud71]). Let X = (Rn, ∥ · ∥) and ∥| · |∥ be the euclidean norm on
Rn. Let BX and Bn denote the unit balls in Rn with respect to the norms ∥ ·∥, respectively ∥| · |∥.
Then

logN(BX , ∥| · |∥, t) = logN(BX , B
n, t) ≤ C · n ·

(
Ar∗

t

)2

, (6.11)

where Ar∗ :=
∫
Sn−1 ∥x∥∗dµ(x).

The following estimate is dual to that one.

Theorem 6.7 (Dual to Sudakov [PTJ86, BLM89]). Let X = (Rn, ∥ · ∥) and ∥| · |∥ be the
euclidean norm on Rn. Let BX and Bn denote the unit balls in Rn with respect to the norms
∥ · ∥, respectively ∥| · |∥. Then

logN(Bn, ∥ · ∥, t) = logN(Bn, BX , t) ≤ C · n ·
(
Ar
t

)2

. (6.12)

Remark 6.8. It is useful to have another interpretation of N(Bn, ∥ · ∥, t) in mind. It is precisely
the minimal size of a finite subset E ⊆ Bn that satisfies

max
x∈Bn

min
x′∈E

∥x− x′∥ < t .

Proof. We follow [BLM89, Proposition 4.2]. Let σ be the gaussian probability measure on Rn
defined by

dσ(x) =
1

(2π)n/2
exp(−∥| · |∥2

2
) dx .

Then by

Ar =
an

(2π)n/2

∫
Rn

∥x∥ exp(−∥| · |∥2
2

) dx =

∫
Sn−1

∥x∥dµ(x)

and Chebyshev’s inequality

σ({x ∈ Rn : |f(x)| > α}) ≤ α−p
∫

|f(x)|≥α

|f(x)|pdσ(x) ,

we have, for f(x) = ∥x∥, p = 1, and α = 2Ar/an that

σ({x ∈ Rn : ∥x∥ > 2Ar
an

}) ≤ an
2Ar

∫
Rn

∥x∥dσ(x) = 1

2
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and so

σ({x ∈ Rn : ∥x∥ ≤ 2Ar
an

}) ≥ 1

2
. (6.13)

Next, suppose {xj}Nj=1 is a maximal subset of Bn relative to the requirement that ∥xj − xℓ∥ ≥ t

for all j ̸= ℓ. This ensures that the sets {xj + t
2BX}Nj=1 have disjoint interior. Since σ is a

probability measure on Rn, this disjointness implies

1 ≥
N∑
j=1

σ({yj +
2Ar
an

BX}) = Nσ({yj +
2Ar
an

BX}) , where yj =
4Ar
ant

xj . (6.14)

By convexity of e−u
2

for u > 0 and symmetry of BX with respect to the origin (for the first
estimate in the following formula) and (6.13) (for the second estimate), we have for fixed j =
1, ..., N ,

σ({yj +
2Ar
an

BX}) = 1

(2π)n/2

∫
2Ar
an

BX

dx exp

(
−∥|x− yj |∥2

2

)
≥ 1

(2π)n/2

∫
2Ar
an

BX

dx exp

(
−∥|x− yj |∥2 + ∥|x+ yj |∥2

4

)
=

1

(2π)n/2

∫
2Ar
an

BX

dx exp

(
−∥|x|∥2 + ∥|yj |∥2

2

)
= exp

(
−∥|yj |∥2

2

)
· σ
(
2Ar
an

BX

)
≥ 1

2
exp

(
−∥|yj |∥2

2

)
≥ 1

2
exp

(
− 4A2

r

(tan)2

)
.

Combining this with (6.14) then finally gives

N ≤ 2 exp(
4A2

r

(tan)2
) ⇒ logN ≲

1

n
·
(
Ar
t

)2

.

This concludes the proof. □

In the following we are interested in finding large euclidean sections in a finite-dimensional
normed space.

Definition 6.9. Let X,Y be two n-dimensional normed spaces. The Banach–Mazur distance
betweeen them is defined as

d(X,Y ) := inf{∥T∥ · ∥T−1∥ : T : X → Y isomorphism} . (6.15)

If d(X,Y ) ≤ λ, we say that X and Y are λ-isomorphic.

Obviously, d(X,Y ) ≥ 1 and d(X,Y ) = 1 if and only if X and Y are isometric. Thus, by the
discussion after (6.6), we see that (cf. [MS86, p. 20])

d(ℓ2n, ℓ
p
n) ≤ n|1/2−1/p| 1 < p <∞ .

Theorem 6.10 (F. John [MS86, Theorem 3.3]). Let X = (Rn, ∥·∥) be an n-dimensional normed
space. Let D be the ellipsoid of maximal volume inscribed in BX and ∥| · |∥ be the euclidean norm
induced by D, i.e., D = {x ∈ BX : ∥|x|∥ ≤ 1}. Then

n−1/2∥|x|∥ ≤ ∥x∥ ≤ ∥|x|∥

and consequently d(ℓ2n, X) ≤ √
n (where ℓ2n is equipped with ∥|(x1, ..., xn)|∥2 =

∑n
j=1 |xj |2.)
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6.2. Connection between probability theory and geometry of Banach spaces. We fol-
low Milman–Schechtman [MS86].

Definition 6.11. Let X be a normed space and {εj}j∈N be Rademacher signs. For 1 ≤ p ≤ 2 ≤
q < ∞, and n ∈ N we define the type p (resp. cotype q) constants Tp(X,n) (resp. Cq(X,n)) of
X as the smallest T (resp. C) such thatE

∥∥∥∥∥∥
n∑
j=1

εjxj

∥∥∥∥∥∥
2


1/2

≤ T

 n∑
j=1

∥xj∥p
1/p

resp.  n∑
j=1

∥xj∥q
1/q

≤ C

E

∥∥∥∥∥∥
n∑
j=1

εjxj

∥∥∥∥∥∥
2


1/2

for all x1, ..., xn ∈ X. If Tp(X) := supn Tp(X,n) < ∞ (resp. Cq(X) := supn Cq(X,n) < ∞) we
say that X has type p resp. cotype q with type p constant Tp(X) and cotype constant Cq(X).

Theorem 6.12 (Kahane’s inequality). Let X be a normed space and p ∈ [1,∞). Then there is
a constant Kp > 0 such that

E∥
n∑
j=1

εjxj∥ ≤ [E(∥
n∑
j=1

εjxj∥p)]1/p ≤ Kp E∥
n∑
j=1

εjxj∥ (6.16)

where x1, ..., xn ∈ X and {εj}j∈N are Rademacher distributed.

Proof. See, e.g., [MS86, Theorem 9.2]. □

Example 6.13. Lp has type p and cotype 2 for 1 ≤ p ≤ 2. Respectively, Lq has type 2 and
cotype q for 2 ≤ q <∞. (See [MS86, Example 9.3].) This follows from Kahane’s inequality and
Khintchine’s inequality (for 0 < p <∞)

∥(
∑
j

|xj |2)1/2∥pLp ∼
∫

E(|
∑
j

εjxj |p) dx . (6.17)

Definition 6.14. A L2-normalized, random Gaussian variable is a random variable g(ω) whose
distribution is given by

P(g(ω) ≤ t) =
1

(2π)1/2

∫ t

−∞
e−s

2/2 ds .

Let {gj}∞j=1 be a sequence of independent gaussian variables normalized in L2. For a normed
space X, 1 ≤ p ≤ 2 ≤ q <∞, and n ∈ N we define the gaussian type p (resp. cotype q) constants
αp(X,n) (resp. βq(X,n)) of X as the smallest T (resp. C) such thatE

∥∥∥∥∥∥
n∑
j=1

gj(ω)xj

∥∥∥∥∥∥
2


1/2

≤ T

 n∑
j=1

∥xj∥p
1/p

resp.  n∑
j=1

∥xj∥q
1/q

≤ C

E

∥∥∥∥∥∥
n∑
j=1

gj(ω)xj

∥∥∥∥∥∥
2


1/2
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for all x1, ..., xn ∈ X.

The following two statements assert that “Rademacher” (co)type and gaussian (co)type are
somewhat comparable with each other.

Lemma 6.15. If 1 ≤ p ≤ 2 ≤ q <∞, then

Tp(X,n) ≤
√
π/2αp(X,n) ≤

√
π/2KpTp(X,n) and

βq(X,n) ≤
√
π/2Cq(X,n) .

Proof. See [MS86, p. 53-54]. □

The following gives the missing bound for the cotypes when X = Lq.

Proposition 6.16. For all C <∞ and q ∈ [2,∞) there is a constant K = K(C, q) such that if
βq(X) ≤ C (the gaussian cotype q constant) then for all n and x1, ..., xn ∈ X, one has

∥
n∑
j=1

gjxj∥Lq(X) ≤ K∥
n∑
j=1

εjxj∥Lq(X)

where gj are independent, symmetric, L2-normalized, random Gaussians, and εj Rademacher
signs. In particular, Cq(X) ≤ Kβq(X).

Proof. See [MS86, Appendix II, Theorem 1]. □

Definition 6.17. Let 1 ≤ n ≤ m, X be a normed space, and

RadnX := {
n∑
j=1

rj(t)xj : xj ∈ X, j = 1, ..., n}

denote the subspace of L2(X, {−1, 1}m) that is spanned by the first n Rademacher functions.
If f =

∑
A⊆{1,...,m} wA · xA ∈ L2(X, {−1, 1}m) (where {wα}α∈A is any orthonormal basis in

L2({−1, 1}m) equipped with counting measure and {xα}α∈A ∈ X are coefficients), then

Radnf :=

n∑
j=1

rj · x{j} .

Lemma 6.18. Let X be a normed space, n ∈ N, and 1 < p ≤ 2. Then

Cp′(X,n) ≤ Tp(X
∗, n) ≤ ∥Radn∥Cp′(X,n) .

In particular, if X∗ has type p then X has cotype p′. Conversely, if ∥Radn∥ < ∞ and X has
cotype p′, then X∗ has type p.

Proof. See [MS86, Lemma 9.10 and Corollary 9.11]. □

We now state a theorem estimating ∥Radn∥ for a general finite-dimensional space.

Theorem 6.19. Let X be a finite-dimensional normed space of dimension k. Then, for all n,m,
one has

∥Radn∥L2({−1,1}m,X) ≤ (e+ 1) log(1 + d(X, ℓ2k)) . (6.18)

In particular, there exists a universal constant K > 0 such that

∥Radn∥L2({−1,1}m,X) ≤ K · log k . (6.19)

Moreover, if X ⊆ L1(0, 1), then

∥Radn∥L2({−1,1}m,X) ≤ K · (log k)1/2 . (6.20)

Proof. See [MS86, Theorem 14.5] and [BLM89, p. 94]. □
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6.3. Tails of sub-gaussian distributed random variables.

Definition 6.20 (Orlicz function5). An Orlicz function is a convex increasing function ψ : R+ →
R+ with ψ(0) ∈ [0, 1). For a random variable X we define its Orlicz norm by

∥X∥ψ := inf{c > 0 : P[ψ(|X|/c)] ≤ 1}
with the understanding that ∥X∥ψ = ∞ if the infimum runs over an empty set. The Orlicz space
Lψ = Lψ(Ω,Σ,P) consists of all random variables X on the probability space (Ω,Σ,P) with finite
Orlicz norm, i.e., Lψ = {X : ∥X∥ψ <∞}.
Example 6.21.

• For q ≥ 1, the function ψq(x) = exp(xq)− 1 is an Orlicz function with ∥X∥ψ <∞ if and
only if there is K1 > 0 such that X − PX satisfies P{|X| > t} ≤ 2 exp(−tq/Kq

1) for all
t > 0. (If q = 2, we will say that X is sub-gaussian.)

• For p ∈ [1,∞]) the function ψ(x) = xp is Orlicz.
• We have the hierarchy L∞ ⊆ Lψ2 ⊆ Lp for all p ∈ [1,∞). (The first inclusion is a
consequence of (2) in Proposition 6.23 and the second inclusion follows from the obvious
bound ∥X∥ψ2

≲ ∥X∥∞.)

Remark 6.22. The bound ∥X∥ψ ≤ σ immediately gives the tail bound

P(|X| > t) ≤ Pψ(|X|/σ)
ψ(t/σ)

≤ 1

ψ(t/σ)
, t > 0 .

Proposition 6.23 (Sub-gaussian properties). Let X be a random variable. Then the following
are equivalent.

(1) The tails of X satisfy P{|X| > t} ≤ 2 exp(−t2/K2
1 ) for all t > 0.

(2) ∥X∥Lp := (E|X|p)1/p ≤ K2
√
p for all p ≥ 1.

(3) E exp(λ2X2) ≤ exp(K2
3λ

2) for all λ ∈ R such that |λ| < 1/K3.
(4) There is K4 > 0 such that E(exp(X2/K2

4 )) ≤ 2. (This is called the ψ2 condition.)

Moreover, if EX = 0 then (1)-(4) are also equivalent to

(5) E exp(λX) ≤ exp(K2
5λ

2) for all λ ∈ R.
The parameters Ki appearing in the statements differ from each other by at most an absolute
factor.

Proof. See Vershynin [Ver18, Proposition 2.5.2]. □

Definition 6.24. A random variable X that satisfies one of the equivalent properties in Propo-
sition 6.23 is called a sub-gaussian random variable. The sub-gaussian norm of X, denoted by
∥X∥ψ2

is defined to be the smallest K4 in the fourth property in Proposition 6.23, i.e.,

∥X∥ψ2
= inf{t > 0 : E(exp(X2/t2)) ≤ 2} . (6.21)

Thus, if X is sub-gaussian, then, e.g.,

P{|X| > t} ≤ 2 exp(−ct2/∥X∥2ψ2
) .

Moreover it is clear that when X is sub-gaussian, then so is X−EX with ∥X−EX∥ψ2
≲ ∥X∥ψ2

(by Jensen, but see also [Ver18, Lemma 2.6.8]).

Example 6.25.

• Random gaussians X ∼ N(0, σ2) with variance σ2 are sub-gaussian with ∥X∥ψ2
≲ σ.

• Rademacher signs are sub-gaussian with ∥X∥ψ2
= 1/

√
log 2 since |X| = 1.

5See [Ver18, Section 2.7].
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See also Vershynin [Ver18, Example 2.5.8].

The following lemma is crucial for the proof of Theorem 6.2.

Lemma 6.26 (Maximum of sub-gaussians). Let (Xj)j∈N be a sequence of sub-gaussian random
variables which are not necessarily independent. Then we have for any N ≥ 2 that

E max
1≤j≤N

|Xj | ≲ max
1≤j≤N

∥Xj∥ψ2

√
logN .

Remarks 6.27. (1) In some sense this lemma can be seen as a substitute for the dual of the
missing p = ∞-Kintchine inequality∫

Rd
E|
∑
j

εjfj(x)|p dx ∼ ∥(
∑
j

|fj |2)1/2∥pLp . (6.22)

(2) This estimate is sharp as can be seen by taking X1, ..., XN to be N independent N(0, 1)
normal distributed variables. Then Emax1≤j≤N Xj ≳

√
logN (cf. [Ver18, Exercise 2.5.11]). A

complete proof can be found in [OP15, Theorem 3].

Proof. See Vershynin [Ver18, Exercise 2.5.10] or Theorem 1.14 in MIT notes https://ocw.mit.
edu/courses/mathematics/18-s997-high-dimensional-statistics-spring-2015/lecture-notes/

MIT18_S997S15_Chapter1.pdf. For a complete proof, see Artstein–Giannopoulos–Milman [AAGM15,
Proposition 3.5.8].

We give the proof under the additional assumption EXj = 0. First note that

max
1≤j≤N

|Xj | = max
1≤j≤2N

Xj , XN+ℓ := −Xℓ for ℓ = 1, ..., N ,

so it suffices to prove an estimate for Emax1≤j≤N Xj . Abbreviate K := max1≤j≤N ∥Xj∥ψ2
.

Then, we have by Jensen for any s > 0,

E max
1≤j≤N

Xj =
1

s
E[log esmaxXj ] ≤ 1

s
log
(
E[esmaxXj ]

)
=

1

s
log

(
E[ max

1≤j≤N
esXj ]

)

≤ 1

s
log

 N∑
j=1

E[esXj ]

 ≤ 1

s
log

 N∑
j=1

eK
2s2

 =
log(N)

s
+ sK2 .

Optimizing the right side over s > 0 gives s =
√

2 log(N)/K2, i.e., the desired estimate. □

We will now state some tail bounds.

Lemma 6.28 (Sums of independent sub-gaussians). Let X1, ..., XN be independent, mean-zero,

sub-gaussian random variables. Then
∑N
n=1Xn is sub-gaussian as well with

∥
N∑
n=1

Xn∥2ψ2
≲

N∑
n=1

∥Xn∥2ψ2
.

Proof. See [Ver18, Proposition 2.6.1]. □

This and Lemma 6.26 allow us to obtain the following corollary that will be crucial for the
proof of Theorem 6.2. Compare also with [Bou02, (4.1), (4.14)] and [Bou03, (3.12)] where it is
referred to as “Dudley’s Lψ2-estimate”.

Corollary 6.29. Let {ωn}n∈N be independent sub-gaussian random variables and E be a sepa-
rable, (possibly infinite-dimensional) vector space over C with cardinality |E|. Then

E

(
sup

ξ=(ξn)n∈N∈E
|
∑
n

ωnξn|
)

≲
√

log |E| · sup
ξ=(ξn)n∈N∈E

(
∑
n

|ξn|2)1/2 .

https://ocw.mit.edu/courses/mathematics/18-s997-high-dimensional-statistics-spring-2015/lecture-notes/MIT18_S997S15_Chapter1.pdf
https://ocw.mit.edu/courses/mathematics/18-s997-high-dimensional-statistics-spring-2015/lecture-notes/MIT18_S997S15_Chapter1.pdf
https://ocw.mit.edu/courses/mathematics/18-s997-high-dimensional-statistics-spring-2015/lecture-notes/MIT18_S997S15_Chapter1.pdf
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Proof. Identify Xj with
∑
n ωnξ

(j)
n where (ξ

(j)
n )n∈N denote the elements of the vector ξ(j) ∈ E

that we use to identify Xj . By Lemmas 6.26 and 6.28, one has

E

(
sup
ξ∈E

|
∑
n

ωnξn|
)

≤
√

log |E| sup
ξ∈E

∥
∑
n

ωnξn∥ψ2
≤
√
log |E| sup

ξ∈E
[
∑
n

|ξn|2∥ωn∥2ψ2
]1/2 .

This concludes the proof. □

The following is a simple tail bound that is useful for measuring exceptional sets.

Proposition 6.30 (Hoeffding inequality). Let X1, ..., XN be independent, mean-zero, sub-gaussian
random variables and a = (a1, ..., aN ) ∈ RN . Then for every t > 0 we have

P(|
N∑
j=1

ajXj | ≥ t) ≤ 2 exp(− ct2

supj ∥Xj∥2ψ2
∥a∥22

)

Proof. See [Ver18, Theorem 2.6.3]. □

Definition 6.31. A random variable X that satisfies ∥X∥ψ1
where ψ1(x) = ex − 1 is called a

sub-exponential random variable.

Proposition 6.32. Let X be a random variable. Then the following are equivalent.

(1) The tails of X satisfy P{|X| > t} ≤ 2 exp(−t/K1) for all t > 0.
(2) ∥X∥Lp := (E|X|p)1/p ≤ K2p for all p ≥ 1.
(3) E exp(λ|X|) ≤ exp(K3λ) for all λ ∈ R such that |λ| < 1/K3.
(4) There is K4 > 0 such that E(exp(|X|/K4)) ≤ 2. (This is called the ψ2 condition.)

Moreover, if EX = 0 then (1)-(4) are also equivalent to

(5) E exp(λX) ≤ exp(K2
5λ

2) for all λ ∈ R such that |λ| ≤ 1/K5.

The parameters Ki appearing in the statements differ from each other by at most an absolute
factor.

Proof. See [Ver18, Proposition 2.7.1]. □

Lemma 6.33. (1) Any sub-gaussian random variable is also sub-exponential.
(2) A random variable X is sub-exponential if and only if X2 is sub-gaussian and in this case

∥X2∥ψ1
= ∥X∥2ψ2

.

(3) Let X and Y be sub-gaussian random variables. Then ∥XY ∥ψ1
≤ ∥X∥ψ2

∥Y ∥ψ2
.

(4) If X is sub-exponential, then ∥X − EX∥ψ1
≲ ∥X∥ψ1

.

Theorem 6.34 (Bernstein). Let X1, ..., XN be independent, mean-zero, sub-exponential random
variables, and a = (a1, ..., aN ) ∈ RN . Then for every t ≥ 0 we have

P

|
N∑
j=1

ajXj | ≥ t

 ≤ 2 exp

(
−cmin{ t2

maxj ∥Xj∥2ψ1
∥a∥22

,
t

maxj ∥Xj∥ψ1∥a∥∞
}
)
.

Proof. See [Ver18, Theorem 2.8.2]. □

6.4. Sub-gaussians, Sudakov, Dudley, and entropy once again. The following bounds
once more refer to geometry of Banach spaces (Proposition 6.6 and Theorem 6.7) now in a
concrete probabilistic setting.
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Theorem 6.35 (Sudakov’s minorization). Let (Xt)t∈T be a Gaussian process indexed by a set
T equipped with the pseudo-metric6 dX induced by X defined as7

dX(s, t) = ∥Xs −Xt∥L2 =
(
E(Xt −Xs)

2
)1/2

, s, t ∈ T .

Then for each ε > 0, we have

logN(T, dX , ε) ≲
supt∈T |Xt|2

ε2
.

Proof. See [LT91, Theorem 3.18]. □

Example 6.36. Consider Brownian motion where Xt − Xs ∼ N(0, t − s), i.e., the incre-
ments are independent and are distributed according to the Gaussian law dµt−s(x) = (t −
s)−1/2 exp(−|x|2/(t− s)) dx. Then

dX(t, s)2 =

∫
x2 dµt−s(x) =

∫
x2

e−|x|2/(t−s)
√
t− s

dx ∼ t− s .

Definition 6.37 (Sub-gaussian increments). Consider a random process (Xt)t∈T on a metric
space (T, d). We say that this process has sub-gaussian increments if there exists K > 0 such
that

∥Xt −Xs∥ψ2
≤ Kd(t, s) , t, s ∈ T . (6.23)

Example 6.38. Let (Xt)t∈T be a Gaussian process on an abstract set T . Define a metric on T
by

d(t, s) := ∥Xt −Xs∥L2 , t, s ∈ T .

Then (Xt)t∈T is a process with sub-gaussian increments and K above is an absolute constant.

We now state Dudley’s inequality which gives a bound on a general sub-gaussian random pro-
cess (Xt)t∈T in terms of the metric entropy log(N(T, d, ε)) of T . Note that it almost complements
Sudakov’s bound in Theorem 6.35.

Theorem 6.39 (Dudley). Let (Xt)t∈T be a mean-zero random process on a metric space (T, d)
with sub-gaussian increments as in (6.23). Then

E sup
t∈T

Xt ≲ K

∫ ∞

0

√
log(N(T, d, ε)) dε

and

E sup
t∈T

Xt ≲ K
∑
k∈Z

2−k
√
log(N(T, d, 2−k))

Proof. See [LT91, Theorem 11.17] or [Ver18, Theorems 8.1.3 and 8.1.4]. □

Theorem 6.40 (Fernique).

Proof. See [LT91, Theorem 11.18] and Theorem 6.6 in https://www.math.ucla.edu/~biskup/

PIMS/PDFs/lecture6.pdf. □

6That is, d(t, s) = 0 does not necessarily imply t = s.
7The pseudo-metric dX(s, t) is also called “increments of the random process (Xt)t∈T ”.

https://www.math.ucla.edu/~biskup/PIMS/PDFs/lecture6.pdf
https://www.math.ucla.edu/~biskup/PIMS/PDFs/lecture6.pdf
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6.5. Proof of Theorems 6.2 and 6.3. As mentioned in the beginning of this section, one of
the main tools will be the dual to Sudakov bound (Theorem 6.7), i.e.,

logN(Bn, ∥ · ∥X , t) ≲ n · (Ar
t
)2

where Bn = {x ∈ Rn : ∥x∥2 ≤ 1} is the euclidean unit ball in Rn, ∥ · ∥X denotes another norm
on Rn, and

Ar =

∫
Sn−1

∥x∥X dµ(x) ∼ n−1/2

∫
Ω

∥
n∑
j=1

gj(ω)ej∥X dρ(ω)

denotes the average of ∥x∥X on the euclidean unit sphere which can be expressed probabilistically
using n independent random gaussians and any orthonormal basis {ej}nj=1 of Rn, cf. (6.10).

Proof of Theorem 6.2. We only focus on Γt1 = Γt2 ≡ Γ. The general case is proven analogously.
Our task is to compute

∥FSVℓF ∗
S∥L2(Γ),L2(Γ) = sup

µ1,µ2

∣∣∣∣∣∣
∑

|n|∼2ℓ

Vω(n)µ̂1(n)µ̂2(n)

∣∣∣∣∣∣ = 2−εℓ sup
µ1,µ2

∣∣∣∣∣∣
∑

|n|∼2ℓ

ωnvnµ̂1(n)µ̂2(n)

∣∣∣∣∣∣
(6.24)

where the supremum is taken over all µj ∈ L2(Γ, dσ) with ∥dµ/dσ∥2 ≤ 1 for j = 1, 2. The main
idea is to find a (finite) covering Et of the distorted euclidean ball {µ̂(n)||n|∼2ℓ : ∥µ∥L2(Γ) ≤ 1}
with ℓ∞|n|∼2ℓ-balls of radius t and to expand µ̂(n)||n|∼2ℓ =

∑
r ξ

(r)(n) for some ξ(r) ∈ Fr ⊆
E2−r−1 − E2−r . The main task is to understand ∥ξ(r)∥p for p ∈ {6,∞} and the cardinality
|Fr| ≲ |E2−r−1 | · |E2−r |. Of course, the latter quantity will be estimated by means of the dual to
Sudakov estimate (Theorem 6.7).

To apply the dual to Sudakov bound, we construct the norm ∥ · ∥X on Rd as follows. Consider
a linear operator

S = (S1, ..., Sm) : ℓ2d → ℓ∞m
(where each Sj has d columns for any j = 1, ...,m) and define

∥ψ∥X := ∥Sψ∥ℓ∞m . (6.25)

Now change the perspective and observe that not only does N(Bd, ∥ · ∥X , t) equal the minimal
number of t-balls in ∥S · ∥ℓ∞m norm needed to cover {ψ ∈ Bd} but also the minimal number of

t-balls in ∥ · ∥ℓ∞m norm needed to cover the deformed euclidean unit ball {Sψ : ψ ∈ Bd} ⊆ ℓ∞m .
We will now compute the average. Using Corollary 6.29, we obtain

Ar ∼ d−1/2

∫
Ω

dµ max
1≤j≤m

|
d∑

n=1

Sj,nengn(ω)|

≲ d−1/2(logm)1/2 max
1≤j≤m

(

d∑
n=1

|Sj,nen|2)1/2

= d−1/2(logm)1/2∥S∥ℓ2d→ℓ∞m

Thus, the entropy number for {Sψ : ψ ∈ Bd} is bounded by

logN(Bd, ∥ · ∥X , t) ≲ (logm)t−2∥S∥2ℓ2d→ℓ∞m
,

which – and this is important – does not depend on the dimension d that we started with. But
that means that we may cover any infinite-dimensional euclidean ball, such as L2, with balls in
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a suitable L∞ metric. In fact, we will now replace ℓ2d by our space of interest, namely L2(Γ, dΣ).
The role of S will be played by the localized Fourier extension operator

S : L2(Γ, dΣ) → ℓ∞(Z2)

µ 7→ µ̂
∣∣
|n|∼2ℓ

for some ℓ ∈ N. (Recall that 2ℓ was the localization in physical space where we splitted V =
∑
ℓ Vℓ

with Vℓ = V 12ℓ−1≤|n|≤2ℓ .) Indeed, by its very definition (or Riemann–Lebesgue), we have

∥S∥L2(Γ,dΣ)→ℓ∞(Z2) ≤ C

and, by Tomas–Stein,

∥S∥L2(Γ,dΣ)→ℓ6(Z2) ≤ C .

Thus, by the penultimate estimate and the above discussion, we can cover the set {Sψ : ψ ∈
L2(Γ, dΣ), ∥ψ∥ ≤ 1} with N(t) many t-balls in the ℓ∞m -norm where now m ∼ 2ℓ. Put differently,
there exists a set Et ⊆ ℓ∞|n|∼2ℓ of cardinality |Et| that satisfies8

log |Et| < Cℓt−2

max
µ∈L2(Γ), ∥dµ/dΣ∥2≤1

min
ξ∈Et

∥µ̂− ξ∥ℓ∞
|n|∼2ℓ

< t

max
ξ∈Et

∥ξ∥6 < C

(6.26)

We now take t of the form 2−r for r ∈ N. Thus, there exists a subset

Fr ⊆ E2−r−1 − E2−r = {ξr+1 − ξr : ξr+1 ∈ E2−r−1 , ξr ∈ E2−r} (6.27)

with the properties9

∥ξ∥∞ < 2−r+1 and ∥ξ∥6 < C , ξ ∈ Fr (6.28)

and for each µ ∈ L2(Γ) with ∥dµ/dσ∥2 ≤ 1 there is a representation

Sµ = µ̂(n)
∣∣
|n|∼2ℓ

=
∑
r

ξ(r) for some ξ(r) ∈ Fr . (6.29)

Plugging this decomposition into (6.24), we obtain

∥FSVℓF ∗
S∥L2(Γ),L2(Γ) ≤ 2−εℓ

∑
r1,r2∈N

max
ξ(1)∈F(1)

r1
, ξ(2)∈F(2)

r2

∣∣∣∣∣∣
∑

|n|∼2ℓ

ωnvnξ
(1)
n ξ(2)n

∣∣∣∣∣∣ . (6.30)

Now fix r1, r2 and take the ω-expectation. On the one hand, we have the simple deterministic
bound

max
ξ(1)∈F(1)

r1
, ξ(2)∈F(2)

r2

∣∣∣∣∣∣
∑

|n|∼2ℓ

ωnvnξ
(1)
n ξ(2)n

∣∣∣∣∣∣ ≲ 2−r1−r2
∑

|n|∼2ℓ

|ωn||vn| ≲ 2−r1−r2 · 24ℓ/3∥v∥3 , (6.31)

8Recall Remark 6.8.
9One may think of Fr being the set of differences ξ − ξ′ where ξ and ξ′ belong to the same or “parental” 2−r

or 2r−r−1 cube in ℓ∞|n|∼2ℓ
metric. This is a consequence of the geometrical fact that dyadic cubes either contain

each other or are disjoint.
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which already behaves quite well in r1, r2 but terribly in ℓ. We now derive a second bound.
Since the {ωn} are independent sub-gaussian random variables, we may apply Dudley’s estimate
(Corollary 6.29) and obtain

Eω

 max
ξ(1)∈F(1)

r1
, ξ(2)∈F(2)

r2

∣∣∣∣∣∣
∑

|n|∼2ℓ

ωnvnξ
(1)
n ξ(2)n

∣∣∣∣∣∣


≲
(
log |F (1)

r1 |+ log |F (2)
r2 |
)1/2  max

ξ(1)∈F(1)
r1
, ξ(2)∈F(2)

r2

 ∑
|n|∼2ℓ

|vn|2|ξ(1)n |2|ξ(2)n |2
1/2

 .
(6.32)

To estimate log |F (j)
rj |, recall that (6.26) said log |E2−r | ≲ ℓ4r. Combining this with the trivial

estimate |Fr| ≲ |E2−r−1 | · |E2−r | gives
log |Fr| ≲ log |E2−r−1 |+ log |E2−r | ≲ ℓ4r . (6.33)

Next, we bound [...] on the right side of (6.32). Using Hölder and (6.28), the sum over |n| ∼ 2ℓ

is bounded by ∑
|n|∼2ℓ

|vn|2|ξ(1)n |2|ξ(2)n |2
1/2

≤ ∥v∥3∥ξ(1) · ξ(2)∥6 ≲ ∥v∥3 min{2−r1 , 2−r2} . (6.34)

Combining (6.33) with (6.34), we obtain

Eω

 max
ξ(1)∈F(1)

r1
, ξ(2)∈F(2)

r2

∣∣∣∣∣∣
∑

|n|∼2ℓ

ωnvnξ
(1)
n ξ(2)n

∣∣∣∣∣∣
 ≲

√
ℓ(2r1 + 2r2)min{2−r1 , 2−r2}∥v∥3 ≲

√
ℓ∥v∥3 .

This estimate alone would not be good enough to survive the r1, r2 summation. However,
combining it with (6.31), we see that the ω-expectation of (6.30) is bounded from above by

Eω∥FSVℓF ∗
S∥L2(Γ),L2(Γ) ≲ 2−εℓ

∑
r1,r2∈N

min{
√
ℓ, 2−r1−r224ℓ/3}∥v∥3 ≲ ℓ5/22−εℓ∥v∥3 ≲ 2−ε

′ℓ∥v∥3

for some 0 < ε′ < ε. This proves Theorem 6.2 for Vω(n) = ω(n)|n|−εv(n) and v ∈ ℓ3(Z2).
If Vω(n) = ω(n)w(n) with w ∈ ℓ3−ε(Z2), then the deterministic bound in (6.31) becomes

max
ξ(1)∈F(1)

r1
, ξ(2)∈F(2)

r2

∣∣∣∣∣∣
∑

|n|∼2ℓ

ωnwnξ
(1)
n ξ(2)n

∣∣∣∣∣∣ ≲ 2−r1−r2
∑

|n|∼2ℓ

|ωn||wn| ≲ 2−r1−r2 · 2
2(2−ε)
3−ε ℓ∥w∥3−ε

which is – as expected – a slight improvement over (6.31) since (2 − ε)/(3 − ε) < 2/3. On the
other hand, (6.34) (which came from the probabilistic estimate using Dudley’s Lψ2 inequality)
is improved to ∑

|n|∼2ℓ

|wn|2|ξ(1)n |2|ξ(2)n |2
1/2

≤ ∥w∥3−ε∥ξ(1) · ξ(2)∥ 2(3−ε)
1−ε

≲ ∥w∥3−ε2−ε̃(r1+r2) ·min{2−r1 , 2−r2}

for ε̃ = (p− 6)/p > 0 with p = 2(3− ε)/(1− ε) > 6 which follows from Hölder’s inequality

∥ξ(j)∥p ≤ ∥ξ(j)∥6/p6 ∥ξ(j)∥
p−6
p

∞ ≲ 2−
p−6
p rj .

Combining these estimates as before then gives

Eω∥FSVℓF ∗
S∥L2(Γ),L2(Γ) ≲

∑
r1,r2∈N

min{2−ε̃(r1+r2)
√
ℓ, 2−r1−r22

2(2−ε)
3−ε ℓ}∥w∥3−ε ≲ 2−ε

′ℓ∥w∥3−ε .
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This concludes the proof of Theorem 6.2. □

Proof of Theorem 6.3. Again, we only focus on Γt1 = Γt2 ≡ Γ. The general case is proven
analogously.

We split again Vω(x) =
∑
ℓ≥0 Vℓ(x) with V0(x) = Vω(x)1|x|≤1(x) and, for ℓ ∈ N, Vℓ(x) =

Vω(x)12ℓ−1≤|x|≤2ℓ(x), and estimate

Eω∥F ∗
SVωFS∥ ≤

∑
ℓ≥0

Eω∥F ∗
SVℓFS∥ .

To estimate the right side, we again use the dual to Sudakov bound. The norm ∥ · ∥X is
essentially the same as in the proof of Theorem 6.2 by taking ∥ψ∥X := ∥Sψ∥L∞

|x|∼2ℓ
where S :=

F ∗
S : L2(Γ, dΣ) → L∞ acts as F ∗

Sg(x) =
∫
Γ
e2πix·ξg(ξ)dΣ(ξ)

∣∣
|x|∼2ℓ

. The theorem is concluded by

repeating all the other steps of the proof of Theorem 6.2. □

6.6. Some applications of random Tomas–Stein Theorem 6.3.

6.6.1. Complex Lieb–Thirring. As is customary, we invoke the Birman–Schwinger principle to
derive bounds on the modulus of complex eigenvalues. This requires to estimate

∥(T (ξ)− z)−1/2V (T (ξ)− z)−1/2∥ .

If T (ξ) is homogeneous, which is, e.g., the case when T (ξ) = ξ2, we can always rescale and assume
|z| = 1. Splitting into the regions where T (ξ) ≶ τ , where τ ≫ |z|, it suffices (by Cauchy–Schwarz)
to estimate the right side of

∥(T (ξ)− z)−1/21{T<τ}V (T (ξ)− z)−1/21{T<τ}∥
+ 2∥(T (ξ)− z)−1/21{T<τ}V (T (ξ)− z)−1/21{T>τ}∥
+ ∥(T (ξ)− z)−1/21{T>τ}V (T (ξ)− z)−1/21{T>τ}∥

≤ ∥(T (ξ)− z)−1/21{T<τ}V (T (ξ)− z)−1/21{T<τ}∥
+ 2∥|V |1/4(T − z)−1/21{T<τ}∥ · ∥|V |3/4(T − z)−1/21{T>τ}∥
+ ∥|V |1/2(T (ξ)− z)−11{T>τ}|V |1/2∥ .

The second factor of the second summand as well as the third term on the right are harmless
and can easily be controlled even in Schatten spaces using Kato–Seiler–Simon whenever V ∈ Lq.
The first factor of the second summand is controlled by Tomas–Stein or Kenig–Ruiz–Sogge
[KRS87, FS17a] whenever V ∈ Ld+1. (Any other splitting of V = sgn(V )|V |α · |V |1−α would
work equally well whenever V ∈ Lp for an appropriate α(p).)

For a cut-off χ in physical space, we automatically have

χ{|n|<N1}(T (ξ)− z)−11{T<τ}χ{|n|<N2} = χ{|n|<N1}
(
(T (ξ)− z)−11{T<τ} ∗ γ1/N

)
χ{|n|<N2}

where N > N1 +N2 and γ1/N (ξ) = Ndγ(Nξ) and γ̌ is a smooth bump on Rd with γ̌(x) = 1 for
|x| < 1.

The main goal is to control

∥(T (ξ)− z)−1/21{T<τ}Vω(T (ξ)− z)−1/21{T<τ}∥
by expressions like

∥[(T (ξ)− z)−1/21{T<τ} ∗ γδ1 ]Vℓ[(T (ξ)− z)−1/21{T<τ} ∗ γδ2 ]∥ (6.35)
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where δ1, δ2 ∼ 2−ℓ. To simplify notation, introduce

C(∞)(ξ) :=
1{T (ξ)<τ}

(T (ξ)− z)1/2

and

C(δ)(ξ) :=

(
1{T (ξ)<τ}

(T (ξ)− z)1/2
∗ γδ

)
(ξ) =

∫
Rd
dη

1{T (η)<τ}
(T (η)− z)1/2

γδ(η − ξ)

=

∫ τ

0

dt
1

(t− z)1/2

∫
St

dΣSt(η) γδ(η − ξ) .

(6.36)

Thus, the convolution essentially smoothes (t− z)−1/21{t<τ} out on the scale δ, and so

|C(δ)(ξ)| ≲
[
|T (ξ)− z|1/2 + δ

]−1

1{T (ξ)<10τ} + ⟨|ξ|⟩−Ñ1{T (ξ)>10τ}

≲
[
|T (ξ)− z|1/2 + δ

]−1

1{T (ξ)<10τ} + T (ξ)−N1{T (ξ)>10τ} ≡ C̃(δ)(ξ) .

(6.37)

for any Ñ ,N ∈ N by ellipticity of T (ξ).
Comparing with (6.35) we are concerned with the elementary operators

C(δ2)VℓC
(δ1) . (6.38)

Let max{supn |vn||n|ρ, ∥v∥ℓd+1} < κ. We shall first prove

Proposition 6.41. The random Tomas–Stein Theorem 6.3, i.e.,

Eω∥FSt2VℓF
∗
St1

∥L2(Γt1 ,dΣt1 ),L
2(Γt2 ,dΣt2 )

≲|V | 2
−c|V |ℓ ,

implies

Eω∥C(δ1)VℓC
(δ2)∥L2(Rd),L2(Rd) ≲|V | (κ2

−ℓ)c|V |

(
log

1

δ1
+ log

1

δ2

)A
(6.39)

and

Eω∥FSVℓC(δ)∥L2(Rd),L2(Γ,dΣ) ≲|V | (κ2
−ℓ)c|V |(log

1

δ
)A (6.40)

for |z| = 1.

Remarks 6.42. (1) Observe that δj ∼ 2−ℓ is reasonable and leads to an expression that is still
summable in ℓ.

(2) Recall [Bou02, Lemmas 3.18 and 3.48], cf. [Bou03, Lemmas 2.7 and 2.10] which are

very similar to (6.39) and (6.40). There Cδ was either C
(δ)
1 (ξ) = |(T (ξ) − z)−1 ∗ γδ|1/2 or

C
(δ)
2 (ξ) =

(
(T (ξ)− z)−1 ∗ γδ

)1/2
. Here, we defined Cδ(ξ) = (T (ξ)− z)−1/2 ∗ γδ.

Proof. By Plancherel and (6.37) it suffices to consider

Eω∥FSVℓC̃(δ)∥L2(Rd),L2(Γ,dΣ) . (6.41)

instead of the left side of (6.40). Neglecting the ω-expectation for a moment, the left side of
(6.41) equals

∥FSVℓC̃(δ)∥L2(Rd),L2(Γ,dΣ) = sup
µ∈L2(S),g∈L2(Rd)

|(µ, FSVℓC̃(δ)
2 g)|
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where the supremum is taken over all measures µ≪ Σ supported on Γ with ∥dµ/dΣ∥L2(Γ,dΣ) ≤ 1

and all g ∈ L2(Rd) with ∥g∥L2(Rd) ≤ 1∥. Making use of the definition of C̃(δ) in (6.37), the spectral
theorem (or the coarea formula) allows us to write

C̃
(δ)
2 g(x) =

∫ ∞

0

dt

∫
St

dΣt(ξ) e
2πix·ξC̃(δ)(ξ)(FStg)(ξ)

=

∫ ∞

0

dt

([
|t− z|1/2 + δ

]−1

1{t<10τ} + t−N1{t>10τ}

)
(F ∗
StFStg)(x)

≡
∫ ∞

0

dt C̃(δ)(t)(F ∗
StFStg)(x) .

Using the random Tomas–Stein estimate and (6.37), we obtain

sup
µ,g

|(µ, FSVℓC̃(δ)
2 g)|

= sup
µ,g

|
∫ ∞

0

dt C̃(δ)(t)

∫
Rd
dx (F ∗

Sµ)(x)Vℓ(x)(F
∗
StFStg)(x)|

= sup
µ,g

|
∫ ∞

0

dt C̃(δ)(t)(µ, FSVℓF
∗
StFStg)|

≲ 2−c|V |ℓ sup
∥g∥

L2(Rd)≤1

∫ ∞

0

dt

([
|t− z|1/2 + δ

]−1

1{t<10τ} + t−N1{t>10τ}

)
∥FStg∥L2(Γt,dΣt)

≲N 2−c|V |ℓ[log(|z|1/2/δ)]1/2∥g∥L2(Rd) = 2−c|V |ℓ[log(1/δ)]1/2

by Cauchy–Schwarz. Here, we used∫ 10|z|

0

dt

|t− z|+ δ2
≲ log

(
1 +

|z|
δ2

)
∼ log

1

δ
.

The proof of (6.39) is analogous and omitted. □

We show the following Birman–Schwinger bound.

Proposition 6.43. Assume T (ξ) is homogeneous, |z| = 1, and let Vω be so such that Theorem
6.3 is applicable. Let κ = min{supn∈Zd |n|ρ|v(n)|, ∥v∥d+1}, then

Eω∥(T − z)−1/21{T<τ}Vω(T − z)−1/21{T<τ}∥ ≤ Cρ,κ . (6.42)

Proof. We begin with a warm-up and consider Vω(n) = ωnvn with supn |vn||n|ρ = κ <∞, some
ρ > 1/2, and consider only the truncated operator

1|x|<N (T − z)−1/21{T<τ}Vω(T − z)−1/21{T<τ}1|x|<N

Since (T − z)−1/21{T<τ}Vω(T − z)−1/21{T<τ} is normal, we have

∥1|x|<N (T − z)−1/21{T<τ}Vω(T − z)−1/21{T<τ}1|x|<N∥2

= ∥1|x|<N (T − z)−1/21{T<τ}Vω(T − z)−1/21{T<τ}1|x|<N (T − z)−1/21{T<τ}Vω(T − z)−1/21{T<τ}1|x|<N∥
≤ κ2/3

∑
ℓ,ℓ′≥0

∥1|x|<N (T − z)−1/21{T<τ}Vℓ(T − z)−11{T<τ}Vℓ′(T − z)−1/21{T<τ}1|x|<N∥ .

Recall [Bou02, Lemma 2.3]

∥Vℓ(T − z)−1Vℓ′∥ ≲ 2−
1
2 (ρ− 1

2 )(ℓ+ℓ
′) .

Thus, we are left to bound
∥1|x|∼2ℓ(T − z)−1/21{T<τ}f∥,
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for f ∈ L2 with supp f ⊆ B0(N). Equivalently, by TT ∗, we bound

⟨f,1|x|∼2ℓ(T − z)−1/2(T − z)−1/21T<τ1|x|∼2ℓf⟩ .
By the spatial cutoff, we can replace the Fourier multiplier in the middle by

F (ξ) :=
(
(T (·)− z)−1/2(T (·)− z)−1/21T<τ

)
∗ γ21−ℓ(ξ)

where

γδ(η) = δ−dγ(η/δ) .

Obviously, for any M,M̃ > 0,

|F (ξ)| ≲M ((T (ξ)2 + |z|2 − 2T (ξ)Re(z))1/2 + 2−ℓ)−1 + ⟨ξ⟩−M̃1T>10τ

≲M ((T (ξ)2 + |z|2 − 2T (ξ)Re(z))1/2 + 2−ℓ)−1 + T (ξ)−M1T>10τ .

Suppose suppf ⊆ B0(N), some N > 0. Then, by arguments similar to those in (6.37), we obtain
(for τ ≫ |z|, say τ = 2|z|, and assuming |z| = 1 with Im(z) ≪ 1)

⟨f,1|x|∼2ℓ(T − z)−1/2(T − z)−1/21{T<τ}1|x|<N∧2ℓf⟩

≲M

∫
dt

[
10<t<2|z|

(t2 + |z|2 − 2tRe(z))1/2 + 2−ℓ + 1
N

+ t−M1t>2|z|

]
∥FSt1|x|<N∧2ℓf∥2

≲M min
ε>0

ε−1(N ∧ 2ℓ)1+ε

[∫ 2|z|

0

dt

|t− 1|+ |Im(z)|+ 2−ℓ + 1/N
+ |z|1−M

]

≲ log(N ∧ 2ℓ)(N ∧ 2ℓ) log

(
1

|Im(z)|+ 2−ℓ + 1/N

)
≲ ℓ2(N ∧ 2ℓ) .

(6.43)

Thus,

Eω∥(T − z)−1/21{T<τ}Vω(T − z)−1/21{T<τ}1|x|<N∥2

≲ κ2/3
∑
ℓ,ℓ′≥0

2−
1
2 (ρ− 1

2 )(ℓ+ℓ
′) · ℓℓ′(N ∧ 2ℓ)1/2(N ∧ 2ℓ

′
)1/2

If ρ > 1, we would have uniform convergence in N . But that just corresponds just to the
non-deterministic situation. □

Alternative proof of Proposition 6.43. We now consider the full operator and get rid of the ad-
ditional spatial cut-off |x| < N above.

We mimick arguments of Bourgain [Bou02, pp. 13]. There, Sf := 1|x|∼2ℓF−1C(k)f with

C(k) = |(T (ξ)− z)−1 ∗ γ2−k |1/2. Here

Sf := 1|x|∼2ℓ(T (ξ)− z)−1/2 .

The estimate follows once we verify [Bou02, (4.5)-(4.6)]
Recalling the arguments from the previous proof (see (6.43)), we have

∥Sf∥2 ≲ ℓ2ℓ/2∥f∥2
which is the analog of [Bou02, (4.6)] Next, we show

∥Sf∥∞ ≲
√
ℓ∥f∥2 .

Again, we argue by SS∗ which is given by

SS∗ = 1|x|∼2ℓ(T (ξ)− z)−1/2(T (ξ)− z)−1/21|x|∼2ℓ .
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and we hope to show SS∗ : L1 → L∞. Let f, g ∈ L1, then (for |z| = 1 and Im(z) ≪ 1)

|(g, SS∗f)| ≲
∫
dt

[
10<t<τ

(t2 + |z|2 − 2tRe(z))1/2 + 2−ℓ
+ t−M1t>τ

]
|(g, F ∗

StFStf)|

≲ ∥g∥1∥f∥1 log 2ℓ = ℓ∥g∥1∥f∥1
since FSt : L

1 → L2 locally uniformly in t. This is the analog of [Bou02, (4.5)].
This gives (cf. [Bou02, (4.15)])

Eω∥(T − z)−1/21{T<τ}Vℓ(T − z)−1/21{T<τ}∥

≲ κ2−ρℓ(ℓ+ log
1

κ
)2 · ℓ2 · 2ℓ/2 ≲ κ(ℓ+ log(1 +

1

κ
))42−(ρ− 1

2 )ℓ .
(6.44)

□

As was remarked in [Bou03, p. 74] this assertion also follows from Theorem 6.3.

6.6.2. Weak coupling limit. The following result is desirable but not yet proved.

Theorem 6.44 (Weak coupling limit). Consider H
(ω)
λ := |∆+1|−λVω in L2(Rd) with Vω(x) =∑

n∈Zd vnωn1Qn(x) and (vn)n∈Zd ⊆ ℓd+1−ε(Zd). Let Γt := {ξ ∈ Rd : |ξ2 − 1| = t} and Γ := Γ0.

Then for any eigenvalue ajΓ of VΓ := F ∗
SVωFS in L2(Γ, dΣ) there is an eigenvalue ej(λ) of Hλ

satisfying the weak-coupling limit

ej(λ) = exp

(
− 1

λajS
(1 + o(1))

)
, λ→ 0

except for ω in a set of measure at most∑
ℓ≥0

exp

(
− 2ε

′ℓ

∥v∥d+1−ε

)
≲ε′ e

−cε′/∥v∥d+1−ε .

Remark 6.45. Is a generalization of Theorems 6.2 and 6.3 to Schatten ideals possible? See
Frank–Sabin [FS17a, Theorem 2].

Proof of Theorem 6.44. By Theorem 6.3, the operator VS = FSVωF
∗
S is well-defined and isospec-

tral (up to zero-eigenvalues that we neglect) to |Vω|1/2F ∗
SFSV

1/2
ω . [Moreover, it is compact

by Remark 6.45.] Let BS(e) = |Vω|1/2(T + e)−1V
1/2
ω which is compact by Kato–Seiler–Simon.

By the proof of [CM20, Theorem 1.1] it suffices to show that

|λj(BS(e))− λj(log(1/e)VS)| = o(log(1/e))

where λj(A) denotes the j-th non-zero eigenvalue of A. As usual, the high-energy piece

∥BShigh(e)∥ = ∥|Vω|1/2(T + e)−11[τ,∞)(T )V
1/2
ω ∥ ≲τ 1

is harmless, so we only focus on BSlow(e) = BS(e) − BShigh(e). By isospectrality and Weyl’s
perturbation theorem [Bha97, Corollary III.26], we have

sup
j

|λj((T + e)−1/21[0,τ ](T )Vω(T + e)−1/21[0,τ ](T ))− λj(log(1/e)FSVωF
∗
S)|

≤ ∥(T + e)−1/21[0,τ ](T )Vω(T + e)−1/21[0,τ ](T ))− log(1/e)FSVωF
∗
S∥ .

Decomposing Vω =
∑
ℓ≥0 Vℓ, it then suffices to show∑

ℓ≥0

∥(T + e)−1/21[0,τ ](T )Vℓ(T + e)−1/21[0,τ ](T ))− log(1/e)FSVℓF
∗
S∥ = o(log(1/e)) .
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[The following arguments are not working out yet.] We would like to bring the “reg-
ular part of the Birman–Schwinger operator”

BSlow
reg (e) := |Vω|1/2[(T + e)−11[0,τ ](T )− log(1/e)F ∗

SFS ]V
1/2
ω ≡ |Vω|1/2TτV 1/2

ω

into the play and show that it satisfies

Eωmax{z ∈ C : z ∈ spec(BSlow
reg (e))} = o(log(1/e)) .

Since BSlow
reg (e) is isospectral to |Tτ |1/2VωT 1/2

τ =
∑
ℓ≥0 |Tτ |1/2VℓT

1/2
τ , we merely need to show

(by a second application of isospectrality and making use of the fact that the spectral radius is
always bounded from above by the operator norm),

Eωmax{z ∈ C : z ∈ spec(
∑
ℓ≥0

|Tτ |1/2VℓT 1/2
τ )}

= Eωmax{z ∈ C : z ∈ spec(
∑
ℓ≥0

|Vℓ|1/2TτV 1/2
ℓ )}

≤
∑
ℓ≥0

Eω∥|Vℓ|1/2TτV 1/2
ℓ ∥ = o(log(1/e))

However, this would follow from the spectral theorem and Hölder continuity of the non-endpoint
random Tomas–Stein theorem, i.e.,

Eω sup
t∈(0,τ)

∥|Vℓ|1/2(F ∗
StFSt −

√
1± tF ∗

SFS)V
1/2
ℓ ∥L2(Rd),L2(Rd) ≲ 2−cℓtα

for some c, α > 0 depending solely on d and ε. But this is just a consequence of Theorem
[abstractrandomts] which is, indeed, applicable due to [CM20, Proposition 4.4] which asserts
the corresponding, non-deterministic Hölder continuity. □

7. Local restriction estimates

We follow Lecture 1 in Hickman–Vitturi [HV15] and strongly advise to consider Tao–Vargas–
Vega [TVV98] where the techniques that we are about to describe were first developed and
systematically applied.

We now discuss the first tool which is used to prove the above restriction theorems. The key
idea is to reduce the study of global restriction theorems (where the “physical” space variable is
allowed to range over all Rd) to local restriction theorems (where the physical space variable is
constrained to lie in a ball). Our aim is then to prove estimates of the form

∥f̂ |S∥Lq(S,dσ) ≤ Ap,q,S,αR
α∥f∥Lp(B(x0,R)) (7.1)

for any exponents p, q, α ≥ 0, and any radius R ≥ 1 of any ball B(x0, R) = {x ∈ Rd : |x− x0| ≤
R}. We will denote the statement such that the above estimate holds for any test function f by
RS(p → q;α). Note that the center x0 of the ball is irrelevant since one can translate f by an

arbitrary amount without affecting the magnitude of f̂ .
Obviously, we have RS(p→ q;α1) ⇒ RS(p→ q;α2) if α1 ≤ α2 and RS(p→ q; 0) is equivalent

to the global restriction estimate by letting R→ ∞ and applying a limiting argument. Observe
also that the statement for exponents α ≥ n/p′ is trivial because of Hölder’s inequality, namely

|f̂(ξ)| ≤ ∥f∥1 ≤ ApR
n/p′∥f∥Lp(B(x0,R)) .

Thus, the aim is to lower the value of α from the trivial value n/p′ toward the ultimate aim
α = 0 for p and q belonging to the conjectured range of the restriction conjecture.
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By duality, local restriction estimates are equivalent to local extension estimates, more pre-
cisely RS(p → q;α) ⇔ R∗

S(q
′ → p′;α) where R∗

S(q
′ → p′;α) denotes the statement that the

estimate

∥(Fdσ)∨∥Lp′ (B(x0,R)) ≤ Ap,q,S,αR
α∥F∥Lq′ (S,dσ) (7.2)

holds for all smooth functions F on S, all R ≥ 1, and all balls B(x0, R).
In the following we will focus on proving localized extension estimates, taking advantage of

many phenomena not arising in the global setting. First, we observe that localizing to scale R in
the spatial variable leads to a localization in frequency space on the scale R−1 by the uncertainty
principle. More precisely, we expect F to be “blurred out” on this scale which should allow us
to safely fatten up the set S to NR−1(S), the R−1 neighborhood of S. This is going to be made
precise in the following

Lemma 7.1. The localized extension estimate R∗
S(q

′ → p′;α) follows from

∥Ǧ∥Lp′ (B(x0,R)) ≤ Ap,q,S,αR
α−1/q∥G∥Lq′ (N1/R(S)) (7.3)

whenever G is a smooth function with supp G ⊆ N1/R(S).

Remark 7.2. In the following we will make use of the following two facts.

(1) For every f ∈ L1 + L2 with supp f̂ ⊆ B0(R) there is a φ ∈ S(Rd) such that f = φR ∗ f
where φR = Rdφ(Rx) (cf. Lemma D.2).

(2) There are functions 0 ≤ φ ∈ C∞
c (Rd) with φ̂ > 0. To see this, take, e.g., ψ ∈ C∞

c (Rd)
with supp ψ ⊆ B0(C); then ψ ∗ ψ is supported in B0(2C) and F [ψ ∗ ψ] = |ψ̂|2. Thus,
φ = ψ ∗ ψ does the job. (See also Lemma D.3.)

Proof of Lemma 7.1. Fix R ≥ 1 and ψ ∈ C∞
c (Rd) with supp ψ ⊆ B(0, 1) and |ψ̌(x)| ≳ 1 for all

x ∈ B(x0, 1). Let further G := ψR−1 ∗Fdσ where ψR−1(ξ) = Rdψ(Rξ). Note that this definition
implies that supp G ⊆ NR−1(S). Therefore, we may apply (7.3) to deduce

∥(Fdσ)∨∥Lp′ (B(x0,R)) ≲ ∥(Fdσ)∨ψ̌R−1∥Lp′ (B(x0,R)) = ∥Ǧ∥Lp′ (B(x0,R))

≤ Ap,q,S,αR
α−1/q∥G∥Lq′ (NR−1 (S))

.

Thus, it suffices to show

∥ψR−1 ∗ (Fdσ)∥Lq′ (Rd) ≲ R1/q∥F∥Lq′ (S,dσ) .
For q′ = 1, the above estimate follows immediately from Young’s inequality, so by interpolation
it suffices to prove the estimate for q′ = ∞, i.e., we are left to show

∥ψR−1 ∗ (Fdσ)∥∞ ≲ R∥F∥L∞(S) .

By Hölder’s inequality, it suffices to show∫
S

|ψR−1(ξ − η)|dσ(η) ≲ R (7.4)

uniformly in ξ ∈ Rd. Heuristically, it is clear why (7.4) is true because the support of the
integrand intersects S on at most a Rd−1 cap but ψR−1 is an L1-scaling invariant function, i.e.,
the integral should be of order R. To make this argument rigorous, we will in fact prove the
more general statement that whenever ψ ∈ S(Rd) and S ⊆ Rd is any compact hypersurface (no
curvature assumption is needed!), one has

I(ξ) := Rn
∫
S

dσ(η)

(1 +R|ξ − η|)d ≲ R
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uniformly in ξ for R ≫ 1 (where we used the rapid decay of the integrand). Decomposing
S =

⋃∞
k=−1 Sk(ξ) with Sk(ξ) = Ak(ξ) ∩ S where

A−1(ξ) := {η ∈ Rd : R|ξ − η| ≤ 1} and Ak(ξ) := {η ∈ Rd : 2k ≤ R|ξ − η| ≤ 2k+1} ,
one rewrites

I(ξ) = Rd
∞∑

k=−1

∫
Sk(ξ)

dσ(η)

(1 +R|ξ − η|)d .

Now, due to the dimensionality of S, one has for any r > 0,

σ(B(ξ, r) ∩ S) ≲ rd−1 .

Indeed, this estimate is obvious for large r, whereas for 0 < r < 1, the surface is essentially flat,
i.e., B(ξ, r) ∩ S resembles a disk of radius r, thereby also leading to the above estimate. Thus,

σ(S−1) ≲ R−(d−1) and σ(Sk) ≲ (2kR−1)d−1

and so

I(ξ) ≲ Rd
∞∑

k=−1

(2kR−1)d−1 · 2−kd ≤ R ,

thereby concluding the proof. □

In fact, the estimates (7.2) and (7.3) are equivalent, although the converse implication will
not be used in the present section but will be referred to later.

Lemma 7.3. The local extension estimate R∗
S(q

′ → p′;α) implies (7.3) for all smooth functions
G supported in N1/R(S).

Proof. Without loss of generality (by the translation and rotation invariance of the problem
togehter with the triangle inequality), we may assume supp G ⊆ NR−1(Pd−1) ∩ B0(1/2). In

particular, supp G is contained in the disjoint union of vertical translates Pd−1
ζ := Pd−1 + (0, ζ)

of the paraboloid where ζ ranges over (−R−1, R−1) ⊂ R. By Fubini’s theorem and a change of
variables, we have

Ǧ(x) =

∫
|ζ|≤R−1

dζ

∫
ξ′∈[−1,1]d−1

dξ′ G(ξ′, ξ′2)e2πix·(ξ
′,ξ′2) =

∫
|ζ|≤R−1

dζ (G|Pd−1
ζ

dσζ)
∨(x) ,

where dσζ denotes the euclidean surface measure on Pd−1
ζ .

Now, assuming that the local extension estimate R∗
S(q

′ → p′;α) holds, then it follows from
translational invariance that

∥(Gdσζ)∨∥Lp′ (B0(R)) ≲α R
α∥G∥Lq′ (Pd−1

ζ ) for all ζ .

Combining this estimate with Minkowski’s inequality, we infer

∥Ǧ∥Lp′ (B0(R)) ≤
∫
|ζ|≤R−1

dζ ∥(Gdσζ)∨∥Lp′ (B0(R)) ≲α R
α

∫
|ζ|≤R−1

dζ ∥G|Pd−1
ζ

∥Lq′ (Pd−1
ζ )

and Hölder’s inequality bounds the latter by

Rα−1/q

(∫
|ζ|≤R−1

dζ ∥G|Pd−1
ζ

∥q
′

Lq′ (Pd−1
ζ )

)1/q′

= Rα−1/q∥G∥Lq′ (NR−1 (Pd−1))

which concludes the proof. □
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Obviously, the corresponding statements also hold for the restriction problem by duality, i.e.,

∥f̂∥Lq(N1/R(S)) ≤ Ap,q,S,αR
α−1/q∥f∥Lp(B(x0,R)) (7.5)

for all test functions f on B(x0, R). In fact, this formulation reveals the restriction estimate
RS(2 → 2; 1/2) for smooth compact hypersurfaces S by Plancherel’s theorem. (This estimate can
also be obtained from the Agmon–Hörmander theorem or from the frequency localized Sobolev
trace lemma.)

The obvious question now is of course how to convert local restriction estimates to global
estimates. The key tool to do so is exploiting the decay of the Fourier transform (dσ)∨. Indeed,
suppose we have a decay estimate of the form

|(dσ)∨(x)| ≲ (1 + |x|)−ρ

for some ρ > 0. (For hypersurfaces with everywhere non-vanishing Gaussian curvature, ρ =
(d−1)/2, see e.g. [Ste93, Chapter VIII, §3.1, Theorem 1]). Then, the contributions to the global
restriction estimate (2.1) coming from widely separated portions of physical space will be almost
orthogonal (in Fourier space). To make this intuition precise, suppose R ≥ 1 and B(x0, R) and
B(x1, R) are two balls which are separated by at least a distance of R. If fj is supported on

B(xj , R) (j = 0, 1), then f̂0|S and f̂1|S will be almost orthogonal, namely

| < f̂0|S , f̂1|S >L2(S,dσ) | = | < f̂0dσ, f̂1 >L2(Rd) | = | < f0 ∗ (dσ)∨, f1 >L2(Rd) |
≲ R−ρ∥f0∥L1(B(x0,R))∥f1∥L1(B(x1,R))

(7.6)

where we used the decay assumption on (dσ)∨(x) appearing in the convolution and the fact that
the supports of f0 and f1 are separated by at least R. Put differently, the almost orthogonality
in Fourier space means that distant balls in physical space do not interact much with each other.

The Tomas–Stein argument (for RS(2(ρ + 1)/(ρ + 2) → 2)) uses orthogonality on L2(S, dσ),
and at first glance it seems that it can only applied to obtain restriction theorems RS(p → q)
when q = 2. However, Bourgain [Bou91a, Bou95] observed that the same type of orthogonality
arguments, exploiting the decay of (dσ)∨, can also be used to obtain restriction estimates which
are not L2 based, albeit with some inefficiencies due to the use of non-L2 orthogonality estimates.

Theorem 7.4. Let ρ be as above. If RS(p → q;α) holds for some ρ + 1 > αq, then we have
RS(p̃→ q̃) whenever

q̃ > 2 +
q

ρ+ 1− α
and

p̃

q̃
< 1 +

q

p(ρ+ 1− αq)
.

The ideas of the above theorem were extended by Tao [Tao99a, Theorem 1.2]. The proof will
be given in Appendix A, see Theorem A.1.

Theorem 7.5. Let ρ be as above. If RS(p → p;α) holds for some p < 2 and 0 < α ≪ 1, then
one has RS(q → q) whenever

1

q
>

1

p
+

Aρ
log(1/α)

.

Although Bourgain’s theorem is more efficient for most values of α, the latter theorem is
superior because it does not lose any exponents in the limit α → 0. In particular, we have the
following consequence. If RS(p→ p; ε) holds for all ε > 0, then RS(p− ε→ p− ε) is also true for
every ε > 0. (The converse statement follows easily from interpolation). Thus, one can convert a
local restriction estimate with ε losses to a global estimate, where the ε loss has been transferred
to the exponents. This is a prime example of an ε-removal lemma which is a common in this
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theory. These arguments show that the restriction conjecture for the paraboloid in fact states
that for all ε > 0, the inequality

∥(Fdσ)∨∥L2d/(d−1)(B(x0,R)) ≤ Ad,εR
ε∥F∥L2d/(d−1)(Pd−1)

holds for a suitable class of functions F on Pd−1. (Note that it makes sense to consider restriction
estimates at the endpoint p′ = q′ = 2d/(d− 1) in the local setting. This is another advantage of
the localized setup).

8. Multilinear Fourier restriction and Kakeya estimates

The following ideas will be of interest of their own but also very useful to understand Bourgain
and Demeter’s proof of decoupling estimates. The central theme of the analysis will be the multi-
linear approach, in particular the multi-linear restriction theorem of Bennett, Carbery, and Tao
[BCT06].

We start with a motivation for bilinear restriction estimates and show in particular how
curvature in the linear world is translated to transversality in the multilinear world. As a striking
example of the power of bilinear techniques is the complete proof by Córdoba and Fefferman of
the restriction conjecture in two dimensions, see Subsection 8.4. Finally, we generalize these
ideas to higher dimensions where the bilinear analysis will be replaced by a multilinear one.

The bilinear restriction estimate was first proved by Tao [Tao03] building on earlier argu-
ments of Wolff [Wol01]. The work of Tao–Vargas–Vega [TVV98] is perhaps the first systematic
treatment of the bilinear phenomenon and its impact on the linear problem.

8.1. Introduction. The original motivation was the “L4” or “bi-orthogonality” theory by what
we mean that expressions like ∥f∥Lp′ can be calculated explicitly if p′ is an even integer, and
especially when p′ = 4. Indeed, in this case, we have, using Plancherel,

∥(Fdσ)∨∥24 = ∥(Fdσ) ∗ (Fdσ)∥2 .
That means that we reduced the restriction estimate R∗

S(q
′ → 4) (which usually crucially depends

on oscillations and cancellations) to the pure size estimate

∥(Fdσ) ∗ (Fdσ)∥2 ≲q ∥F∥2Lq′ (S,dσ) ,

which can be proven or disproven using more direct methods.
As an example, consider d = 2 and S = S1, the circle. In this case, there is a logarithmic

divergence in the above estimate because dσ ∗ dσ blows up like |x|−1/2 on the circle {x ∈ R2 :
|x| = 2} of radius 2. Localizing in physical space to a disk of radius R shows that one can easily
prove the modified estimate

∥G ∗G∥L2(R2) ≲q (logR)
1/2R−3/2∥G∥2L4(N1/R(S))

for all R ≥ 1 and all G with suppG ⊆ N1/R(S). Comparing this with the general localized
restriction estimate (7.3) shows that this is just the restriction estimate R∗

S(4 → 4; ε) for any
ε > 0. Thus, using the ε-removal lemma (Theorem 7.5), we obtain the optimal restriction
estimate for the circle. Note that this was already proven by Zygmund [Zyg74] using more direct
methods.

8.2. The importance of transversality. At first glance, this approach seems to be restricted
to L4 because of Plancherel’s theorem. However, one can partially extend those ideas to other
exponents p′. The main point is that the linear estimate

∥(Fdσ)∨∥Lp′ (Rd) ≲p,q,S ∥F∥Lq′ (S,dσ)
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is equivalent (by squaring) to the quadratic estimate

∥(Fdσ)∨(Fdσ)∨∥Lp′/2(Rd) ≲p,q,S ∥F∥2
Lq′ (S,dσ)

which one can depolarize as the bilinear estimate

∥(F1dσ)
∨(F2dσ)

∨∥Lp′/2(Rd) ≲p,q,S ∥F1∥Lq′ (S,dσ)∥F2∥Lq′ (S,dσ) .
In such an estimate the worst case typically occurs if both F1 and F2 are concentrated on the
same small cap on S. This is just the situation in Knapp’s example (Subsection 3.2).

We saw that the basic idea is to rewrite the desired linear restriction estimate as a bilinear
restriction estimate which in turn is a special case of the more general estimate

∥(F1dσ2)
∨(F2dσ2)

∨∥Lp′/2(Rd) ≲p,q,S1,S2
∥F1∥Lq′ (S1,dσ1)

∥F2∥Lq′ (S2,dσ2)
. (8.1)

Here, S1 and S2 is a pair of smooth hypersurfaces, equipped with surface measures dσ1 and dσ2,
respectively. Moreover, F1 and F2 are smooth and supported on S1, respectively S2. We will
denote by R∗

S1,S2
(q′ × q′ → p′/2) the statement that (8.1) holds.

By the above discussion, R∗
S,S(q

′ × q′ → p′/2) is of course equivalent to R∗
S(q

′ → p′). That
means that bilinear restriction estimates are more general than linear ones, i.e., there are bilinear
estimates that cannot be inferred from linear ones. Consider the following

Example 8.1. Let S1 = {(ξ1, 0) ∈ R2 : ξ1 ∈ R} and S2 = {(0, ξ2) ∈ R2 : ξ2 ∈ R}, i.e., the
coordinate axis in R2. Then (F1dσ1)

∨(x, y) = F̌1(x) and (F2dσ2)
∨(x, y) = F̌2(y) which means

that there are in general no global linear restriction estimates R∗
Sj
(q′ → p′) (j = 1, 2), unless

p′ = ∞, since the Fourier transforms do not decay at infinity. On the other hand, Plancherel
yields

∥(F1dσ1)
∨(F2dσ2)

∨∥2L2(R2) =

∫
R2

|F̌1(x)|2|F̌2(y)|2 dx dy = ∥F1∥2L2(R)∥F1∥2L2(R) ,

i.e., the bilinear restriction R∗
S1,S2

(2 × 2 → 2) holds, although the symmetrized estimates

R∗
S1,S1

(2× 2 → 2) and R∗
S2,S2

(2× 2 → 2) are false.

The above example clearly indicates that transversality plays a major role in deriving bilinear
restriction estimates (unlike in the linear situation where oscillations and cancellations were
crucial). In Subsection 8.4 we will discuss bilinear estimates in R2 in much more detail.

Let us instead now discuss a higher-dimensional analog of the above theme. We say that two
smooth hypersurfaces S1 and S2 are transversal to each other, if the set of unit normals of S1 is
separated by some non-zero distance from the set of unit normals of S2.

Proposition 8.2. Let S1 and S2 be two smooth hypersurfaces which are transversal to each
other. Then, the restriction estimate R∗

S1,S2
(2× 2 → 2) holds.

Proof. By Plancherel, it suffices to prove the convolution estimate

∥(F1dσ1) ∗ (F2dσ2)∥L2(Rd) ≲S1,S2
∥F1∥L2(S1,dσ)∥F2∥L2(S2,dσ) .

By Cauchy–Schwarz,

∥(F1dσ1) ∗ (F2dσ2)∥2L2(Rd) ≲ ∥|F1|2dσ1 ∗ |F2|2dσ2∥L1(Rd)∥dσ1 ∗ dσ2∥L∞

and the second factor on the right side is bounded because of the transversality assumption. □

Generalizations of bilinear L2 estimates arose already in works by Bourgain [Bou93a], Klainerman–
Machedon [KM93], and many other authors in the context of nonlinear evolution equations.
These estimates turned out to be especially useful for handling non-linearities which contain
certain derivatives which create a “full norm”.
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8.3. Necessary conditions for bilinear restriction estimates. In this subsection, we will
discuss necessary conditions for bilinear restriction estimates for the sphere and the paraboloid.
Let S1 and S2 be two compact transverse subsets of Sd−1 or Pd−1. We already saw that bilinear
estimates can be derived from linear ones, i.e., R∗

S(q
′ → p′) yields by polarization the bilinear

estimate R∗
S1,S2

(q′× q′ → p′/2), whereas the converse statement is in general false. For instance,

although the bilinear estimate RS1,S2(2×2 → 2) holds, the corresponding linear estimate RS(2 →
4) is only true in three or higher dimensions. One reason for this is that there is no exact
“transverse, bilinear” analog of the Knapp example. Indeed, the best known necessary conditions
were derived by considering bilinear analogs of Knapp examples, see Foschi and Klainerman
[FK00] and Tao–Vargas–Vega [TVV98]. Namely, for R∗

S1,S2
(q′ × q′ → p′/2) to hold, one must

have

p >
2n

n+ 1
;

n+ 2

p′
+
n

q′
≤ n;

n+ 2

p′
+
n− 2

q′
≤ n− 1 . (8.2)

This is somewhat less stringent than the condition

p >
2n

n+ 1
;

n+ 1

p′
+
n− 1

q′
≤ n− 1

for the linear estimate R∗
S(q

′ → p′). Nevertheless, the bilinear version of the restriction conjecture
asserts that the conditions (8.2) are also sufficient. Apart from the case d = 2, this conjecture
is still open. It is remarkable that it has been recently shown that the bilinear conjecture is
(neglecting the endpoint) equivalent to the linear restriction conjecture for Sd−1 and Pd−1.

8.4. Proof of the two-dimensional restriction conjecture. Before we give a systematic
description of multilinear restriction estimates, we present a proof of the full restriction conjec-
ture in two dimensions involving bilinear restriction estimates. The presentation follows closely
[Tao99b, Lecture 5]. The original proof goes back to Córdoba and Fefferman. Compare also to
Fefferman [Fef70, p. 33ff].

Recall that the desired estimate reads

∥ĝdσ∥q ≲ ∥g∥Lp(S1)
for q > 4 and q ≥ 3p′ in d = 2. One of the fundamental reasons that the two-dimensional
restriction conjecture is proved comparably easily is the involved exponent q = 4. One may be
tempted to repeat the same argument in higher dimensions; however, it turns out that the results
obtained do not improve upon Tomas–Stein and can even be worse.

As a first step, we note that it suffices to consider the quarter circle, thereby avoiding nui-
sances involving antipodal points. The conjecture for S1 then follows by the triangle inequality.
Moreover, it suffices to consider the end-point q = 3p′ as the conjecture follows for higher q by
interpolation involving Hölder’s inequality.

By the enhanced Marcinkiewicz interpolation theorem (see, e.g., Tao [Tao99b, Lecture 2,
Lemma 2.3] or Grafakos [Gra14a, Theorem 1.4.19] and Tao [Tao06, Lecture 1, Lemma 8.5]), it
would suffice to prove the restricted weak-type estimate (recall (C.1))

∥1̂Ωdσ∥Lq,∞ = sup
λ≥0

λ|{|1̂Ωdσ| ≥ λ}|1/q ≲ |Ω|1/p

where Ω is an arbitrary subset of the circle S1. Actually, we don’t have to go quite this weak
and will prove instead

∥1̂Ωdσ∥q ≲ |Ω|1/p .
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Now, the fundamental idea in the proof of the two-dimensional restriction estimate is to square
it, i.e.,

∥1̂Ωdσ 1̂Ωdσ∥q/2 ≲ |Ω|2/p (8.3)

and invoke Plancherel’s theorem. Since q > 4, we have 2 < q/2 < ∞, i.e., we are suddenly
interested in estimating bilinear quantities such as

∥f̂dσ ĝdσ∥2
and

∥f̂dσ ĝdσ∥∞
where f and g are some functions on S1. The latter quantity is easy to estimate, thanks to the

trivial estimate ∥f̂dσ∥∞ ≲ ∥f∥1. Thus,
∥f̂dσ ĝdσ∥∞ ≲ ∥f∥1∥g∥1 (8.4)

and we are left with L2 estimates. In general, it is hard to obtain good estimates for general f
and g. However, if f and g are supported on disjoint arcs, i.e., they are somewhat transversal to
each other, one obtains significant cancellations. This is summarized in the following

Lemma 8.3. Suppose f and g are supported in distinct θ-arcs of S1, whose separation is also
comparable θ. Then

∥f̂dσ ĝdσ∥2 ≲ θ−1/2∥f∥2∥g∥2 . (8.5)

We give two proofs of this fact below due to Tao and Hickman–Vituri. Another exposition of
Tao’s proof is contained in the lecture notes of Zhang [Zha20, Lecture 6].

Remark 8.4. One can make the definition of θ-separation more precise, especially for more
general compact hypersurfaces. Namely, suppose (Sj)j=1,...,n is a family of compact hypersurfaces
and denote by νj : Sj → Sd−1 the associated Gauss map 10. Then the Sj are said to be
θ-separated, if

|det(ν1(x1), ..., νn(xn))| ≥ θ whenever xj ∈ Sj for j = 1, ..., n . (8.6)

We will give two proofs of Lemma 8.3. The first one follows Tao’s notes [Tao99b, Lecture 5,
Lemma 1.2] and the second one the notes of Hickman and Vitturi [HV15, Lecture 3, Lemma 2].

Proof of Lemma 8.3 following Tao. By Plancherel, the assertion is equivalent to

∥(fdσ) ∗ (gdσ)∥2 ≲ θ−1/2∥f∥2∥g∥2 .
We verify this estimate by bilinear interpolation between

∥(fdσ) ∗ (gdσ)∥1 ≲ ∥f∥1∥g∥1
and

∥(fdσ) ∗ (gdσ)∥∞ ≲ θ−1∥f∥∞∥g∥∞ .

The first estimate is clear by Young’s inequality (or Fubini’s theorem).
To prove the second estimate, we assume that f and g are supported on θ-arcs I and J . We

denote by dσI and dσJ the restrictions of the surface measure to these arcs. By the pointwise
estimates

fdσ ≤ ∥f∥∞dσI and gdσ ≤ ∥g∥∞dσJ
it suffices to prove

∥dσI ∗ dσJ∥∞ ≲ θ−1

10That is, νj continuously maps a point xj ∈ Sj to a choice of unit normal vector νj(xj) to Sj at xj .
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where

dσ1 ∗ dσ2(A) :=
∫
S1

∫
S1
1A(η1 + η2) dσ1(η1) dσ2(η2)

for any Borel set A lying in S1, and, if dσ1∗dσ2 is absolutely continuous with respect to Lebesgue,
then (cf. [FOeS17, (1.8)])

dσ1 ∗ dσ2(ξ) :=
∫
S1

∫
S1
δ(ξ − η1 − η2) dσ1(η1) dσ2(η2) .

To do so, we approximate dσI by (2ε)−11Iε where ε > 0 is a small number and Iε is the ε
neighborhood of I, i.e.,

Iε := {r(cos θ, sin θ) : θ ∈ I , 1− ε ≤ r ≤ 1 + ε} .
By the definition of induced Lebesgue measure, dσI is the weak limit of such measures. Thus, it
suffices to prove

∥ 1

2ε
1Iε ∗ dσJ∥∞ ≲ θ−1 (8.7)

for all sufficiently small θ, uniformly in ε. Clearly, the integral∫
J

1

2ε
1Iε(ξ − η)dσJ(η) =

1

2ε
|{η ∈ J : ξ − η ∈ Iε}| =

1

2ε
|(ξ + J) ∩ Iε|

only contributes whenever ξ ∈ η + Iε and η ∈ J . Thus, the convolution is supported on the
set-theoretic sum of the arc J and the thickened arc Iε. But since any translate of J intersects
Iε in an arc of length at most εθ−1, the assertion follows. □

Remark 8.5. To avoid the convolution between measures in (8.7), one could also fatten dσJ
there and show instead

∥1Iε ∗ 1Jε∥L∞(R2) ≲ ε2|I|−1 ,

which may be easier to verify. (Recall that the separation of I and J was supposed to be
comparable, i.e., θ ∼ |I| ∼ |J |). See also Remark 16.26 (especially Formula (16.23)) later for a
similar computation, where the fattened arcs are, however, simple rectangles.

Related to convolution of measures is the following special instance, see Demeter [Dem20,
Lemma 1.20].

Lemma 8.6. Let dσ be the surface measure on Sd−1. Then for each d ≥ 2 the measure dσ ∗ dσ
is absolutely continuous with respect to Lebesgue measure on Rd, i.e., dσ ∗ dσ = F dξ for some
integrable F . Moreover suppF ⊆ B0(2) and satisfies for a.e. ξ

|F (ξ)| ≲
{
|ξ|−1 , 0 < |ξ| < 1

(2− |ξ|)(d−3)/2 , 1 ≤ |ξ| ≤ 2 .

Recall that, like convolution of functions, convolutions of measures are supported on the
Minkowski sum of their supports, i.e.,

supp(σSd−1 ∗ σSd−1) ⊆ supp(σSd−1) + supp(σSd−1) = {x+ y : x, y ∈ Sd−1} ⊆ Rd .

For an explicit formula, see also the survey by Foschi and Oliveira e Silva [FOeS17, (3.2)], namely

(σSd−1 ∗ σSd−1)(ξ) =
|Sd−2|
|ξ|

(
1− |ξ|2

4

) d−3
2

+

. (8.8)

This shows that the |ξ|−1 singularity in the lemma is in fact necessary, and hence the Radon–
Nikodym derivative dσ ∗dσ with respect to Lebesgue exists, but is not bounded. Essentially this
is due to the large symmetry of Sd−1 which leads to the fact that the origin can be represented
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in multiple ways by ξ+ η where ξ, η ∈ Sd−1. Heuristically, this is another reason why we split S1
into multiple chunks so that “most of the time different arcs cannot too badly with each other”.

Proof. Let Sd−1
ε be the ε-neighborhood of Sd−1 and let σε := ε−11Sd−1

ε
. Then σε dξ ⇀ dσ as

ε→ 0. Note that

σε ∗ σε(ξ) = ε−2

∫
Rd

1Sd−1
ε

(ξ − η)1Sd−1
ε

(η) dη = ε−2|Sd−1
ε ∩ (ξ + Sd−1

ε )| .

The right side is zero for |ξ| > 2. Since Sd−1
ε ∩ (ξ + Sd−1

ε ) is a body of revolution, its volume is
at most a constant multiple of the area of the cross section S1

ε ∩ ((r, 0) + S1
ε ) with r = |ξ|.

Now suppose r ≤ 1. Then note that any y = (y1, y2) ∈ S1
ε ∩ ((r, 0) + S1

ε ) satisfies

1− 2ε ≤ y21 + y22 ≤ 1 + 3ε , since y ∈ S1
ε and y ∈ ((r, 0) + S1

ε )

1− 2ε ≤ (y1 − r)2 + y22 ≤ 1 + 3ε , since (y1 − r, y2) ∈ S1
ε

and thus also (combining the first lower bound y21 + y22 ≥ 1 − 2ε with the second upper bound
−2y1r + r2 + y21 + y22 ≤ 1 + 3ε),

|2y1 − r| ≤ 5ε

r
.

This means that the horizontal projection of S1
ε ∩ ((r, 0) + S1

ε ) sits inside an interval of length
5ε/r. Since r ≤ 1 the vertical slices of S1

ε ∩ ((r, 0) + S1
ε ) have length ≲ ε. Using Fubini, we find

that |S1
ε ∩ ((r, 0) + S1

ε | ≲ ε2/r. Thus, if |ξ| ≤ 1, then

sup
ε∈(0,1)

σε ∗ σε(ξ) ≲ |ξ|−1 .

Finally a similar computation shows that if 1 ≤ |ξ| ≤ 2, then

sup
ε∈(0,1)

σε(ξ) ∗ σε(ξ) ≲ (2− |ξ|) d−3
2 .

Since σε ∗ σε dξ ⇀ dσ ∗ dσ, the proof is concluded. □

Proof of Lemma 8.3 following Hickman–Vitturi. For ξ ∈ S1 we can approximate the circle locally
by a parabola which can be parameterized by (t, t2) for t ∈ R. Now, since we are assuming that
the two arcs of length θ are only θ-separated and θ is supposed to be very tiny, we can assume that
these arcs are actually θ-transverse caps on the one-dimensional parabola P1. So, let I1, I2 ⊆ [0, 1]
be the two intervals parameterizing these caps. By the transversality condition, I1 and I2 are
O(θ)-separated. Denoting g1 = f and g2 = g, we observe

2∏
j=1

ĝjdσ(x) =

∫
I2

∫
I1

2∏
j=1

gj(tj , t
2
j )e

2πi[x1(t1+t2)+x2(t
2
1+t

2
2)] dt1 dt2

= 2−1

∫∫
D

2∏
j=1

gj(tj(u), tj(u)
2)|t1(u)− t2(u)|−1e2πix·u
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where we have applied the change of variables u1 = t1 + t2 and u2 = t21 + t22.
11 The latter is the

Fourier transform of a bivariate function and so, by Plancherel, we have

∥
2∏
j=1

ĝjdσ∥22 = 2−2

∫∫
D

2∏
j=1

|gj(tj(u), tj(u)2)|2|t1(u)− t2(u)|−2 du

= 2−1

∫
I1

∫
I2

|gj(tj , t2j )|2|t1 − t2|−1 dt1 dt2

The result now follows from |t1−t2| ≳ θ which is a consequence of the separation hypothesis. □

Remark 8.7. Note that this argument can be generalized to prove n-linear restriction estimates
for θ-separated pieces of the moment curve t 7→ (t, t2, ..., tn). Here, the Jacobian arising from
the above indicated change of variables is a (scalar multiple of a) Vandermonde determinant and
one can use the same argument as of the footnote to prove the injectivity of the mapping, now
invoking the Newton–Girard formulae.

To prove (8.3), we have to piece all this together. However, we cannot simply interpolate
between (8.4) and (8.5) because of the support restrictions in Lemma 8.3. Therefore, we will
split the left side of (8.3) into pieces in order to exploit (8.5).

To this end, we will use the Whitney decomposition. For every n ≥ 0, we divide S1 into 2n

equal arcs, so that each arc at stage n has exactly two children at stage n + 1. We denote the
set of all arcs at stage n by An. We say that two arcs I, J ∈ An from the same stage n > 1 are
close, if they are not adjacent, but their parents are adjacent. In this case, we write I ∼ J . Note
that for each I there are only O(1) arcs J which are close to J .

Remark 8.8. Here we see that the non-vanishing curvature condition is crucial in the linear
problem as it allows us to find sufficiently many transverse pairs of arcs in the bilinear problem.

For every x ̸= y on S1, there is exactly one pairs of arcs I, J containing x and y respectively
such that I ∼ J . This implies (by imagining the following formula in Fourier space)

1̂Ωdσ 1̂Ωdσ =
∑
I∼J

1̂ΩdσI 1̂ΩdσJ =
∑
n>1

∑
I,J∈An:I∼J

1̂ΩdσI 1̂ΩdσJ .

Remark 8.9. This decomposition is somewhat special to the bilinear perspective and so far,
there seems to be no known satisfactory way to duplicate this in a linear setting.

We are now ready to plug this decomposition into (8.3). To deal with the n summation, we
simply use the triangle inequality to obtain

∥1̂Ωdσ 1̂Ωdσ∥q/2 ≲
∑
n>1

∥
∑

I,J∈An:I∼J
1̂ΩdσI 1̂ΩdσJ∥q/2 .

We will estimate the Lq/2 norm by interpolating between estimates on the L∞ and the L2 norm
and we begin with the former. By the triangle inequality and (8.4), we obtain

∥
∑

I,J∈An:I∼J
1̂ΩdσI 1̂ΩdσJ∥∞ ≲

∑
I,J∈An:I∼J

|Ω ∩ I||Ω ∩ J | .

11To see that this change of variables is valid on I1 × I2, note that if sj , tj ∈ Ij (for j = 1, 2) satisfy

s1 + s2 = t1 + t2 and s21 + s22 = t21 + t22 .

Then it follows from the formula 2ab = (a + b)2 − (a2 + b2) that s1s2 = t1t2. Consequently, by comparing

coefficients, we see that
∏2

j=1(z − tj) and
∏2

j=1(z − sj) define the same polynomial (here, z is a single complex

variable) and hence the tj equal the sj , up to permutation. The separation of the intervals now implies tj = sj
for j = 1, 2.
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Although there are no Fourier transforms appearing on the right side anymore, a more tractable
dependence on Ω or factors of 2−n would be desirable. Fortunately, similar crude estimates will
do the trick. Clearly, we may estimate |Ω ∩ J | ≲ 2−n at stage n. But since there are only O(1)
arcs J for each I, we obtain on the one hand

∥
∑

I,J∈An:I∼J
1̂ΩdσI 1̂ΩdσJ∥∞ ≲

∑
I∈An

|Ω ∩ I| · 2−n = 2−n|Ω| .

Alternatively, we may simply lift the restriction I ∼ J on the summation and obtain

∥
∑

I,J∈An:I∼J
1̂ΩdσI 1̂ΩdσJ∥∞ ≲

(∑
I∈An

|Ω ∩ I|
)( ∑

J∈An
|Ω ∩ J |

)
= |Ω|2 .

Combining the last two estimates therefore shows

∥
∑

I,J∈An:I∼J
1̂ΩdσI 1̂ΩdσJ∥∞ ≲ |Ω|min{|Ω|, 2−n} . (8.9)

Thus, we are left with the L2 estimate. This time the triangle inequality is a bad idea as there
are lots of oscillations and orthogonality present that should be exploited more effectively. The
following observation of Fefferman is fundamental for what comes next.

As I ∼ J vary, the functions 1̂ΩdσI 1̂ΩdσJ have Fourier transform supports which are essen-
tially disjoint which means that the functions themselves are essentially orthogonal. This is just
done by computing the set theoretic sums of I and J and computing. Because of this (almost)
orthogonality 12, we thus have

∥
∑

I,J∈An:I∼J
1̂ΩdσI 1̂ΩdσJ∥2

≲

 ∑
I,J∈An:I∼J

∥1̂ΩdσI 1̂ΩdσJ∥22

1/2

≲ 2n/2

 ∑
I,J∈An:I∼J

|Ω ∩ I||Ω ∩ J |

1/2

,

where we used Lemma 8.3 with θ = 2−n in the final inequality. By the same arguments as before,
we estimate the sum over the close arcs and obtain

∥
∑

I,J∈An:I∼J
1̂ΩdσI 1̂ΩdσJ∥2 ≲ 2n/2(|Ω| min{|Ω|, 2−n})1/2 .

Combining this with (8.9) by Hölder’s inequality, we thus have

∥
∑

I,J∈An:I∼J
1̂ΩdσI 1̂ΩdσJ∥q/2 ≲ 22n/q(|Ω| min{|Ω|, 2−n})1−2/q .

Finally, summing over n, we obtain

∥1̂Ωdσ 1̂Ωdσ∥q/2 ≲
∑
n>1

22n/q(|Ω| min{|Ω|, 2−n})1−2/q ,

where the right side can be computed (by considering 2−n > |Ω| and 2−n > |Ω| separately) to
be |Ω|1−2/q = |Ω|2/p, which was desired.

12One can obtain perfect orthogonality by only considering, say, every tenth pair (I,J) and then add up the
ten smaller sums by the triangle inequality.
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Remark 8.10. A quite similar argument can be used to prove the Bochner–Riesz conjecture in
d = 2.

One of the key innovations here was the bilinear approach. Unfortunately, one cannot apply
the above argument directly to higher dimensions unless q/2 ≥ 2. (As one can check, these cases
are already taken care of by the Tomas–Stein estimate.) Nevertheless, the bilinear approach was
quite useful in higher dimensions, and in fact all the best results on the restriction conjecture
and related problems has come from precisely such an approach.

Remark 8.11. The original proof of Córdoba and Fefferman did not take such an explicitly
bilinear approach, and was more elegant; however, it was less obvious whether any of the ideas
could be extended to other dimensions and exponents.

8.5. From bilinear to linear. The most valuable feature of the bilinear restriction conjecture
is the fact that it implies the linear restriction conjecture. For technical reasons, consider only
compact subsets of the paraboloid.

Proposition 8.12 ([TVV98]). Let S ⊆ Pd−1 be compact and S1 and S2 transversal subsets of
S. If q > 2d/(d− 1) and q ≥ p′(d+ 1)/(d− 1), and the conjectured bilinear inequality

∥f̂1 dσf̂2 dσ∥Lq̃/2(Rd) ≲ ∥f1∥Lp̃(S1)∥f2∥Lp̃(S2)

holds for all (p̃, q̃) in a neighborhood of (p, q), then the conjectured linear inequality

∥f̂ dσ∥Lq(Rd) ≲ ∥f∥Lp(dσ)
holds.

We first follow Bennett [Ben14, p. 7-8]. See Tao–Vargas–Vega [TVV98] for the original
argument (Theorem 2.2 for the global and Theorem 4.1 for the local restriction estimates) and
Bourgain–Guth [BG11] for a simpler argument. For a textbook treatment see Demeter [Dem20,
Chapter 7]. In the second subsection we present an argument relying on parabolic rescaling
which is borrowed from Demeter [Dem20, Chapter 4].

8.5.1. Bourgain–Guth method. We present the argument in a such a way that it may be adapted
to a more general multilinear setting.

Sketch of proof of Proposition 8.12. We show the extension estimate ∥f̂ dσ∥Lq(Rd) ≲ ∥f∥Lp(dσ)
in the range p = q > 2d/(d− 1). This special case is readily seen to imply the linear restriction
conjecture on the interior of the full conjectured range of Lebesgue exponents.

Let {Sα} be a partition of S by patches of diameter approximately 1/K and write

f =
∑
α

fα , fα := fχSα .

By linearity, f̂ dσ =
∑
α f̂α dσ. The key observation is the following inequality, see Bourgain–

Guth [BG11]. □

Proposition 8.13. We have

|f̂ dσ(x)|q ≲ K2(d−1)q
∑

Sα1
,Sα2

|f̂α1 dσ(x)f̂α2 dσ(x)|q/2 +
∑
α

|f̂α dσ|q , (8.10)

where the sum in Sα1
and Sα2

is restricted to 1/K-transversal pairs Sα1
and Sα2

, i.e., |v1∧v2| ≥
1/K for all choices of unit normal vectors v1, v2 to Sα1 , Sα2 , respectively.
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Remark 8.14. Recall that for v1, ..., vk ∈ Rn with k ≤ n the wedge product v1∧...∧vk belongs to
the k-th exterior power of Rn, denoted by Λk(Rn) with dimension dim(Λk(Rn)) =

(
n
k

)
. Suppose

e1, ..., e(nk)
is a basis of Λk(Rn) and that v1 ∧ ... ∧ vk ≡∑(nk)

ℓ=1 aℓeℓ. Then

|v1 ∧ ... ∧ vk| =

(nk)∑
ℓ=1

|aℓ|2


1/2

. (8.11)

In the special case where k = n and the components of the vector vj are denoted by {vj,ℓ}nℓ=1,
we have

|v1 ∧ ... ∧ vk| =

∣∣∣∣∣∣∣∣∣det

v1,1 v1,2 · · · v1,n
v2,1 v2,2 · · · v2,n
...

...
. . .

...
vn,1 vn,2 · · · vn,n


∣∣∣∣∣∣∣∣∣ (8.12)

Proof of Proposition 8.13. This essentially amounts to an application of the elementary abstract
inequality

∥a∥qℓ1(ZN ) ≲ N
∑
j ̸=k

|ajak|q/2 + ∥a∥qℓq(ZN )

for finite sequences of real numbers a. □

Continuation of sketch of proof of Proposition 8.12. Assuming the truth of Proposition 8.13 and
integrating in x, we obtain [where does the K2(d−1)q come from?]

∥f̂ dσ∥qq ≲ K2(d−1)q
∑

Sα1
,Sα2

∥f̂α1 dσf̂α2 dσ∥q/2q/2 +
∑
α

∥f̂α dσ∥qq , (8.13)

which, because of the terms ∥f̂α dσ∥qq appearing on the right side, strongly suggests the viability
of a bootstrapping argument. To this end, let C = C(R) denote the smallest constant in the

inequality ∥f̂ dσ∥Lq(B0(R)) ≤ C∥f∥q over all R ≫ 1 and f ∈ Lp(dσ). The only role of the
parameter R here is to ensure that C is a-priori finite. Our goal is to show C <∞, uniformly in
R. Because of the Fourier cut-off on Sα (which has diameter 1/K), the hypothesis gives [where
does the K2d/q−(d−1) come from?]

∥f̂α dσ∥q ≲ CK2d/q−(d−1) .

Since 2d/q− (d−1) < 0 and K ≫ 1, this represents a gain! Using (8.13) along with the property∑
α ∥fα∥qq = ∥f∥qq (by Fourier disjointness), we obtain

∥f̂ dσ∥qq ≤ cK2(d−1)q
∑

Sα1
,Sα2

∥f̂α1
dσf̂α2

dσ∥q/2q/2 + CK2d/q−(d−1)∥f∥qq (8.14)

for some constant c independent of K. Taking K so large that cK2d/q−(d−1) ≤ 1/2 (say), we see
that it suffices to show

K2(d−1)q
∑

Sα1
,Sα2

∥f̂α1
dσf̂α2

dσ∥q/2q/2 ≤ A(K)∥f∥qq . (8.15)

Believing this estimate for a moment, then by definition of C, we have C ≤ cA+C/2, from which
we may deduce that C <∞ uniformly in R. However, (8.15) is a straightforward consequence of
the conjectured bilinear inequality. □
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Remark 8.15. The above argument would have been equally effective if the factor K2(d−1) in
(8.10) were replaced by any fixed power of K. As we have seen, the key feature of (8.10) is the
absence of a power of K in the second “bootstrapping” term on the right side.

8.5.2. Parabolic rescaling and bilinear to linear reduction. Parabolic rescaling means that the
affine functions

Rd−1 × R ∋ (ξ, ξd) 7→
(
ξ − ξ0
δ

,
ξd − 2ξ0 · ξ + |ξ0|2

δ2

)
, δ > 0, ξ0 ∈ Rd−1

map the (infinite) paraboloid into intself.
Next recall that any nonsingular affine map T (η) = Aη+v (for some d×d matrix A) interacts

with the Fourier transform via

Ĝ := F̂ ◦ T ⇒ G(x) =
1

det(A)
F ((A−1)tx)e−2πi⟨v,(A−1)tx⟩ .

Our goal is to use change of variables to convert inequalities involving functions whose Fourier
support lives on or near a small cap on Pd−1 into similar inequalities involving functions whose
Fourier support is then spread over neighborhoods of the whole Pd−1. To make this precise, we
will need to measure the constants appearing in such inequalities precisely. In the context of
bilinear restriction, we make the following

Definition 8.16 (Bilinear restriction constants). Let 1 ≤ p, q ≤ ∞ and 0 < D ≤ 1. We denote
by BR∗(q×q 7→ p,D) the smallest constant C such that for each set of cubes Ω1,Ω2 ⊆ [−1, 1]d−1

with dist(Ω1,Ω2) ≥ D and each f : Ω1 ∪ Ω2 → C, we have

∥EΩ1
f EΩ2

f∥Lp/2(Rd) ≤ C∥f∥Lq(Ω1)∥f∥Lq(Ω2) .

We will now parabolically rescale the known bilinear restriction estimates and afterwards
combine these with a Whitney decomposition to derive new linear restriction estimates.

Proposition 8.17. Let Ω1,Ω2 be two cubes in [−1, 1]d−1 with side length δ and assume that
the distance D between their centers satisfies D ≥ 4δ. Then for each 1 ≤ p, q ≤ ∞ and each
f : Ω1 ∪ Ω2 → C, we have

∥EΩ1
fEΩ2

f∥Lp/2(Rd) ≤ D
2(d−1)

q′ − 2(d+1)
p BR∗(q × q 7→ p,

1

2
)∥f∥Lq(Ω1)∥f∥Lq(Ω2) .

Note that the exponent of D is non-negative when p, q are in the linear restriction range.
Thus, we have extra gain as D gets smaller.

Proof. Let ξ0 be the midpoint of the line segment joining the centers of Ω1 and Ω2. Define an
affine transformation on Rd−1 by

L(ξ) ≡ Lξ0,D(ξ) :=
ξ − ξ0
D

.

Then a simple computation shows that

|EΩif(x
′, xd)| = Dd−1|EL(Ωi)fL(D(x′ + 2xdξ0), D

2xd)| , fL := f ◦ L−1 .

Note that L(Ω1) and L(Ω2) are now cubes in [−1, 1]d that are separated by at least 1/2 (instead
of 2δ. Changing variables on the spatial side then gives

∥EΩ1
fEΩ2

f∥Lp/2(Rd) = D2(d−1)−2(d+1)/p∥EL(Ω1)fLEL(Ω2)fL∥Lp/2(Rd)
≤ D2(d−1)−2(d+1)/pBR∗(q × q 7→ p,

1

2
)∥fL∥Lq(L(Ω1))∥fL∥Lq(L(Ω2))

= D
2(d−1)

q′ − 2(d+1)
p BR∗(q × q 7→ p,

1

2
)∥f∥Lq(Ω1)∥f∥Lq(Ω2) ,

which concludes the proof. □
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We recall the dyadic Whitney decomposition. A dyadic interval is an interval of the form
[ℓ2k, (ℓ+1)2k] with ℓ, k ∈ Z. A dyadic cube is the Cartesian product of dyadic intervals of equal
length. If two dyadic cubes intersect, then one must be the subset of the other.

Proposition 8.18 (Dyadic Whitney decomposition). Let S ⊆ Rm be a closed set. Then there
is a collection C of closed dyadic cubes Ω with pairwise disjoint interiors such that

Rm \ S =
⋃
Ω∈C

Ω

and whose sidelength ℓ(Ω) grows with the distance to S by

4ℓ(Ω) ≤ dist(Ω, S) ≤ 50ℓ(Ω) . (8.16)

Proof. See Demeter [Dem20, Proposition 4.3] or Tao [Tao06, Lecture 3, Proposition 4.6]. □

We need this in the following particular case.

Corollary 8.19. Let d ≥ 2, then there is a collection C of closed cubes Ω = Ω1×Ω2 ⊆ [−1, 1]d−1×
[−1, 1]d−1 with pairwise disjoint interiors such that

[−1, 1]2d−2 \ {(ξ, ξ) : ξ ∈ [−1, 1]d−1} =
⋃
Ω∈C

Ω

and

4ℓ(Ω) ≤ dist(Ω1,Ω2) ≤ 100ℓ(Ω) . (8.17)

Observe that the lower bound in (8.17) reflects the fact that the cubes Ω do not intersect
the diagonal. However, the bounds say that their side length is still comparable to the distance
between the underlying Ω1 and Ω2. In d = 2 this is illustrated in the following figure.

Figure 1. Dyadic Whitney decomposition of [−1, 1]2 in the lower triangle



64 K. MERZ

Proof. It suffices to achieve a similar decomposition with [−1, 1] replaced with [0, 2] and then
translate the cubes by (−1,−1, ...,−1). The advantage of working with [0, 2] is that it is already
a dyadic interval.

Use the family of Proposition 8.18 with m = 2d − 2 and S = {(ξ, ξ) : ξ ∈ Rd−1} and only
keep the cubes that are inside [0, 2]2d−2. They obviously cover [0, 2]2d−2. Likewise, the bounds
(8.17) follow from (8.16). □

The following lemma says that when we have a sequence of functions with disjoint Fourier
support, we can easily decouple their contributions to an Ls norm.

Lemma 8.20. Let R be a finite collection of rectangular boxes in Rd with 2R∩2R′ = ∅ whenever
R ̸= R′ ∈ R. For R ∈ R let FR : Rd → C be an Ls function for some 1 ≤ s ≤ ∞ with
supp(F̂R) ⊆ R. Then

∥
∑
R

FR∥Ls ≲
(∑

R

∥FR∥ss

)1/s

, 1 ≤ s ≤ 2

and

∥
∑
R

FR∥Ls ≲
(∑

R

∥FR∥s
′

s

)1/s′

, s ≥ 2

where the implicit constants do not depend on R.

Proof. Let φR ∈ S(Rd) with 1R ≤ φ̂R ≤ 12R and ∥φR∥ = 1. Note that FR = FR ∗φR. Consider
the operator T acting on an arbitrary family GR = (GR)R∈R of functions GR via

T (GR) =
∑
R

GR ∗ φR .

By orthogonality, T : L2(Rd : ℓ2(R)) → L2(Rd), i.e.,

∥T (GR)∥22 =

∫
|
∑
R

GR ∗ φR(x)|2 dx =

∫
|
∑
R

ĜRφ̂R(ξ)|2 =
∑
R

∫
|ĜRφ̂R(ξ)|2

=
∑
R

∫
|GR ∗ φR(x)|2 ≤

∑
R

∥GR∥22

and by Young’s inequality, T : L1(Rd : ℓ1(R)) → L1(Rd), i.e.,

∥T (GR)∥1 =

∫
|
∑
R

GR ∗ φR(x)| dx ≤
∑
R

∥GR ∗ φR∥1] ≤
∑
R

∥GR∥1 .

Vector-valued interpolation thus gives the first assertion. Since T : L∞(Rd, ℓ1(R)) → L∞, i.e.,

∥T (GR)∥∞ = ∥
∑
R

GR ∗ φR∥∞ ≤
∑
R

∥GR∥∞ ,

vector-valued interpolation also gives the second assertion. □

We are now ready to assemble all the previous ingredients and prove that bilinear restriction
estimates give linear ones.

Theorem 8.21. Assume that

BR∗(∞×∞ 7→ p,
1

2
) <∞

for some 2d(d− 1) < p ≤ 4 when d ≥ 3 or for some p > 4 when d = 2. Then the linear estimate
R∗(∞ → p) holds.
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Proof. Let C be a collection of closed cubes Ω = Ω1×Ω2 ⊆ [−1, 1]d−1× [−1, 1]d−1 as in Corollary
8.19. Let f : [−1, 1]d−1 → C. Then we may write (neglecting the diagonal which has Lebesgue
measure zero)

Ef(x)2 =

∫
[−1,1]d−1×[−1,1]d−1

f(ξ1)f(ξ2)e
2πix′·(ξ1+ξ2)+2πixd(ξ

2
1+ξ

2
2) dξ1 dξ2

=
∑

Ω=Ω1×Ω2∈C

∫
Ω1×Ω2

f(ξ1)f(ξ2)e
2πix′·(ξ1+ξ2)+2πixd(ξ

2
1+ξ

2
2) dξ1 dξ2

=
∑
Ω∈C

EΩ1
f(x)EΩ2

f(x) .

Now for k ≥ 1 define Ck to consist of these cubes in C whose side length is 2−k. We separate
these scales using the triangle inequality and obtain

∥Ef∥2p = ∥(Ef)2∥p/2 ≤
∑
k≥1

∥
∑
Ω∈Ck

EΩ1
fEΩ2

f∥p/2 . (8.18)

Now note that as Ω ranges through Ck, the collection of cubes 4(Ω1 +Ω2) overlap at most C
times for some C independent of k. This follows from the following two observations.

(1) The upper bound dist(Ω1,Ω2) ≤ 100ℓ(Ω) = 100ℓ(Ω1 × Ω2) in (8.17) forces Ω1 + Ω2 ⊆
Ω1 + 1000Ω1.

(2) Each Ω1 appears at most O(1) times as the first component of some Ω ∈ Ck. (This
observation will allows us to exploit orthogonality within each family Ck.)

We would now like to appply Lemma 8.20 with s = p/2 and FR = EΩ1
fEΩ2

f . The Fourier
transform of EΩ1

fEΩ2
f is supported inside a rectangular box RΩ ⊆ Rd−1 ×R whose projection

to Rd−1 lies inside 2(Ω1 + Ω2). But by the finite overlaps of 4(Ω1 + Ω2) (discussed above) it
follows that we can split Ck into C = O(1) families such that the boxes 2RΩ are pairwise disjoint
for Ω in each family. By applying Lemma 8.20 with s = p/2 to each family, we obtain

∥
∑
Ω∈Ck

EΩ1fEΩ2f∥p/2 ≲

(∑
Ω∈Ck

∥EΩ1fEΩ2f∥p/2p/2

)2/p

, d ≥ 3

respectively

∥
∑
Ω∈Ck

EΩ1fEΩ2f∥p/2 ≲

(∑
Ω∈Ck

∥EΩ1fEΩ2f∥p/(p−2)
p/2

)p−2/p

, d = 2

where the implicit constants do not depend on k.
Now the lower bound in (8.17) (i.e., dist(Ω1,Ω2) ≥ 4ℓ(Ω)) allows us to apply the parabolically

rescaled bilinear estimate of Proposition 8.17 to each term in the sum and obtain

∥EΩ1
fEΩ2

f∥1/2p/2 ≲ 2−k(d−1− d+1
p )∥f∥L∞([−1,1]d−1) .

Note that there are O(2k(d−1)) cubes in Ck, so

∥
∑
Ω∈Ck

EΩ1
fEΩ2

f∥p/2 ≲

{
(2k(d−1) 2−kp(d−1− d+1

p ))
2
p ∥f∥2L∞([−1,1]d−1) , d = 3

(2k 2−k
2p
p−2 (1− 3

p ))
p−2
p ∥f∥2L∞([−1,1]d−1) , d = 2 .

In both cases the upper bound is O(2−kεp∥f∥2L∞([−1,1]d−1)) for some εp > 0 (since p > 2d/(d−1)).

Combining this with (8.18) finishes the proof. □

8.6. Two-dimensional Kakeya theorems. We follow Tao [Tao99b, Lecture 6].
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8.7. Multilinear restriction. We follow Bennett–Carbery–Tao [BCT06] and the notes of Hick-
man and Vitturi [HV15, Lecture 3, Sections 2-5].

Recall that we have seen in the beginning of this section that the presence of curvature of a
single (sub)manifold was crucial in the linear restriction problem, whereas transversality between
two submanifolds became important in the bilinear world. One of the puzzling features of bilinear
problems is, however, that they seem to confuse the role played by curvature in higher dimensions.
For instance, it is known that the bilinear restriction theories for the cone and the paraboloid are
almost identical, whereas the linear theory for these surfaces is certainly not. Moreover, simple
heuristics suggest that the optimal k-linear restriction theory requires at least d−k non-vanishing
curvatures, but that further curvature assumptions have no further effect. For this reason, it
seems natural to consider a d-linear setup in d dimensions since then one does not expect to
require any curvature hypotheses. We are therefore seeking inequalities of the form∥∥∥∥∥∥

d∏
j=1

(gjdσj)
∨

∥∥∥∥∥∥
Lq/d(Rd)

≲
d∏
j=1

∥gj∥Lp(Sj) for all q ≥ 2d/(d− 1) and p′ ≤ q(d− 1)/d

for hypersurfaces {Sj}dj=1 endowed with associated smooth measures {σj}dj=1, respectively, when-
ever the Sj are “sufficiently separated” in the sense of (8.6). In fact, by multilinear interpolation
(see, e.g., Bergh–Löfström [BL76]), and Hölder’s inequality, it would suffice to prove the endpoint
case p = 2 and q = 2d/(d− 1), i.e.,∥∥∥∥∥∥

d∏
j=1

(gjdσj)
∨

∥∥∥∥∥∥
L2/(d−1)(Rd)

≲
d∏
j=1

∥gj∥L2(Sj) .

Remarkably, this conjecture was almost completely resolved by Bennett–Carbery–Tao [BCT06]
where they proved the above estimate with a subpolynomial loss in the constants.

In the following we adapt the notation that has been used so far to their work. To this end,
for j = 1, ..., d, let

• Uj ⊆ Rd−1 be compact neighborhoods of the origin,
• Σj : Uj → Rd be smooth parameterizations of the (d − 1)-dimensional manifolds Sj of

Rd, and
• (Ejg)(x) :=

∫
Uj

e2πix·Σj(ξ)g(ξ) dξ for x ∈ Rd be the associated extension operators.

The analog of the bilinear transversality condition will essentially amount to requiring that
the normals to the submanifolds parameterized by the Σj ’s span all points of the parameter
space. In order to express this in an appropriately uniform manner, we make the following

Definition 8.22. For each 1 ≤ j ≤ d let Yj be the (d− 1)-form

Yj(ξ) :=

d−1∧
k=1

∂

∂ξk
Σj(ξ) , ξ ∈ Uj .

By duality, the Yj can be viewed as vector fields on Uj . We will not impose any curvature
conditions (in particular, we permit the vector fields Yj to be constant), but we will impose the
following

Assumption 8.23. Let A, ν > 0 be given. Then the following assertions hold.
(1) The manifolds Sj obey the “transversality” (or “spanning”) condition

det(Y1(ξ
(1)), ..., Yd(ξ

(d))) ≥ ν for all ξ(1) ∈ U1, ..., ξ
(d) ∈ Ud . (8.19)
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(2) The maps (parameterizations) Σj obey the smoothness condition

∥Σj∥C2(Uj) ≤ A for all j = 1, ..., d . (8.20)

Remarks 8.24. (1) If Uj is sufficiently small, then Ejgj = Ĝjdσj where Gj : Σj(Uj) → C is
the “normalized lift” of gj , i.e., Gj(Σj(ξ)) = |Yj(ξ)|−1gj(ξ) for ξ ∈ Uj , and dσj is the induced
Lebesgue measure on Σj(Uj).

(2) Using a partition of unity and an appropriate affine transformation, we can assume ν ∼ 1
and that for each j = 1, ..., d, the manifold Σj(Uj) is contained in a sufficiently small neighbor-
hood of the j-th standard basis vector ej ∈ Rd.

Observe that, whenever the Σj are linear, then, by an application of Plancherel’s theorem,
the conjectured multilinear estimate is equivalent to the Loomis–Whitney inequality [LW49].
Namely, let πj : Rd → Rd−1 denote the projection onto the hyperplane e⊥j (where xj = 0), i.e.,
πj(x) = (x1, ..., xj−1, xj+1, ..., xd), then∫

Rd
f1(π1(x)) · · · fd(πd(x)) dx ≤ ∥f1∥d−1 · · · ∥fd∥d−1 for all fj ∈ Ld−1(Rd−1) (8.21)

which is sometimes also written as

∥
d∏
j=1

fj ◦ πj∥L1/(d−1)(Rd) ≤
d∏
j=1

∥fj∥L1(e⊥j ) .

For now, let us merely observe that in view of this inequality, we can view multilinear restric-
tion as a certain (rather oscillatory) generalization of the Loomis–Whitney inequality. We will
reencounter this inequality in some moments when we will be discussing the multilinear analog
of the Kakeya conjecture where the nature of this generalization will become clearer. Let us for
now close this subsection with the main result.

Theorem 8.25 (Near-optimal multilinear restriction (Bennett–Carbery–Tao [BCT06, Theorem
1.16])). Let Assumption 8.23 hold. Then for each ε > 0, q ≥ 2d/(d − 1) and p′ ≤ q(d − 1)/d,
there exists a constant C = C(A, ν, ε, d, p, q) > 0 such that∥∥∥∥∥∥

d∏
j=1

Ejgj

∥∥∥∥∥∥
Lq/d(B0(R))

≤ CRε
d∏
j=1

∥gj∥Lp(Uj) (8.22)

holds for all gj ∈ Lp(Uj), j = 1, ..., d, and all R ≥ 1.

Naturally, the question arises whether this theorem has any consequences for the linear prob-
lem. Unfortunately, the transversality hypotheses make it difficult to apply multilinear restriction
estimates directly to obtain new linear estimates in dimensions d > 2. After some years however,
Bourgain and Guth [BG11] introduced the so-called ℓ2-decoupling which allows one to use The-
orem 8.25 to obtain improved partial results on the restriction conjecture in higher dimensions.
This technique and its applications will be discussed in detail in Section 22.

In Subsection 8.10 we will see that this theorem is equivalent to the so-called multilinear
Kakeya conjecture that we will discuss (and prove!) in the next subsections.

8.8. Multilinear Kakeya. We follow Bennett–Carbery–Tao [BCT06] and the notes of Hickman
and Vitturi [HV15, Lecture 3, Sections 2-5]. See also Guth [Gut10, Gut15] (in particular the
short proof of the non-optimal result.)

It is well known (and it will be discussed in Subsection 16.2) that the linear restriction conjec-
ture implies the linear Kakeya conjecture (Conjecture 16.6). To state it precisely, let us introduce
the following notation that will also be used in Section 16 later. Let 0 < δ ≪ 1, ω ∈ Sd−1, and
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a ∈ Rd. Then we define a δ-tube to be any rectangular (or cylindrical) box T δω(a), or short, T ,
in Rd with d − 1 side lengths δ (or diameter 2δ) and one side length 1 which is oriented in the
direction ω. By T we denote an arbitrary collection of such δ-tubes whose orientations form a
maximal δ-separated subset of Sd−1. The cardinality of T is denoted by #T. Then the maximal
Kakeya conjecture says that for any ε > 0 and d/(d − 1) < q ≤ ∞, there exists a constant C
independent of δ such that∥∥∥∥∥∑

T∈T
1T

∥∥∥∥∥
Lq(Rd)

≤ Cδ(d−1)/q(#T)1−1/(q(d−1)) .

We emphasize that the “separation condition” on each of the δ-tubes is crucial in this linear
problem.

By a straightforward adaptions of the arguments given in Subsection 16.2, one sees that the
multilinear restriction conjecture implies the corresponding multilinear Kakeya-type conjecture
that we will describe now. Suppose T1, ...,Td are families of δ-tubes in Rd where we now allow (!)
the tubes within the same family Tj to be parallel (in contrast to the linear problem). However,
we assume that, for each j = 1, ..., d, the tubes in Tj must point in directions belonging to a
fixed spherical cap, say Sj = {ω ∈ Sd−1 : |1− ω · ej | ≤ C−1} for some large C > 0, centered at
ej . In this case, we say that the family Tj is transversal. (The vectors ej may be replaced by any
fixed linearly independent set of vectors in Rd here, as affine invariance considerations reveal.)

Theorem 8.26 (Near-optimal multilinear Kakeya (Bennett–Carbery–Tao [BCT06, Theorem
1.15])). If d/(d− 1) < q ≤ ∞, then there exists a constant C > 0 which is independent of δ and
the transversal families of tubes T1, ...Td, such that∥∥∥∥∥∥

d∏
j=1

 ∑
Tj∈Tj

1Tj

∥∥∥∥∥∥
Lq/d(Rd)

≤ C

d∏
j=1

(δd/q#Tj) . (8.23)

Furthermore, for each ε > 0 there is a similarly uniform constant C > 0 for which∥∥∥∥∥∥
d∏
j=1

 ∑
Tj∈Tj

1Tj

∥∥∥∥∥∥
L1/(d−1)(B0(1))

≤ Cδ−ε
d∏
j=1

(δd−1#Tj) . (8.24)

Remarks 8.27. (1) Since the case q = ∞ is trivially true, (8.23) is equivalent, via Hölder, to the
endpoint case q = d/(d−1). In contrast to the linear setting, there is no obvious counterexample
prohibiting this claim holding at the endpoint q = d/(d − 1), and indeed in the d = 2 case
it is easy to verify this endpoint estimate. In fact, as we will present next, Guth [Gut10] did
eventually obtain the endpoint result.

(2) By contrast with similar statements at lower levels of multilinearity, each family Tj is
permitted to contain parallel tubes, and in fact, even arbitrary repetitions of tubes.

(3) The decision to formulate (8.23) in terms of δ × · · · δ × 1 tubes is largely for historical
reasons. However, just by scaling, it is easily seen that the above estimate is equivalent to∥∥∥∥∥∥

d∏
j=1

 ∑
T̃j∈T̃j

1T̃j

∥∥∥∥∥∥
Lq/d(Rd)

≤ C

d∏
j=1

(#T̃j) ,

where the collections T̃j consist of tubes of width 1 and arbitrary (possibly infinite) length where,

of course, still the appropriate transversality condition is imposed on the families T̃1, ..., T̃d.
(4) Note that the extreme case of (8.23) when the collections of rectangles are 1-transverse

corresponds (by Hadamard’s inequality) precisely to the situation when all the rectangles in
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Tj are oriented in the same direction ej . Under these hypothesis, (8.23) is a consequence of
the Loomis–Whitney inequality (8.21). Put differently, the multilinear Kakeya estimate is a
generalization of the Loomis–Whitney inequality. The geometric nature of this generalization is
of course much more transparent than in the multilinear restriction problem.

(4) As opposed to the linear case, the multilinear Kakeya theorem does not imply something
on the dimension of Besicovitch sets, although there is a connection to the joints problem, see
Bennett–Carbery–Tao [BCT06, §7].

(5) Bennett–Carbery–Tao [BCT06, §6] also derived a natural variable coefficient extension of
their results.

(6) Although, we will not review their proof here, let us summarize their strategy. First, one
observes that if each Tj ∈ Tj is centered at the origin (for all j = 1, ..., d), then, the two sides of
(8.23) are trivially comparable. This observation leads to the suggestion that such configurations
of tubes might actually be extremal for the left side of (8.23). For analytic reasons, in pursuing
this idea it seemed natural to replace the rough indicator functions by Gaussians of the form
e−⟨x−v,A(x−v)⟩ for an appropriate positive definite d × d matrix A and vectors v ∈ Rd. Using
these Gaussians as “smoothed cutoff functions”, they give a novel proof of the Loomis–Whitney
inequality in §3. Afterwards, they perturb the inequality in §4; as a corollary of this perturbed
inequality, they obtain the multilinear Kakeya conjecture up to the endpoint (and a “weak” form
of the multilinear restriction conjecture).

(7) Let us take a moment to digest this estimate. For a fixed j , think of the tubes {Tj} ⊆ Tj
as tubes “in direction j”. Now

∑
Tj∈Tj 1Tj (x) is the number of tubes in direction j going through

x. The integrand is
∏d
j=1

(∑
Tj∈Tj 1Tj (x)

)1/(d−1)

, which is big if x lies in many tubes from each

direction. So the integral on the left-hand side of (8.24) measures how many points x lie in
many tubes from each direction. The multilinear Kakeya inequality says that there cannot be
too many points which lie in many tubes from each direction.

(8) The exponent 1/(d− 1) in (8.24) makes the inequality sharp in two natural examples:

• All the tubes go through the origin.
• All the tubes are arranged in a rectangular grid.

The exponent 1/(d− 1) is the most important, and this bound implies sharp estimates with any
other exponent. □

Theorem 8.28 (Weighted multilinear Kakeya). Assume that the assumptions of Theorem 8.26
hold. For each Tj ∈ Tj let wTj ≥ 0 be a weight and define the simple functions

gj :=
∑
Tj∈Tj

wTj1Tj .

Then, one has the similar estimate∥∥∥∥∥∥
d∏
j=1

gj

∥∥∥∥∥∥
L1/(d−1)(B0(1))

≤ Cδ−ε
d∏
j=1

(δd−1
∑
Tj∈Tj

wTj ) . (8.25)

Proof. If wTj ∈ N for all Tj ∈ Tj , then the result is a consequence of the original multilinear
Kakeya inequality (8.23) by including repeats of the tubes in the collections. The estimate for
rational weights follows by rescaling and for reals by continuity. □

Theorem 8.29 (Endpoint multilinear Kakeya (Guth [Gut10])). Formula (8.24) holds without
the subpolynomial loss δ−ε. Moreover, the dependence of the transversality constant ν is given
by ν−1/(d−1).
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Theorem 8.30 (Simple multilinear Kakeya (Guth [Gut15])). Suppose that ℓj,a are lines in Rd
where j = 1, ..., d and a = 1, ..., Nj. Let T̃j,a be the 1-neighborhood of ℓj,a. Suppose that Sj ⊆ Sd−1

is a spherical cap and that the lines ℓj,a lie in Sj. Suppose that for any vectors vj ∈ Sj, we have
the transversality condition |v1 ∧ · · · ∧ vd| ≥ ν.

Let QS denote any cube of side length S. Then for any ε > 0 and any S ≥ 1, one has

∫
QS

d∏
j=1

 Nj∑
a=1

1Tj,a

 1
d−1

≤ Cεν
−O(1)Sε

d∏
j=1

N
1
d−1

j , (8.26)

where ν−O(1) means that the dependence on the transversality constant ν is polynomial.

Moreover, we have the following weighted analog similar to Theorem 8.28. For each Tj,a ∈ Tj
let wj,a ≥ 0 be a weight and define the simple functions

gj :=
∑
Tj∈Tj

wj,a1Tj,a .

Then, with the above notation,∫
QS

d∏
j=1

g
1
d−1

j ≤ Cεν
−O(1)Sε

d∏
j=1

(∑
a

wj,a

) 1
d−1

, (8.27)

holds.

Remarkably, we will find next that the multilinear restriction and Kakeya theorems are essen-
tially equivalent. This equivalence follows from multilinearizing a well known induction-on-scales
argument of Bourgain [Bou91a] (see also Tao–Vargas–Vega [TVV98] for this argument in the
bilinear setting). Before we study this equivalence in detail, we proceed with a review of Guth’s
simple proof of Theorem 8.30.

8.9. Guth’s simple proof of Theorem 8.30. The main goal of this section will be to prove
the following theorem. Theorem 8.30 will follow from it and the ensuing observation.

Theorem 8.31. Suppose that ℓj,a are lines in Rd where j = 1, ..., d and a = 1, ..., Nj. Let T̃j,a
be the 1-neighborhood of ℓj,a. Suppose that the lines ℓj,a makes an angle of at most (10d)−1 with
the ej-axis.

Let QS denote any cube of side length S. Then for any ε > 0 and any S ≥ 1, one has

∫
QS

d∏
j=1

 Nj∑
a=1

1Tj,a

 1
d−1

≤ CεS
ε

d∏
j=1

N
1
d−1

j , (8.28)

The proof is split into three steps.

(1) Reduction to almost axis-parallel tubes
(2) Analyzing the case of exactly axis-parallel tubes using the Loomis–Whitney inequality

(8.21)
(3) Perturbation of the Loomis–Whitney inequality and multiscale analysis

8.9.1. Reduction to nearly axis parallel tubes. The first observation in Bennett et al [BCT06] is
that it suffices to consider collections Tj of tubes which are almost parallel to each other. In
fact, Theorem 8.31 will follow from
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Proposition 8.32. For every ε > 0, there is some δ > 0 such that the following holds. Suppose
that ℓj,a are lines in Rd, and that each line ℓj,a makes an angle of at most δ with the ej-axis.
Then for any S ≥ 1 and any cube QS of side length S, we have

∫
QS

d∏
j=1

 Nj∑
a=1

1Tj,a

 1
d−1

≤ CεS
ε

d∏
j=1

N
1
d−1

j . (8.29)

We will use this to prove Theorems 8.31 and 8.30.

Proof of Theorem 8.31 assuming Proposition 8.32. Let Sj ⊆ Sd−1 be a spherical cap around
ej of radius, say (10d)−1. By the hypothesis of Theorem 8.31, every line ℓj,a has a direction
belonging to Sj . Now, for a given ε > 0, we pick a δ as in Proposition 8.32. We subdivide Sj
now into smaller caps Sj,β of radius δ/10, i.e., Sj can be covered by roughly δ−1 ≲ε 1 caps Sj,β .
Let us abuse notation and write “ℓa,j ∈ Sj,β”, whenever the direction of ℓa,j belongs to Sj,β .
Since the number of caps is ≲ε 1, we have

∫
QS

d∏
j=1

 Nj∑
a=1

1Tj,a

 1
d−1

≲ε
∑

β1,...,βd

∫
Qs

d∏
j=1

 ∑
ℓj,a∈Sj,β

1Tj,a

 1
d−1

.

We claim that each β-summand on the right side is controlled by Proposition8.32. Clearly, this
is the case when βj is such that Sj,βj contains ej . Otherwise, we perform a linear change of
variables such that the center of Sj,β is mapped to ej . Since the angle between the ℓj,a and ej
is at most (10d)−1, the involved Jacobian is at most constd. In any case, the integral in the new
coordinates is again controlled using Proposition 8.32. □

Proof of Theorem 8.30 assuming Proposition 8.32. We again cover Sj by caps Sj,β of a small
radius ρ. As long as ρ ≤ ν/(100d), we can guarantee that |v1 ∧ · · · ∧ vd| ≥ ν/2 for all vj ∈ Sj,β .
We pick a sequence of caps S1,β1 , ..., Sd,βd and change coordinates so that the center of the cap
Sj,βj is mapped to the coordinate vector ej . The distortion of lengths and volumes caused by

this coordinate change is O(ν−1). So, we may apply Proposition 8.32 in these new coordinates.
If ρ = ρ(ε) is small enough, the image of Sj,β is contained in a cap of radius δ = δ(ε) as in
Proposition 8.32 – and this gives the desired estimate with error of order CεO(ν−1)Sε. Finally,
we sum over CεO(ν−1) with different choices of S1,β1 , ..., Sd,βd . □

8.9.2. The axis parallel case (Loomis–Whitney). As we have remarked after Theorem 8.26, the
case where all ℓj,a are parallel to the ej-axis follows from the Loomis–Whitney inequality (8.21)
in the form ∫

Rd

d∏
j=1

fj(πj(x))
1
d−1 ≤

d∏
j=1

∥fj∥
1
d−1

L1(Rd−1)
.

In fact, if the line ℓj,a is parallel to the ej-axis, then it can be defined by the point πj(x) = ya ∈
Rd−1 where it intersects the plane xj = 0, see the figure below.
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Figure 2
Then ∑

a

1Tj,a(x) =
∑
a

1Bya (1)(πj(x)) .

Applying the Loomis–Whitney inequality with

fj =
∑
a

1Bya (1)(πj(x))

with ∥fj∥L1(Rd−1) = |Sd−1|Nj , we obtain

∫
Rd

d∏
j=1

 Nj∑
a=1

1Tj,a

 1
d−1

=

∫
Rd

d∏
j=1

fj(πj(x))
1
d−1 ≤

d∏
j=1

∥fj∥L1(Rd−1) ∼
d∏
j=1

N
1
d−1

j .

8.9.3. The multiscale argument. In the previous subsubsection we saw how to prove Proposition
8.32 in the case where all tubes are parallel to each other. We will now have to understand and
control the impact of slightly tilting them with tilting angle at most δ = δ(ε) for a given fixed
ε. The main idea is the following. Instead of trying to prove the desired estimate immediately
on the scale S, we will first study a smaller scale, say δ−1. Then, we will jump to the larger
scale δ−2 using the Loomis–Whitney inequality and continue this procedure until we arrive at
the desired scale S.

To set up the argument (and also generalize the lemma a bit), we introduce the one-parameter
family of tubes of variable thickness Tj,a,W which are W -neighborhoods (cylindrical or rectan-
gular) of the line ℓj,a.

The following lemma is crucial to get the inductive step from scale δ−1 to scale δ−2 running.
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Lemma 8.33. Suppose the lines ℓj,a make an angle of at most δ from the ej-axis. Let Tj,a,W be
as before and introduce

fj,W :=

Nj∑
a=1

1Tj,a,W .

If S ≥W/δ and QS is any cube of sidelength S, then∫
QS

d∏
j=1

f
1/(d−1)
j,W dx ≤ Cdδ

d

∫
QS

d∏
j=1

f
1/(d−1)
j,W/δ dx .

Proof. Since S ≥ W/δ, we may divide QS into subcubes Q whose side length belongs to

[W/δ20d ,
W/δ
10d ]. Thus, it suffices to prove for each such cube∫

Q

d∏
j=1

f
1/(d−1)
j,W dx ≤ Cdδ

d

∫
Q

d∏
j=1

f
1/(d−1)
j,W/δ dx .

Since the side length of Q is ≤ W/δ
10d , one can find an axis-parallel tube T̃j,a,W̃ of twice the

thickness, i.e., W̃ = 2W , see also the figure below.

Figure 3

Therefore, we have 1Ta,j,W (x) ≤ 1T̃a,j,2W (x) for all x ∈ Q and may estimate∫
Q

d∏
j=1

f
1/(d−1)
j,W ≤

∫
Q

d∏
j=1

(∑
a

1T̃a,j,2W

) 1
d−1

≲
d∏
j=1

(
Nj(Q)

1
d−1 ·W d−1

d−1

)
=W d

d∏
j=1

Nj(Q)
1
d−1 .

Here, we used Loomis–Whitney in the second inequality (like in the previous step) and denoted
the number of tubes Tj,a,W that intersect Q by Nj(Q).

Now, since the side length of Q is ≤ W/δ
10d , its diameter is ≤ W/δ

10
√
d
≤ W/δ

10 . Thus, if Tj,a,W

intersects Q, then certainly 1Tj,a,W/δ(x) = 1 for all x ∈ Q and hence Nj(Q) ≤∑Nj
a=1 1Tj,a,W/δ(x)

for all x ∈ Q. Using this bound and that |Q| ∼ (W/δ)d, we obtain

W d
d∏
j=1

Nj(Q)
1
d−1 ≲ δd|Q|

d∏
j=1

 Nj∑
a=1

1Tj,a,W/δ(x)

 1
d−1

∼ δd
∫
Q

d∏
j=1

 Nj∑
a=1

1Tj,a,W/δ(x)

 1
d−1

,

thereby establishing the claim. □
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We are now ready to give the

Proof of Theorem 8.32. Suppose first S = δ−M . Using Lemma 8.33 repeatedly, we get

∫
QS

d∏
j=1

 Nj∑
a=1

1Tj,a

 1
d−1

=

∫
QS

d∏
j=1

f
1
d−1

j,1 ≤ CMd δd·M
∫
QS

d∏
j=1

f
1
d−1

j,δ−M

with Cd from the assertion of that lemma. Since fj,δ−M (x) ≤ Nj for all x, we can further estimate

∫
QS

d∏
j=1

 Nj∑
a=1

1Tj,a

 1
d−1

≤ CMd δd·M
d∏
j=1

N
1
d−1

j

∫
QS

= CMd

d∏
j=1

N
1
d−1

j .

Since S = δ−M , we have M = logS
log(δ−1) and therefore CMd = S

logCd
log(δ−1) . Now, for given ε, we chose

δ = δ(ε) so small that logCd
log(δ−1) ≤ ε. Thus, for S = δ−M , the above estimate reads

∫
QS

d∏
j=1

 Nj∑
a=1

1Tj,a

 1
d−1

≤ Sε
d∏
j=1

N
1
d−1

j

when S = δ−M . Now, for an arbitrary S ≥ 1, we can find M ∈ N0 so that QS can be covered by
Cδ(ε) cubes of side length δ−M . But then we can use the above estimate for each such subcube
and obtain

∫
QS

d∏
j=1

 Nj∑
a=1

1Tj,a

 1
d−1

≤ CεS
ε

d∏
j=1

N
1
d−1

j .

This concludes the proof of Theorem 8.32. □

8.10. Multilinear restriction ⇔ multilinear Kakeya. We follow Bennett–Carbery–Tao [BCT06,
§2].

Notation. Recall that we introduced for α ≥ 0, q ≥ 2d/(d− 1), and p′ ≤ q(d− 1)/d the notation

R∗(p× ...× p→ q;α)

to denote the multilinear restriction estimate

∥
d∏
j=1

Ejgj∥Lq/d(BR(0)) ≤ CRα
d∏
j=1

∥gj∥Lp(Uj) ,

for some C = C(A, ν, α, d, p, q), for all gj ∈ Lp(Uj), j = 1, ..., d, and all R ≥ 1. Similarly, for
d/(d− 1) ≤ q ≤ ∞, we use

K∗(1× ...× 1 → q; ε)

to denote the multilinear Kakeya estimate

∥
q∏
j=1

(
∑
Tj∈Tj

1Tj )∥q/d ≤ Cδ−ε
d∏
j=1

(δd/q#Tj) (8.30)
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for some C = C(ε, d, q), for all transversal collections of families of δ-tubes in Rd, and all
0 < δ ≤ 1. Recall once more, that (8.30) is equivalent (by standard density arguments in
suitable weak topologies), to the superficially stronger inequality

∥
d∏
j=1

(
∑
Tj∈Tj

1Tj ∗ µTj )∥Lq/d(Rd) ≤ Cδ−ε
d∏
j=1

(δd/q
∑
Tj∈Tj

∥µTj∥) (8.31)

for all finite measures µTj (with Tj ∈ Tj and j = 1, ..., d) on Rd.
With this notation, Theorem 8.26 is equivalent to the statement K∗(1× ...× 1 → q; 0) for all

d/(d − 1) ≤ q ≤ ∞, and K∗(1 × ... × 1 → d/(d − 1); ε) for all ε > 0. Similarly, Theorem 8.25 is
equivalent to R∗(2× ...× 2 → 2d(d− 1); ε) for all ε > 0.

8.10.1. Multilinear restriction ⇒ multilinear Kakeya. As we have already outlined (see also
Proposition 16.12), a standard randomization argument allows one to deduce the multilinear
Kakeya conjecture from the multilinear restriction conjecture. In the localized setting, this of
course continues to be true, i.e., for any α ≥ 0, we have

R∗(2× ...× 2 → 2d

d− 1
;α) ⇒ K∗(1× ...× 1 → d

d− 1
; 2α) . (8.32)

8.10.2. Multilinear Kakeya ⇒ multilinear restriction. Multilinearizing a well known bootstrap-
ping argument of Bourgain [Bou91a] (again, see Tao–Vargas–Vega [TVV98] in the bilinear set-
ting), we shall obtain the following reverse mechanism.

Proposition 8.34. For all α, ε ≥ 0 and 2d/(d− 1) ≤ q ≤ ∞, we have

R∗(2× ...× 2 → q;α) and K∗(1× ...× 1 → q

2
; ε) ⇒ R∗(2× ...× 2 → q;

α

2
+
ε

4
) .

Remark 8.35. Note that there are minor flaws in the proofs of this proposition in Bennett–
Carbery–Tao [BCT06, Proposition 2.1] and in Bennett [Ben14, Proposition 4.8]. (Formula (14)
in [BCT06] can only hold, when the L2(ARj ) norm on the right side of the estimate is replaced

by the L2(A
√
R

j ) norm. A similar flaw occurs in [Ben14].) This flaw is however not grave, as

A
√
R

j can still be covered by R−1/2 × ...×R−1/2 ×R−1 discs (there are now O(R1/2) more discs

in the argument as in these works) as they are merely used to perform a partition of unity of
fj ∗φxR1/2 . In any case, a correct version of the proof appears Lecture 1 (Proposition 36) in Tao’s
notes [Tao20].

Using elementary estimate, one easily verifies R∗(2× ...× 2 → 2d/(d− 1);α) for very large α.
For instance, noting that |B0(R)| = cdR

d, one has

∥
d∏
j=1

Ejgj∥L2/(d−1)(B0(R)) ≤ cdR
d(d−1)/2

d∏
j=1

∥Ejgj∥∞ ≤ cdR
d(d−1)/2

d∏
j=1

∥gj∥L1(Uj) ,

which, by Cauchy–Schwarz, yields R∗(2 × ... × 2 → 2d/(d − 1); d(d − 1)/2). In the presence
of appropriately favorable Kakeya estimates this large value of α may then be reduced by a
repeated application of the above proposition. In particular, Proposition 8.34 together with
(8.32) (multilinear restriction ⇒ multilinear Kakeya) shows the equivalence

R∗(2× ...× 2 → 2d

d− 1
; ε) ⇔ K∗(1× ...× 1 → d

d− 1
; ε) for all ε > 0 .

Therefore, the multilinear restriction theorem (Theorem 8.26) follows from the multilinear Kakeya
theorem (Theorem 8.26). In fact, already Guth’s simpler version (Theorem 8.30) is sufficient to
prove Theorem 8.26.
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The proof of Proposition 8.34 is very similar to that of Tao–Vargas–Vega [TVV98, Lemma
4.4], and on a technical level slightly more straightforward. We begin by stating a lemma which,
given (1) in Remark 8.24 and the control of |Yj | implicit in Assumption 8.23 is a standard

manifestation of the uncertainty principle. (See Córdoba [C8́0] for the origin of this (see also
[Cor77]) and Tao–Vargas–Vega [TVV98, Proposition 4.3] for a proof in the bilinear case which
immediately generalizes to the multilinear case.) In effect, this is similar to localized linear
restriction theory that we discussed in Section 7, especially Lemmas 7.1 and 7.3.

Lemma 8.36. The multilinear restriction estimate R∗(2× ...× 2 → q;α) is true if and only if

∥
d∏
j=1

f̌j∥Lq/d(B0(R)) ≤ CRα−d/2
d∏
j=1

∥fj∥2 (8.33)

for all R ≥ 1 and functions fj ∈ Ŝ(Rd) with supp fj ⊆ ARj ≡ N1/R(Σj(Uj)) := Σj(Uj)+O(R−1)

(an R−1-neighborhood or R−1-annulus) for all j = 1, ..., d.

We now turn to the proof of Proposition 8.34, where the implicit constants in the ≲ notation
will at most depend on A, ν, d, p, α, and ε.

Proof of Proposition 8.34. The proof is somewhat similar to the one of Lemma 8.33 and uses
induction on scales.

Because of the above lemma on the equivalence between global and localized restriction esti-
mates, it suffices to show

∥
d∏
j=1

f̌j∥Lq/d(B0(R)) ≲ Rα/2+ε/4−d/2
d∏
j=1

∥fj∥L2(ARj )

for all fj with supp fj ⊆ ARj with j = 1, ..., d. To this end, let φ ∈ Ĉ∞
c (Rd) be a bump

function adapted to B0(C) such that φ̌(x) ≥ 0 for x ∈ B0(1). For R ≥ 1 and x ∈ Rd, define the
modulated (L1-normalized) dilate φx

R1/2(ξ) := e−2πix·ξRd/2φ(R1/2ξ) which is a bump adapted to

B0(C/R
1/2) in Fourier space, respectively a Schwartz function in physical space which is centered

at x, bounded from below on Bx(C
−1R1/2), and rapidly decaying away from Bx(C

−1R1/2). By
the assumption R∗(2 × ... × 2 → q;α) and the above localization lemma (Lemma 8.36 with R

replaced by
√
R and replacing fj by the modulate fje

2πi⟨x,·⟩), we infer

∥
d∏
j=1

(φxR1/2)
∨f̌j∥Lq/d(Bx(R1/2)) ≲ Rα/2−d/4

d∏
j=1

∥φxR1/2 ∗ fj∥L2(A
√
R

j )

for all x ∈ Rd. Thus, “Lq/d-averaging” this inequality over x ∈ B0(R) (i.e., taking both sides
to the power q/d, integrating over x ∈ B0(R), and taking everything to the power d/q) yields
(using

∫
|x|≤R 1|x−y|≤

√
R dx ≳ Rd/21|y|≤R)

∥
d∏
j=1

f̌j∥Lq/d(B0(R)) ≲ Rα/2−d/4

R−d/2
∫
B0(R)

 d∏
j=1

∥fj ∗ φxR1/2∥2
L2(A

√
R

j )

q/(2d)

dx


d/q

.

In what follows, we shall show that the [...]d/q-term is bounded by Rε/4 · R−d/4 where the
Rε/4 is just the square root of the constant in the multilinear Kakeya estimate (8.31) with

δ = R−1/2. Now, for each j = 1, ..., d, we cover A
√
R

j (the R−1/2-neighborhood around Σj(Uj))

by a boundedly overlapping family of R−1/2 × ... × R−1/2 × R−1-discs {Dj} and introduce



SOME NOTES ON RESTRICTION THEORY 77

fj,Dj := 1Djfj . Since for each j, the supports of the functions fj,Dj ∗ φxR1/2 are only finitely
overlapping, we further obtain

∥
d∏
j=1

f̌j∥Lq/d(B0(R)) ≲ Rα/2−d/4

R−d/2
∫
B0(R)

 d∏
j=1

∑
Dj

∥fj,Dj ∗ φxR1/2∥2L2(Rd)

q/(2d)

dx


d/q

.

Applying Plancherel to the right side and using that (φx
R1/2)

∨ is rapidly decreasing away from

Bx(
√
R), we estimate the right side further from above by a constant times

Rα/2−d/4

R−d/2
∫
B0(R)

 d∏
j=1

∑
Dj

∥(fj,Dj )∨∥2L2(Bx(R1/2))

q/(2d)

dx


d/q

. (8.34)

For each Dj , let ψDj ∈ Ŝ(Rd) with ψDj (ξ) ∼ 1 for ξ ∈ Dj and whose Fourier transform satisfies

|(ψDj )∨(x+ y)| ≲ R−(d+1)/21Tj (x) , x, y ∈ Rd with |y| ≤ R1/2 ,

where Tj denotes the R1/2 × ... × R1/2 × R-tube (which is dual to the disc Dj) centered at
the origin and oriented along the normal of the disc Dj . (Note that we are here using the full

C2(Uj) control given by Assumption 8.23.) Defining f̃j,Dj := fj,Dj/ψDj , we see that fj,Dj and

f̃j,Dj are pointwise comparable. Now, by Cauchy–Schwarz (write the following convolution like

|(f̃j,Dj )∨(z)| |(ψDj )∨(z − w)|1/2 · |(ψDj )∨(z − w)|1/2), we may estimate

|(fj,Dj )∨(x+ y)|2 = |(f̃j,Dj )∨ ∗ (ψDj )∨(x+ y)|2 ≲ R−(d+1)/2|(f̃j,Dj )∨|2 ∗ 1Tj (x)

for all x, y ∈ Rd with |y| ≤ R1/2. Integrating this in y over |y| ≤ R1/2 yields

∥(fj,Dj )∨∥2L2(Bx(R1/2)) ≲ R−1/2|(f̃j,Dj )∨|2 ∗ 1Tj (x) .

Plugging this estimate in (8.34) and applying the R−1/2-rescaled Kakeya hypothesis K∗(1× ...×
1 → q/2; ε) with δ = R−1/2 (in its equivalent “measure form” (8.31)), we obtain

∥
d∏
j=1

f̌j∥Lq/d(B0(R)) ≲ R
α
2 − d

4

R− d
2

∫
B0(R)

 d∏
j=1

∑
Dj

R−1/2|(f̃j,Dj )∨|2 ∗ 1Tj (x)

q/(2d)

dx


d/q

≲ Rα/2−d/2+ε/4
d∏
j=1

∑
Dj

∥f̃j,Dj∥2L2(A
√
R

j )

1/2

≲ Rα/2−d/2+ε/4
d∏
j=1

∥fj∥L2(A
√
R

j )
= Rα/2−d/2+ε/4

d∏
j=1

∥fj∥L2(ARj ) .

In the penultimate inequality we used Kakeya and then Plancherel, and in the final inequality,
the pointwise comparability |f̃j,Dj | ∼ |fj,Dj | and then the almost disjointness of the fj,Dj to take

the Dj-sum into the L2(A
√
R

j )-norm. This concludes the proof of Proposition 8.34. □
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9. Restriction estimates via reverse Littlewood–Paley inequalities and the
Kakeya conjecture

This is a road paved by Carberry [Car15] who observed that the reverse Littlewood–Paley
inequality

∥Sδf∥L2d/(d−1)(Rd) ≲d ∥
(∑

α

|Sαf |2
)1/2

∥L2d/(d−1)(Rd) (9.1)

could be helpful to prove the restriction conjecture. Here, (Sδf)∧(ξ) = Φ( ||ξ|−1|
δ )f̂(ξ) is the a

smooth Fourier projection on the spherical shell of thickness δ around Sd−1 and Sδ = Sα, where
Sα are Fourier projections on δ1/2-separated caps with dimension δ1/2 × ...× δ1/2 × δ. For d = 2
this bound was proved by Fefferman [Fef73] to prove the Bochner–Riesz conjecture in. In that
situation, the L4-norm on the left-hand side can be multiplied out using Plancherel.

Before we introduce the third tool commonly used to prove restriction estimates, let us discuss
another possible approach to prove localized inequalities of the form (for Pd−1 for the sake of
concreteness)

∥(Fdσ)∨∥L2d/(d−1)(B(x0,R)) ≲ Rε∥F∥L2d/(d−1)(Pd−1,dσ)

for R≫ 1 and any x0 ∈ Rd. As we saw earlier, the above estimate can actually be reduced to

∥Ǧ∥L2d/(d−1)(B(x0,R)) ≲ Rε−(d+1)/(2d)∥G∥L2d/(d−1)(N1/R(Pd−1))

for any Ǧ with smooth Fourier support contained in N1/R(Pd−1) (see Lemma 7.1). To make

things simpler, let us only consider smooth functions f ≡ Ĝ with f̂ = G belonging to the unit
ball in L∞(N1/R(Pd−1)), i.e., we are aiming to prove

∥f∥L2d/(d−1)(BR) ≲ Rε−1 .

Of course, this is a weaker statement (by Hölder’s inequality), but by symmetry considerations
one can actually show these statements are equivalent to each other.

We are now going to decompose N1/R(Pd−1) into a collection of “slabs” θ ⊆ Rd, i.e., essentially
disjoint curved regions with dimension R−1/2 ×R−1/2 × · · · ×R−1. An explicit way to do this is
to cover [−1, 1]d−1 with 2R−1/2 ×R−1/2 × · · · ×R−1/2 cubes {Q} whose centers lie in the lattice
R−1/2Zd−1 and define each θ by

θ = {(ξ′, η + |ξ′|2) : ξ′ ∈ Qθ, |η| ≲ R−1}
for some choice of Qθ ∈ {Q}. We emphasize once more that it is important that the slabs are
only essentially disjoint, i.e., they have some finite overlap which will also become manifest in
a moment. In fact, the finite overlap allows us to construct a partition of unity of N1/R(Pd−1)
which is adapted to the family of slabs. Another consequence of this construction (and the
curvature of Pd−1) is the following observation concerning the set Ω of normals of these slabs.

Lemma 9.1. The normals of the above slabs are R−1/2-separated.

Proof. For j = 1, 2, assume (ξ′j , |ξ′|2) ∈ Pd−1 and let νj = ∇|ξ′|2/∥∇|ξ′|2∥ (with ∇|ξ′j |2 =

(2ξ′j ,−1)) denote the unit normal of Pd−1 at (ξ′j , |ξ′|2). Then, by Cauchy–Schwarz and |ξ′1−ξ′2| ∼
R−1/2,

ν1 · ν2 =
4ξ′1 · ξ′2 + 1

(4|ξ′1|2 + 1)1/2(4|ξ′2|2 + 1)1/2
≤
(
1− 4|ξ′1 − ξ′2|2

(4|ξ′1|2 + 1)(4|ξ′2|2 + 1)

)1/2

≤ (1−AR−1)1/2 .

Thus, we obtain
|ν1 − ν2|2 = 2(1− ν1 · ν2) ≳ R−1

by the mean value theorem. If ν1 · ν2 < 0, the above difference is even O(1). □
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We will now decompose f using the partition of unity that is given by the slabs θ, i.e.,

f =
∑

θ:R−1/2−slab

fθ where f̂θ = f̂1θ .

Our goal is then to prove ∥∥∥∥∥∥
∑

θ:R−1/2−slab

fθ

∥∥∥∥∥∥
L2d/(d−1)(B(x0,R))

≲ Rε−1 .

In fact, we will show the ostensibly stronger estimate∥∥∥∥∥∥
∑

θ:R−1/2−slab

fθ

∥∥∥∥∥∥
2d/(d−1)

≲ Rε−1 .

The main difficulty is to understand the cancellation properties between the individual fθ. There-

fore, our first goal is to replace the ℓ1 quantity
∑
θ |fθ| by the ℓ2 quantity

(∑
θ |fθ|2

)1/2
which has

the effect of separating the contributions from individual fθ whilst accounting for any destructive
interference. Unfortunately, such a strong relationship has not been obtained yet, which is why
we only have the following

Conjecture 9.2 (Reverse Littlewood–Paley inequality for slabs). Suppose f has frequency sup-
port in N1/R(Pd−1). Then

∥f∥Lp(Rd) ≲ Rε

∥∥∥∥∥∥∥
 ∑
θ:R−1/2−slab

|fθ|2
1/2

∥∥∥∥∥∥∥
Lp(Rd)

for 2 ≤ p ≤ 2d

d− 1
. (9.2)

For even Hölder exponents, the reverse square function estimate can be proved under the
condition that Minkowski sums of sets have only bounded overlap.

Definition 9.3. Let (Ωj)
n
j=1 be a sequence of sets in Rd. We say that “ξ lies in at most A(ξ) ∈ N

of the Ωj” whenever the maximal number of Ωj which contain ξ is given by A(ξ), i.e.,

A(ξ) := sup{number of Ω′
js containing ξ} .

Then we have the following

Proposition 9.4 (Reverse L2 and L4 square function estimates). Let f1, ..., fn ∈ S(Rd) have
Fourier support in sets Ω1, ...,Ωn ⊆ Rd, respectively. Then we have the following assertions.

(1) (Almost orthogonality) If the sets Ω1, ...,Ωn have overlap at most A2, (i.e., every ξ lies
in at most A2 ∈ N of the Ωj, i.e., supξ∈Rd A(ξ) ≤ A2) for some A2 > 0, then

∥
n∑
j=1

fj∥L2(Rd) ≤ A
1/2
2 ∥(

n∑
j=1

|fj |2)1/2∥L2(Rd) .

(2) (Almost bi-orthogonality) If the (n2) sum sets Ωi +Ωj := {ξ + ξ′ : ξ ∈ Ω , ξ′ ∈ Ω′} with
i, j ∈ {1, ..., n} have overlap at most A4 for some A4 > 0, then

∥
n∑
j=1

fj∥L4(Rd) ≤ A
1/4
4 ∥(

n∑
j=1

|fj |2)1/2∥L4(Rd) .
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Remarks 9.5. (1) Clearly, the above theme can be generalized for L2p with p ∈ N, if one
assumes that the sum sets

∑p
j=1 Ωj have overlap at most A2p, see, e.g., Gressman–Guo–Pierce–

Roos–Yung [GGP+21].
(2) By using fifj in place of fifj , one can also establish a variant of (2) in Proposition 9.4

where the sum set Ωi +Ωj is replaced by the difference set Ωi −Ωj := {ξ − ξ′ : ξ ∈ Ω , ξ′ ∈ Ω′}.
Proof. (1) For p = 2 this is an immediate consequence of Plancherel’s theorem, pointwise Cauchy–
Schwarz

(

n∑
j=1

|f̂j(ξ)|)2 ≤ A2(

n∑
j=1

|f̂j(ξ)|2)

(since the sets are only finitely overlapping) and Fubini. More precisely,

∥
n∑
j=1

fj∥2 = ∥
n∑
j=1

f̂j∥2 ≤ A
1/2
2 ∥(

n∑
j=1

|f̂j |2)1/2∥2 = A
1/2
2 ∥(

n∑
j=1

|fj |2)1/2∥2 .

(2) Writing

∥
n∑
j=1

fj∥24 = ∥
n∑

i,j=1

fifj∥2

and

∥(
n∑

i,j=1

|fifj |2)1/2∥2 = ∥(
n∑
j=1

|fj |2)1/2∥24

it becomes obvious that this assertion follows from what we have just shown. More precisely,
using the fact that fifj has Fourier support in the Minkowski sum Ωi +Ωj (by the convolution

theorem, i.e., supp f̂1 ∗ f̂2 ⊆ supp f̂1+supp f̂2) and the fact that these sums only overlap finitely,
we can apply Cauchy–Schwarz in the i, j-summation, i.e.,

(

n∑
i,j=1

f̂ifj(ξ))
2 ≤ A4

n∑
i,j=1

|f̂ifj |2(ξ)

and conclude as before using Plancherel. □

In Appendix B we will apply the above observation to review a classical argument due to
Córdoba which proves the reverse Littlewood–Paley inequality (and thereby the restriction con-
jecture) in d = 2 when p = 4. (Recall that we already presented in Subsection 8.4 an alternative
proof of two-dimensional restriction relying on bilinear techniques.)

Remark 9.6. In fact, an argument of Carbery [Car15] shows that the hypothesized square func-
tion estimate (9.2) implies the Kakeya conjecture and, consequently, the restriction conjecture.
Attempting to prove the whole restriction conjecture from this direction seems a quite optimistic
strategy as (9.2) appears to be very powerful and in all likelihood considerably more difficult
than the restriction conjecture.

From now on, we will assume that the reversed Littlewood–Paley inequality holds. The
frequency localization onto the slabs leads (by the uncertainty principle) to a localization to dual
tubes which is called wave packet decomposition and which will be discussed in the next section.
Let us anyway anticipate already the main result of that section, Lemma 10.2, which says that
there exist constants fT and a collection T(θ) of tubes dual to the slab θ (which is centered at
ξθ ∈ Rd) which cover Rd such that

fθ(x) =
∑

T∈T(θ)

fTψT (x) ,
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where ψT (x) = |T |−1e−2πix·ξθφT (x) is a so-called wave packet associated to T . Here, φT = φ◦a−1
T

where φ is a Schwartzian bump function centered at the origin with supp φ̂ ⊆ [−1/2, 1/2]d and
aT is an affine transformation whose linear part has determinant |T | and maps [−1/4, 1/4]d

bijectively to T . (Recall that for an invertible linear map S : Rd → Rd, one has

f̂ ◦ ST = |det(ST )|−1f̂ ◦ S−t

where S−t denotes the inverse transpose of S.)
Now, applying the Littlewood–Paley conjecture together with the wave packet decomposition

implies that it suffices to bound (noting |T | ∼ R(d+1)/2)

R−(d+1)/2

∥∥∥∥∥∥∥∥
 ∑
θ:R−1/2−slab

 ∑
T∈T(θ)

|fT ||φT |

2


1/2
∥∥∥∥∥∥∥∥
L2d/(d−1)(Rd)

.

We will do so by replacing the “smooth indicator function” φT (which decays rapidly away
from T ) by a sharp cut-off 1T and afterwards applying the Kakeya conjecture 16.6. In this
context (using |T | ∼ R(d+1)/2 and that the number of R−1/2-separated slabs covering Pd−1 is
O(R(d−1)/2)), the conjecture says∥∥∥∥∥∥

∑
θ:R−1/2−slab

1Tθ

∥∥∥∥∥∥
Ld/(d−1)(Rd)

≲ Rε+d−1 .

We begin with the replacement of φT by 1T . For this, let ℓ ∈ Zd and 1T,ℓ denote the
characteristic function of the rectangle aT

(
[−1/4, 1/4]d + ℓ/2

)
. Thus, the 1T,ℓ yield a rough

partition of unity of Rd.

Lemma 9.7. With the above notation, the estimate∥∥∥∥∥∥∥∥
 ∑
θ:R−1/2−slab

 ∑
T∈T(θ)

|fT ||φT |

2


1/2
∥∥∥∥∥∥∥∥
L2d/(d−1)(Rd)

≲
∑
ℓ∈Zd

(1 + |ℓ|)−(d+1)

∥∥∥∥∥∥∥∥
 ∑
θ:R−1/2−slab

 ∑
T∈T(θ)

|fT |1T,ℓ

2


1/2
∥∥∥∥∥∥∥∥
L2d/(d−1)(Rd)

holds.

Proof. This follows from the rapid decay of φ, i.e.,

|φT (x)| =
∑
ℓ∈Zd

φT (x)1T,ℓ(x) ≲
∑
ℓ∈Zd

1T,ℓ(x)(
1 + |a−1

T (x)|
)d+1

≲
∑
ℓ∈Zd

1T,ℓ(x)

(1 + |ℓ|)d+1

and a two-fold application of Minkowski’s inequality (first in the ℓ2-norm and afterwards in the
L2d/(d−1)-norm). □

Since the supports of the 1T,ℓ are essentially disjoint as T varies over T(θ) (i.e., 1T1,ℓ(x)1T2,ℓ(x) =
0 for almost all T1, T2 ∈ T(θ)), one has ∑

T∈T(θ)

|fT |1T,ℓ

2

≲
∑

T∈T(θ)

|fT |21T,ℓ .
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That means that the L2d/(d−1)-norm (of the right side appearing in the inequality of the above
lemma) for a fixed ℓ ∈ Zd can be bounded by∥∥∥∥∥∥

∑
θ:R−1/2−slab

∑
T∈T(θ)

|fT |21T,ℓ

∥∥∥∥∥∥
Ld/(d−1)(Rd)

This means that it suffices to show that this expression is O(R(d−1)/2). Using the information

on
∑
T |fT |2 from the wave packet decomposition and our initial hypothesis that f̂ belongs to

the unit ball of L∞(N1/R(Pd−1)), we have∑
T∈T(θ)

|fT |2 ≲ 1 ,

i.e., there exists a sequence (cT )T∈T(θ) of non-negative real numbers such that∑
T∈T(θ)

cT = 1

and that∥∥∥∥∥∥
∑

θ:R−1/2−slab

∑
T∈T(θ)

|fT |21T,ℓ

∥∥∥∥∥∥
Ld/(d−1)(Rd)

≲

∥∥∥∥∥∥
∑

θ:R−1/2−slab

∑
T∈T(θ)

cT1T,ℓ

∥∥∥∥∥∥
Ld/(d−1)(Rd)

.

Lemma 9.8. With the above notation, we have∥∥∥∥∥∥
∑

θ:R−1/2−slab

∑
T∈T(θ)

cT1T,ℓ

∥∥∥∥∥∥
Ld/(d−1)(Rd)

≲ E

∥∥∥∥∥∥
∑

θ:R−1/2−slab

1Tθ,ℓ

∥∥∥∥∥∥
Ld/(d−1)(Rd)

for any ℓ ∈ Zd and choice (Tθ) ∈
∏
θ T(θ)

13.

Believing this lemma for the moment, the argument is concluded by applying the hypothesized
Kakeya estimate ∥∥∥∥∥∥

∑
θ:R−1/2−slab

1Tθ,ℓ

∥∥∥∥∥∥
Ld/(d−1)(Rd)

≲ Rε+d−1 (9.3)

which is valid for every choice ℓ ∈ Zd and (Tθ) ∈
∏
θ T(θ). We conclude the section with the

Proof of Lemma 9.8. (1) Consider randomly selecting a sequence of rectangles, one for each
direction θ. Each T is chosen from T(θ) with a probability cT

14. This means that we constructed
a probability space

∏
θ T(θ) where a sequence of rectangles (i.e., a singleton {(Tθ)}) is picked

with the probability
∏
θ cTθ .

(2) For a fixed x ∈ Rd, consider the random variable
∑
θ 1Tθ,ℓ(x) which counts the number of

rectangles of the above randomly picked sequence (Tθ) for which x ∈ supp 1Tθ,ℓ. The expectation
value (with respect to the “probability space” T(θ)) that x ∈ supp 1Tθ,ℓ holds for a given θ is
given by

E1Tθ,ℓ(x) =
∑

T∈T(θ)

cT1T,ℓ(x) .

13Here, (Tθ) is understood as a randomly picked sequence of rectangles, one for each direction θ. The space∏
θ T(θ) is thus endowed with a probability measure which assigns the probability

∏
θ cTθ to each singleton {(Tθ)}.

14More precisely, consider a sequence of slabs (θj)j∈N. Then for each slab θj , there is a sequence of rectangles

(Tn
θj

)n∈N ∈ T(θj) (which covers Rd) and the above cT actually means cTn
θj
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Thus, by the linearity of the expectation, one has

E

 ∑
θ:R−1/2−slab

1Tθ,ℓ(x)

 =
∑

θ:R−1/2−slab

∑
T∈T(θ)

cT1T,ℓ(x) .

Taking the Ld/(d−1)-norm of these expressions, we infer from Minkowski’s inequality∥∥∥∥∥∥
∑

θ:R−1/2−slab

∑
T∈T(θ)

cT1Tθ,ℓ(x)

∥∥∥∥∥∥
Ld/(d−1)(Rd)

≤ E

∥∥∥∥∥∥
∑

θ:R−1/2−slab

1Tθ,ℓ(x)

∥∥∥∥∥∥
Ld/(d−1)(Rd)

for any ℓ ∈ Zd and choice (Tθ) ∈
∏
θ T(θ). □

10. The wave packet decomposition

We will now present the third method which has been used over the last say ten years to
obtain restriction estimates.

For the sake of illustration, assume that we wish to prove restriction estimates for the parab-
oloid Pd−1 using restriction estimates via reverse Littlewood–Paley inequalities.

Recall that we covered N1/R(Pd−1) with R−1/2 × · · · × R−1/2 × R−1-slabs θ whose normal

directions were R−1/2-separated. This lead us to the decomposition f =
∑
θ fθ in Fourier space

where f̂θ = f̂1θ. By the uncertainty principle, localizing to a slab θ which is oriented in direction
ω is equivalent to localizing to a dual tube T (or rather to a collection of such tubes covering
Rd) of dimensions R1/2× · · ·×R1/2×R in physical space which is oriented along ω as well. The
functions which are going to localize to these tubes are called wave packets and can be thought
of as smoothed out copies of Knapp examples. The goal of this section is to make the above
intuition more precise.

Let T be some rectangle and aT be an affine transformation whose linear part has determinant
|T | and which maps [−1/4, 1/4]d bijectively to T .

Let further φ be a Schwartzian bump function at the origin such that supp φ̂ ⊆ [−1/2, 1/2]d

and φ̂|[−1/4,1/4]d = 1. Define then φT := φ ◦ a−1
T as the bump function on the tube T . (Recall

that for an invertible linear map S : Rd → Rd, one has

f̂ ◦ S = |det(S)|−1f̂ ◦ S−t

where S−t denotes the inverse transpose of S.)
Finally, for a given slab θ, we denote by T(θ) the finitely overlapping collection of tubes which

are dual to θ, oriented along the direction of θ.
With the above notation, we are finally in position to define wave packets.

Definition 10.1 (Wave packets). Let θ be an R−1/2-slab centered at ξθ ∈ Rd. Let T , aT , φT
and T(θ) as above. Then a wave packet associated to T ∈ T(θ) is defined as

ψT (x) := |T |−1e2πix·ξθφT (x) .

Before we make the heuristics of the beginning of the section precise, the following crucial
observations are in order.

(1) If a∗T denotes the adjoint of the linear part of the affine transformation aT , then |ψ̂T (ξ)| ∼
|φ̂(a∗T (ξ − ξθ)) and ψ̂T is supported on a dilute of θ with |ψ̂T |θ| = 1.

(2) We have the support property {ξ ∈ Rd : |ψ̂T (ξ)| = 1} ⊆ (a∗T )
−1
(
[−1/4, 1/4]d

)
+ ξθ where

(a∗T )
−1
(
[−1/4, 1/4]d

)
is a rectangle dual to T .
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Lemma 10.2 (Wave packet decomposition). Let f ∈ C∞(Rd) with Fourier support in N1/R(Pd−1).

Then for any R−1/2-slab θ there exists a decomposition

fθ(x) =
∑

T∈T(θ)

fTψT (x)

where the constants fT satisfy  ∑
T∈T(θ)

|fT |2
1/2

≲ ∥f̂θ∥L2
avg(θ)

.

Here, the averaged Lp norm ∥ · ∥Lpavg(Ω) for some subset Ω ⊆ Rd of finite Lebesgue measure is
defined as

∥f∥Lpavg(Ω) := |Ω|−1/p∥f∥Lp(Ω) . (10.1)

Proof. Denote by T0 the R1/2 × · · · × R1/2 × R-rectangle oriented along θ and centered at 0.
Then

gθ(ξ) := f̂θ((a
∗
T0
)−1ξ + ξθ)

is supported on [−1/2, 1/2]d and can be thought of as a function on the torus Td = [−1/2, 1/2]d.
That means, that it can be expanded in a Fourier series whose Fourier coefficients uk satisfy∑

k∈Zd
|uk|2 = ∥gθ∥2L2([−1/2,1/2]d) ≲ ∥f̂θ∥2L2

avg(θ)
.

Therefore,

f̂θ(ξ) = gθ(a
∗
T0
(ξ − ξθ)) =

∑
k∈Zd

uke
−2πik·a∗T0 (ξ−ξθ) for ξ ∈ (a∗T0

)−1
(
[−1/2, 1/2]d

)
+ ξθ .

On the other hand, we saw in our earlier considerations that the function φ̂(a∗T0
(ξ − ξθ)) equals

one on supp f̂θ and is itself supported on (a∗T0
)−1

(
[−1/2, 1/2]d

)
+ ξθ. But that means that the

last equality can also be written as

f̂θ(ξ) = gθ(a
∗
T0
(ξ − ξθ)) =

∑
k∈Zd

uke
−2πik·a∗T0 (ξ−ξθ)φ̂(a∗T0

(ξ − ξθ)) for ξ ∈ Rd .

Performing an inverse Fourier transform on the last expression then leads to

fθ(x) =
∑
k

uk|det a−1
T0

|e2πix·ξθφT0
(x− aT0

k) = const
∑
k

ukψT0+aT0k
(x) .

The proof is concluded by noting that T(θ) is just the collection of all rectangles of the form
{T0 + aT0k}k∈Zd . □

11. The polynomial method

We follow Demeter [Dem20, Ch. 8] and refer to Guth’s extensive treatment [Gut16a].
One notable feature of affine subspaces, such as points and lines, is their lack of scale. Can

polynomials be used to count cubes and tubes? How about to estimate integrals involving
complicated expressions? Dvir’s proof [Dvi09] of the finite field Kakeya conjecture introduced
a robust way of counting structures (e.g., special points, lines) with the aid of polynomials.
Another satisfactory answer came in the form of the resolution of the endpoint multilinear Kakeya
conjecture by Guth [Gut10].

Perhaps even more surprising is the fact that Guth also managed to tailor the polynomial
method to produce significant progress on the restriction conjecture, a highly oscillatory problem
that is not a priori formulated as a counting problem. His approach can be summarized as follows.
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Use a polynomial P of small degree to partition the spatial ball B(0, R) into cells where |Ef |p
has roughly the same mass. On B(0, R), the function Ef is the sum of wave packets whose mass
is concentrated inside tubes. The key is to understand how the various wave packets interact
with the cells. The contribution from the tubes that lie roughly tangent to the zero set Z(P )
of the polynomial P is estimated directly, using both counting arguments for tubes and the
oscillatory properties of Ef . The contribution from the other tubes is estimated using a well-
crafted induction hypothesis, exploiting only the algebraic properties of the cells and the L2

orthogonality of the wave packet decomposition.
Here, we will merely introduce the polynomial partitioning method and refer to Demeter

[Dem20] and Guth [Gut16a] for applications.

11.1. Polynomial partitioning. The main idea of polynomial partitioning is to simultaneously
bisect N masses in Rn using a polynomial of low degree. The low degree of the polynomial allows
one to exploit the fact that any line can interact the zero set Z(P ) of a polynomial only a few
times.

The first building block is the following classical theorem from algebraic topology.

Theorem 11.1 (Borsuk–Ulam). Let f : Sn → Rn be continuous. Then the following two
statements hold and are equivalent to each other.

(1) There is x0 ∈ Sn such that f(−x0) = f(x0).
(2) If f(−x) = −f(x) for all x ∈ Sn, then there is x0 ∈ Sn such that f(x0) = 0.

Remarks 11.2. (1) The case n = 1 can be illustrated by saying that there always exist a pair
of opposite points on the Earth’s equator with the same temperature. The same is true for any
circle. This assumes the temperature varies continuously in space.

(2) The case n = 2 is often illustrated by saying that at any moment, there is always a pair of
antipodal points on the Earth’s surface with equal temperatures and equal barometric pressures,
assuming that both parameters vary continuously in space.

Theorem 11.1 is the key to prove the following “ham sandwich theorem” due to Stone and
Tukey [ST42].

Theorem 11.3. Let F be a real vector space with dimension dim(F) consisting of real-valued,
continuous functions on Rn. (For instance the space of polynomials with given degree.) Let
f0 ≡ 0 denote the trivial function. For N < dim(F) let µ1, ..., µN be finite Borel measures on
Rn such that for each f ∈ F \ {f0}, one has µj(Z(f)) = 0 for all j = 1, ..., N .

Then there is f ∈ F \ {f0} such that for each j = 1, ..., N one has

µj({x ∈ Rn : f(x) > 0}) = µj({x ∈ Rn : f(x) < 0}) . (11.1)

We now apply Theorem 11.3 to the space F = PolyD(Rn) of polynomials on Rn of degree ≤ D.
In the following estimates, the dependence on D will be important, while that on the ambient
space dimension is swept under the rug as always. We start with two preliminary observations.

(1) A simple counting argument reveals that this space has a fairly large dimension, namely

dim(PolyD(Rn)) =
(
D + n

n

)
∼n Dn (11.2)

(2) The zero set of any polynomial P has zero Lebesgue measure (as can be seen from a
simple induction argument).

Corollary 11.4 (Polynomial ham sandwich). Let µ1, ..., µN be finite Borel measures on Rn
that are absolutely continuous with respect to the Lebesgue measure. Then there is a non-trivial
polynomial P ∈ PolyD(Rn) with D ≲n N1/n such that for each j = 1, ..., N we have

µj({x ∈ Rn : P (x) > 0}) = µj({x ∈ Rn : P (x) < 0}) . (11.3)
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Iterating this corollary ∼ Dn times allows us to split any “mass” into N equal pieces.

Theorem 11.5 (Guth [Gut16b]). Let 0 ≤ W ∈ L1(Rn). Then for each degree D there is
0 ̸= P ∈ PolyD(Rn) such that Rn \ Z(P ) is the disjoint union of ∼n Dn open sets {Oj}j (called
“cells”) such that all integrals

∫
Oj
W are equal. Moreover, each line in Rn can intersect at most

D + 1 cells Oj.

Example 11.6. Let W = 1[0,1]n . Then the polynomial

P (x1, ..., xn) =

n∏
j=1

M−1∏
m=1

(
xj −

m

M

)
(11.4)

has degree D = n(M − 1). Moreover, Rn \ Z(P ) has Mn connected components Oj satisfying∫
Oj
W =M−n for all j = 1, ...,Mn.

For technical reasons, it is helpful in our arguments later to use non-singular polynomials.

Definition 11.7 (Non-singular points and polynomials). A point x ∈ Rn is called non-singular
for a function P : Rn → C, if ∇P ̸= 0. A polynomial P is called non-singular, if every point in
Z(P ) is non-singular for P .

Remarks 11.8. (1) The neighborhood of Z(P ) close enough to a non-singular point is a smooth
hypersurface.

(2) In most applications, it suffices for the integrals W to be comparable, rather than equal to
each other. Using a density argument, this can be achieved by using only nonsingular polynomials
Pi in the proof of Theorem 11.5 (cf. [Gut16b]). A product of nonsingular polynomials has the
property that its non-singular points are dense in its zero set. This additional regularity makes
some of the arguments easier. We make this remark precise in the following theorem.

Theorem 11.9. Suppose 0 ≤W ∈ L1(Rn). Then for any D there exists a non-zero polynomial
P of degree ≤ D so Rn \ Z(P ) is a disjoint union of ∼n Dn open sets Oj. Moreover, the
integrals

∫
Oj
W agree up to a factor of 2. Finally, the polynomial P is a product of non-singular

polynomials.

12. Induction on scales

This is only a brief section for now, explaining the crucial induction on scales lemma used in
the proof of the ℓ2-decoupling estimates for the parabola. We follow Guth [Gut23, Section 3].

For the sake of concreteness, consider the truncated paraboloid

P := {(ξ, ξ2) : |ξ| ≤ 1},
For N > 0, let Ω denote the N−2-neighborhood of P and define N−1 ×N−2-slabs covering Ω as

θj := Ω ∩
{
j

N
− 1

2N
≤ ξ ≤ j

N
+

1

2N

}
.

We write Decp(PN ) for the best constant in the ℓ2-decoupling inequality

∥f∥Lp(Rd) ≤ Decp(PN )

(∑
θ

∥fθ∥2Lp(Rd)

)1/2

whenever suppf̂ ⊆ Ω with fθ := (f̂1θ)
∨.

Lemma 12.1. We have Decp(PN1N2
) ≤ Decp(PN1

)Decp(PN2
).
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A crucial ingredient in the proof is the invariance of decoupling constants under translations
and linear changes of variables, denoted by a map L : Rd → Rd. This holds in greater generality,
i.e., suppose we have a disjoint decomposition Ω =

⊔
θ and a corresponding new decomposition

LΩ =
⊔
Lθ. Then,

Decp(LΩ =
⊔
Lθ) = Decp(Ω =

⊔
θ). (12.1)

This follows from the observation that if a function g has Fourier support in Ω and g =
∑
θ gθ,

then we can perform a change of variables to get a new function g̃ with Fourier support in LΩ.
Since the Fourier transform behaves in a nice way with respect to linear changes of variables and
to translations, it is easy to track how the decoupling constants behaves, and verify (12.1)

We can now give the

Proof of Lemma 12.1. Suppose that f̂ is supported in Ω, the (N1N2)
−2-neighborhood of P . This

neighborhood is divided into blocks θ of length (N1N2)
−1 and we aim to show that

∥f∥2p ≤ Decp(PN1
)2Decp(PN2

)2
∑
θ

∥fθ∥2p.

To that end, we perform two subsequent decompositions. We start with a coarse decomposition
of Ω into slabs of length N−1. To that end, we note that Ω is contained in the N−2

1 -neighboorhod
of P , which we divide into slabs τ of length N−1

1 . By definition of Decp(PN1
), we have

∥f∥2p ≤ Decp(PN1
)2
∑
τ

∥fτ∥2p.

Now, the support of f̂τ is contained in Ω∩ τ , which we can decompose as Ω∩ τ =
⊔
θ∈τ θ, which

θ being as before the (N1N2)
−1-slabs covering Ω. By the definition of Decp,

∥fτ∥2p ≤ Decp

Ω ∩ τ =
⊔
θ⊆τ

θ

2∑
θ⊆τ

∥fθ∥2p.

Now notice that there are about N2 different θ in every τ . In fact, there is a linear change of
variables, namely a dilation with factor N1, which takes Ω∩τ to the N−1

2 -neighborhood of P and

takes each θ to a N−1
2 -slab. Therefore, by (12.1), Decp

(
Ω ∩ τ =

⊔
θ⊆τ θ

)
= Decp(PN2

). Thus,

combining both decompositions, we get

∥f∥2p ≤ Decp(PN1)
2
∑
τ

∥fτ∥2p. ≤ Decp(PN1)
2Decp(PN2)

2
∑
τ

∑
θ⊆τ

∥fθ∥2p

= Decp(PN1
)2Decp(PN2

)2
∑
θ

∥fθ∥2p,

as desired. □

13. Adapting Wolff’s argument to the paraboloid

14. Connection to PDEs

14.1. Original Strichartz estimates. Strichartz [Str77, §3] observed that restriction theorems
immediately yield estimates on the Lp norms of solutions to certain dispersive PDEs, in particular
the free Schrödinger equation, the Klein–Gordon equation, and the acoustic wave equation. We
begin this section by giving classic bounds on ∥u∥Lpx for the free Schrödinger equation. We will
then generalize these estimates to mixed norm estimates which are invaluable to prove global
well-posedness of nonlinear dispersive equations such as the cubic nonlinear Schrödinger equation.
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The main theorem of this section is the following result [Str77, Corollary 1]. The full range
of Strichartz estimates were proven by Keel and Tao [KT98], whereas non-endpoint results were
obtained by Ginibre and Velo [GV92] and Yajima [Yaj87].

Theorem 14.1 (Strichartz estimate for the free Schrödinger equation). Let u(x, t) be the solution
of the inhomogeneous, free Schrödinger equation

i
∂u

∂t
(x, t) + λ∆xu(x, t) = g(x, t)

u(x, 0) = f(x)
(14.1)

for x ∈ Rd, t ∈ R, and λ ∈ R\{0}. Assume f ∈ L2(Rd) and g ∈ Lp(Rd+1) for p = 2(d+2)/(d+4).
Then u ∈ Lq(Rd+1) for q = 2(d+ 2)/d and ∥u∥q ≤ a(∥f∥2 + ∥g∥p).
Proof. It is well known that (14.1) has a unique solution which can be written as

u(x, t) =

∫ t

0

eiλ(t−s)∆g(x, s) ds+ a

∫
Rd
f̂(ξ)e−i(x·ξ+λξ

2·2t) dξ

by performing a Fourier transform and applying Duhamel’s formula. The estimate for the second
term is then an immediate consequence of the restriction theorem

∥(Fdσ)∨∥Lq(Rd+1) ≲ ∥F∥L2(S)

where the manifold S is the paraboloid starting at the origin, i.e.,

S = {(x, t) ∈ Rd+1 : R(x, t) := t− λ|x|2 = 0} .
To estimate the first term we use ∥eit∆∥2→2 = 1 (by unitarity) and ∥eit∆∥1→∞ ≲ |t|−d/2 (by the
fundamental solution of the free Schrödinger equation). Thus, by interpolation,

∥eit∆∥p→q ≲ |t|−d( 1
p− 1

2 ) = |t|−d/(d+2) .

Thus, with r = d/(d+2) (i.e., 1/p−1/q = 1−r = 2/(d+2)), and the Hardy–Littlewood–Sobolev
inequality,∥∥∥∥∫ t

0

eiλ(t−s)∆g(·, s) ds
∥∥∥∥
Lq(Rd)

≲
∫ t

0

|t− s|−r∥g(·, s)∥Lp(Rd) ds ≲ ∥g∥Lp(Rd+1) ,

which was asserted. □

Remark 14.2. One should compare the last inequality with the Christ–Kiselev lemma [CK01]
which says the following.

Let X,Y be Banach spaces, I be a time interval, and K ∈ C0(I × I : B(X → Y )) be a kernel
taking values in the space of bounded operators from X to Y . Suppose 1 ≤ p < q ≤ ∞ is such
that ∥∥∥∥∫

I

K(t, s)f(s) ds

∥∥∥∥
Lqt (I:Y )

≲ ∥f∥Lpt (I:X)

for all f ∈ Lp(I : X). Then, for any s < t, one also has∥∥∥∥∥∥
∫

s∈I:s<t

K(t, τ)f(τ) dτ

∥∥∥∥∥∥
Lqt (I:Y )

≲ ∥f∥Lpt (I:X)

The principle that motivates this lemma is that if an operator is known to be bounded from
one space to another, then any “reasonable localization” (in this case to the causal region s < t
of time interactions) of that operator should be bounded as well. Unfortunately, the condition
p < q is necessary.
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The proof of this lemma as it was formulated here can be found in Smith and Sogge [SS00,
Lemma 3.1] or Tao [Tao00]. A slight variation thereof was used by Mizutani and Yao [MY21,
Appendix C].

For Strichartz estimate for the Schrödinger equation with scalar potentials, we refer to the
recent paper by Kim–Seo–Seok [KSS21] and the vast list of references therein. Let us in particular
emphasize the groundbreaking works by Bouclet and Mizutani [BM18] and Burq et al [BPSTZ03,
BPSTZ04] for Schrödinger operators with critical singularities and critical decay (in particular
of Hardy’s type). The generalization of Strichartz inequalities to fractional Hardy operators was
carried out by Mizutani and Yao [MY21, Theorems 1.7 and 1.8].

14.2. Global well-posedness of the cubic NLS in d = 2.

14.2.1. Non-linear dispersive equations. Let us discuss some immediate consequences of the re-
striction conjecture regarding evolution equations. Examples for such equations are the heat
equation

∂tu−∆u = 0 ,

the wave equation
∂2t u−∆u = 0 ,

and Schrödinger’s equation
i∂tu−∆u = 0 .

There are many other important evolution equations such as the Euler or the Navier–Stokes
equation which describe the motion of fluids.

For evolution equations, the natural problem to study is the Cauchy problem (as opposed to,
say, the Dirichlet problem). We specify initial data u(0) = f (and, for the wave equation also
the initial velocity ∂tu(0) = g) and ask for the solution u at a later time t. There are three
fundamental questions that one can ask about such equations.

• Existence: does a solution u(t) exist at all? In what sense (weak, strong, classical) is it
a solution? Does it exist for all times, or just for a finite time interval?

• Uniqueness: can there be more than one solution with the same initial data? Are there
some extra conditions (e.g., regularity conditions) one needs to impose to force unique-
ness? If there are still several solutions, is there a “good”, or “physically relevant”
solution that is somehow “better” than the others?

• Stability: suppose we perturb the initial data slightly. How does this affect the solution?
More precisely, does the solution depend continuously on the data (as measured in some
Banach space norm, for instance)?

An equation is said to be well-posed if it satisfies all of the above three properties. (Clearly,
one can qualify well-posedness as being local or global in time, or being subject to some regularity
condition, etc.)

For linear equations these questions are fairly simple to answer, but they become more subtle
for non-linear equations. In the following we shall focus on the nonlinear Schrödinger equation
(NLS), a prime example for a dispersive equation, i.e., irregularities of solutions do not go away at
all, but instead they propagate around in space. In particular, different frequency irregularities
move in different directions or at different speeds. As such, solutions do not get smoother as
time goes by, but they do tend to spread out and decay.

For this discussion, we shall just focus on variants of the Cauchy problem for the free linear
Schrödinger equation

i∂tu−∆u = 0

u(0) = f
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in two spatial dimensions, i.e., u(t, x) is a function on R × R2. For this equation, we have the
exact solution

u(t, x) = e−it∆f(x) =
1

4πt

∫
R2

e−i|x−y|
2/(4t)f(y) dy

which is valid for all t ̸= 0 (and pointwise for f ∈ L1 ∩L2). For fixed f ∈ L1, the solution decays
in time, namely

∥e−it∆f∥∞ ≤ 1

4πt
∥f∥1 .

On the other hand,

∥e−it∆f∥2 = ∥f∥2
by Plancherel. (In fact, all Sobolev norms are conserved in time.) So, even though the solution
decays pointwise, the L2-norm is not altered, i.e., nothing gets “annihilated” (or created). This
is reflecting the dispersive rather than dissipative (meaning that singularities attenuate and
disappear as time goes by) nature of the equation. Very poetically speaking, it is the ∆ term
in the Schrödinger equation that causes the dispersion; without this term, the equation becomes
∂tu = 0 which obviously has no dispersion.

Now let us perturb the free Schrödinger equation. Popular examples of perturbations include

• restricting the equation on a manifold on Rd,
• adding an obstacle (and providing some sort of boundary condition),
• adding a potential,
• coupling it with another equation, or
• adding a non-linearity.

Let us consider the last option and restrict ourselves to the so-called meson equation or cubic
non-linear Schrödinger equation in d = 2 dimensions, i.e.,

i∂tu−∆u = λ|u|2u
u(0) = f

(14.2)

where λ ∈ C is a constant. One could of course consider other non-linearities as well but the
cubic non-linearity is just L2-critical, i.e., if ∥u∥2 is kept constant (as it physically is), it is not
possible to scale λ away (which is possible for other powers of the non-linearity).

To get some idea of what this equation is doing, let us pretend that the dispersive term, i.e.,
∆u, was not present. Then (14.2) can be integrated and the solution reads

u(t) = (|u(0)|−2 − 2at)−
a+ib
2a

u(0)

|u(0)|
where −iλ = a+ib. Obviously, if a = Im(λ) > 0, the equation will blow up in finite time, namely
at t = (2a|u(0)|2)−1. It is basically the non-linearity which causes a positive feedback loop and
leads to the rapid increase of the solution.

However, we expect that the dispersive ∆u term tries to stop this blow-up from happening
by spreading the singularities of u around as soon as they get too large. Of course, for this to
happen, the solution at t = 0 or the coupling constant λ of the non-linearity must not be too
big. In fact, we have the following

Theorem 14.3. Suppose ∥f∥2 = 1. Then, if λ is sufficiently small, there there exists a global
solution u to (14.2) such that ∥u∥2 ≲ 1 for all t. Furthermore, the space-time estimate
∥u∥L4

x,t
≲ 1 holds. This solution is unique subject to the above condition, and the solution

depends continuously in the norms just mentioned on the initial data f in L2. Finally, we
have scattering in the following sense. There exists some initial data f+ such that

∥u(t)− e−it∆f+∥2 → 0 as t→ ∞ .
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In the PDE jargon, we just claimed that the meson equation is globally well-posed with
scattering in L2 for small λ. In Subsection 14.2.4 we shall discuss the case of large coupling
constants λ.

Note that this theorem does not care about the sign of λ. (Intuitively, λ > 0 should act
as an “attractor”.) The theorem says that the decay inherent in the Schrödinger equation has
tamed the effect of the non-linearity. In fact, as time goes to infinity, the non-linearity becomes
increasingly irrelevant.

The techniques used to prove this result are by no means restricted to this one particular
equation; they can be extended to all kinds of non-linear dispersive equations which are in
some sense a small perturbation of a well-understood linear equation. Unfortunately, we still do
not really understand how to push the well-posedness theory beyond perturbation theory into
equations that are far more non-linear than (14.2).

The treatment of these equations is connected, spiritually at least, with restriction theory. An
informal link is as follows. Suppose that u is a global solution to the free Schrödinger equation

i∂tu−∆u = 0 .

Assuming that u has a space-time Fourier transform, we get (formally at least),

−2πτû(τ, ξ) + 4πξ2û(τ, ξ) = 0 ,

where

û(τ, ξ) =

∫ ∫
e−2πi(tτ+ξ·x)u(t, x) dt dx .

If û(τ, ξ) ̸= 0, this implies τ = 2π|ξ|2, i.e., û is supported on the paraboloid

S = {(τ, ξ) : τ = 2π|ξ|2} .

Thus, we may write

û = g dσ

for some g, where dσ is some surface measure on S. It turns out that the best choice of dσ is the
spatial Lebesgue measure dξ, or more precisely the pullback of this measure under the projection
map (τ, ξ) 7→ ξ.

If we require that the initial data of u is in L2, it turns out to imply a L2 estimate on g by

Plancherel’s theorem. In other words, we have a representation of u as u = ĝdσ where we have
L2 control on g.

We would like to say that u decays at infinity, so that the non-linear effects will also die away.
It turns out that the right estimate to use is

∥ĝdσ∥L4
x,t

≲ ∥g∥2 .

(In d spatial dimensions, this is ∥ĝdσ∥
L

2(d+2)/d
x,t

≲ ∥g∥2.) If we take the adjoint of this, this

becomes

∥f̂∥L2(S,dσ) ≲ ∥f∥4/3
which is just the Tomas–Stein restriction estimate RS(4/3 → 2) in d = 3 dimensions.

In what follows we will however not invoke the Tomas–Stein estimate since u is supposed
to solve the non-linear, rather than the free Schrödinger equation. However, the Tomas–Stein
philosophy, particularly squaring an estimate and interpolating between an L1 → L∞ and an
L2 → L2 estimate, will be very present.
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14.2.2. Proof of well-posedness in d = 2. Let us start with the proof of the main theorem. We
want to solve the equation

iut −∆u = λ|u|2u
with initial data u(0) = f . Without loss of generality, let ∥f∥2 = 1. In a first step, we shall
rewrite this equation as an integral formulation via Duhamel’s principle, namely

u(t) = e−it∆f + iλ

∫ t

0

e−i(t−s)∆(|u|2u)(s) ds . (14.3)

(One should think of the first term as the influence of the initial data, whereas the second term
corresponds to the cumulative influence of the forcing term |u|2u.) Although this equation is
equivalent to the differential form, it is much easier to handle when it comes to proving existence
and uniqueness.

To find a solution, we shall use an iterative method. We first approximate u by the linear
solution

u0(t) = e−it∆f

and then make the better approximation

u1(t) = e−it∆f + iλ

∫ t

0

e−i(t−s)∆(|u0|2u0) ds

and so forth, by defining uk+1 = Nuk where

(N(u))(t) = e−it∆f + iλ

∫ t

0

e−i(t−s)∆(|u|2u) ds .

We hope that this sequence of approximations converges to a limit as k → ∞ so that N(u) = u.
Put differently, our goal is to show that the operator N has a fixed point, that this point is
unique, and that it depends continuously on the data. This would be an immediate consequence
of the contraction mapping theorem, provided we know that N is a contraction on some metric
space X which contains u0. This sounds easy enough – and a very large number of existence
results in PDE are ultimately derived from this very simple idea. The catch is that we have to
pick the right metric space to get the contraction working.

After a lot of experimentation and looking at the behavior of the first few iterates u0, u1, etc.,
we ultimately decide that the correct space to use is

X = {u : ∥u∥L4
x,t

≤ C} ,

where C is some universal constant and the metric is induced by the L4 norm. Thus, we would
like to show

∥u0∥L4
x,t

≲ 1 (14.4)

and

∥N(u)−N(v)∥L4
x,t

≤ 1

2
∥u− v∥L4

x,t
for all u, v ∈ L4

x,t . (14.5)

This will be accomplished by the following three estimates which go under the name Strichartz
estimates and were already discussed in Subsection 14.1. We shall use the homogeneous Strichartz
estimate (yields estimate (14.4) on u0 = e−it∆f)

∥e−it∆f∥L4
x,t

≲ ∥f∥2 (14.6)
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(compare this to Theorem 14.1), the dual homogeneous Strichartz estimate (yields scattering
and that u(t) still belongs to L2)

∥
∫ ∞

0

eit∆F (t) dt∥2 ≲ ∥F∥
L

4/3
x,t

, (14.7)

and the retarded Strichartz estimate (yields the contraction property)

∥
∫ t

0

e−i(t−s)∆F (s) ds∥L4
x,t

≲ ∥F∥
L

4/3
x,t

. (14.8)

We shall prove these estimates in the next subsubsection. For now, let us see how these estimates
give what we want.

First, the estimate on the zeroth iteration u0 = e−it∆f , i.e., (14.4), follows trivially from
(14.6). Next, we shall prove the contraction property (14.5). We first note that one can simplify
N(u)−N(v) as

N(u)−N(v) = iλ

∫ t

0

e−i(t−s)∆(|u|2u− |v|2v) ds .

Thus, by (14.8), we have

∥N(u)−N(v)∥L4
x,t

≲ |λ|∥|u|2u− |v|2v∥
L

4/3
x,t

.

Now, we use the pointwise estimate

||u|2u− |v|2v| = ||u|2(u− v)− |v|2(v − u) + |u|2v − |v|2u|
≤ ||u|2(u− v)− |v|2(v − u)|+ |uuv − vvu|
= ||u|2(u− v)− |v|2(v − u)|+ |uv(u− v)|
≤ |u|2|u− v|+ |v|2|v − u|+ |u||v||u− v|

≤ 3

2

[
|u|2|u− v|+ |v|2|u− v|

]
= O(|u|2|u− v|) +O(|v|2|u− v|)

and Hölder’s inequality to obtain

∥N(u)−N(v)∥L4
x,t

≲ |λ|
(
∥u∥24∥u− v∥4 + ∥v∥24∥u− v∥4

)
.

But since u, v ∈ L4
x,t, (14.5) clearly holds, if λ is chosen sufficiently small.

Thus, we have proven existence, uniqueness, and continuous dependence of u on the initial
data. As a bonus, we get that the limit u ∈ L4

x,t. However, we are not done yet; we still

need to show that u(t) still belongs to L2 and that scattering occurs. Let us investigate the
square-integrability. From Duhamel’s version of the NLS, we obtain

∥u(t)∥2 ≲ ∥e−it∆f∥2 + ∥e−it∆
∫ t

0

eis∆(|u|2u) ds∥2 .

Clearly, the first term is bounded since f ∈ L2. To estimate the second one, we use (14.7) and
obtain

∥
∫ t

0

eis∆(|u|2u) ds∥2 ≲ ∥|u|2u∥4/3 = ∥u∥34 ≲ 1

as desired. Finally, we show scattering. Define f+ by

f+ = f + iλ

∫ ∞

0

eis∆(|u|2u)(s) ds ,

i.e., f+ is equal f modified by the backdated effect of the non-linearity. From (14.7) and the
argument just given, we see that f+ ∈ L2. We wish to show

∥u(t)− e−it∆f+∥2 → 0 as t→ ∞ .
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From Duhamel’s version of the NLS, we have

u(t)− e−it∆f+ =

(
e−it∆f + iλ

∫ t

0

e−i(t−s)∆(|u|2u)(s) ds
)

−
(
e−it∆f + iλ

∫ ∞

0

e−i(t−s)∆(|u|2u)(s) ds
)

= −iλe−it∆
∫ ∞

t

eis∆(|u|2u)(s) ds .

Using (14.7), we obtain

∥u(t)− e−it∆f+∥2 ≲ |λ|∥1[t,∞)|u|2u∥4/3
which yields the claim by monotone convergence.

14.2.3. Proof of the Strichartz estimates. [Check whether the following arguments were generalized

by Keel--Tao [KT98, Theorem 1.2] to obtain sharp Strichartz estimates from L1 →
L∞ bounds on eitH.]

Let us first see the implications (14.8) ⇒ (14.7) ⇒ (14.6) and finally prove (14.8). First,
the homogeneous Strichartz estimate follows from the dual homogeneous estimate by Cauchy–
Schwarz, namely ∣∣∣∣∣

∫ (∫ ∞

0

eit∆F (t, x) dt

)
f(x) dx

∣∣∣∣∣ ≲ ∥F∥
L

4/3
x,t

∥f∥2 .

Rearranging the left side, this becomes∣∣∣∣∫ ∫ F (t, x)e−it∆f(x) dt dx

∣∣∣∣ ≲ ∥F∥
L

4/3
x,t

∥f∥2 .

Taking sup
F∈L4/3

x,t
, we obtain ∥e−it∆f∥L4

x,t
≲ ∥f∥2, i.e., (14.6) by duality of the Lp spaces.

Next, let us see how the dual homogeneous estimate follows from the retarded estimate. First,
we square the dual homogeneous estimate as

⟨
∫ ∞

0

eit∆F (t) dt,

∫ ∞

0

eis∆F (s) ds⟩ ≲ ∥F∥2
L

4/3
x,t

and rewrite it as ∫ ∞

0

∫ ∞

0

⟨eit∆F (t), eis∆F (s)⟩ ds dt ≲ ∥F∥2
L

4/3
x,t

.

By symmetry, it suffices to consider the portion of the double integral where s ≤ t, i.e.,∫ ∞

0

dt

∫ t

0

ds ⟨eit∆F (t), eis∆F (s)⟩ ≲ ∥F∥2
L

4/3
x,t

and rewrite this once more as∫
R2

∫ ∞

0

F (t, x)

(∫ t

0

e−i(t−s)∆F (s, x) ds

)
dt dx .

Now, by Hölder’s inequality, the left side is bounded by

∥F∥
L

4/3
x,t

∥∥∥∥∫ t

0

e−i(t−s)∆F (s, x) ds

∥∥∥∥
L4
x,t

.

Now, we may apply the retarded estimate (14.8) which yields the claimed inequality.
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Finally, let us prove the retarded estimate. We write out the L4
x,t norm of the left side of

(14.8) as (∫ ∞

0

dt

∥∥∥∥∫ t

0

e−i(t−s)∆F (s) ds

∥∥∥∥4
L4
x

)1/4

and apply Minkowski’s inequality to obtain

∥
∫ t

0

e−i(t−s)∆F ds∥L4
x,t

≤
(∫ ∞

0

dt

(∫ t

0

ds ∥e−i(t−s)∆F∥L4
x

)4
)1/4

By interpolating between ∥e−it∆f∥2 ≤ ∥f∥2 and ∥e−it∆f∥∞ ≲ |t|−1∥f∥1, we can estimate the
L4
x norm appearing in the integrand and thus obtain

∥
∫ t

0

e−i(t−s)∆F ds∥L4
x,t

≲

(∫ ∞

0

dt

(∫ t

0

ds |t− s|−1/2∥F (s)∥
L

4/3
x

)4
)1/4

≤ ∥| · |−1/2 ∗ ∥F (·)∥
L

4/3
x

∥L4
t
≲ ∥F∥

L
4/3
x,t

where we used the Hardy–Littlewood–Sobolev inequality (in the time-dimension!) in the final
inequality. This concludes the proof of (14.8).

14.2.4. Large values of λ. The proof of the contraction property (14.5) crucially relied on the
smallness of λ. Therefore, it is not expected to obtain global existence for large λ since the
non-linear term can make the the wave function extremely large for certain frequencies before
dispersive effect of ∆ can repair the damage. However, one can at least get a local solution.

Theorem 14.4. Suppose ∥f∥2 = 1 and λ is arbitrary. Then there exits a time T0 > 0 and
a local solution u to (14.2) such that ∥u(t)∥2 ≲ 1 for all 0 ≤ t ≤ T0. Moreover, u satisfies
∥u∥L4

x,t(R2×[0,T0]) ≲ 1. This solution u is unique subject to the above conditions and the solution

depends continuously in the norms just mentioned on the initial data f ∈ L2.

The proof of this theorem is virtually identical to that of the main theorem. There are,
however, two main differences.

(1) All our norms are restricted to the space-time interval R3 × [0, T0].
(2) We iterate on a much smaller ball, namely

X = {u : ∥u∥L4
x,t(R2×[0,T0]) ≤ ε}

where ε(λ) is a tiny number. One can check that the Duhamel mapN is still a contraction
if this number is small enough.

(3) We must guarantee that the zeroth iterate u0 = e−it∆f is in X. But this follows from
the homogeneous Strichartz estimate ∥e−it∆f∥L4

x,t
≲ ∥f∥2, i.e., ∥u0∥L4

x,t
≲ 1 globally.

Thus, if T0 is chosen small enough, monotone convergence shows ∥u0∥L4
x,t(R2×[0,T0]) ≤ ε.

14.3. Strichartz estimates for the Schrödinger equation on the torus via decoupling
inequalities. See Subsubsection 22.1.2 and the notes of Hickman–Vitturi [HV15, p. 22, Lecture
2, Section 2.2].
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15. Pointwise convergence of the Schrödinger evolution

We consider the nonlinear Schrödinger equation (NLS){
i∂tu(x, t) = −∆u(x, t) +N (u) ,

u(x, 0) = f(x) ,
x ∈ Rd or Td

where Td = R/2πZ and N is a power-type nonlinearity. The basic question is the following: Let
s > 0 and f ∈ Hs(Rd). For which s > 0 does the solution u(x, t) converge pointwise (Lebesgue)
almost everywhere to f(x) as t→ 0? For N = 0 in R1 this question was first posed by Carleson
[Car80, p. 24] who showed that almost everywhere convergence holds, whenever f ∈ H1/4(R).
Dahlberg–Kenig [DK82] showed that this one-dimensional result is sharp; in fact, they proved
that s ≥ 1/4 is a necessary condition for a.e. convergence in Rd for all d ≥ 1. Recently, Bourgain
[Bou16] showed that s ≥ d/(2(d+ 1)) is a necessary condition for a.e. convergence to the initial
data. This has been proved to be sharp, up to the endpoint, by Du–Guth–Li [DGL17] in d = 2
and Du–Zhang [DZ19a] in higher dimensions.

See works by Kenig–Ruiz [KR83], Sjölin [Sjö87], Vega [Veg88], Bourgain [Bou92, Bou16],
Du–Guth–Li [DGL17], Du–Guth–Li–Zhang [DGLZ18], Du–Zhang [DZ19a], and the references
therein.

For N (z) = |z|p−1z, see Compaan–Lucá–Staffilani [CLS19] who proved pointwise a.e. conver-
gence in Ωd ∈ {Rd,Td} for p ≥ 3 and

s > max

{
s∗,

d

2
− 2

p− 1

}
and s ≥ 1/4 for d = 1 and p < 9. Here,

s∗ := inf
{
s : lim

t→0
eit∆f(x) = f(x) for a.e. x ∈ Ωd , f ∈ Hs(Ωd)

}
is the exponent for which pointwise a.e. convergence in the linear setting, i.e., N = 0 holds,
i.e., s∗ = d/(2(d + 1)) on Rd and s∗ = d/(d + 2) on Td (see Moyua–Vega [MV08] in d = 1 and
Wang–Zhang [WZ19] for higher dimension.).

See Dimou–Seeger [DS19] for convergence of evolution generated by fractional Laplace in one
dimension. Bounds on eigenfunctions of −∆, see, e.g., Sogge [Sog14, Sog08]. See also Stovall’s
review [Sto19] for more references.

16. Connection to the Kakeya conjecture

In this section, we first show that the so-called Kakeya maximal conjecture is a consequence of
the restriction conjecture. Afterwards, we discuss the connection between the so-called Kakeya
set conjecture and the Kakeya maximal conjecture. In particular, we review the proof of the
two-dimensional Kakeya maximal conjecture. Finally, we discuss how Kakeya can be used to
study the restriction conjecture without the help of the square function conjecture (see Section
9).

16.1. Introduction to the family of Kakeya conjectures. In 1917 Soichi Kakeya [Kak17]
posed the Kakeya needle problem: What is the smallest area required to rotate a unit line
segment (a “needle”) by 180 degrees in the plane? Rotating around the midpoint requires π/4
units of area, whereas a “three-point U-turn” requires π/8. In 1927 the problem was solved by
Abram Samoilovitch Besicovitch [Bes28], who gave the surprising answer that one could rotate
a needle using arbitrarily small area.

At first glance, Kakeya’s problem and Besicovitch’s resolution appear to be little more than
mathematical curiosities. However, in the last three decades it has gradually been realized that
this type of problem is connected to many other, seemingly unrelated, problems in number theory,
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geometric combinatorics, arithmetic combinatorics, oscillatory integrals, and even the analysis
of dispersive and wave equations.

In the following, we discuss the interconnections between these fields, with an emphasis on the
connection with oscillatory integrals and PDE. See Wolff [Wol99] and Bourgain [Bou00] on the
connections between Kakeya-type problems and other problems in discrete combinatorics and
number theory.

16.1.1. Geometrical considerations.

Definition 16.1. A set E ⊆ Rd containing a unit interval in every direction, i.e., for which we
have

∀e ∈ Sd−1 ∃x ∈ Rd : x+ te ∈ E ∀t ∈ [−1/2, 1/2]

is called a Kakeya or Besicovitch set.
Again, the disk of radius 1/2 is an example of a Kakeya needle set.

Definition 16.2. Let d = 2. A Kakeya or Besicovitch needle set is a Besicovitch set in the plane
with a stronger property that a unit line segment can be moved continuously (i.e., translated and
rotated) through 180 degrees within it, returning to its original position with reversed orientation.

Clearly a disk of radius 1/2 is a Kakeya needle set.

Problem 16.3 (Kakeya [Kak17]). How small can Kakeya needle sets be and how do they look
like?

Kakeya was first asking for convex sets and thought that the Reulaux triangle with area

3

∫ π/3

0

dθ

∫ 1

0

dr r =
π

2
−

√
3

2

would be optimal.

Figure 4. Reulaux triangle

In 1920, Julius Pál [P2́0] showed that the smallest convex Kakeya needle set is an equilateral
triangle of height 1 and area 3−1/2.

Subsequently, Kakeya asked for the smallest non-convex set and claimed the deltoid would
give the smallest area.
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Figure 5. Deltoid

To rotate a needle with unit length, one needs 1+2r = 2R, i.e., R = 3/4 and r = 1/4, thereby

giving an area of π/8. This is to be compared to the area (π −
√
3)/2 of a Reulaux triangle and

π/4 of a disk.
Following these considerations, Besicovitch gave the following surprising answer.

Theorem 16.4 ([Bes28]). There are Kakeya and Kakeya needle sets with arbitrary small Lebesgue
measure. In fact, there are Kakeya sets with Lebesgue measure zero.

While there are Kakeya sets with measure zero, there are no Kakeya needle sets with measure
zero as shown by Tao [Tao09b, Sect 1.22].

Besicovitch’s construction was simplified later by Perron [Per28] and Schoenberg; see Cun-
ningham’s review [Cun71].



Ein Anfang

|∆ ∪ J| =
3
√

3γ2 − 6γ + 2
√

3

6

Minimieren über γ gibt γ∗ = 3−1/2 mit |∆ ∪ J| = (2
√

3)−1. Allerdings 6|∆ ∪ J| > π/4.



Pál-Schacht



Perron-Ohren



Perron-Ohren und Pál-Schächte



m + 1 Ohren und m Schächte



Sprießen der Schächte erster Generation und Erzeugung der

zweiten Generation von Schächten



Finale Kakeya-Nadelmenge
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The above outlined proof, based on Besicovitch’s and Perron’s constructions, shows that there
are (not simply connected15) Kakeya sets with arbitrary small measure. In fact, there are Kakeya
sets with zero measure. Intuitively, these observations mean that it is possible to compress a
large number of nonparallel unit line segments into an arbitrarily small set.

In applications one wishes to obtain more quantitative understanding of this compression
effect by introducing a spatial discretization. For instance, one can replace unit line segments
with 1 × δ tubes for some 0 < δ ≪ 1 and ask for the compression of these tubes. Equivalently,
one can ask for bounds of the volume of the δ-neighbourhood of a Besicovitch set.

Rather surprisingly, these bounds are logarithmic in two dimensions. It is known that the δ-
neighborhood of a Besicovitch set in R2 must have area at least C/ log(1/δ); this basically follows
from the geometric observation that the area of the intersection of two 1 × δ rectangles varies
inversely with the angle between the long axes of the rectangles. Recently, U. Keich [Kei99] has
shown that this bound is sharp.

This observation can be rephrased in terms of the Minkowski dimension of the Besicovitch set.
Recall that a bounded set E has Minkowski dimension α or less if and only if for every 0 < δ ≪ 1
and 0 < ε≪ 1 one can cover E by at most Cεδ

−α+ε many balls of radius δ (Lemma E.2). From
the previous discussion we thus see that Besicovitch sets in the plane must have Minkowski
dimension 2.

The corresponding statement for n ≥ 3 is unknown as of this writing.

Conjecture 16.5 (Kakeya set conjecture). All Besicovitch sets in Rn have Minkowski and
Hausdorff dimension equal to n.

According to Tao [Tao01], the best known lower bound for the Minkowski dimension in 2001
is

max

(
n+ 2

2
+ 10−10,

4n+ 3

7

)
.

The lower bound in terms of (n + 2)/2 is due to Wolff [Wol95] and Bourgain [Bou99] and the
lower bound in terms of (4n+3)/7 is due to Katz–Tao [KT02a, KT02b] For n = 3, the Minkowski
dimension is bounded from below by 5/2 as proved by Katz–Llaba–Tao [KLaT00]. See [Wol99]
for a simple proof for the lower bound (n+ 1)/2, which uses the fact that given any two points
that are a distance roughly 1 apart, there is essentialy only one δ × 1 tube which can contain
then both. Wolff’s bound (n+2)/2 relies on the δ-discretized version of the geometric statements
that every non-degenerate triangle lies in a unique two-dimensional plane and every such plane
contains only a one-parameter set of directions.

One can discretize this conjecture. Let Ω be a maximal δ-separated subset of Sn−1 (so that Ω
has cardinality ≈ δ1−n), and for each ω ∈ Ω, let Tω be a δ × 1 tube oriented in the direction ω.
The Kakeya conjecture than asserts logarithmic-type lower bounds on the quantity |⋃ω∈Ω Tω|.

The above formulation is reminiscent of existing results in combinatorics concerning the num-
ber of incidences between lines and points, although a formal connection cannot be made because
the nature of the intersection of two δ×1 tubes depends on the angle between the tubes, whereas
the intersection of two lines is a point regardless of what angle the lines make. However, it is
plausible that one can use the ideas from combinatorial incidence geometry to obtain progress
on this problem. For instance, it is fairly straightforward to show that the Minkowski dimension
of Besicovitch sets is at least (n + 1)/2 purely by using the fact that given any two points that
are a distance roughly 1 apart, there is essentially only one δ × 1 tube which can contain them
both.

15See Cunningham [Cun71] for a construction of simply connected Kakeya sets with arbitrary small measure
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However, there appears to be a limit to what can be achieved purely by applying elementary
incidence geometry facts and standard combinatorial tools (such as those from extremal graph
theory). More sophisticated geometric analysis seems to reveal that a counterexample to the
Kakeya conjecture, if it exists, must have certain rigid structural properties (for instance, the
line segments through any given point should all lie in a hyperplane). Such ideas have led to a
very small recent improvement in the Minkowski bound but they are clearly insufficient to tackle
the full problem.

For further references and details, see, e.g., Cunningham’s review [Cun71] and the Bachelor’s
thesis [GW09].

16.1.2. Analytical questions. See Conjectures 16.6 and 16.10 below.

16.2. Restriction conjecture ⇒ Kakeya maximal conjecture. Here, we follow Lecture 1
in the notes of Hickman and Vitturi [HV15] and Wolff [Wol03, Proposition 10.5].

We show that the Kakeya maximal conjecture is a consequence of the restriction conjecture.
The argument essentially goes back to Fefferman’s resolution of the ball multiplier problem
[Fef71].

The Knapp example (Subsection 3.2) in the introduction is central to the following discussion.
Recall that the restriction estimate R∗

Pd−1(q
′ → p′) “just barely fails” for p′ = q′ = 2d/(d − 1).

By that we mean that for all ε > 0 the estimate

∥(Fdσ)∨∥L2d/(d−1)(B(0,R)) ≲ Rε∥F∥L2d/(d−1)(Pd−1,dσ)

holds for all R≫ 1.
We are now going to consider the case where F is the superposition of many disjoint Knapp

examples, i.e.,

F =
∑
κ

1κ

where κ is a R−1/2 × · · · ×R−1/2 cap on Pd−1. If Ω ⊆ Sd−1 denotes the set of normal directions
to these caps, we have

∥F∥L2d/(d−1)(Pd−1) ≲
(
R−(d−1)/2 × |Ω|

)(d−1)/(2d)

. (16.1)

On the other hand, the uncertainty principle tells us that (1κdσ)
∨ is essentially constant on a

tube dual to κ (with unit normal ω), i.e., on a tube Tω with dimensions R1/2 × · · · × R1/2 × R
which is oriented in the direction ω. Away from Tω, the function (1κdσ)

∨ decays rapidly. Thus,
heuristically,

(Fdσ)∨(x) ∼ R−(d−1)/2
∑
ω∈Ω

e2πix·ξω1Tω (x) (16.2)

where ξω denotes the center of the cap oriented in direction ω ∈ Ω. By modulating the summands
of F , one may replace each Tω in (16.2) with any translate of itself while maintaining (16.1).
Here, we will however agree that the tubes are contained in a ball B(0, AR) for some A > 1 but
otherwise arrange them in an arbitrary fashion. Our goal now is to show that these tubes are
“essentially disjoint” even if their overlap is “maximal” (which it is if we translate them in the
above fashion).

Due to the summation over exponentials in (16.2), we expect considerable cancellations. If no
cancellation was present, |(Fdσ)∨| would roughly equal R−(d−1)/2 times the ℓ1 sum of the 1Tω .
Because of the cancellations, we expect that the ℓ1 sum should be replaced by a smaller ℓ2 sum.
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In fact, randomizing this sequence lets us exploit these cancellations effectively via Khintchine’s
inequality (see, e.g., Stein [Ste70a, Chapter IV, §5, Equation (44) and Appendix D]), i.e.,

∥(
∑
k

|gk|2)1/2∥pp ∼
∫
Rd

E{|
∑
k

εkgk(x)|p} ,

where (εk)k is a Rademacher distributed sequence, i.e., a sequence of statistically independent
and identically distributed random variables with P (εk = ±1) = 1/2 for all k.

Thus, instead of considering a mere sum of Knapp examples, we define the modulated and
randomized sum

F (ξ) =
∑
κ

εκe
2πixκ·ξ1κ(ξ)

for some choice of xκ ∈ Rd. Note that

E∥(Fdσ)∨∥
2d
d−1

L
2d
d−1 (Rd)

≲ RεE∥F∥
2d
d−1

L
2d
d−1 (Pd−1)

= Rε
∫
Pd−1

E{|
∑
κ

εκe
2πixκ·ξ1κ(ξ)|

2d
d−1 } ∼ Rε−(d−1)/2 · |Ω|

(16.3)

by the restriction conjecture and since the value of |F | is independent of the outcome of the εκ.
Moreover,

(Fdσ)∨(x) =
∑
κ

εκ(1κdσ)
∨(x− xκ) .

Applying Khintchine’s inequality and the uncertainty principle (16.2), we obtain

E∥(Fdσ)∨∥
2d
d−1

L
2d
d−1 (Rd)

∼ ∥(
∑
κ

|(1κdσ)∨(· − xκ)|2)1/2∥
2d
d−1
2d
d−1

≳ ∥R−(d−1)/2(
∑
ω

1Tω )
1/2∥

2d
d−1
2d
d−1

= R−d∥
∑
ω

1Tω∥
d
d−1
d
d−1

Combining this with (16.3), we obtain (noting |Tω|
d−1
d ∼ R

(d+1)(d−1)
2d = R(d−1)− (d−1)2

2d )

∥
∑
ω

1Tω∥ d
d−1

≲ Rε+(d−1)− (d−1)2

2d × |Ω| d−1
d = Rε (|Tω| · |Ω|)

d−1
d .

We may thus summarize our above findings in the following conjecture which would follow
from the restriction conjecture.

Conjecture 16.6 (Kakaya maximal conjecture [Dem20, Conjecture 5.3]). Let Ω ⊆ Sd−1 be a
maximal set of R−1/2-separated directions and (Tω)ω∈Ω a collection of R1/2 × · · · × R1/2 × R-
rectangles where Tω is oriented in the direction of ω. Then, for any ε > 0, and d/(d−1) ≤ r ≤ ∞,
the inequality ∥∥∥∥∥∑

ω∈Ω

1Tω

∥∥∥∥∥
Lr)(Rd)

≲ε R
ε

(∑
ω∈Ω

|Tω|
)1/r

·R d−1
2 − d

2r (16.4)

holds.

Remarks 16.7. • The Kakeya problem deals with the biggest compression of R1/2×...×R
(or δ × 1) tubes.

• Note that the tubes in Conjecture 16.6 need not share a common center, although this
would of course be the scenario leading to highest compression possible. In fact this
scenario shows that logarithmic losses are necessary at the endpoint r = d/(d− 1).
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• The estimate (16.4) is trivial for r = ∞. Thus, by interpolation, the bound (16.4) for
r ∈ (d/(d − 1),∞) would follow from interpolation, once it is proved at the endpoint
r = d/(d− 1).

• For r = 1, (16.4) is in fact a consequence of the triangle inequality since

∥
∑
ω

∈ Ω1Tω∥L1 =

∫
|
∑

1Tω | ≤
∑∫

1Tω =
∑
ω∈Ω

|Tω|.

Here is an alternative version of Conjecture 16.6.

Conjecture 16.8 (Alternative version of Kakeya conjecture [Gut23, Conjecture 5.2]). Suppose
d ≥ 2. For each N−1 × · · ·N−1 × N−2-slab θ in the covering of the N−2-neighborhood of the
truncated paraboloid Pd−1, let Tθ be the characteristic functino of a translate of the dual θ∗, being
a N × ... × N × N2 tube. Let Tθ,0 be the characteristic function of θ∗ itself. The difference is
that θ∗ is centered at 0, but Tθ could have any center. Then for any ε > 0 and any p,

∥
∑
θ

1Tθ∥Lp(Rd) ≲ε Nε∥
∑
θ

1Tθ,0∥Lp(Rd). (16.5)

To digest this formula, notice that
∑
θ 1Tθ (x) is the number of tubes through x. Thus, the

left-hand side of (16.5) is large if many points lie in many tubes from o ur set of tubes and
Conjecture 16.8 says that not too many points x can lie in many different tubes. Thus, (16.5)
says that we do indeed have some compression.

The reason why Conjecture 16.6 is called a maximal conjecture is that it can be reformulated
in terms of one, as we shall see in a moment, but see in particular Conjecture 16.10 and Lemma
16.14. (In short, Lemma 16.14 says that Conjecture 16.6 implies Conjecture 16.10 which is the
maximal Kakeya conjecture stated in the usual form.)

Let us continue with the discussion of Conjecture 16.6. If the rectangles Tω were mutually
disjoint, the above inequality (16.4) would of course be an equality, i.e.,∥∥∥∥∥∑

ω∈Ω

1Tω

∥∥∥∥∥
Ld/(d−1)(Rd)

=

(∑
ω∈Ω

|Tω|
) d−1

d

.

This means that (16.4) can be interpreted as the statement that the rectangles pointing in
different directions must have small intersection, i.e., they must be “essentially disjoint”. This
heuristic can in fact be made more precise. Let us define the compression of the tubes Tω by α,
i.e.,

α =
|⋃ω Tω|∑
ω∈Ω |Tω|

∈ (0, 1].

Clearly, we have α = 1, if all tubes are disjoint (i.e., no compression at all) or if Ω contains only
one element. One could think that a lower bound for α could be deduced by putting all tubes on
top of each other, i.e., when

⋃
ω∈Ω Tω = Tω. Then, α would be δd−1. However, having all tubes

on top of each other is forbidden because of our assumption that the tubes should be δ-separated
from each other. Anyway, from Hölder’s inequality, we have∑

ω∈Ω

|Tω| = ∥
∑
ω∈Ω

1Tω∥1 ≤ ∥
∑
ω∈Ω

1Tω∥d/(d−1)|
⋃
ω∈Ω

Tω|1/d .

Combining this with (16.4), we obtain

α ≳ε R
−ε ,

i.e., α is essentially 1 up to extremely small powers of R. Thus, despite the condition that
the tubes are δ-separated, we can still have a pretty good compression. Of course, perfect
compression, α = δd−1 is impossible, but “no compression”, i.e., α = 1 is not the case either.
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Remarks 16.9. Let us set R = N2 and discuss the bound α =
|⋃θ Tθ|∑
θ |Tθ|

≳ N−ε.

• Around 1920, Besicovitch constructed a remarkable example in 2 dimensions where
|⋃θ Tθ| ∼ 1

logN

∑
θ |Tθ|. Fefferman used this construction in [Fef71] to give a coun-

terexample to the ball multiplier problem.
When d = 2, Besicovitch’s construction turns out to be tight: Davies [Dav71] proved

that |⋃θ Tθ| ≥ c
logN

∑
θ |Tθ|.

• If d ≥ 3, then Besicovitch’s construction still works, but we do not know good bounds
in the other direction. For instance, for d = 3, Davies’ method gives only∣∣∣∣∣⋃

θ

Tθ

∣∣∣∣∣ ≥ c

N

∑
θ

|Tθ|.

Bourgain [Bou91a] improved the prefactor c/N to c/N2/3 and Wolff [Wol95] improved it
further to c/N1/2. At this point, it becomes very difficult to go further. The best current
bound is ∣∣∣∣∣⋃

θ

Tθ

∣∣∣∣∣ ≥ c

N1/2−ε0

∑
θ

|Tθ|,

where ε0 is a small positive constant. Although the proofs do not make ε0 explicit, the
best value given by current techniques is probably around 1/1000. This estimate was
proven under an extra assumption by Katz–Laba–Tao [KLaT00], and then proven in
full generality by Katz–Zahl [KZ19]. The arguments of [Bou91a, Wol95] are fairly short,
about five pages each, but the arguments of [KLaT00, KZ19] are much more complex,
about 50 pages each.

• The reason why it is very difficult to improve c/N1/2 has to do with an “almost coun-
terexample” taking place in C3. This almost counterexample was first described by
[KLaT00]. Consider the set

H = {(z1, z2, z3) ∈ C3 : |z1|2 + |z2|2 − |z3|2 = 1}.
This set is a 5-dimensional real manifold in C3. Its key feature is that it contains
many complex lines. Each point of H lies in infinitely many complex lines contained
in H. Using this set H as a guide, [KLaT00] constructed a set of “complex tubes” Tj
with “dimensions” N × N × N2, where |⋃j Tj | = c

N1/2

∑
j |Tj |. These tubes overlap

each other in a very intricate way. They are complex tubes instead of real tubes, and
they do not actually all point in different directions, but Wolff’s argument from [Wol95]
does apply to them. To beat the Kakeya estimate from [Wol95], one has to introduce
into the argument some tool that rules out this “almost counterexample”. The papers
[KLaT00, KZ19] succeed in doing this, but the tools are much more complex and the
quantitative bounds are rather weak. It would be major progress in the field to give a
good quantitative improvement to the Kakeya bound in [Wol95], let alone proving the
Kakeya conjecture in full.

• Minkowski dimension of a compact set E ⊆ Rd is dimM (E) := d−limδ→0 logδ |Eδ|, where
Eδ denotes the δ neighborhood of E. Suppose we start with R1/2 × ...R-tubes. Then,
by rescaling, we see that δ has the interpretation R−1/2, i.e., in the rescaled world we
consider thickened δ× ...×1 needles. Thus,

∑
θ |Tθ| just corresponds to δ−(d−1)δd−1 = 1

and so the Minkowski dimension of our overlapping tubes becomes limδ→0 logδ α(δ),
where α(δ) denotes the rescaled compression of our thickened δ× ...×1 needles. Disjiont
tubes correspond to α(δ) = 1, i.e., dimM (E) = d. Tubes lying on top of each other
means α(δ) = δd−1, i.e., dimM (E) = 1.
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Let us now finally explain, why the name “maximal conjecture” is appropriate. In the fol-
lowing, we assume 0 < δ ≪ 1 and f be a compactly supported function and define the Kakeya
maximal function by

f∗δ (ω) := sup
Tω

1

|Tω|

∫
Tω

|f | (16.6)

where the supremum is taken over all 1× δ×· · ·× δ tubes Tω which are oriented in the direction
of ω ∈ Sd−1. Let K(p, ε) denote the estimate

∥f∗δ ∥Lp(Sd−1) ≲ δ−d/p+1−ε∥f∥Lp(Rd) . (16.7)

Conjecture 16.10 (Kakaya maximal conjecture – equivalent formulation). Let 0 < δ ≪ 1, f ,
and f∗δ be as above. Then K(p, ε) holds for all 1 ≤ p ≤ d and ε > 0.

Bourgain [Bou91a, Section 2] proved this conjecture, provided 1 ≤ p ≤ p(d) where

p(d) =
p(d− 1)(d+ 2)− d

2p(d− 1)− 1
,

i.e., in particular (d + 1)/2 < p(d) < (d + 2)/2. Below, we shall focus on the case p = d which
corresponds to a “δ−ε-estimate” in the above conjecture. Some remarks on Conjecture 16.10 are
in order.

Remarks 16.11. (1) It is clear from the definition that

∥f∗δ ∥∞ ≤ ∥f∥∞ , (16.8)

∥f∗δ ∥∞ ≤ δ−(d−1)∥f∥1 . (16.9)

(2) If d ≥ 2 and p <∞, then there can be no bounds of the form

∥f∗δ ∥q ≤ C∥f∥p , (16.10)

where C is independent of δ. (The role of q is not important here.) To see this, consider a zero
measure Kakeya set E 16, let Eδ be the δ-neighborhood of E, and f := 1Eδ . Then f

∗
δ (ω) = 1 for

all ω ∈ Sd−1 and hence ∥f∗δ ∥q ∼ 1. But on the other hand, limδ→0 ∥f∥pp = limδ→0 |Eδ| = 0 for
any p <∞.

(3) Let f = 1B0(δ). Then for all ω ∈ Sd−1 the tube T δω(0) contains B0(δ) so that

f∗δ (ω) =
|B0(δ)|
|T δω(0)|

≳ δ .

Hence, ∥f∗δ ∥p ∼ δ. But on the other hand, we have ∥f∥p ∼ δd/p which ultimately shows that a
“δ−ε-estimate” of the form

∀ε > 0 ∃Cε > 0 : ∥f∗δ ∥Lp(Sd−1) ≤ Cεδ
−ε∥f∥Lp(Rd)

can never hold for any p < d. Thus, by interpolation with (16.8), the Kakeya problem therefore
consists in establishing

∀ε ∃Cε : ∥f∗δ ∥Ld(Sd−1) ≤ Cεδ
−ε∥f∥Ld(Rd) . (16.11)

In fact, this was proved for d = 2 by Córdoba [Cor77] in a somewhat different formulation and
by Bourgain [Bou91a] as we stated it here. These results are somewhat easy in d = 2 since the
L2-formalism (with all its measures of orthogonality and oscillations through Plancherel) can be
exploited heavily. We remark that Keich [Kei99] showed that the Lp-norm bounds of Córdoba
and Bourgain are sharp.

16Such sets can be constructed explicitly, see, e.g., Besicovitch [Bes28], Perron [Per28], Kahane [Kah69].
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(4) Interpolating (16.11) with (16.9) on the other hand gives a family of conjectured inequal-
ities

∥f∗δ ∥Lq(Sd−1) ≲ε δ
−d/p+1−ε∥f∥Lp(Rd) , 1 ≤ p ≤ d and q = (d− 1)p′ . (16.12)

Note that if (16.12) holds for some p0 > 1, then it also holds for all 1 ≤ p ≤ p0 (by interpolation
with (16.9)). The current best results in this direction are that (16.12) holds with p = min{(d+
2)/2, (4d + 3)/7} and a suitable q, see Wolff [Wol95] and Katz–Tao [KT02b]. In fact, Wolff
established the p(d) = (d+2)/2 endpoint in Bourgain’s result with q = (d−1)p′. As we shall see
soon (Proposition 16.21), this implies that Kakeya sets have Hausdorff dimension ≥ (d + 2)/2
(see also Remark 16.31). In Theorem 16.27 we shall prove Bourgain’s result. □

Let us now give another proof of the fact that the restriction conjecture implies the Kakeya
maximal conjecture.

Proposition 16.12 (Fefferman, Bourgain). Assume that the restriction estimate

∥f̂dσ∥p ≲p ∥f∥Lp(Sd−1) , p >
2d

d− 1
(16.13)

holds. Then, the Kakeya maximal estimate (16.14), i.e.,

∥f∗δ ∥Ld(Sd−1) ≲ε δ
−ε∥f∥Ld(Rd)

holds true.

Remark 16.13. Note that (16.13) is only ostensibly stronger than (16.34) below which states

∥f̂dσ∥p ≲p ∥f∥L∞(Sd−1) for p > 2d/(d − 1). In fact, these estimates are (formally at least)
equivalent, see Bourgain [Bou91a].

The proof of Proposition 16.12 relies on the following Lemma, which will come in handy later
in the proof of the two-dimensional Kakeya conjecture (by Córdoba [Cor77]). In what follows,
we denote by

T δe (a) = {x ∈ Rd : |(x− a) · e| ≤ 1

2
, |(x− a)⊥| ≤ δ} , x⊥ = x− (x · e)e

the δ-neighborhood of a unit line segment in the e direction, centered at a.

Lemma 16.14. Let 0 < δ ≪ 1 and 1 < p < ∞ and suppose p has the following property: if

{ek} ⊆ Sd−1 is a maximal δ-separated set, and if δd−1
∑
k y

p′

k ≤ 1, then for any choice of points

ak ∈ Rd, we have

∥
∑
k

yk1T δek (ak)
∥p′ ≤ A .

Then, there is a bound

∥f∗δ ∥Lp(Sd−1) ≲ A∥f∥Lp(Rd) .

Remark 16.15. Observe that the maximal δ-separated subset {ek} of Sd−1 has cardinality
≈ δ−(d−1).

Proof. Let {ek}k be a maximal δ-separated subset of Sd−1. Observe that if |ω − ω′| < δ, then
f∗δ (ω) ≤ Cf∗δ (ω

′) since any T δω(a) can be covered by a bounded number of tubes T δω′(a′). There-
fore,

∥f∗δ ∥p ≤
(∑

k

∫
Bek (δ)

|f∗δ (ω)|p dω
)1/p

≤ C

(
δd−1

∑
k

|f∗δ (ek)|p
)1/p

= Cδd−1
∑
k

yk|f∗δ (ek)|
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for some sequence yk with
∑
k y

p′

k δ
d−1 = 1, where we used the duality between ℓp and ℓp

′

(i.e., ∥f∥ℓp = ⟨g, f⟩ for some (gk)k∈N ∈ ℓp
′
with ∥g∥ℓp′ = 1; here, fk = δ(d−1)/p|f∗δ (ek)| and

gk = ykδ
(d−1)/p′)) in the last line. Therefore, by the definition of the maximal function,

∥f∗δ ∥p ≲ δd−1
∑
k

yk
1

|T δek(ak)|

∫
T δek

(ak)

|f |

for a certain choice of {ak}. But since |T δek(ak)| ∼ δd−1, we obtain (using Hölder and the
hypothesis),

∥f∗δ ∥p ≲
∫ (∑

k

yk1T δek (ak)

)
|f | ≤ ∥

∑
k

yk1T δek (ak)
∥p′∥f∥p ≤ A∥f∥p ,

thereby proving the lemma. □

Proof of Proposition 16.12. In view of the above lemma, we chose a maximal δ-separated subset
{ek} of Sd−1 whose cardinality is roughly δ−(d−1), as observed before. Now, for each j, pick a
tube T δej (aj) ≡ Tj and denote by τj the δ−2 rescaled version of Tj , i.e., the tube of length δ−2

and thickness δ−1, oriented along the ej direction. Furthermore, let

Sj = {ω ∈ Sd−1 : |1− ω · ej | ≤ C−1δ2}

be a spherical cap of radius ∼ C−1δ, centered at ej . Here, C is chosen so large that the Sj are
pairwise disjoint. (Note that the Sj are just dual to the τj .) Now, let fj be the associated Knapp
examples, i.e., fj are supported on Sj and satisfy

∥fj∥L∞(Sd−1) = 1

|f̂jdσ| ≳ δd−1 on τj .

Now, let

fε :=
∑
j

εjyjfj ,

where the yj are non-negative weights and the sequence {εj}j is a Rademacher sequence. Since
the fj have disjoint supports, we have on the one hand

∥fε∥qLq(Sd−1)
=
∑
j

yqj∥fj∥qLq(Sd−1)
∼
∑
j

yqj δ
d−1

since |Sd−1 ∩ Sj | ∼ δd−1 for all j. On the other hand, we have by Khintchine’s inequality

∥(
∑
k

|gk|2)1/2∥pp ∼
∫
Rd

E{|
∑
k

εkgk(x)|p} ,

that

E(∥f̂εdσ∥qLq(Rd)) =
∫
Rd

E(|f̂εdσ(x)|q) dx ∼
∫
Rd

∑
j

y2j |f̂jdσ(x)|2
q/2

dx

≳ δq(d−1)

∫
Rd

|
∑
j

y2j1τj (x)|q/2 dx.
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Now, assuming that the restriction estimate (16.13) holds true, we can combine the last two
inequalities and obtain for any q > 2d/(d− 1),

δq(d−1)

∫
Rd

|
∑
j

y2j1τj |q/2 dx ≲
∑
j

yqj δ
d−1 .

This is almost the estimate that we need to apply Lemma 16.14. Introducing zj = y2j and
p′ = q/2, the above inequality is equivalent to the statement

if δd−1
∑
j

zp
′

j ≤ 1 , then ∥
∑
j

zj1τj∥p′ ≲ δ−2(d−1)

for any p′ ≥ d/(d− 1). Now, rescaling by δ2, the above is equivalent to

if δd−1
∑
j

zp
′

j ≤ 1 , then ∥
∑
j

zj1Tj∥p′ ≲ δ
2( d
p′ −(d−1))

.

Observe that d/p′ − (d− 1) ↗ 0 as p′ ↘ d/(d− 1). Thus, for any ε > 0, we have

if δd−1
∑
j

zp
′

j ≤ 1 , then ∥
∑
j

zj1Tj∥p′ ≲ δ−ε

if p′ is close enough to d/(d− 1). So, by Lemma 16.14, this implies for any ε > 0

∥f∗δ ∥Lp(Sd−1) ≲ε δ
−ε∥f∥Lp(Rd) ,

provided p < d is close enough to d. Interpolating this with the trivial L∞ bound yields the
claimed estimate. □

16.3. Relation to the Kakeya set conjecture. One consequence of the Kakeya maximal
conjecture is the following statement concerning Besicovitch sets. Recall that such sets settle the
d-dimensional Kakeya needle problem, i.e., they contain a unit line segment in every direction.
Besicovitch’s construction shows that such sets can have measure zero. However, it is not clear
what their dimension is.

Conjecture 16.16 (Kakeya set conjecture). All Besicovitch sets have Hausdorff dimension and
Minkowski dimension equal to d.

Let us very briefly recall the definition of Hausdorff dimension (which is a bit tricky) and
Minkowski dimension, at least for compact sets. See Appendix E.2 for more details.

Definition 16.17 (Minkowski dimension). Let E be a compact subset of Rd. The set E is said
to have Minkowski dimension n if

lim
δ→0

logδ |Eδ| = d− n

where Eδ is the δ-neighborhood of E.

There are in fact two refined definitions.

Definition 16.18 (Upper Minkowski dimension). The upper Minkowski dimension (or box pack-
ing dimension) dim(E) of a set E ⊆ Rd is defined as the infimum over all exponents n such that
for any 0 < δ ≪ 1, the set E can be covered by O(δ−n) balls of radius δ.

Definition 16.19 (Lower Minkowski dimension). The lower Minkowski dimension dim(E) is
the infimum of all exponents n such that there exists arbitrarily small 0 < δ ≪ 1 for which the
set E can be covered by O(δ−n) balls of radius δ.
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Definition 16.20 (Hausdorff dimension). The Hausdorff dimension dimH(E) is defined as the
infimum of all exponents n such that for any 0 < δ ≪ 1, the set E can be covered by a countable
collection of balls B(xi, ri) of radius ri ≤ δ such that

∑
i r
n
i ≲ 1.

Clearly, dimH(E) ≤ dim(E) ≤ dim(E), i.e., the Minkowski forms of the Kakeya conjecture are
easier. For an introduction to Hausdorff measures, we refer to Appendix E.2 and the references
contained therein.

Proposition 16.21. (1) The Kakeya maximal function conjecture implies the Kakeya set con-
jecture. More precisely, if (for 0 < δ ≪ 1) it holds that

∀ε > 0 ∃Cε : ∥f∗δ ∥Lp(Sd−1) ≤ Cεδ
−ε∥f∥Lp(Rd) (16.14)

for some p <∞, then Besicovitch sets in Rd have Hausdorff dimension d.
(2) More generally, if

|{ω ∈ Sd−1 : (1E)
∗
δ (ω) > α}| ≲ε δ−d+p−εα−p|E| (16.15)

holds for all ε > 0 and 0 < δ < 1, and E ⊆ Rd is a Borel set having the property that for each
ω ∈ Sd−1 there is a unit segment γω in direction ω for which |γω ∩ E|R > 0, then dimH E ≥ p.

Remark 16.22. (1) The inequality

|Eδ| ≥ C−1
ε δε (16.16)

for any Kakeya set E (and its δ-neighborhood Eδ) follows immediately from (16.14) by the same
argument that was used in (2) in Remark 16.11. Formula (16.16) says that Besicovitch sets in
Rd have lower Minkowski dimension d.

(2) Note that (16.15) is a weaker version of (16.12) with q = p and f being of the form 1E .

Proof of Proposition 16.21. See Wolff [Wol03, Proposition 10.2] for the first and Sogge [Sog17,
Proposition 9.1.5] for the second part.

(1) Let E be a Besicovitch set. Fom Remark E.9 (i.e., Hα(E) = 0 for any α > d) and the
definition of the Hausdorff measure (Lemma E.10), it suffices to show that for a given covering
of E by balls Bj := Bxj (rj) with, say, rj ≤ 1/100, we have

∑
rαj ≳ 1 for any α < d. For this let

Jk := {j : 2−k ≤ rj ≤ 2−(k−1)}
and denote by Iω any unit line segment oriented in the direction ω ∈ S−1 which is contained in
our Kakeya set E. Let further

Sk :=

ω ∈ Sd−1 : |Iω ∩
⋃
j∈Jk

Bj | ≥
1

100k2

 .

Since ∑
k

(100k2)−1 < 1 and
∑
k

|Iω ∩
⋃
j∈Jk

Bj | ≥ |Iω| = 1 ,

we see
⋃
k Sk = Sd−1. (If not, we could find some ω0 /∈ Sk for every k = 1, 2, ...meaning that |Iω0

∩⋃
j∈Jk Bj | ≤ (100k2)−1. But since Iω ⊆ ⋃

j Bj we must have 1 = |Iω0 | ≤
∑
k≥1 |Iω0

⋃
j Bj | ≤∑

k≥1(100k
2)−1 < 1.) In particular, it is clear that σ(Sk) ≳ 1, where σ denotes the euclidean

surface measure on Sd−1.
Now, let

f = 1Fk , where Fk :=
⋃
j∈Jk

Bxj (10rj) .
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Then, for ω ∈ Sk we have (for a tube T δω(a) of length 1 and thickness δ oriented along ω, and
centered at a ∈ Rd),

|T 2−k

ω (aω) ∩ Fk| ≳
|T 2−k

ω (aω)|
100k2

,

where aω denotes the midpoint of Iω. Hence, after a short computation (see also the ensuing
remark), we see

∥f∗2−k∥p ≳ k−2σ(Sk)
1/p . (16.17)

On the other hand, (16.10) implies that

∥f∗2−k∥p ≤ Cε2
kε∥f∥p ≤ Cε2

kε(|Jk|2−(k−1)d)1/p . (16.18)

Comparing (16.17) and (16.18) therefore shows

σ(Sk) ≲ 2kpε−kdk2p|Jk| ≲ 2−k(d−2pε)|Jk| .
Therefore, ∑

j

rd−2pε
j ≥

∑
k

2−k(d−2pε)|Jk| ≳
∑
k

σ(Sk) ≳ 1 ,

which was asserted at the beginning of the proof (for 0 < α = pε < d with p < ∞ and ε
sufficiently small).

(2) See Sogge [Sog17, Proposition 9.1.5]. We proceed similarly as in (1). One of our hypotheses
is slightly weaker since we are not assuming that for each ω ∈ Sd−1 we can find a unit segment
γω in this direction contained in E. However, since

Sd−1 =
⋃

0<α<1

{ω ∈ Sd−1 : ∃γω with |γω ∩ E|R > α} ,

it follows that we can find α0 ∈ (0, 1) and U ⊆ Sd−1 so that |U |Sd−1 > 0 and that for each ω ∈ U
there is a unit line segment in the direction of ω so that

|γω ∩ E|R > α0 .

To use this, suppose that E ⊆ Bxj (rj) is a covering by balls of radius rj ∈ (0, 1/2) and let, as

before, Jk = {j : 2−k ≤ rj < 2−k+1} being the index set of those rj satisfying rj ∈ [2−k, 2−k+1).
Then if now

Uk = {ω ∈ U : |γω ∩
⋃
j∈Jk

Bxj (rj)|R >
α0

π(1 + k2)
} ,

by the earlier argument where we showed Sd−1 =
⋃
k≥1 Sk

17, we must have U =
⋃∞
k=1 Uk. If

Dk :=
⋃
j∈Jk Bxj (2rj), then we also get

(1Dk)
∗
2−k (ω) >

α0

2π(1 + k2)
, ω ∈ Uk .

Consequently, by (16.15) (with E = Dk, δ = 2−k, Sd−1 replaced by Uk, and α replaced by
α0/[π(1 + k2)]), we have

|Uk|Sd−1 ≲ε,α0
(1 + k2)p2k(n−p+ε/2)|Dk| ≲ε,α0

2−k(p−ε)|Jk|

17See also the proof of [Sog17, Theorem 9.1.4].
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where |Jk| denotes the cardinality of Jk and we used |Dk| ≲ |Jk|rdj ∼ |Jk|2−kd as well as

(1 + k2)p ≲ 2kε/2. Therefore, if 0 < ε < 1, then summing this estimate over all j, we obtain∑
j

rp−εj ≥
∞∑
k=1

∑
j∈Jk

2−k(p−ε)|Jk| ≳ε,α0

∞∑
k=1

|Uk|Sd−1 ≳ε,α0 |U |Sd−1 > 0 .

Hence, by Definition 16.17, see also Definition E.8 and Lemma E.10, we must have dimH E ≥ p
as claimed (cf. [Sog17, Lemma 9.1.3]). □

Remark 16.23. Let us quickly justify (16.17). Since f = 1Fk and |T 2−k

ω (a)∩Fk| ≳ k−2|T 2−k

ω (a)|,
whenever ω ∈ Sk, we have

f∗2−k(ω) = sup
a∈Rd

1

|T 2−k
ω (a)|

∫
T 2−k
ω (a)

1Fk(x) ≳ sup
a∈Rd

|T 2−k

ω (a)|
|T 2−k
ω (a)| · k

−21Sk(ω) .

Therefore,

∥f∗2−k∥Lp(Sd−1) ≳ k−2∥1Sk∥Lp(Sd−1) = k−2σ(Sk)
1/p ,

where σ denotes the euclidean surface measure on Sd−1.

Although appearing quite elementary, the Kakeya conjecture is a major open problem in
geometric measure theory which is closely connected to many classical problems in Fourier anal-
ysis regarding estimation of oscillatory integrals. This is a consequence of Fefferman’s solution
of the disk multiplier problem [Fef71] and work of Córdoba (e.g., [Cor77]) and Bourgain (e.g.,
[Bou91a, Bou93b, Bou95]). So far, the conjecture was only shown in d = 2 by an elegant argu-
ment of Córdoba and Fefferman. (See also Subsection 8.4 and [Tao99b, Lecture 5] for a proof
using bilinear estimates.) Of course, the conjecture is also an immediate consequence of the two-
dimensional restriction estimate (that we outlined in Subsection 8.4) and the square function
estimate by Córdoba and Fefferman, see Appendix B.

For further information on this classical problem, we refer the reader to the excellent reviews
by Wolff [Wol99] and Katz and Tao [KT02a]. Here, we shall content ourselves with the treatment
of the problem in d = 2 and review the (direct!) proofs by Córdoba [Cor77] (which is based on
geometric arguments) and Bourgain [Bou91a] (which uses Fourier analysis). Here, we follow
again Wolff [Wol03, Theorem 10.3].

Theorem 16.24. If d = 2, then we have the bound

∥f∗δ ∥L2(S1) ≤ C(log(1/δ))1/2∥f∥L2(R2) .

Proof of Theorem 16.24 due to Bourgain. Without loss of generality, we can assume f ≥ 0. In-
troducing

ρωδ (x) :=
1

2δ
1T δω(0) ,

we see that the maximal function can be written as

f∗δ (ω) = sup
a∈R2

(f ∗ ρωδ )(a) .

Now let us find a pointwise upper bound on this function. To this end, we introduce 0 ≤ φ ∈ S(R)
such that φ̂ is compactly supported and φ(x1) ≥ 1 for |x1| ≤ 1. Let us further define

ψ : R2 → R

x 7→ φ(x1) ·
1

2δ
φ(x2/δ) ,

i.e., a smoothed out characteristic function of a δ × 1 tube oriented along the e1-axis. Note
that ψ(x) ≥ ρe1δ (x) and therefore f∗δ (e1) ≤ supa∈R2(f ∗ ψ)(a). Thus, if we similarly define
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ψω := ψ ◦pω for some rotation pω ∈ SO(2), we obtain similarly ψω(x) ≥ ρωδ (x). Using this bound
and Cauchy–Schwarz, we can therefore estimate

|f∗δ (ω)|2 ≤ | sup
a∈R2

(f ∗ ψω)(a)|2 ≤ ∥f̂ · ψ̂ω∥21 ≤
(∫

R2

|f̂(ξ)|2|ψ̂ω(ξ)| < ξ > dξ

)
·
(∫

R2

|ψ̂ω(ξ)|
< ξ >

dξ

)
.

Now, since ψ̂ω = ψ̂ ◦ pω, we know that ψ̂ω is supported on the dual rectangle Rω (oriented along

ω) with dimensions |ξ1| ∼ 1 and |ξ2| ∼ δ−1. Combining this with |ψ̂| ≲ 1, we obtain∫
R2

|ψ̂ω(ξ)|
< ξ >

dξ ≲
∫
Rω

dξ

< ξ >
∼
∫ 1/δ

1

t−1 dt = log(1/δ) .

(If we considered the d-dimensional problem, we would get a factor δ−(d−2) instead.) Now putting
all estimates together, we obtain

∥f∗δ ∥2L2(S1) ≲ log
1

δ

∫
S1
dω

∫
R2

|ψ̂ω(ξ)||f̂(ξ)|2 < ξ > dξ

= log
1

δ

∫
R2

|f̂(ξ)|2 < ξ >

(∫
S1
|ψ̂ω(ξ)| dω

)
dξ

≲ log
1

δ

∫
R2

|f̂(ξ)|2 dξ = log
1

δ
∥f∥22 .

To get from the second to the last line, we used that, for fixed ξ ∈ R2, the set of ω ∈ Sd−1

where ψ̂ω(ξ) ̸= 0 holds, has measure ≲< ξ >−1, see also the ensuing remark. This concludes the
proof. □

Remarks 16.25. (1) As we remarked after the estimate of
∫
R2

|ψ̂ω(ξ)|
<ξ> dξ, the above arguments

show

∥f∗δ ∥L2(Sd−1) ≲ δ−(d−2)/2∥f∥L2(Rd) (16.19)

in d ≥ 3 dimensions, which is the best possible L2 bound.
(2) Let us elaborate a bit more on the estimate

|{ω ∈ Sd−1 : |ψ̂ω(ξ)| > 0}| ≲< ξ >−1 (16.20)

for given (fixed) ξ ∈ Rd. Recall that ψ̂ω was a smoothed out (and compactly supported!)
indicator function of a δ−1 × · · · δ−1 × 1 rectangle, oriented in the direction ω and centered

at the origin. Thus, to prove (16.20) we can pretend that ψ̂ω is actually a smoothed indicator
function of a thickened hyperplane with thickness O(1), say, e.g., 10. Moreover, by an elementary
geometrical observation, it suffices to consider only the case d = 2. Next, by the underlying
rotational symmetry, it suffices to consider only R2 ∋ ξ = (ξ1, 0). Now suppose first that
|ξ| = O(1), say |ξ| ≤ 10000. Then, the left side of (16.20) is trivially bounded by |Sd−1| and
so we are done in this case. In conclusion, we are left with estimating the left side of (16.20)

in d = 2 when ξ = |ξ|ê1 with |ξ| ≫ 1 (say |ξ| ≥ 10000), and ψ̂ω(ξ) is replaced by the indicator
function of an infinitely elongated tube of thickness 10, oriented along ω and centered at the
origin. Let us for simplicity also assume that the tube is shifted in negative e2-direction such
that the upper border coincides with the e1-axis. Then, as we start rotating the tube in positive
direction with the rotation center being (0,−1/2), there will be a rotation angle φ where the
lower border of the tube touches ξ; that’s precisely the angle, we are interested in since

|{ω ∈ S1 : |ψ̂ω(ξ)| > 0}| ≲
∫
S1
1Tω (ξ) ∼

∫ φ

0

dφ′ = φ .
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But by elementary trigonometry, this angle is given by sin(φ/2) = 1/(2|ξ|). Since |ξ| ≫ 1, we
may approximate sinφ ∼ φ which shows the claim, see also the following figure.

Figure 6

As opposed to Bourgain’s proof, Córdoba elegantly exploited a simple geometric fact. Apart
from a technical issue involving small angles, the main point is that two lines intersect in at most
a point, whereas every two thin rectangles intersect in a small parallelogram.

Proof of Theorem 16.24 due to Córdoba. In view of the auxiliary Lemma 16.14, it suffices to
prove that for any subsequence {yk} with δ

∑
y2k = 1 and any maximal δ-separated subset {ek}

of S1, we have ∥∥∥∥∥∑
k

yk1T δek (ak)

∥∥∥∥∥
2

≲ (log(1/δ))
1/2

. (16.21)

The relevant geometric fact is

|T δek(a) ∩ T δeℓ(b)| ≲
δ2

|ek − eℓ|+ δ
, (16.22)

which is proven in the remark below. Using this, we can estimate the left side of (16.21)∥∥∥∥∥∑
k

yk1T δek (ak)

∥∥∥∥∥
2

2

=
∑
k,ℓ

ykyℓ|T δek(ak) ∩ T δℓ (aℓ)| ≲
∑
k,ℓ

ykyℓ
δ2

|ek − eℓ|+ δ

=
∑
k,ℓ

√
δyk ·

√
δyℓ

δ

|ek − eℓ|+ δ
≤ ∥

√
δyk∥ℓ2k ∥

∑
ℓ

Kk,ℓ

√
δyℓ∥ℓ2k .

Here we abbreviated

Kk,ℓ :=
δ

|ek − eℓ|+ δ

and denoted by ℓ2k the usual ℓ2 space where the summation is with respect to k. Now recall that
the set of {ek} is maximal δ-separated. Thus, for fixed k, there are at most δ−1 summands in
the ℓ-summation. Moreover, since the angle between ek and eℓ is given by δ|k − ℓ|, we have

|ek − eℓ| =
√
2
√
1− cos(δ|k − ℓ|) ≥

√
2

100
δ|k − ℓ| for |k − ℓ| < 1

δ
.

Therefore, we can estimate

sup
k

∑
ℓ

δ

|ek − eℓ|+ δ
≲
∑
ℓ≤1/δ

δ

δℓ+ δ
∼ log

1

δ
.
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Thus, we can apply Schur’s test (Lemma 4.18) to the kernel Kk,ℓ (which is symmetric in k and
ℓ) which allows us to estimate the left side of (16.21) further by∥∥∥∥∥∑

k

yk1T δek (ak)

∥∥∥∥∥
2

2

≲ log
1

δ

∑
k

(
√
δyk)

2 ≲ log
1

δ
.

In view of the hypothesis δ
∑
y2k = 1 (recall Lemma 16.14), this concludes the proof. □

Remark 16.26. Let us shortly elaborate on the measure of the intersection of two thin rectangles
in (16.22) which can be reformulated as

|T δek(a) ∩ T δeℓ(b)| ≲ min

{
δ,

δ2

|ek − eℓ|

}
.

Clearly, it suffices to consider a = b, eℓ = e1 ≡ (1, 0), and that the angle θ between ek ≡
(cos θ, sin θ) and e1 is at most π/2. Since |T δek(a)| ≤ δ, the first bound is trivial. Now suppose

|ek − e1| =
√
2
√
1− cos θ ≥ δ, which is (since cos θ ≤ 1− θ2/4) satisfied if θ >

√
2δ. In this case,

sin θ > θ/2 > δ/2 and we have δ/(2 sin θ) < 1. Using cos θ ≥ 1 − θ2 and the formula for the
surface area of a parallelogram, we finally obtain

|T δe1 ∩ T δek | = 4
δ

2
· δ

2 sin θ
≤ 2δ2

θ
≤ 2

√
2δ2√

2
√
1− cos θ

=
2
√
2δ2

|ek − e1|
(16.23)

what had to be proven.

16.4. Universal bounds for the Kakeya maximal operator. We follow Sogge [Sog17, Sec-
tion 9.2]. The reason why these bounds are called “universal” is that they are indeed optimal in
curved spaces. Recall that Wolff [Wol95] found improved bounds in the euclidean setting. (He
got the following theorem for p ≤ (d+ 2)/2 instead of p ≤ (d+ 1)/2.) See also Subsection 16.5.

The main goal of this subsection is to prove non-trivial bounds for the Kakeya maximal
function in higher dimensions using Bourgain’s bush method. An improved bound is due to
Wolff [Wol95] (see also [Sog17, Theorem 9.4.1]) who could at least treat p = (d+2)/2 giving the
critical exponent in d = 2 in the following theorem.

Theorem 16.27. Let d ≥ 3. Given ε > 0 and 0 < δ < 1/2, we have

∥f∗δ ∥Lq(Sd−1) ≲ε δ
− d
p+1−ε∥f∥Lp(Rd) (16.24)

whenever 1 ≤ p ≤ (d+ 1)/2 and q = (d− 1)p′.

Observe (or recall) that the trivial case p = 1, i.e.,

∥f∗δ ∥L∞(Sd−1) ≤ δ−d+1∥f∥L1(Rd)

If p = (d+ 1)/2, then q = d+ 1. To prove the other estimates, recall

Theorem 16.28 (General Marcinkiewicz interpolation). Suppose T is a subadditive operator of
restricted weak types (pj , qj) with p0 < p1 and q0 ̸= q1, i.e.,

∥T1E∥Lqj,∞ ≲ ∥1E∥Lpj,1 ∼ |E|1/pj .
Then one has the estimate

∥Tf∥Lqθ,r ≲ ∥f∥Lpθ,r ,
for all 1 ≤ r ≤ ∞, θ ∈ (0, 1) with qθ > 1. If additionally qθ ≥ pθ and r = qθ, then

∥Tf∥Lqθ ≲ ∥f∥Lpθ .
Proof. See Stein–Weiss [SW71, Chapter V, Theorem 3.15] or Theorem 1.3.4 in harmonic analysis
notes of summer term 2020. □
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Proof of Theorem 16.27. Since the case p = 1 in (16.24) is trivial, it suffices, by the above
Marcinkiewicz interpolation, to show the corresponding restricted weak-type ((d + 1)/2, 1) →
(d+ 1,∞) bound

|{ω ∈ Sd−1 : (1E)
∗
δ (ω) > α}| 1

d+1 ≲ α−1δ−
d−1
d+1 |E| 2

d+1 ,

that is

|{ω ∈ Sd−1 : (1E)
∗
δ (ω) > α}| ≲ α−(d+1)δ−(d−1)|E|2 . (16.25)

For a constant A > 1 to be fixed later, we set

Ωα := {ω ∈ Sd−1 : (1E)
∗
δ (ω) > Aα} .

Then we would have (16.25) once we prove

|Ωα|Sd−1 ≲ α−(d+1)δ−(d−1)|E|2 , α > 0 , 0 < δ < 1/2 . (16.26)

At the end of the proof we shall see that the case where α ≲ δ is trivial. Thus, let us, for the
moment at least, also assume that α > Aδ.

Now choose a maximal (Aδ/α)-separated subset {ωj}Mj=1 ≡ I in Ωα. Then it follows that

|Ωα|Sd−1 ≲d (Aδ/α)
d−1M . (16.27)

Thus, to get the desired bound on |Ωα|, we need good bounds on the number M .
If ωj ∈ I, then, by definition of Ωα, we have

|E ∩ Tωj | > Aα|Tωj | (16.28)

and so, by summing over j (and recalling |Tω| = δd−1), we have

M∑
j=1

|E ∩ Tωj | ≥ c0(A, d)Mαδd−1

for some c0 = c0(A, d). Thus,

1

|E|

∫
E

M∑
j=1

1Tωj ≥ c0(A, d)Mαδd−1

|E| .

Since there must be a point a ∈ E where the non-negative function
∑M
j=1 1Tωj equals or exceeds

its average over E18, i.e.,

1

|E|

∫
E

M∑
j=1

1Tωj ≤
M∑
j=1

1Tωj (a) ,

we obtain
M∑
j=1

1Tωj (a) ≥
c0(A, d)Mαδd−1

|E| , some a ∈ E .

Put differently, by the pigeonhole principle, this point a ∈ E must belong to at least N ∋ N ≤M
tubes {Tωj}Mj=1 such that

N ≥ c0(A, d)Mαδd−1

|E| . (16.29)

18This point a ∈ Rd is a point where a preferably large number of tubes Tωj intersect themselves as well as
the set E. The latter property is not that important for the moment; the former point means that there is a
subcollection of the intersecting Tωj that form a “Bourgain bush”, see Figure 7.
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Let us collect these tubes from the original collection into the “bush” centered at a ∈ Rd (see
Figure 7)

{Tωjk }
N
k=1 .

Now, since the points ωj ∈ Sd−1 are (Aδ/α)-separated and since, for the moment, we are
assuming α > Aδ, we conclude that if A is large enough, we must have19(

Tωjk ∩ Tωjℓ
)
\Ba(α) = ∅ , if k ̸= ℓ .

Therefore, the “tips” of the branches of the bush about a ∈ Rd, denoted by

τjk := Tωjk \Ba(α) , 1 ≤ k ≤ N ,

are disjoint as depicted in Figure 7.

Figure 7. A Bourgain bush
Since

|Tωj ∩Ba(α)| ≤ C0α|Tωj |
for a uniform constant C0, we conclude that if A ≥ 2C0 as well,

|τjk ∩ E| ≥ Aα|Tωjk | − C0α|Tωjk | ≥ Aα|Tωjk |/2 , 1 ≤ k ≤ N

by (16.28). If we use this, the disjointness of the tips of the branches, and (16.29), we conclude

|E| ≥
N∑
k=1

|τjk ∩ E| ≥ cdAαδ
d−1N ≥ c′dMα2δ2(d−1)/|E| ,

or equivalently,

M ≤ Cα−2δ−2(d−1)|E|2 . (16.30)

If we plug this into (16.27), we obtain the desired bound

|Ωα|Sd−1 ≲ α−(d+1)δ−(d−1)|E|2 , α > 0 , 0 < δ < 1/2 (16.31)

stated ad the beginning of the proof in (16.26).

19This is a simple consequence of the geometrical fact, that if ℓ1 and ℓ2 are two lines crossing each other at
the origin with angle θ ∈ (0, π/2], then dist(ℓ1 ∩ rSd−1, ℓ2 ∩ rSd−1) ∼ rθ. In our case, r = α and θ = Aδ/α, so
the distance on the sphere is roughly Aδ > 0.
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We are left with the case α < Aδ which is a lot easier. For assuming that Ωα ̸= ∅, we just use
the fact that we can find a single tube Tω so that

αδd−1 ∼ α|Tω| ≤ |E ∩ Tω| ≤ |E| .
Thus, there must be c0 > 0 such that

c0 ≤ α−2δ−2(d−1)|E|2 .
But since the right side is dominated by the right side of (16.31) if α < Aδ, we conclude (16.31)
must be valid in this case as the left side of (16.31) is at most |Sd−1|. □

16.5. Wolff’s bounds for the Kakeya maximal operator in higher dimensions. We
present the proof of Wolff’s [Wol95] bound for the Kakeya maximal function in higher dimensions
and follow Sogge [Sog17, Section 9.4]. When d = 2, the following theorem is optimal as we have
seen earlier.

Theorem 16.29. Let d ≥ 3 and f∗δ denote the Kakeya maximal function defined in (16.6). Then
given ε > 0 and 0 < δ < 1/2, we have

∥f∗δ ∥Lq(Sd−1) ≲ε δ
−d/p+1−ε∥f∥Lp(Rd) (16.32)

whenever 1 ≤ p ≤ (d + 2)/2 and q = (d − 1)p′. In particular (by Proposition 16.21), we have
that dimH E ≥ (d+ 2)/2 for Besicovitch sets E ⊆ Rd.

16.6. How can Kakeya help in proving the restriction conjecture? In the first subsection
we saw that the restriction conjecture implies the Kakeya maximal conjecture. Bourgain [Bou91a,
Section 6] partially reversed this and obtained a restriction theorem beyond Tomas–Stein by using
a Kakeya set estimate that is stronger than the L2 bound stated in Wolff [Wol03, Formula (151)],
i.e.,

∥
∑
k

yk1T δek (ak)
∥22 ≲ log

1

δ

∑
k

(
√
δyk)

2 ≲ log
1

δ
,

used in the proof of the L2 bound (16.19) (via Lemma 16.14). It is not known whether (either
version of) the Kakeya conjecture implies the full restriction conjecture. Anyway, we have

Theorem 16.30 (Bourgain [Bou91a]). Suppose that we have an estimate

∥
∑
j

1T δej
∥q′ ≤ Cεδ

−( dq−1+ε) (16.33)

for any given ε > 0 and for some fixed q > 2. Then

∥f̂dσ∥p ≲p ∥f∥L∞(Sd−1) (16.34)

for some p < 2(d+ 1)/(d− 1).

Remarks 16.31. (1) The geometrical statement corresponding to (16.33) is that Kakeya sets
in Rd have Hausdorff dimension at least q, recall the second assertion in Proposition 16.21 and
the ensuing remark.

(2) Note that (16.13), which stated ∥f̂dσ∥p ≲p ∥f∥Lp(Sd−1) for p > 2d/(d − 1). is only
ostensibly stronger than (16.34). In fact, these estimates are (formally at least) equivalent, see
Bourgain [Bou91a].

We shall sketch the proof only for d = 3 and follow Wolff [Wol03, Theorem 10.6]. Recall that
in this case, we already know the bounds

∥f̂dσ∥L4(R3) ≲ ∥f∥L2(S2)



124 K. MERZ

from the Tomas–Stein theorem, and

∥f̂dσ∥L2(B0(R)) ≲ R1/2∥f∥L2(S2)

from Theorem 4.17 with α = d − 1 = 2. Interpolating between these two estimates yields a
family of estimates

∥f̂dσ∥Lp(B0(R)) ≲ R
2
p− 1

2 ∥f∥L2(S2) , for 2 ≤ p ≤ 4 . (16.35)

In the following argument we show that the exponent of R can be lowered by an ε if the L2 norm
on the right side is replaced by the L∞ norm.

Proposition 16.32. Let d = 2, 2 < p < 4, and assume (16.33) holds for some q > 2. Then, for
all ε > 0, we have

∥f̂dσ∥Lp(B0(R)) ≲ε R
α(p)∥f∥L∞(Sd−1) , α(p) <

2

p
− 1

2
. (16.36)

Clearly, this implies (16.34) for all p such that α(p) ≤ 0, i.e., in particular, there are p < 4 for
which (16.34) holds.

Heuristic proof of the proposition. By homogeneity, we can assume ∥f∥L∞(S2) = 1. Let δ = R−1

and cover S2 by the spherical caps

Sj = {ω ∈ S2 : |1− ω · ej | ≤ δ} ,
where {ej} now forms a maximal δ1/2-separated subset of S2. Then we decompose

f =
∑
j

fj ,

where each fj is a Knapp example supported on Sj . Abbreviate G = f̂dσ and Gj = f̂jdσ so that

G =
∑
j Gj . By the uncertainty principle, the Gj are roughly constant on δ−1/2 × δ−1/2 × δ−1

tubes τj oriented along ej and decaying rapidly away from them. For simplicity, let us assume
in the following that Gj are in fact supported only on the τj

20.

Next, let us cover B0(R) with disjoint cubes Q of sidelength
√
R. For each fixed cube Q let

N(Q) denote the number of tubes τj that intersect Q. Note that G|Q =
∑
j Gj |Q, where we sum

only over those j’s for which τj intersects Q. Using this and the known restriction estimates
(16.35), we can estimate ∥G∥Lp(Q) for 2 ≤ p ≤ 4 by

∥f̂dσ∥Lp(Q) = ∥G∥Lp(Q) ≲ R
1
2 (

2
p− 1

2 )

∥∥∥∥∥∥
∑

j:τj∩Q̸=∅
fj

∥∥∥∥∥∥
L2(S2)

≲ R
1
2 (

2
p− 1

2 ) (N(Q)∥f∥)1/2

∼ δ
3
4− 1

pN(Q)1/2

where we used that the fj are essentially disjointly supported and ∥fj∥L2(S2) ∼ |Sj |1/2 ∼
δ(d−1)/4 = δ1/2. Summing over all Q then yields

∥f̂dσ∥pLp(B0(R)) ≲ δ
3p
4 −1

∑
Q

N(Q)p/2 ∼ δ
3p
4 + 1

2 ∥
∑
j

1τj∥p/2p/2 (16.37)

where we used

∥
∑
j

1τj∥p/2p/2 =
∑
Q

N(Q)p/2|Q| = δ−3/2
∑
Q

N(Q)p/2 .

20It is precisely because of this assumption that our proof is merely heuristic. Clearly, the Fourier transform
of a compactly supported measure cannot be compactly supported; the rigorous proof uses Schwartz decay of the
Gj instead
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Now let p = 2q′, where q′ is the exponent in (16.33), and assume that p is sufficiently close to
4 (and interpolate between (16.33) and (16.19), i.e., ∥f∗δ ∥L2(S2) ≲ log(1/δ)1/2∥f∥2 if necessary).
For any ε > 0, we have from the hypothesized, strengthened Kakeya set estimate (16.33),

∥
∑
j

1T
√
δ

ej

∥q′ ≤ Cεδ
− 1

2 (
3
q−1+ε) .

Rescaling this inequality by δ−1 yields

∥
∑
j

1τj∥q′ ≤ Cεδ
−( 3

q−1+ε) · δ−3/q′ = δ−1−3/p−ε .

Plugging this into (16.37) shows

∥f̂dσ∥Lp(B0(R)) ≲ δ
1
4− 1

p−ε = R
1
p− 1

4+ε

and thereby the assertion since 1/p− 1/4 < 2/p− 1/2 for p < 4. □

In the next subsection, we will review Tao’s surprising finding [Tao99a] that the Bochner–Riesz
conjecture actually implies the restriction conjecture, thereby implying of course the Kakeya
conjecture. In that context, we shall also review older work by Bourgain who directly proved the
implication Bochner–Riesz⇒Kakeya. The latter is frequently used to construct counterexamples
to Lp-boundedness of certain multipliers. The most prominent example being the failure of Lp-
boundedness of the disk multiplier when p ̸= 2 (Fefferman [Fef71]).

17. Connection to the Bochner–Riesz conjecture

Historically, the first connection between – apparently purely geometrically involving consid-
erations – the Kakeya conjecture and (Fourier) analysis arose in the 1970s. Considering the
classical Fourier transform of a test function f in Rd, one may ask whether the truncation

(SRf)(x) :=

∫
|ξ|≤R

f̂(ξ)e2πix·ξ dξ (17.1)

converges as R → ∞ to f in a certain sense, e.g., in Lp, or even pointwise almost everywhere.
The above operator is usually referred to as the ball multiplier (disk multiplier in d = 2). Proofs
of such assertions typically lie in proving the assumptions of the following two classical functional
analytic results. Their proofs can be found, e.g., in Krantz [Kra99, p. 27].

Lemma 17.1 (Functional analysis principle 1). Let X be a Banach space and S a dense subset.
Let TR : X → X be a sequence of linear operators (bounded on X) such that TRf → Tf in X
norm as R → ∞ for test functions f ∈ S and some linear operator T that is also bounded on
X. Then, in order to have TRf → Tf in X norm for all functions in X (and not only test
functions), it is a necessary and a sufficient condition to have the estimate

∥TRf∥X ≲ ∥f∥X for all sufficiently large R and f ∈ X .

Lemma 17.2 (Functional analysis principle 2). Let 1 ≤ p <∞, TR : Lp → Lp be a sequence of
linear (Lp bounded) operators, and denote by

(T ∗f)(x) = sup
R

|(TRf)(x)|

the maximal function associated to TR. Let S ⊆ Lp be a dense subset. Assume that

(1) For each s ∈ S, the limit limR→∞(TRs)(x) ≡ (Ts)(x) exists in C for almost all x ∈ Rd
and another Lp bounded operator T .
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(2) The associated maximal operator T ∗ has weak type (p, p), i.e. for each α > 0,

|{x ∈ Rd : (T ∗f)(x) > α}| ≲ α−p∥f∥p for all f ∈ Lp .

Then, for each f ∈ Lp, limR→∞(TRf)(x) exists for almost all x ∈ Rd.

Remark 17.3. The above two lemmas are by now standard tools to establish norm or pointwise
almost everywhere convergence theorems. It is therefore natural to ask whether they are also
strictly necessary. In particular, is it possible to have a convergence result limR→∞ TRf = Tf
without being able to obtain uniform operator norm bound or a weak-type maximal inequality
of the above forms?

In case of norm convergence, the answer is “no”, thanks to the uniform boundedness principle,
which among other things shows that norm convergence is only possible if one has the uniform
bound

∥TRf∥X ≲ ∥f∥X for all f ∈ X ,

see the proof of Lemma 17.1.
Returning to the pointwise almost everywhere convergence, the answer is in general “yes”.

Consider for instance the rank one operators

(Tnf)(x) :=

∫
R
1[n,n+1](x− y)f(y) dy

from L1(R) to L1(R). It is clear that limn→∞(Tnf)(x) = 0 almost everywhere for f ∈ L1(R) and
that the operators Tn are uniformly bounded in L1. However, the maximal function T ∗f does
not belong to L1,∞(R). One can modify this example in a number of ways to defeat almost any
reasonable conjecture that something like the maximal weak-type estimate should be necessary
for pointwise almost everywhere convergence. In spite of this, a remarkable observation of Stein
[Ste61], now known as Stein’s maximal principle, asserts that the maximal weak-type inequality
is necessary to prove pointwise almost everywhere convergence, if one is working on a compact
group, the operators Tn are translation invariant, and the exponent p is at most 2.

Theorem 17.4 (Stein maximal principle). Let G be a compact group, X be a homogeneous
space of G with finite Haar measure µ, 1 ≤ p ≤ 2, and Tn : Lp(X) → Lp(X) be a sequence of
bounded linear operators commuting with translations such that Tnf converges pointwise almost
everywhere for each f ∈ Lp(X). Then T ∗ has weak type (p, p).

On the other hand, the theorem does fail for p > 2, and almost everywhere convergence results
in Lp for p > 2 can be proven by other methods than weak (p, p) estimates. For instance, the
convergence of Bochner–Riesz multipliers in Lp(Rd) for any d and for p in the range predicted by
the Bochner–Riesz conjecture was verified by Carbery, Rubio de Francia, and Vega [CRdFV88]
(see Carbery [Car83] for d = 2 where, however, he proves a maximal weak-type inequality)
despite the fact that the weak-type (p, p) estimate of even a single Bochner–Riesz multiplier, let
alone the maximal function, has still not been completely verified in this range, especially for
1 < p < 2, but see Tao [Tao02] and Li and Wu [LW19] for maximal weak-type estimates in this
range. (Carbery et al use weighted L2 estimates for the maximal Bochner–Riesz operator, rather
than Lp type estimates.) For p ≤ 2 though, Stein’s principle (after localizing to a torus) does
apply, and pointwise almost everywhere convergence of the Bochner–Riesz means is equivalent
to the maximal weak-type (p, p) estimate.

Stein’s principle is restricted to compact groups (such as the torus (R/Z)d or the rotation
group SO(d)) and their homogeneous spaces (such as the torus (R/Z)d again, or the sphere
Sd−1), i.e., the principle fails in the non-compact setting (as in R, as we have seen it before
when dealing with Tnf := f ∗ 1[n,n+1]; the Tnf converge pointwise almost everywhere to zero

for every f ∈ L1(R), but the maximal function does not obey the weak-type (1, 1) estimate).
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However, in many applications on non-compact domains, the Tn are somewhat “localized” enough
that one can transfer from a non-compact setting to a compact setting and then apply Stein’s
maximal principle. (For instance, Carleson’s theorem [Car66] (see also Fefferman [Fef73] for
an alternative proof, Grafakos’ book [Gra14a, Section 3.6.5] and https://en.wikipedia.org/

wiki/Carleson%27s_theorem for references of expositions of Carleson’s paper) on pointwise

almost everywhere convergence of the partial Fourier series
∑N
n=−N f̂(n)e

2πinx for f ∈ L2(R)
is equivalent to Carleson’s theorem on the circle R/Z (due to the localization of the Dirichlet
kernels) which is, due to Stein’s principle, equivalent to a maximal weak-type (2, 2) estimate on
the circle R \ Z. By a scaling argument in turn, this is equivalent to the analogous weak-type
(2, 2) estimate on R.)

See also Guzmán [dG81] for a systematic discussion of this and other maximal principles
as well as www.terrytao.wordpress.com/2011/05/12/steins-maximal-principle/ for more
details. □

At this stage, it is also reasonable to remind the reader of the following sledge hammer whose
proof can be found in Dunford and Schwartz [DS88] (Section XIII.6: Lemma 7 (p. 676), Theorem
8 (p. 678); Section XIII.8: Lemma 6 (p. 690) Theorem 7 (p. 693); Section XIII.9: Exercise 3
(p. 717)). The form which we shall use the theorem is as in [Ste70b, p. 48].

Lemma 17.5 (Hopf–Dunford–Schwartz ergodic theorem). Let {T t}t≥0 be (measurable) semi-
group of operators on Lp(Rd). Suppose that ∥T tf∥p ≤ ∥f∥p for any p ∈ [1,∞]. Then the maximal
function

(Mf)(x) = sup
s>0

(
1

s

∫ s

0

|(T tf)(x)| dt
)

satisfies the inequalities

(1) ∥Mf∥p ≲p ∥f∥p for all p ∈ (1,∞];
(2) |{x ∈ Rd : (Mf)(x) > α}| ≲ α−1∥f∥1 for each α > 0 and f ∈ L1.

Proof of Lemma 17.1. Let f ∈ X and suppose ε > 0. Then there exists an s ∈ S such that
∥f − s∥ < ε. Now select J so large that if j, k ≥ J , then ∥Tjs − Tks∥ < ε. For such j, k, we
calculate

∥Tjf − Tkf∥ ≤ ∥Tjf − Tjs∥+ ∥Tjs− Tks∥+ ∥Tks− Tkf∥
≤ ∥Tj∥ ∥f − s∥+ ε+ ∥Tk∥ ∥s− f∥ ≤ 3ε(1 + sup

ℓ≥J
∥Tℓ∥) → 0 as ε→ 0 ,

i.e., Tjf is Cauchy. Since X was supposed to be a Banach space, this establishes the result. The
converse follows from the uniform boundedness principle, see, e.g., Rudin [Rud87, p. 98] or Lieb
and Loss [LL01, Theorem 2.12]. □

Proof of Lemma 17.2. The proof parallels that of Lemma 17.1 but is a bit more technical.
Let f ∈ Lp and suppose that δ > 0 is given. Then there is an s ∈ S such that ∥f − s∥pp < δ.

For simplicity, we assume that both f and Tjf are real-valued (the complex-valued case then

https://en.wikipedia.org/wiki/Carleson%27s_theorem
https://en.wikipedia.org/wiki/Carleson%27s_theorem
www.terrytao.wordpress.com/2011/05/12/steins-maximal-principle/
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follows from linearity). Fix ε > 0, independent of δ. Then

|{x : | lim sup
j→∞

(Tjf)(x)− lim inf
j→∞

(Tjf)(x)| > 3ε}|

≤ |{x : | lim sup
j→∞

(Tj(f − s))(x)| > ε}|+ |{x : | lim sup
j→∞

(Tjs)(x)− lim inf
j→∞

(Tjs)(x)| > ε}|

+ |{x : | lim sup
j→∞

(Tj(s− f))(x)| > ε}|

≤ |{x : sup
j

|(Tj(f − s))(x)| > ε}|+ 0 + |{x : sup
j

|(Tj(s− f))(x)| > ε}|

= |{x : (T ∗(f − s))(x) > ε}|+ |{x : (T ∗(s− f))(x) > ε}|
≲ 2ε−p∥f − s∥pp < 2ε−pδ .

Since this estimate holds no matter how small δ, we conclude

|{x : | lim sup
j→∞

(Tjf)(x)− lim inf
j→∞

(Tjf)(x)| > 3ε}| = 0 .

This concludes the proof of Lemma 17.2 since it shows that the desired limit exists almost
everywhere (see also Grafakos [Gra14a, Theorem 1.1.11] for the fact that convergence in measure
(what we just showed) implies convergence almost everywhere up to a subsequence). □

In the context of these notes, we shall be concerned with the Lp convergence of Bochner–Riesz
means. (For pointwise almost everywhere convergence, see, e.g., Carbery [Car83] and Carbery et
al [CRdFV88] where a maximal weak type (p, p) inequality is proven for p > 2, see Tao [Tao02]
and Li and Wu [LW19] for 1 < p < 2; it is easy to see that SδRf converges to f uniformly if f
is a test function.) By scaling invariance, it suffices to prove the uniform Lp boundedness for
R = 1. In d = 1, it follows from the weak L1-boundedness of the Hilbert (Riesz) transform and
interpolation with the obvious L2 estimate that SR is Lp-bounded for all p ∈ (1,∞). For d ≥ 2,
one has an explicit kernel representation, namely

Lemma 17.6. Let δ ≥ 0 and f ∈ S(Rd). Then

(Sδ1f)(x) :=

∫
Rd

(
1− |ξ|2

)δ
+
e2πix·ξ f̂(ξ) dξ =

Γ(1 + δ)

πδ

∫
Rd

Jd/2+δ(2π|x− y|)
|x− y|−d/2−δ f(y) dy

∼
∫
Rd

∑
± e±2πi|x−y| + o(1)

1 + |x− y|(d+1)/2+δ
f(y) dy as |x| → ∞ .

(17.2)

For δ = 0 and δ = 1, this reproduces the spherical Dirichlet and Fejér means, respectively.
For a generalization of the |x| → ∞ asymptotics for general q(ξ) (homogeneous of degree one,
C∞, and non-negative in Rd \ {0}) instead of ξ2, see [Sog17, Lemma 2.3.3]. Note also that this
formula is very similar to the one for (dσ)∨; morally speaking the kernel of (dσ)∨ is comparable
to the one of S−1

1 . This is akin to the heuristic that the delta function is “of the same strength
as” the distribution 1/x. Note that every time as δ is lowered by 1, (17.2) predicts that the
kernel Sδ1 is multiplied by roughly |x|. This is consistent with the heuristic observation that the
derivative of the symbol mδ = (1− |ξ|2)δ+ is roughly comparable to mδ−1.

Proof. See Stein and Weiss [SW71, Chapter IV, Theorem 4.15], and Tao’s notes [Tao99b, Lecture
3].

Since the symbol (1 − |ξ|2)δ+ is radially symmetric, we only need to compute (with r = |x|)
the right side of∫

Rd
(1− ξ2)δ+e

2πix·ξ dξ = 2π

∫ ∞

0

(1− k2)δ+(kr)
−(d−2)/2J(d−2)/2(2πkr)k

d−1 dk
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by the Fourier–Bessel transform, see, e.g., Stein and Weiss [SW71, Chapter IV, Theorem 3.3].
Using the identity

Jµ+ν+1(r) =
rν+1

2νΓ(ν + 1)

∫ 1

0

Jµ(kr)k
µ+1(1− k2)ν dk

for µ > −1/2, ν > −1, and t > 0 (see, e.g., Stein–Weiss [SW71, Chapter IV, Lemma 4.13]), we
have (with ν = δ and µ = (d− 2)/2)),∫

Rd
(1− ξ2)δ+e

2πix·ξ dξ = (2π)1−δ−1 · 2δΓ(1 + δ)r−(d−2)/2−δ−1J(d−2)/2+δ+1(2πr)

=
Γ(1 + δ)

πδ
r−d/2−δJ(d−2)/2+δ+1(2πr)

which yields the first assertion. The asymptotic behavior as |x| → ∞ follows from

J(d−2)/2+δ+1(2πr) = π−1r−1/2 cos

(
2πr − (d+ 1 + 2δ)π

4

)
+O(r−3/2) , r → ∞ ,

see, e.g., [SW71, Chapter IV, Lemma 3.11] or Olver [Olv68, Formula 9.2.1]. Note also that the
kernel is finite as |x| → 0 since |Jν(x)| ≲ |x|ν for ν ≥ −1/2, see, e.g., [Olv68, Formula 9.1.62].
(In fact the kernel is complex analytic since the symbol is compactly supported.)

Although the above proof yields the exact formula for the integral kernel, its method is not
very robust. Let us therefore now sketch an alternative, somewhat fuzzier, but more robust
proof. Since mδ is radial, we let ξ = λed without loss of generality and evaluate in the following∫

|ξ|≤1

(1− ξ2)δe2πiλξd dξ .

We decompose this smoothly into three pieces, i.e., the north pole |ξ − en| ≪ 1, the south pole
|ξ + en| ≫ 1, and the rest where |ξn| ≤ 1− ε for some ε > 0.

Let’s deal with the rest first. By stationary phase, the core part |ξ| ≪ 1 is rapidly decaying in
λ and so it suffices to consider the surface part |ξ| ∼ 1. In this case, we can use polar coordinates
and reduce to ∫

r∼1

(1− r2)δ+r
d−1

∫
Sd−1:|ωd|≤1−ε

e2πiλrωd dω .

But the inner integral is Or(λ
−N ) for any N ∈ N by stationary phase, and so is the total integral.

Thus, we are left to study the north pole (as the south pole is treated analogously). Let us
decompose further

(1− ξ2)δ+ = fdω ∗ dµ+ error ,

where f ∈ C∞
c (Rd) is supported on a cap of the north pole, and

dµ(ξ′, ξd) = δ(ξ′)η(ξd)(−ξd)δ+
is a measure supported on the ξd axis. The reason for this choice of dµ is that (1 − |ξ|2)δ =
(1− |ξ|)δ(1 + |ξ|)δ and the second factor is unproblematic. Here, η ∈ C∞

c (R) is a bump function
which equals 1 at the origin. Indeed, one can easily work out that

(fdω ∗ dµ)(ξ′, ξd) =
∫
Rd
f(ψ′, ψd)δ(1− ψ2)δ(ξ′ − ψ′)η(ξd − ψd)(−(ψd − ξd))

δ
+ dψ

=

∫
R
f(ξ′, ψd)δ(1− ξ′2 − ψ2

d)η(ξd − ψd)(−(ψd − ξd))
δ
+ dψd

= f(ξ′,Φ(ξ′))η(ξd − Φ(ξ′))J(ξ′)(Φ(ξ′)− ξd)
δ
+ ,
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where Φ(ξ′) =
√
1− |ξ′|2 and J is some Jacobian factor. By choosing f properly, one can make

this a good approximation to the kernel of mδ near the north pole. The error vanishes to order
δ + 1 or more at the sphere. One can then do a similar decomposition of this error, with a new
error term which vanishes to order δ + 2. Continuing this procedure shows that one can make
the error term as smooth as we like and absorb it into the error term of (17.2).

Let us now consider the contribution of main term, i.e.,

(f̂dω · d̂µ)(λed) .
By the computation of the Fourier transform of surface measures of curved surfaces, the first
factor is Ce2πiλλ−(d−1)/2 + o(λ−(d−1)/2). We claim that the second factor is (C + o(1))λ−1−δ.
Since the ξ′ variable is pretty much irrelevant here, this claim is equivalent to

d̂µ(λen) ∼ F [η(ξd)(−ξd)δ+](λ) = (C + o(1))λ−1−δ .

Recalling that F [(ξd)
δ
+](λ) = Cλ−1−δ (in the distributional sense, see, e.g., Gelfand–Shilov

[GS16, Chapter II, Section 2.4 or p. 360]) by homogeneity, the claim follows, since the convolution
with the Schwartz function η̂ does not perturb the decay and merely smoothens out F [(ξd)

δ
+](λ).

□

The above representation leads to a necessary condition for the Lp-boundedness of SδR.

Theorem 17.7 (Herz [Her54]). In order for ∥Sδ1f∥p ≲ ∥f∥p to hold, one must have

|1
p
− 1

2
| < 2δ + 1

2d
. (17.3)

In particular, we see that the larger δ gets, the larger the interval on which one has a shot at
convergence.

Proof. This is shown by convolving the Bochner–Riesz kernel with a test function of the form

f(x) :=

{
1 if |x| < 1/10

0 if |x| ≥ 1/10
.

In this case, (Sδ1f)(x) ∼ |x|−(d+1+2δ)/2 as |x| → ∞ by Lemma 17.6. Moreover, a moment’s
thought will convince the reader that the oscillating factor in the Bochner–Riesz kernel produces
no significant cancellation in Sδ1f . Thus, S

δ
1f does not belong to any Lp if

d

p
<
d+ 1

2
+ δ

which is a rearrangement of (17.3). □

We see that the Bochner–Riesz kernel is in Lp for δ = 0 only if p > 2d/(d+ 1). By duality, it
is therefore natural to conjecture that SRf converges if p ∈ (2d/(d+ 1), 2d/(d− 1)). Let us see
whether S0 is bounded in d = 1. In this case

S0f = F−1(1[−1,1]f̂) =
1

2
F−1

(
(sgn(x+ 1)− sgn(x− 1))f̂

)
.

By the invariance of multipliers under affine transformations, it thus suffices to prove the Lp-

boundedness of f 7→ F−1(sgn(x)f̂). But this operator is just the Hilbert transform multiplied
by i/π, i.e,

i

π
(Hf)(x) =

i

π
p.v.

∫
f(x− y)

dy

y

which well-known to be Lp-bounded.
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Now what about d ≥ 2? Surprisingly, Fefferman [Fef71] disproved this conjecture, i.e., the
ball multiplier is in fact Lp-bounded only for p = 2! What is the reason for this dramatic failure
of Lp-boundedness?

The previous discussion indicates that Fourier analysis, orthogonality, cancellations and so on
should be involved in the analysis of SR. Fefferman’s proof, which was of course via contradic-
tion, involved pure size estimates (he refers to them as Meyer’s lemma) and a clever geometric
construction. And here is where the Kakeya conjecture comes into the play.

Before we review Fefferman’s disproof, let us discuss whether certain regularizations of SR
have a chance of convergence. And indeed, it is conjectured (and in certain cases, such as in
d = 2, already proven) that the so-called Bochner–Riesz means

(SδRf)(x) :=

∫
Rd

(
1− |ξ|2/R2

)δ
+
e2πix·ξ f̂(ξ) dξ

do converge for all δ > 0 if p lies in the conjectured range. This the content of

Conjecture 17.8 (Bochner–Riesz conjecture). Let δ > 0 and 1 ≤ p ≤ ∞ be such that (17.3)
holds. Then SδRf converges to f in Lp norm as R→ ∞ for all f ∈ Lp.

If p lies outside of the above range, one may still get convergence if δ is chosen to be p-
dependent in the right way. As is the case for the restriction conjecture, the Bochner–Riesz
conjecture is fully resolved in d = 2. (The reason will become clear in a moment.) Observe that
for δ → 0, one recovers the ball multiplier. For higher δ, SδR can indeed be seen as a mollification
of the ball multiplier.

Before we continue, let us dispose some easy cases first. Clearly, the conjecture is true when
p = 2 because of Plancherel’s theorem. On the other hand, if δ > (d−1)/2, then, the asymptotics
(17.2) of the Bochner–Riesz kernel imply that the convolution kernel SδR is integrable. (Note that
there is no singularity near zero in x-space; in fact, F [(1 − ξ2)δ+](x) must be complex analytic
since the multiplier is compactly supported.) So the claim follows by Young’s inequality in this
case.

Now, what is the connection between the restriction and the Bochner–Riesz conjecture? On
the one hand, the implication Restriction ⇒ Bochner–Riesz was shown for the paraboloid by
Carbery [Car92]. For general surfaces, Fefferman [Fef70] proved that if the (p, p) restriction
hypothesis is strengthened to a (p, 2) estimate, then the Bochner–Riesz conjecture holds.

On the other hand, the reverse direction Bochner–Riesz ⇒ Restriction was shown by Tao
[Tao99a] for the sphere.

In the following subsections we shall fill in the details in the above discussion. We start
by showing the Lp-boundedness of Sδ1 using solely the knowledge of the Bochner–Riesz kernel,
Lemma 17.6. Afterwards, we review Fefferman’s disproof of the Lp-boundedness of the ball
multiplier. We will then review the equivalence Restriction ⇔ Bochner–Riesz. Finally, we shall
see the implication Bochner–Riesz ⇒ Kakeya. We will mainly follow [Tao99b, Lecture 3], but
see also Fefferman [Fef73].

17.1. Lp-boundedness of Sδ1 via Carleson–Sjölin oscillatory integral estimates. See also
Sogge [Sog17, Section 2.3] for a generalization of the to general q(ξ) (homogeneous of degree one,
C∞, and non-negative in Rd \ {0}) instead of ξ2. See also Bourgain [Bou91a, Bou91b, Bou91c]
and his review [Bou95]. See also Fefferman [Fef73].

From Lemma 17.6 (note that the integral kernel of Sδ1 is complex analytic since the symbol is
compactly supported) and Young’s inequality it follows immediately that Sδ1 is Lp bounded for
all δ > (d−1)/2. The problem gets significantly more difficult in the case δ ≤ (d−1)/2 since the
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kernel is not integrable any more and we need to exploit its oscillatory behavior. Let us recall
the necessary condition (Theorem 17.7)

2d

d− 1− 2δ
< p <

2d

d+ 1 + 2δ

and the known positive result. When d = 2, matters are completely settled: We shall see below
that when δ > 0, Sδ1 is Lp(R2) bounded for 4/3 ≤ p ≤ 4. There is also the companion result that
it actually holds in the range 4/(3 + 2δ) < p < 4/(1 − 2δ), whenever 0 < δ ≤ 1/2. Our goal in
this section is to prove

Proposition 17.9. The operator Sδ1 , initially defined for f ∈ S, extends to a Lp(Rd) bounded
operator whenever

2d

d+ 1 + 2δ
< p <

2d

d− 1− 2δ
and

1 ≤ p ≤ 2(d+ 1)

d+ 3
or

2(d+ 1)

d− 1
≤ p ≤ ∞ .

Note that the first restriction is equivalent to

δ > δ(p) where δ(p) = n|1
p
− 1

2
| − 1

2

which is the only known necessary condition for the boundedness of Sδ1 . As mentioned above,
when d = 2 this condition is in fact sufficient, i.e., we may drop the second assumption on p. We
will prove this fact shortly afterwards.

Let us start with an Lp → Lp estimate for a certain oscillatory integrals (compare with Theo-
rem 4.3). Let ψ ∈ C∞

c (Rd) be a smooth cutoff function such that ψ vanishes in a neighborhood
of the origin, and set

(Gλf)(x) =

∫
Rd

eiλ|x−y|ψ(x− y)f(y) dy . (17.4)

Invoking the Lp → Lq Carleson–Sjölin estimates for oscillatory integrals related to the restric-
tion conjecture (see Theorem 4.6 or Theorem A.7) and freezing one variable, we obtain

Lemma 17.10. We have that

∥Gλf∥Lp(Rd) ≲ λ−d/p
′∥f∥Lp(Rd) (17.5)

whenever 1 ≤ p ≤ 2(d+ 1)/(d+ 3).

Proof. Let us first modify Gλ by setting

(G̃λf)(x) =

∫
Rd

eiλ|x−y|ψ̃(x, y)f(y) dy

where now ψ̃ ∈ C∞
c (Rd × Rd) is a smooth cutoff function for (x, y) ∈ Rd × Rd whose support

does not intersect the diagonal {(x, y) : x = y}.
For x = (x′, xd), we keep xd fixed and write

(G̃λf)(x
′, xd) = (T ∗

λf)(x
′)

where

(T ∗
λf)(x

′) =
∫
Rd

e−iλφ(x
′,y)ψ(x′, y)f(y) dy .

(i.e., the restriction operator, recall also Theorem 4.6 and Appendix A.2). This leads us to the
phase function φ(x′, y) on Rd−1 × Rd given by

φ(x′, y) = −(|x′ − y′|2 + |xd − yd|2)1/2 ,
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with xd fixed and y = (y′, yd). It is not difficult to verify directly that φ satisfies the conditions
of Theorem A.7. Indeed, the vector u arising in the curvature hypothesis (A.11) may be taken
to be u = (x− y)/|x− y|. We can therefore invoke Theorem A.7 and obtain(∫

Rd−1

|(G̃λf)(x′, xn)|q dx′
)1/q

≲ λ−d/p
′∥f∥Lp(Rd) .

Next observe that q ≥ p and that the integration in x′ above is only over a compact set. Thus,∫
Rd−1

|(G̃λf)(x′, xd)|p dx′ ≲ λ−dp/p
′∥f∥p

Lp(Rd)

and a final integration in xd (again over a compact set) gives

∥G̃λf∥Lp(Rd) ≲ λ−d/p
′∥f∥Lp(Rd) .

The passage from the inequality for G̃λ to that for Gλ (i.e., to go back to a C∞
c (Rd) function ψ

from a C∞
c (Rd × Rd) function ψ̃) is then accomplished by a familiar argument, see, e.g., Stein

[Ste93, Chapter VI, Section §2.3]. Indeed, the last estimate implies∫
|x−x0|≤1

|(Gλf)(x)|p dx ≲ λ−dp/p
′

∫
|x−x0|≤c

|f(x)|p dx

for each x0, where the constant c is determined by the size of the support of ψ. An integration
in x0 ∈ Rd (which only yields a multiple of the volume of the unit ball) then proves the assertion
of the lemma. □

Proof of Proposition 17.9. Recall that Sδ1f = Kδ ∗ f with Kδ as in Lemma 17.6 where the
principal term is given by a constant multiple of∫

|y|≥1

e±2πi|y|f(x− y)|y|−(d+1)/2−δ dy ≡ (Tf)(x) .

Then there are finitely many terms of the same kind, but where the factor |y|−(d+1)/2−δ is
replaced by |y|−(d+1)/2−δ−j (and hence improved) with j > 0. Finally there is an error term
which corresponds to the convolution with an L1 kernel. Thus, we only need to deal with the
principal term.

Let us now decompose

|y|−(d+1)/2−δ =
∑
k≥0

2−[(d+1)/2+δ]k ·
( |y|
2k

)−(d+1)/2−δ
ψ
( y
2k

)
dyadically where (as before) ψ(x) = φ(x)−φ(2x) is a smooth function supported in 1/2 < |x| < 2
(when φ is a bump function at the origin). Thus, we may write T =

∑
k≥0 Tk where

(Tkf)(x) = 2−[(d+1)/2+δ]k

∫
Rd

e2πi|y|f(x− y)

( |y|
2k

)−(d+1)/2−δ
ψ
( y
2k

)
.

Now, scaling y 7→ 2ky shows that, whenever 1 ≤ p ≤ 2(d+ 1)/(d+ 3),

∥Tk∥p,p = 2−[(d+1)/2+δ]k∥G2π·2k∥p,p · 2dk ≲ 2−[(d+1)/2+δ]k · 2−dk/p′ · 2dk

with G as in the previous lemma where ψ(y) is replaced by |y|−(d+1)/2−δψ(y). If

−
[
d+ 1

2
+ δ

]
− d

p′
+ d < 0 ,
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which is equivalent to p > 2d/(d + 1 + 2δ) (i.e., the asserted range for p), then ∥T∥p,p ≲∑
k≥0 ∥Tk∥p,p converges which concludes the proof. □

We shall now review Carleson’s and Sjölin’s proof [CS72] of the Bochner–Riesz conjecture
in d = 2. We emphasize that the following estimate extends Theorem A.7 to the full range
1 ≤ p < 4 (instead of 1 ≤ p ≤ 2).

Theorem 17.11. Under the assumptions of Theorem A.7, when d = 2, we have

∥Tλf∥Lq(R2) ≲ λ−2/q∥f∥Lp(R1) (17.6)

where q = 3p′ and 1 ≤ p < 4.

Proof. See [Ste93, p. 412]. □

As a corollary, one obtains the full Bochner–Riesz and restriction conjectures in d = 2. The
latter is essentially contained in Fefferman [Fef70] (joint with E. M. Stein). For an alternative
proof of the Bochner–Riesz conjecture in d = 2, see also Fefferman [Fef73].

Corollary 17.12. Suppose S ⊆ R2 is a curve whose curvature is nowhere zero and S0 is a
compact subset of S. Then(∫

S0

|f̂(ξ)|q dσ(ξ)
)1/q

≲S0 ∥f∥Lp(R2) , f ∈ S ,

whenever 3q = p′ and 1 ≤ p < 4/3.

For an alternative proof of this, we refer to Subsection 8.4 (which followed [Tao99b, Lecture
5]).

Corollary 17.13. The operator Sδ1 extends to a Lp(R2) bounded operator for 4/3 ≤ p ≤ 4
whenever δ > 0 and more generally to the range

4

3 + 2δ
< p <

4

1− 2δ
,

whenever 0 < δ ≤ 1/2.

17.2. The multiplier problem for the ball. We review Fefferman’s disproof of the bounded-
ness of the disk multiplier using a variant of the Kakeya conjecture [Fef71]. Nice expositions can
also be found in Krantz [Kra99, Section 3.5] and Grafakos [Gra14b, Section 5.1].

As we have already mentioned several times, Carleson and Sjölin [CS72] made heartening
progress in 1972 when they proved that the disc multiplier is almost Lp bounded in the sense
that Sδ1 is Lp bounded for any δ > 0 and 4/3 ≤ p ≤ 4 using the theory of oscillatory integrals.
In this section, we shall show that this is indeed the best that one can get. Writing Sδ ≡ Sδ1 , we
show

Theorem 17.14. S0 is bounded only in L2(Rd) for d ≥ 2.

Indeed it suffices to disprove Lp boundedness for p > 2 (by duality, we also obtain the case
p < 2) in two dimensions since Lp boundedness in Rd implies boundedness in Rd−1 by an
observation of de Leeuw.

Lemma 17.15 (de Leeuw). Suppose that m is a smooth Fourier multiplier on Rd and that the
operator T defined by

T̂ f(ξ) = m(ξ)f̂(ξ)

is bounded on Lp(Rd). Then the operator T0 defined by

T̂0g(ξ
′) = m(ξ′, 0)ĝ(ξ′)

for ξ′ ∈ Rd−1 is bounded on Lp(Rd−1).
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Proof. From the invariance of Lp multiplier bounds under affine transformations (to see this,
just scale), we see that we may replace m(ξ) by

mR(ξ
′, ξd) = m(ξ′, ξd/R)

in the definition of T without affecting the Lp boundedness property. Letting R→ ∞ and taking
limits, we may replace m by

m∞(ξ′, ξd) = m(ξ′, 0) ,

i.e., the operator

T̂∞f(ξ
′, ξd) = m(ξ′, 0)f̂(ξ′, ξd)

is bounded on Lp(Rd). If we now apply this fact to a function of the form f(x′, xd) = g(x′)ψ(xd)
and observe that f̂(ξ′, ξd) = ĝ(ξ′)ψ̂(ξd), we obtain the desired result. □

There are two key insights in the disproof of the disc conjecture. The first is that the disc
conjecture would imply a vastly improved Kakeya conjecture (Meyer’s lemma) where the “tubes”
will not have to be separated anymore. The second key is that such a strengthened Kakeya
estimate can indeed never hold. The proof of the latter is inspired by Besicovitch’s (or rather
Schönberg’s simplified) construction of Besicovitch sets (that contain a unit line segment in every
direction). Let us start with the first insight.

Lemma 17.16 (Y. Meyer). Let (vj)j∈N be a sequence of unit vectors in R2 and let Hj be the
half-plane {x ∈ R2 : x ·vj ≥ 0}. Defined the “half plane multipliers” (Tj)j∈N on Lp(R2) by setting

T̂jf(ξ) = 1Hj (ξ)f̂(ξ). If the disc conjecture holds, then for any sequence (fj)j∈N, we have the
square function estimate

∥(
∑
j

|Tjfj |2)1/2∥p ≲ ∥(
∑
j

|fj |2)1/2∥p . (17.7)

Proof. The idea is to approximate the half-planes by gigantic discs and to use the standard
randomization argument to obtain the above square function estimate from the supposed Lp

boundedness of the disc multiplier. More precisely, let TDrj be the operator defined by T̂Drj f(ξ) =

1Drj f̂(ξ) where Dr
j is the disc of radius r centered at rvj . For f ∈ C∞

c , we have the uniform
convergence

(Tjf)(x) = lim
r→∞

(TDrj f)(x)

which is easy by going to Fourier space since

∥(1Hj − 1Drj )f̂∥1 ≤ ∥(1Hj − 1Drj )∥∞∥f̂∥1 → 0 .

Thus, by Fatou’s lemma

∥(
∑
j

|Tjfj |2)1/2∥p ≤ lim inf
r→∞

∥(
∑
j

|TDrj fj |
2)1/2∥p

By dilating R2 it therefore suffices to set r = 1 and prove

∥(
∑
j

|TD1
j
fj |2)1/2∥p ≲ ∥(

∑
j

|fj |2)1/2∥p .

Since translating in Fourier space corresponds to multiplying by phases in position space, we
have (recalling that S0 was the disc multiplier)

(TD1
j
f)(x) = e2πivj ·xS0[e−2πivj ·yf ](x) ,

and so it suffices to prove

∥(
∑
j

|S0[e−2πivj ·yfj ]|2)1/2∥p ≲ ∥(
∑
j

|fj |2)1/2∥p .
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But by the Marcinkiewicz–Zygmund theorem (see, e.g., Grafakos [Gra14a, Theorem 5.5.1]), this
estimate holds because of the assumed Lp boundedness of S0. □

To disprove the disc conjecture, we shall find a counterexample to the square function estimate
(17.7) for half planes. The example is based on a slight variant of (Schönberg’s improvement of)
Besicovitch’s construction for the Kakeya needle problem.

Lemma 17.17. Fix a small number η > 0. Then there is a set E ⊆ R2 and a collection
R = {Rj}j∈N of pairwise disjoint rectangles with the properties that

(1) |E ∩ R̃j | ≥ |R̃j |/10, i.e., at least one-tenth of the area of each R̃j lies in E and
(2) |E| ≤ η

∑
j |Rj |

where R̃j is the shaded region in Figure 8.

Figure 8

Let us now see how the half-plane multiplier acts on functions supported on rectangles whose
long side is oriented along the normal of the half plane.

Lemma 17.18. Let R be a a× b rectangle in the plane with arbitrary position and orientation
and let R̃ be the rectangle of the same length which is shifted over by c ·a for some constant c ≥ 1
in the direction of the long axis of R. Then there exists a function fR supported on R such that
|fR| ≤ 1 on R and |(TjfR)(x̃)| ∼ 1 for any vj ∈ S1 and x̃ ∈ R̃.

Observe that for c = 1, we recover the setup of Figure 8. The following arguments can easily
be generalized to treat also the case 0 < c < 1, which is left as an exercise.

Proof. Let us assume vj = (−1, 0), i.e., we consider the half-plane ξ1 ≤ 0, i.e., T̂jf(ξ) ≡ χ(ξ)f̂(ξ)
where

χ(ξ) =
1

2
− 1

2
sgn(ξ1) .

By the formula for the Fourier transform of the Hilbert transform, we have (in the sense of
distributions)

(Tjf)(x) =

∫
R2

(
1

2
δ(y) +

1

2πi

1

y1
δ(y2)

)
f(y − x) dy .
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Now, let 0 ≤ ψ ∈ C∞
c (R2) be supported on [0, 1]2 with ψ > 0 on [1/3, 2/3]2 and symmetric with

respect to reflections with respect to the coordinate axes. Let furthermore R be the rectangle
centered at z ∈ R2 whose long side a lies in the x1 direction and whose short side b lies along
the x2 direction. If we define

fR(x) = ψ

(
x1 − z2

a
,
x2 − z2

b

)
,

then the action of the half-plane multiplier on fR evaluated at the center x̃ = (z1 + ca, z2) of the

translated R̃ is given by

(TjfR)(x̃) =
1

2

∫
R2

(
δ(y) +

1

iπ
δ(y2)y

−1
1

)
ψ

(
y1 −

x̃1 − z1
a

, y2 −
x̃2 − z2

b

)
dy

=
1

2
ψ

(
c,
x̃2 − z2

b

)
+

1

2πi

∫
R

dy1
y1

ψ

(
y1 − c,

x̃2 − z2
b

)
.

The first summand vanishes since c > 1, whereas the second one, in absolute modulus at least, is
clearly bounded from below by some positive constant. The computation where x̃ is an arbitrary
point in R̃ is completely analogous. □

With this at hand, we can disprove the disc conjecture by contradicting the square function
estimate (17.7) for half-planes.

Proof of Theorem 17.14. Set fj = 1Rj with Rj as in Figure 8 and vj being parallel to the longer

sides of Rj . Direct computation shows that |(Tjfj)(x)| ≥ 1/2 for x ∈ R̃j , so that∫
E

(
∑
j

|(Tjfj)(x)|2) dx =
∑
j

∫
E

|(Tjfj)(x)|2 dx ≥ 1

4

∑
j

|E ∩ R̃j | ≥
1

40

∑
j

|R̃j | =
1

20

∑
j

|Rj |

(17.8)

by the fact |E ∩ R̃j | ≥ |R̃j |/10 for our constructed set E. On the other hand, if the square
function estimate (17.7) were true, Hölder’s inequality would show that the left side of (17.8) is
bounded from above by∫

E

(
∑
j

|(Tjfj)(x)|2) dx ≤ |E|(p−2)/p ∥(
∑
j

|Tjfj |2)∥2p ≲ |E|(p−2)/p ∥(
∑
j

|fj |2)∥2p

= |E|(p−2)/p (
∑
j

|Rj |)2/p ≤ η(p−2)/p
∑
j

|Rj |
(17.9)

where we first used the square function estimate, then the fact that the Rj are pairwise disjoint,
i.e., there are no mixed terms appearing in the summation over j, and finally the size assumption
|E| ≤ η

∑
j |Rj | on the constructed set E. For sufficiently small η the bounds in (17.8) and (17.9)

contradict each other which disproves the square function estimate (17.7). This shows the failure
of the Lp boundedness of the disc multiplier and concludes the proof of Theorem 17.14. □

We are thus left to give the

Proof of Lemma 17.17. We shall closely follow the excellent exposition of Cunningham [Cun71]
(where the minimal area for a plane, simply connected, or star-shaped, set within which a unit
segment can be rotated continuously to return to its original position with its ends reversed, is
determined; in fact, it is shown that star-shaped Kakeya sets cannot have area less than π/108,
although it was not known whether this is the best value), but see also the classic paper of
Busemann and Feller [BF34].

Consider the following process: we are given a triangle T as in the left drawing in Figure 9,
with horizontal base ab and height h. Extend the lines ac and bc to points a′ and b′ of height
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h′ > h. Let d be the midpoint of ab, see the right drawing in Figure 9.

Figure 9

We say that the two triangles T ′ = ada′ and T ′′ = bdb′ arise as sprouts from height h to height
h′.

Now we can construct the Besicovitch set E. Begin with an equilateral triangle T 0 whose base
is the interval [0, 1] on the x-axis, and pick an increasing sequence of numbers h0, h1, h2, ..., hk,

where h0 =
√
3/2 denotes the height of the initial triangle T 0. Now sprout T 0 from height h0

to height h1 to obtain two new triangles T ′ and T ′′. Now sprout both T ′ and T ′′ from height
h1 to height h2 to obtain four new triangles T 1, T 2, T 3, T 4, all of height h2. Continue sprouting,
obtaining at stage n, 2n triangles of height hn with base length 2−n. Finally, set E equal to the

union the final 2k triangles T 1, T 2, ..., T 2k which arose at stage k.
For the special case, where h0 =

√
3/2, we obtain the sequence of heights

h0 =

√
3

2
, h1 =

√
3

2

(
1 +

1

2

)
, h2 =

√
3

2

(
1 +

1

2
+

1

3

)
, ... , hk = h1 =

√
3

2

k∑
n=1

n−1 ∼ log k

Buseman and Feller [BF34] showed that |E| ≤ 17. (Actually, Busemann and Feller use a sprouting
procedure slightly different from this. However, since their sprouted triangles are strictly larger
than these, their estimates apply here, too.)

Having built E and computed its measure, we are left to construct the collection of disjoint
rectangles which satisfied |E ∩ R̃j | ≥ |R̃j |/10 and |E| ≤ η

∑
j |Rj | for any given (small) η > 0.

To do so note that each dyadic interval I ⊆ [0, 1], of length 2−k, is the base of exactly one
Tj =: T (I). Let us call its upper vertex P (I). We then construct the rectangle R(I) as in Figure
10.
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Figure 10

It does not matter how R(I) is placed, as long as it stays inside the triangle P (I)BA. Now define

R = {R(I) : I is a dyadic subinterval of [0, 1] of length 2−k} .

Now let us check the claimed properties. First, |E ∩ R̃j | ≥ |R̃j |/10 is trivially satisfied by
construction since T (I) ⊆ E. To check the upper bound |E| ≤ η

∑
I |RI |, we note that the area

of each R(I) is roughly 2−k log k. Since there are altogether 2k of such rectangles, we have∑
I

|RI | ∼ 2k · 2−k log k = log k .

Clearly, the left side is greater than |E|/η if we pick k = k(η) so large that log k > 17/η.
Finally, it remains to show that the rectangles are pairwise disjoint. But this just follows from

the elementary geometric observation that P (I ′) lies to the left of P (I) whenever I ′ lies to the
left of I. □

17.3. Restriction ⇒ Bochner–Riesz. This is essentially contained in Fefferman [Fef70, The-
orem 3] but we will follow the exposition in [Tao99b, Lecture 3].

Let us fix δ > 0 such that the necessary condition (17.3) holds. Then, as in the proof of the
Tomas–Stein theorem, we will decompose the convolution kernel Kδ = F [(1 − ξ2)δ+] dyadically

using the ψk(x) := φ(2−kx) − φ(2−k+1x) where φ was a bump function supported around the
origin. Then, we break up

Kδ = φKδ +
∑
k>0

ψkKδ .

As opposed to the proof of the Tomas–Stein theorem, we do not need to impose any fancy
moment conditions on φ or ψ since we inequality on p is strict, i.e., we do not need to care about
any subtleties concerning endpoints.
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First, since φKδ is a bump function, the convolution is clearly an Lp-bounded operator by
Young’s inequality. So, as before, we are left with showing that

∥
∑
k

f ∗ (ψkKδ)∥p ≲ ∥f∥p .

Since we have a bit of room in the condition (17.3) on p, we may just use the triangle inequality.
In fact, we shall show

∥f ∗ (ψkKδ)∥p ≲ 2[d(
1
p− 1

2 )− 1
2−δ]k∥f∥p (17.10)

which is just summable in k if (17.3) holds.
The first observation that we shall use to prove (17.10) is that the kernel ψkKδ is compactly

supported on an annulus {x : |x| ∼ 2k}, i.e., the operator is somewhat localized. In fact, the
values of f at a point x only influence points which are in a 2k neighborhood. The following
useful lemma allows us to reduce our study of such “local” operators to a compact set.

Lemma 17.19. Let T be a linear operator taking functions on Rd to functions on Rd. Suppose
T is local in the sense that the support of Tf always remains within R of the support of f for
some R > 0. Then, for any 1 ≤ p ≤ q ≤ ∞, the bound

∥Tf∥q ≲ ∥f∥p for all f ∈ Lp(Rd) (17.11)

is equivalent to the bound

∥Tf∥Lq(Bx(2R)) ≲ ∥f∥p for all f ∈ Lp(Bx(R)) , (17.12)

holding uniformly in x.

In other words, to show (17.11), it suffices to test it for functions supported on an R-ball.
Intuitively, the idea is that functions on distinct R-balls basically do not interfere too much with
each other.

Proof. Clearly, we only need to show (17.12) ⇒ (17.11). For this purpose let f ∈ Lp(Rd),
choose a finitely overlapping collection of balls {B} that cover Rd and denote a partition of unity
1 =

∑
B ψB subordinate to that cover. Then, we write

∥Tf∥qq =
∫

|T (
∑
B

ψBf)|q =
∫

|
∑
B

T (ψBf)|q .

Since T is local in the above sense, the functions T (ψBf) are just supported on the double 2B
of B. These balls are still only finitely overlapping, so we have the pointwise estimate

|
∑
B

T (ψBf)|q ≲
∑
B

|T (ψBf)|q .

Putting this back into the previous estimate, simplifying, applying the assumed Lp → Lq-
boundedness (17.12), and the elementary inequality(∑

B

aqB

)1/q

≤
(∑

B

apB

)1/p

for a sequence {aB}B of non-negative numbers and (crucially) q ≥ p, we obtain

∥Tf∥q ≲
(∑

B

∥T (ψBf)∥qq

)1/q

≲

(∑
B

∥ψBf∥qp

)1/q

≤
(∑

B

∥ψBf∥pp

)1/p

.

Again, since the balls are only finitely overlapping, it is easy to see that the right side is essentially
∥f∥p. □
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The condition q ≥ p in the above lemma is absolutely necessary. This is an example of one of
Littlewood’s principles: “the higher exponents are always to the left”. More precisely, we have

Lemma 17.20. Let 1 ≤ p, q < ∞ and T be a non-zero translation invariant operator on Rd.
Then, the estimate ∥Tf∥q ≲ ∥f∥p is only possible, if q ≥ p.

Proof. Let φ be any bump function such that Tφ is non-zero. Let N > 0 be a large number,
and let x1, ..., xN be N very widely separated points. Define f by

f(x) =

N∑
i=1

φ(x− xi) .

If the above estimate held for f , we would have

∥
N∑
i=1

Tφ(x− xi)∥q ≲ ∥
N∑
i=1

φ(x− xi)∥p

since T is translation invariant. However, the right side is bounded from above by a constant
(∥φ∥p) times N1/p, whereas the left side can in fact be bounded from below (by forgetting about

the overlaps of Tφ(x − xi)) by a constant (∥Tφ∥q) times N1/q. Letting N → ∞, we have
necessarily 1/q ≤ 1/p, i.e., q ≥ p. □

Now, let us return to the proof of (17.10), i.e.,

∥f ∗ (ψkKδ)∥p ≲ 2[d(
1
p− 1

2 )− 1
2−δ]k∥f∥p .

From the above discussion, it suffices to prove

∥f ∗ (ψkKδ)∥Lp(Bx(a2k)) ≲ 2[d(
1
p− 1

2 )− 1
2−δ]k∥f∥p

for all f supported on a ball Bx(a2
k−1). By translation invariance, we may take x = 0.

We are supposed to apply the Tomas–Stein theorem which is an Lp → L2 theorem. Indeed,
using Hölder’s inequality (since we are on a finite domain) on the left side of the last formula
and using Plancherel, we have

∥f ∗ (ψkKδ)∥Lp(Bx(a2k)) ≲ 2dk(
1
p− 1

2 )∥f ∗ (ψkKδ)∥2 = 2dk(
1
p− 1

2 )∥f̂ · (ψ̂k ∗mδ)∥2
where we have denoted mδ(ξ) = (1− ξ2)δ+. Thus, we are left to show

∥f̂ · (ψ̂k ∗mδ)∥2 ≲ 2−( 1
2+δ)k∥f∥p .

We will shortly prove the key estimate

|ψ̂k ∗mδ(ξ)| ≲ 2−δk(1 + 2kd(ξ, S))−N , N ∈ N . (17.13)

Assuming this for a moment, we see that it suffices to prove

∥f̂(1 + 2kd(ξ, S))−N∥22 =

∫ |f̂(ξ)|2
(1 + 2kd(ξ, S))2N

dξ ≲ 2−k∥f∥2p

to finish the proof. We distinguish between d(ξ, S) > 1/2 and d(ξ, S) < 1/2 and start with the
former case, which is an error term. In this case, we crudely estimate

|f̂ | ≲ 2ak∥f∥p
by the definition of f̂ , Hölder’s inequality, and the fact that f is compactly supported. On the
other hand, the denominator in the integral is 2−Nk for any N and rapidly decreasing as ξ → ∞.
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This decay beats all other factors, and the bound is easy to prove. Thus, it suffices to prove∫
1/2≤|ξ|≤3/2

|f̂(ξ)|2
(1 + 2kd(ξ, S))2N

≲ 2−k∥f∥2p .

Discarding the Jacobian arising from passing to polar coordinates, we rewrite this as∫ 3/2

1/2

dr (1 + 2k|r − 1|)−2N

∫
rSd−1

dω |f̂ |2 ≲ 2−k∥f∥2p .

17.4. Bochner–Riesz ⇒ Restriction. We review Tao’s proof [Tao99a] that the Bochner–Riesz
conjecture implies the restriction conjecture.

17.5. Bochner–Riesz ⇒ Kakeya. We review the argument Bochner–Riesz ⇒ Kakeya. We
discuss Bourgain’s works [Bou91a, Bou91c, Bou92] that progress on Kakeya is connected to
progress for Bochner–Riesz (and thereby for Restriction by Tao [Tao99a])

17.6. How does Kakeya help in proving Bochner–Riesz? The key observation is that
every function can be decomposed into a linear combination of wave packets by applying stan-
dard cutoffs both in physical space (by pointwise multiplication) and in frequency space (using
the Fourier transform). After applying the Bochner–Riesz operator to these wave packets in-
dividually, one has to reassemble the wave packets and obtain estimates for the sum. Kakeya
estimates play an important role in this since the wave packets are essentially supported on
tubes; however, this is not the full story since these packets also carry some oscillation that can
be exploited. Thus, one must develop tools to deal with the possible cancellation between wave
packets. The known techniques to deal with this cancellation, mostly based on L2 methods, are
imperfect, so that even if one had a complete solution to the Kakeya conjecture, one could not
then completely solve the Bochner–Riesz conjecture. Nevertheless, the best-known results on
Bochner–Riesz (e.g., in d = 3 the conjecture is known, see Tao and Vargas [TV00a, TV00b] for
p > 26/7 and for p < 26/19 using also bilinear methods) have been obtained by utilizing the
best-known quantitative estimates of Kakeya type.

18. Connection to spectral multipliers

18.1. Eigenfunction estimates for −∆. We start with the basic observation

dE√
−∆(λ) = λd−1R∗

λSd−1RλSd−1 dλ

in the sense that for f ∈ S(Rd),

dE√
−∆(λ)f(x) = λd−1

∫
Sd−1

e2πix·(λω)f̂(λω) dσ(ω) =
∫
λSd−1

e2πix·ξ f̂(ξ) dσλSd−1(ξ) .

Here dEA(λ) denotes the spectral projection associated to some self-adjoint operator A. This
follows immediately from∫ ∞

0

F (λ)⟨ψ, dE√
−∆(λ)ψ⟩ = ⟨ψ, F (

√
−∆)ψ⟩ =

∫ ∞

0

dk F (k) ·
(
kd−1

∫
Sd−1

|ψ̂(kω)|2 dσ(ω)
)

for appropriate measurable functions F : [0,∞) → R. In particular, the (rescaled) Tomas–Stein
estimate

kd−1

∫
Sd−1

| f̂(kω)︸ ︷︷ ︸
=:ĝk(ω)

|2 dω ≲ kd−1∥gk∥2pc = kd−1∥k−df(·/k)∥2pc = kd−1−2d+2d/pc∥f∥2pc

= k−d+2d/pc−1∥f∥2pc ,
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with pc = 2(d+ 1)/(d+ 3) immediately yields∥∥∥∥dE√
−∆(λ)

dλ

∥∥∥∥
pc→p′c

≲ λ−d+2d/pc−1 = λ
d( 1
pc

− 1
p′c

)−1
(18.1)

By a change of variables and the rescaled Tomas–Stein estimate, i.e.,∫ ∞

0

F (λ)⟨ψ, dE−∆(λ)ψ⟩ = ⟨ψ, F (−∆)ψ⟩ =
∫ ∞

0

dk F (k2) ·
(
kd−1

∫
Sd−1

|ψ̂(kω)|2 dσ(ω)
)

=
1

2

∫ ∞

0

dk F (k) ·
(
kd/2−1/2−1/2

∫
Sd−1

|ψ̂(
√
kω)|2 dσ(ω)

)
≲
∫ ∞

0

dk F (k) · kd/2−1−d+d/pc∥ψ∥2Lpc
(18.2)

for any F : [0,∞) → [0,∞) (such as a characteristic function), we obtain analogously∥∥∥∥dE−∆(λ)

dλ

∥∥∥∥
pc→p′c

≲ λ
d
2

(
1
pc

− 1
p′c

)
−1
. (18.3)

We remark that the above change of variables is just saying

dE−∆(λ) =
1

2
λ
d
2−1R∗√

λSd−1R√
λSd−1 dλ .

One could have obtained (18.3) also from Stone’s formula

1

2
((E(Λ)f, f) + (E(Λ)f, f)) = lim

ε↘0

1

2πi

∫
Λ

([R(λ+ iε)−R(λ− iε)]f, f) dλ ,

or equivalently (in the weak sense)

dEA(λ)

dλ
=

1

2πi

(
(A− (λ+ i0))−1 − (A− (λ− i0))−1

)
=

1

π
Im
(
(A− (λ+ i0))−1

)
,

(recall also that Im(F (E + iε)) dE ⇀ dµ(E) where F (z) =
∫
(λ − z)−1 dµ(λ) denotes the Borel

transformation of the (spectral) measure µ) and the “uniform” (in Im(z)) resolvent bound of
Kenig–Ruiz–Sogge [KRS87, Theorem 2.3], i.e.,

sup
Im(z)∈(0,1)

∥(−∆− z)−1∥p→p′ ≲d,p |z|−(d+2)/2+d/p = |z|
d
2

(
1
p− 1

p′

)
−1

(18.4)

for all 2d/(d+2) ≤ p ≤ 2(d+1)/(d+3) = pc which, in turn, is obtained via complex interpolation
between the L2 boundedness of

Tζ =
eζ

2

Γ(d/2 + ζ)
(−∆− z)ζ

for Re(ζ) = 0 and the L1 → L∞ boundedness for Re(ζ) ∈ [−(d+1)/2,−d/2]. In turn, the latter
follows from the explicit expression of the Fourier transform of the symbol of Tζ .

Remark 18.1. The analogous estimate

∥((−∆)s/2 − z)−1∥Lp(Rd)→Lp′ (Rd) ≲ |z|
d
s

(
1
p− 1

p′

)
−1
, s ∈

[
2d

d+ 1
, d

)
, p ∈

[
2d

d+ s
,
2(d+ 1)

d+ 3

]
(18.5)

was proved by Cuenin [Cue17] (in fact also for more general operators including Dirac) and
Huang et al [HYZ18].
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We will now upgrade (18.3)21 using the observation

dEA(λ) = 22k
(
1 +

A

λ

)−2k

dEA(λ)

and the estimate

∥(1−∆/λ)−k∥p→q =
1

Γ(k)
∥
∫ ∞

0

e−t(1−∆/λ)tk−1 dt∥p→q ≤
1

Γ(k)

∫ ∞

0

e−t(t/λ)−
d
2 (

1
p− 1

q )tk−1 dt

≲ λ
d
2 (

1
p− 1

q )

for 2k > d(1/p− 1/q). Indeed, this estimate and (18.3) yield∥∥∥∥dE−∆(λ)

dλ

∥∥∥∥
1→∞

= 22k
∥∥∥∥(1−∆/λ)−k

dE−∆(λ)

dλ
(1−∆/λ)−k

∥∥∥∥
1→∞

≲k ∥(1−∆/λ)−k∥1→pc∥(1−∆/λ)−k∥p′c→∞

∥∥∥∥dE−∆(λ)

dλ

∥∥∥∥
pc→p′c

≲ λd/2−1 .

Thus, by interpolation, (18.3) can be upgraded to∥∥∥∥dE−∆(λ)

dλ

∥∥∥∥
p→p′

≲ λ
d
2

(
1
p− 1

p′

)
−1

(18.6)

for all 1 ≤ p ≤ pc.
Let us finally mention that (18.3) respectively (18.6) should have always be more precisely

written as

∥1[λ,λ+1](−∆)∥p→p′ ≲ λ
d
2

(
1
p− 1

p′

)
−1

(18.7)

which just follows from setting F (k) = 1[λ,λ+1](k) in (18.2). Formulae (18.3) respectively (18.6)
correspond to the choice F (k) = δ(k − λ).

18.2. Restriction theorems and multiplier theorems for Schrödinger operators. By
perturbation theory, the resolvent estimate (18.4) and the spectral projection estimate (18.6)
can be further upgraded to treat −∆+V for 0 ≤ V ∈ Ld/2∩Ld/2+ε for some ε > 0, see Ionescu–
Schlag [IS06] (for uniform resolvent estimates which imply spectral measure estimates by Stone)
or Huang et al [HYZ18]. (In fact, the non-negativity of V is only used to prove the bound on
∥(1 − ∆/λ)−k∥p→q when one applies Trotter’s formula, i.e., ultimately to prove the L1 → L∞

bound on dE∆(λ); neither the resolvent bound, nor the Lpc → Lp
′
c bound on dE∆(λ) use that

V is non-negative.) It is for this very reason that estimates like (18.1) and (18.1) are sometimes
called Tomas–Stein estimates as well, see, e.g., [SYY18, p. 3073-3074].

For further generalizations of the above theme, we refer to the works by Guillarmou et al
[GHS13], Sikora et al [SYY14, SYY18], and Chen et al [COSY16, COSY20].

18.3. Distorted Fourier transform. In the following we consider Schrödinger operators of the
form

H = P0(D) + V (x,D) in L2(Rd)

where P0 is real and simply characteristic (see Hörmander [Hör83, Definition 14.3.1]), σpp(P0) =
{0}, and V (x,D) is a symmetric short range perturbation of P0 in the sense of Hörmander [Hör83,

21This is no upgrade as the restriction estimate in (18.3) already holds for all p ∈ [1, pc].
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Definition 14.4.1]. Recall the Agmon–Hörmander spaces B and B∗ (see, e.g., Hörmander [Hör83,
Section 14.1]) and let

Z(P0) := {λ ∈ R : P0(ξ) = λ and dP0(ξ) = 0 for some ξ ∈ Rd} and

Sλ := {ξ ∈ Rd : P0(ξ) = λ} .
Recall that ∫

1Ω(λ)(dE
(0)
λ f, f) = ± lim

ε↘0

1

π

∫
R
1Ω(λ)Im(R0(λ± iε)f, f) dλ

=

∫
R
dλ1Ω(λ)

∫
Sλ

|f̂(ξ)|2 dσSλ(ξ) , f ∈ L2 .

Recall the resolvent formula R(λ ± i0)f = R0(λ ± i0)fλ±i0 where fz = (1 + V R0(z))
−1f is a

continuous function of z ∈ C± \ (σpp(H) ∪ Z(P0)) with values in B. Thus, we have∫
1Ω(λ)(dE

(V )
λ f, f) =

∫
R
dλ1Ω(λ)

∫
Sλ

|f̂λ±i0(ξ)|2 dσSλ(ξ) , f ∈ B ,

whenever Ω ∩ (σpp(H) ∪ Z(P0)) = ∅. This motivates

Definition 18.2. If f ∈ B, then the L2 functions defined by

(F±f)(ξ) = F [(1 + V R0(λ± i0))−1f ](ξ) , ξ ∈ Sλ

= F [(1− V R(λ± i0))f ](ξ)
(18.8)

almost everywhere in Sλ are called distorted Fourier transforms of f .

We recall the following properties of solutions of scattering states. Let B∗
P0

= {u : P
(α)
0 u ∈

B∗ for every α}.
Lemma 18.3 (Hörmander [Hör83, Lemma 14.6.6]). If u ∈ B∗

P0
, λ /∈ Z(P0), and (P0(D) + V −

λ)u = 0, then u is given by the solution of the Lippmann–Schwinger equation

u = u± −R0(λ∓ i0)V u (18.9)

= (1−R(λ∓ i0)V )u± , (18.10)

where

û± = v±δ(P0 − λ) = v±dσSλ(ξ) , v± ∈ L2(Sλ, dΣSλ)

and ∫
Sλ

(|v+|2 − |v−|2) dσSλ(ξ) = 0 (18.11)

where dσSλ(ξ) = |∇P0(ξ)|−1dΣSλ(ξ) and dΣSλ(ξ) is the euclidean surface measure on Sλ. More-
over, if λ /∈ (Z(P0) ∪ σpp(P0 + V )), then

(F+f, û+) = (F−, û−) = (f, u) , if f ∈ B . (18.12)

Let us also recall

Theorem 18.4 (Hörmander [Hör83, Lemma 14.6.4 and Theorem 14.6.5]). F± : EcL2(Rd) →
L̂2(Rd) is an isometric operator, which vanishes on EppL2(Rd), with

∥Ecf∥22 =

∫
Rd

|F±f(ξ)|2 dξ .

Moreover, the intertwining property

F±e
itH = eitP0(ξ)F±
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holds for all t ∈ R. In particular, the restriction of H to EcL2 is absolutely continuous (since
P0 has purely absolutely continuous spectrum).

Moreover, F± : EcL2(Rd) → L̂2(Rd) is actually unitary, i.e., the restriction of H to EcL2 is
unitarily equivalent to P0, i.e., σc(H) = σac(H) = σ(P0). In particular, for f ∈ Ec(L2(Rd)), we
have

(F±Hf)(ξ) = P0(ξ)(F±f)(ξ) , i.e., (Hf)(x) = (F∗
±P0(·)F±f)(x) .

In particular, it follows that

F∗
±F± = Ec and F±F∗

± = 1
L̂2 .

The distorted Fourier transform (18.8) can be conveniently represented using the solutions
φξ(λ)(x) (for ξ(λ) ∈ Sλ) of the Lippmann–Schwinger equation (18.9). In fact, we have (see also
Ikebe [Ike60] and Yafaev [Yaf10, Sections 6.6-6.8])

(F±f)(ξ) = ⟨φξ, f⟩ , ξ ∈
⋃

λ∈σac(H)

Sλ (18.13)

(F∗
±g)(x) =

∫
Rd
φξ(x)g(ξ) dξ =

∫
σac(H)

dλ

∫
Sλ

dσSλ(ξ) φξ(x)g(ξ) . (18.14)

Moreover, we have the following expansion theorem (see also Ikebe [Ike60, Theorem 5])

f =
∑

λ∈σpp(H)

|ψλ⟩⟨ψλ, f⟩+
∫
Rd

|φξ⟩⟨φξ, f⟩ dξ (18.15)

where {ψλ}λ∈σpp(H) denote the L2-normalized eigenfunctions of H, i.e., Hψλ = λψλ. Moreover,

Hf =
∑

λ∈σpp(H)

λ|ψλ⟩⟨ψλ, f⟩+
∫
Rd
P0(ξ)|φξ⟩⟨φξ, f⟩ dξ . (18.16)

The above results motivate in particular the following definition of the distorted Fourier re-
striction and extension operators

(FSλf)(ξ) = ⟨φξ, f⟩ = (F±f)(ξ) , ξ ∈ Sλ (18.17)

(F ∗
Sλ
g)(x) =

∫
Sλ

dσSλ(ξ) φξ(λ)(x)g(ξ) (18.18)

which are defined with respect to the canonical measure dσSλ . In particular, we have for any
Λ ⊆ σac(H),

EH(Λ) =

∫
P−1

0 (Λ)

|φξ⟩⟨φξ| dξ =
∫
Λ

dλ

∫
Sλ

dσSλ(ξ) |φξ(λ)⟩⟨φξ(λ)| =
∫
Λ

dλ F ∗
Sλ
FSλ

in a suitable weak sense and in particular, for λ ∈ σac(H),

dEH(λ)

dλ
=

∫
Sλ

dσSλ(ξ) |φξ(λ)⟩⟨φξ(λ)| = F ∗
Sλ
FSλ .

18.4. Eigenfunction estimates for F (−∆). The theme in the first subsection can clearly be
generalized. We are picking up the discussion from Remark 2.1.

Suppose, we are given a continuous function a : Rd → [0,∞) with

∇a(ξ) ̸= 0 for ξ ∈ a−1(Λ) ,Λ ⊆ R .
Then we can define the Fourier multiplier H0 = F∗AF , where A is multiplication by the symbol
a(ξ) and X ⊆ R is some Borel set. It is well known that its spectral projection is given by

E(X) = F∗1{a−1(X)}F .
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Now consider the “cospheres” associated to a,

Sλ := {ξ ∈ Rd : a(ξ) = λ}
with the associated Lebesgue surface measure dσλ(ξ). We may then define the canonical measure
associated to a by

dΣλ(ξ) =
dσλ(ξ)

|∇a(ξ)| ,

which is, however, not intrinsic to Sλ. (See also Strichartz [Str77, p. 705].) In particular, the
elementary volume dξ in Rd satisfies

dξ = dλdΣλ(ξ) .

Thus, by the above discussion, we can write the spectral projection E as

⟨ψ,E(X)ψ⟩ =
∫
Rd

1{ξ∈Rd:a(ξ)∈X}(ξ)|ψ̂(ξ)|2 dξ =
∫
a−1(X)

|ψ̂(ξ)|2 dξ =
∫
X

dλ

∫
Sλ

|ψ̂(ξ)|2 dΣλ(ξ) .
(18.19)

Thus, a(D) has absolutely continuous spectrum and the spectral projection-valued measure is
given by dE(λ) = F ∗

Sλ
FSλdλ, where FSλ denotes the Fourier restriction operator associated to

the measure dΣλ (see below) and we have

dE(λ)

dλ
f(x) =

∫
Sλ

e2πix·ξ f̂(ξ) dΣλ(ξ) .

In particular, for a given measurable function F : [0,∞) → R, we have

⟨ψ, F (H0)ψ⟩ =
∫
R+

dλ F (λ)

∫
Sλ

|ψ̂(ξ)|2 dΣλ(ξ) .

It follows from (18.19) that the space E(Λ)H, in which H0 becomes diagonal, is given by the
direct integral

E(Λ)H ↔
∫ ⊕

Λ

L2(Sλ) dλ ,

where Sλ is endowed with the measure dΣλ. A vector f ∈ E(Λ)H is mapped in this direct

integral into an element f̃(λ) which, for every fixed λ ∈ Λ, is the restriction of f̂ on Sλ.
Let us now denote the Fourier restriction and extension operators on Sλ by FSλ and F ∗

Sλ
and

abbreviate FS , respectively F
∗
S if λ = 0. In particular,

F ∗
Sλ
φ(x) =

∫
Sλ

e2πix·ξφ(ξ) dΣλ(ξ) .

Now, if Sλ=0 has non-vanishing curvature and a is sufficiently smooth, it follows again by the
Tomas–Stein theorem that the associated spectral projection

dE(λ)

dλ
(λ = 0) = F ∗

SFS

satisfies ∥∥∥∥dE(λ)

dλ
(λ = 0)

∥∥∥∥
pc→p′c

≲ 1 ,

where pc = 2(d+ 1)/(d+ 3). One may now ask how these estimates behave, when one varies λ.
Clearly, the bounds depend heavily on the restriction estimates for Sλ, and thus, it is inevitable
to control the behavior of the surface measure dΣλ as λ varies.

Since the spectral measure dE is absolutely continuous, we have

dE(λ) =
dE(λ)

dλ
dλ = F ∗

Sλ
FSλ dλ =

(
d̂ΣSλ∗

)
dλ ,
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i.e., it suffices to control ∥d̂ΣSλ∥r for 1/r = 1+1/p′−1/p (and possibly p = pc = 2(d+1)/(d+3)).
For a given diffeomorphism ψ(λ) : S → Sλ, the Radon–Nikodým derivative is given by

τ(λ, ζ) :=
dΣSλ(ψ(λ)ζ)

dΣS(ζ)
= exp

(∫ λ

0

dµ (div j)(ψ(µ)ζ)

)
, ζ ∈ S ,

where j(ξ) = |∇P (ξ)|−2∇P (ξ), see, e.g., Yafaev [Yaf10, Lemma 2.1.9]. Thus, we have

d̂ΣSλ(x) =

∫
Sλ

e2πix·ξ dΣSλ(ξ) =
∫
S

e2πix·ψ(λ)ζτ(λ, ζ) dΣS(ζ) ,

and therefore

∥d̂ΣSλ∥r ≤ sup
ζ∈S

τ(λ, ζ)∥d̂ΣS(ψ̃(λ)·)∥r ,

where ψ̃(λ) : Rd → Rd is defined by

⟨ψ̃(λ)x, ζ⟩ = ⟨x, ψ(λ)ζ⟩ .
Example 18.5. (1) For P (ξ) = ξ2 (i.e., P (D) = −∆), we take S = Sd−1, and Sλ =

{ξ ∈ Rd : ξ2 = λ} =
√
λSd−1. We reparameterize λ = 1 ± ρ for ρ > 0, i.e., Sλ(ρ) =

{ξ ∈ Rd : |ξ2 − 1| = ρ}. (For the “inner” surface, we restrict to ρ < 1 of course.)
Thus, for our “new symbol” P (ξ) = ξ2 − 1 defining Sρ(λ), we have j(ξ) = ξ/(2|ξ|2) and
div j(ξ) = (d− 2)/(2|ξ|2). We will now construct a C1-diffeomorphism ψ : S → Sλ with
ψ(0)ζ = ζ and ψ(ρ)ζ =

√
1± ρζ. For t ≥ 0, we define ψ(t)ζ =

√
1± tζ. Thus,

τ(ρ, ζ) = exp

(∫ ρ

0

dµ
d− 2

2(1± µ)

)
= (1± ρ)(d−2)/2 = λ(d−2)/2

and we obtain

∥d̂ΣSλ∥r = λ(d−2)/2 · λ−d/(2r)∥d̂ΣS∥r ≲ λd/2−1−d/2+d(1/p−1/p′)/2 = λd(1/p−1/p′)/2−1 ,

thereby recovering (18.3).
(2) For P (ξ) = |ξ|, i.e., P (D) =

√
−∆, we take S = Sd−1 and Sλ = {ξ ∈ Rd : |ξ| = λ} =

λSd−1. The situation is pretty clear since

d̂ΣSλ(x) =

∫
Sλ

e2πix·ξ dΣSλ(ξ) = λd−1

∫
S

e2πix·(λξ) dΣS(ξ) = λd−1d̂ΣS(λx) .

Thus, we immediately obtain

∥d̂ΣSλ∥r = λd−1 · λ−d/r∥d̂ΣS∥r ≲ λd−1−d+d(1/p−1/p′) = λd(1/p−1/p′)−1 ,

thereby recovering (18.1). In principle, one could go through the above steps and ex-
plicitly construct a diffeomorphism ψ(λ) : S → Sλ and compute the Radon–Nikdým
derivative; but since the situation here is so simple, we refrain from doing so.

18.5. An application of the observation of Frank and Sabin. We follow [FS17a, Section
4]. Our goal is to prove uniform Sobolev estimates and limiting absorption principles (LAPs)
for Schrödinger operators in Schatten ideals. We begin with the former which is an extension to
the uniform Sobolev estimate by Kenig–Ruiz–Sogge [KRS87, Theorem 2.3].

Theorem 18.6 (Uniform Sobolev estimate in Schatten spaces). Let d ≥ 2 and assume that{
q ∈ [4/3, 3/2] if d = 2 ,

q ∈ [d/2, (d+ 1)/2] if d ≥ 3 .
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Then for all z ∈ C \ [0,∞), we have the estimates

∥W1(−∆− z)−1W2∥S(d−1)q/(d−q)(L2(Rd)) ≲ |z|−1+d/(2q)∥W1∥L2q∥W2∥L2q (18.20)

and, for γ ≥ 1/2, δ(z) := dist(z, [0,∞)), and all z ∈ C \ [0,∞),

∥W1(−∆− z)−1W2∥S2(γ+d/2)(L2(Rd)) ≲ δ(z)−1+
(d+1)/2
2(γ+d/2) |z|− 1

2(γ+d/2) ∥W1∥L2(γ+d/2)∥W2∥L2(γ+d/2) .

(18.21)

Proof. We begin with the proof of (18.20). By scaling it suffices to consider z ∈ C \ {1} with
|z| = 1. For such z we will prove the bounds

∥W−it
1 (−∆− z)itW−it

2 ∥L2→L2 ≤ ∥W1∥∞∥W2∥∞ , t ∈ R (18.22)

and

∥W a−it
1 (−∆− z)−a+itW a−it

2 ∥S2 ≤Md,ae
Cd,at

2∥W1∥a
L

4ad
d−1+2a

∥W2∥a
L

4ad
d−1+2a

, t ∈ R (18.23)

where a is an arbitrary parameter satisfying 1 ≤ a ≤ 3/2 if d = 2 and d/2 ≤ a ≤ (d + 1)/2 if
d ≥ 3. Obviously, these estimates imply

∥W1(−∆− z)itW2∥L2→L2 ≤ ∥W1∥∞∥W2∥∞
∥W1(−∆− z)−a+itW2∥S2 ≤Md,ae

Cd,at
2∥W1∥

L
4d

d−1+2a
∥W2∥

L
4d

d−1+2a

for all t ∈ R. Thus, complex interpolation for Schatten ideals22 (cf. Simon [Sim05, Theorem
2.9]) applied to the family W1(−∆− z)−ζW2 then gives

∥W1(−∆− z)−1W2∥S2a ≲ ∥W1∥
L

4ad
d−1+2a

∥W2∥
L

4ad
d−1+2a

.

Up to the change of variables a = q(d− 1)/(2(d− q)) this is just the claimed estimate. In fact,
if d = 2, 3 and a = 1, then (18.23) is already the desired bound and complex interpolation is not
necessary.

So let us prove (18.22) and (18.23). The former estimate is an immediate consequence of
Plancherel. For the latter, we will estimate |(−∆− z)−a+it(x− y)| and apply either

• the Hardy–Littlewood–Sobolev inequality if it is bounded by a constant times |x− y|−ζ
for some ζ ∈ (0, d) or

• Hölder’s inequality if it is uniformly bounded in |x− y|. (This is the case when 4d/(d−
1 + 2a) = 2, i.e., a = (d+ 1)/2. In this case the L2 norms of |W1|a and |W2|a are taken
on the right side of (18.23), as expected.)

To that end recall [KRS87, Formulae (2.21), (2.23), (2.25)], i.e.,

(−∆− z)λ(x− y) =
2λ+1

(2π)d/2Γ(−λ)

(
z

|x− y|2
) d/2+λ

2

K d
2+λ

(√
z |x− y|

)
and, with ν ∈ C,

|eν2

νKν(w)| ≤ C|w|−|Re(ν)| for |w| ≤ 1, Re(w) > 0 ,

|Kν(w)| ≤ CRe(ν)e
−Re(w)|w|−1/2 for |w| ≥ 1, Re(w) > 0, Re(ν) ≥ 0 .

22Note that although (18.23) deteriorates super-exponentially, it is still sub-double-exponential in t, so Stein
interpolation is indeed applicable.
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Setting λ = −a+ it, ν = d/2 + λ = d/2− a+ it, we have Re ν ∈ [0, 1/2] for a ∈ [d/2, (d+ 1)/2].
Thus, for w =

√
z |x− y| with z ̸= 1 but |z| = 1, i.e., |w| = |x− y|, we can estimate in this case

|Kν(w)| ≲a,d ecd,at
2
[
|w|−|Re(ν)| ∧ |w|−1/2

(
1 ∧ Re(w)−N

)]
, Re(w) > 0, N ∈ N

≲a,d e
cd,at

2 |x− y|−1/2 , |w| = |x− y|, |Re(ν)| ≤ 1/2 .

Combining the previous estimates therefore gives

|(−∆− z)−a+it(x− y)| ≲a,d
21−a

(2π)d/2|Γ(a− it)|

( |z|
|x− y|2

) d/2−a
2

ecd,at
2 |x− y|−1/2

≲a,d e
cd,at

2 |x− y|a− d+1
2 .

Thus, by the Hardy–Littlewood–Sobolev inequality, we obtain

∥W a−it
1 (−∆− z)−a+itW a−it

2 ∥2S2 ≤Md,ae
Cd,at

2∥W1∥2a4ad
d−1+2a

∥W2∥2a4ad
d−1+2a

if a ∈
[
d− 1

2
,
d+ 1

2

]
for all t ∈ R. This is precisely (18.23) and concludes the proof of (18.20).

The second estimate (18.21) follows from complex interpolation between (18.20) for γ = 1/2
respectively q = (d+ 1)/2, i.e.,

∥W1(−∆− z)−1W2∥Sd+1 ≲ |z|−1/(d+1)∥W1∥Ld+1∥W2∥Ld+1 (18.24)

and the trivial bound for γ = ∞, i.e.,

∥W1(−∆− z)−1W2∥ ≤ δ(z)−1∥W1∥∞∥W2∥∞ . (18.25)

This concludes the proof. □

We will now use and upgrade arguments of Ionescu–Schlag [IS06] to obtain a LAP in Schatten
spaces for V ∈ Lq. As in their arguments, a crucial ingredient is a deep result of Koch and
Tataru [KT06, Theorem 3] about absence of embedded eigenvalues for such potentials.

Theorem 18.7 (LAP for V ∈ Lq in Schatten spaces). Let d ≥ 2 and assume that V ∈ Lq(Rd : R)
with {

q ∈ (1, 3/2] if d = 2 ,

q ∈ [d/2, (d+ 1)/2] if d ≥ 3 .

Define αq := 2 ∨ (d− 1)q/(d− q). Then

(1) V 1/2(−∆+ V − z)−1|V |1/2 ∈ Sαq (L2(Rd)) for every z ∈ C \ [0,∞).
(2) the mapping C \ [0,∞) ∋ z 7→ V 1/2(−∆+ V − z)−1|V |1/2 ∈ Sαq is analytic and extends

continuously to (0,∞) (with possibly different boundary values from above and below).
(3) under the additional assumption q > d/2, there is a constant Cd,q (independent of V )

such that for |z|−1+d/(2q)∥V ∥Lq ≤ Cd,q, one has

∥V 1/2(−∆+ V − z)−1|V |1/2∥Sαq ≤ 2Cd,q|z|−1+d/(2q)∥V ∥Lq . (18.26)

If q = d/2 and d ≥ 3, the bound (18.26) holds provided |z| ≥ C(V ) for some constant
C(V ) only depending on V .

The proof of this theorem relies on detailed information of the Birman–Schwinger operator
V 1/2(−∆− z)−1|V |1/2.
Lemma 18.8. Let d ≥ 2 and assume V ∈ Lq(Rd) where q satisfies the assumptions in Theorem
18.7. Let I ⊆ (0,∞) be a compact interval. Then
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(1) the family

A(z) := V 1/2(−∆− z)−1|V |1/2 ∈ Sαq (L2(Rd))
is analytic on the half strips S± := {z ∈ C : Re(z) ∈ I̊ , ±Im(z) > 0} .

(2) On each S±, the family A(z) is continuous up to S± and we denote by V 1/2(−∆− λ±
i0)−1|V |1/2 its extensions at λ > 0.

(3) For all z ∈ S± we have the estimate

∥A(z)∥Sαq ≤ C|z|−1+d/(2q)∥V ∥Lq , (18.27)

where C is the implicit constant in (18.20) which is, in particular, independent of I.
(4) for all z ∈ S± the operator 1 +A(z) is invertible and the map S± ∋ z 7→ (1 +A(z))−1 is

an analytic family of bounded operators on L2(Rd) which is continuous on S±.

It is precisely this lemma which relies on the absence of embedded eigenvalues [KT06, Theorem
3]. The proof of Theorem 18.7 is then a simple combination of the uniform Sobolev inequalities
of Theorem 18.6 and this lemma (together with the resolvent identity).

Proof of Lemma 18.8. (1) The family C \ [0,∞) ∋ z 7→ V 1/2(−∆− z)−1|V |1/2 is indeed analytic
as can be seen by invoking the resolvent formula. We obtain for any z, z0 ∈ C \ [0,∞),

V 1/2(−∆− z)−1|V |1/2 −
N∑
n=0

(z − z0)
nV 1/2(−∆− z0)

−n−1|V |1/2

= V 1/2(−∆− z)−1(z − z0)
N+1(−∆− z0)

−N−1|V |1/2 .
By the Seiler–Simon inequality and the constraint q ≥ d/2, the right side is bounded in Sαq
norm by

∥V 1/2(−∆− z)−1(−∆− z0)
−N−1|V |1/2∥Sαq

≤ ∥|V |1/2(−∆− z0)
−1∥2S2αq ∥(−∆− z0)

−1∥N−1∥(−∆− z)−1∥ ≤ CN∥V ∥q
and hence vanishes as N → ∞ if |z− z0| is small enough (such that |z− z0| ≪ C−1 for instance).
This shows that the entire series converges in Sαq with a nonzero convergence radius and thereby
the asserted analyticity of A(z) in Sαq .

(2) Next, we notice that one can rely on the arguments and results of Ionescu–Schlag [IS06]
as V is an admissible potential in their sense, see also [FS17a, p. 1676]. In particular, [IS06,
Lemma 4.1 b)] yields that for each λ > 0 there exists an operator (−∆−λ±i0)−1 ∈ B(L2q(q+1) →
L2q(q−1)), i.e.,

∥(−∆− λ± i0)−1∥L2q(q+1)→L2q(q−1) ≤ CI for any λ ∈ I̊

such that z 7→ A(z) can be extended as a continuous family on the strips S± in weak operator

topology, i.e., there are sequences I̊ ∋ λn → λ and εn → 0 such that

lim
n→∞

((−∆− λn ± iεn)
−1f, φ) = ((−∆− λ± i0)−1f, φ) , f ∈ L2q/(q+1), φ ∈ S(Rd) .

We will now show that this family is indeed continuous in Sαq . To that end let z ∈ S± and
(zn) ⊆ S± such that zn → z. Since the Schatten spaces are Banach, so in particular complete,
it suffices to show that A(zn) is Cauchy in Sαq norm to show Schatten norm continuity of A(z)
up to the real axis. To that end, we decompose

√
V =W1 +W1 , |V |1/2 = W̃1 + W̃2 ,

where W1, W̃1 are bounded, compactly supported functions and

∥W2∥q/2 + ∥W̃2∥q/2 ≤ ε .
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Using the uniform Sobolev inequality (18.20), we then obtain

∥A(zn)−A(zm)∥Sαq ≤ ∥W1((−∆− zn)
−1 − (−∆− zm)−1)W̃1∥Sαq + Cε .

The first term is easily bounded using the classic LAP in trace ideals for potentials that are
short-range in pointwise sense, cf. Yafaev [Yaf10, Proposition VII.1.22]. (See also [Yaf10, Propo-
sition VI.2.1] for Hölder continuity of the Birman–Schwinger in operator norm.) Anyway, that

proposition asserts that the family z 7→ W1(−∆ − z)−1W̃1 is analytic in S± and continuous on
S± in Sαq topology. In particular, it implies for n,m large enough

∥W1((−∆− zn)
−1 − (−∆− zm)−1)W̃1∥Sαq ≤ ε

for any given ε. Thus, (A(zn))n is Cauchy in Sαq and hence z 7→ A(z) ∈ Sαq is continuous
up to the real line, i.e., the boundary of S±. Let us repeat that this implies in particular that
V 1/2(−∆−λ± i0)−1|V |1/2 ∈ Sαq for all λ > 0 and that the asserted estimate (18.27) continuous
carries over to the real axis.

(3) We apply analytic Fredholm theory (cf. Yafaev [Yaf92, Lemma I.8.1 and Theorems I.8.2-
3]) to the family (of compact operators) A(z) in the strips S± and infer that z 7→ (1 + A(z))−1

is a meromorphic family of operators on S± with poles at those points z where −1 ∈ σ(A(z)).
Moreover, this family is continuous up to the real axis, except at those points λ ∈ I where
−1 ∈ σ(A(λ)).

This almost finishes the proof, as we are left to show that no such points z ∈ S± exist such
that −1 ∈ σ(A(z)). Recall that our potential V is assumed to be real-valued.

Case Im(z) ̸= 0. This follows from a simple argument similar to the one at the beginning
of the proof of [IS06, Lemma 4.6]. We present the argument for the sake of completeness. We
sandwich 1+A(z) from the left with |V |1/2f and from the right with V 1/2f . Then, also the the
imaginary part of

(f, V f) + (f, V (−∆− λ± i0)−1f) = 0

vanishes. Since the first summand is zero for real-valued V , so must be the second one, i.e.,

0 = Im

∫
Rd

|V̂ f |2(ξ2 − λ± iε)−1 dξ = ε

∫
Rd

|V̂ f |2
[
ε2 + (ξ2 − λ)2

]−1

Since ε > 0, the integral must vanish, so the integrand is zero almost everywhere, i.e., f ≡ 0. So
1 +A(z) is invertible for all z with Im(z) > 0 if V is real-valued.

Case z > 0. This is where the result on absence of embedded eigenvalue of Koch and Tataru
comes in. So suppose there are λ > 0, a sign ±, and f ∈ L2(Rd) such that (for (−∆−λ± i0)−1 ≡
R0(λ))

V 1/2R0(λ)|V |1/2f = −f .
We will now show f ≡ 0. So let us define g := R0(λ)|V |1/2f . Since f ∈ L2 and V ∈ Lq, we
have |V |1/2f ∈ L2q/(q+1) and by the classic uniform Sobolev inequality [KRS87, Theorem 2.3]
g ∈ L2q/(q−1)(Rd). Moreover, V g ∈ L2q/(q+1) and the above equation reads

R0(λ)V g = −g .
By the integrability properties of g and V g, we can rewrite the equation as the well-defined
Schrödinger equation (−∆+V )g = zg in the sense of distributions on Rd. Since g ∈ L2q/(q−1) and

V g ∈ L2q/(q+1), we have g ∈ H
2q/(q+1)
loc ⊆ H1

loc. Once we show that g ∈ L2 (or |x|−1/2+εg ∈ L2

for some ε > 0), we can apply [KT06, Theorem 3] and conclude g ≡ 0 and therefore also

f = −V 1/2R0(λ)|V |1/2 = −
√
V g ≡ 0 and therefore −1 /∈ σ(A(z)).

So we are left to show g ∈ L2. Since V g ∈ L2q/(q+1), we have V g ∈ X where X denotes
the Banach space defined in the introduction of Ionescu–Schlag [IS06] (that plays a similar role
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than the Agmon–Hörmander spaces). By [IS06, Lemma 4.1 a,b)], we know R0(λ) : X → X∗

boundedly. Thus, g = −R0(λ)V g ∈ X∗. Using R0(λ)V g = −g and [IS06, Lemma 4.4], we obtain

∥(1 + |x|2)Mg∥X∗ <∞ , M ≥ 0 .

Writing g =< x >−2M< x >2M g and recalling X∗ ⊆ L2q/(q−1), we see g ∈ L2. This finally
concludes the proof of Lemma 18.8. □

We are now ready to prove Theorem 18.7. It basically uses the resolvent identity to upgrade
the results of Lemma 18.8 on V 1/2(−∆− z)−1|V |1/2 to V 1/2(−∆+ V − z)−1|V |1/2.

Proof of Theorem 18.7. We rewrite the operator of interest as

V 1/2(−∆+ V − z)−1|V |1/2 =
1

1 + V 1/2(−∆− z)−1|V |1/2V
1/2(−∆− z)−1|V |1/2 . (18.28)

By Lemma 18.8, we know that the maps

z 7→ 1

1 + V 1/2(−∆− z)−1|V |1/2 ∈ B(L2(Rd)) , z 7→ V 1/2(−∆− z)−1|V |1/2 ∈ Sαq (L2(Rd))

are analytic on C \ [0,∞) and extend continuously to (0,∞) with possibly different boundary
values from above and below. This settles (1) and (2).

Thus, we are left to prove the uniform Schatten bound (18.26). Indeed, for q > d/2 and
z ∈ C \ [0,∞) such that C|z|−1+d/(2q)∥V ∥Lq ≤ 1/2 we obtain (by (18.28), the Schatten bound
for the Birman–Schwinger operator in (18.27), and the uniform resolvent estimate for Schatten
spaces in Theorem 18.6)

∥V 1/2(−∆+ V − z)−1|V |1/2∥Sαq

≤
∥∥∥∥(1 + V 1/2(−∆− z)−1|V |1/2

)−1
∥∥∥∥ · ∥V 1/2(−∆− z)−1|V |1/2∥Sαq

≤

∑
n≥0

∥V 1/2(−∆− z)−1|V |1/2∥n
 · C|z|−1+d/(2q)∥V ∥Lq

≤ 2C|z|−1+d/(2q)∥V ∥Lq , for C|z|−1+d/(2q)∥V ∥q ≤ 1/2 .

Finally, let q = d/2 and d ≥ 3. Similarly as in the proof of Lemma 18.8 we decompose

V 1/2 = W1 +W2 and |V |1/2 = W̃1 + W̃2 with W1, W̃1 ∈ Cc bounded and W2, W̃2 ∈ Lq/2 with
Lq/2 norm < ε. Then, again by the uniform Sobolev estimate in Schatten spaces (Theorem 18.6),

∥V 1/2(−∆− z)−1|V |1/2∥ ≤ ∥W1(−∆− z)−1W̃1∥+ Cε , z ∈ C \ [0,∞) .

But since W1, W̃1 also belong to Lq/2 for any q > d/2, we can apply our previous result and infer

∥W1(−∆− z)−1W̃1∥ → 0 as |z| → ∞ .

Thus, there is a C(V ) such that for all |z| ≥ C(V ) we obtain the same bound (18.26). This
concludes the proof of Theorem 18.7. □

18.6. Application of the LAP: Schatten properties of the scattering matrix. An im-
portant object in scattering theory is the so-called scattering matrix. For every λ > 0 (with the
physical interpretation of an energy) this is a bounded operator

S(λ) := 1− 2πiΓ0(λ)|V | 12
(
1− V

1
2 (−∆+ V − i0)−1|V | 12

)
V

1
2Γ0(λ)

∗ on L2(Sd−1), (18.29)
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where Sd−1 corresponds to the Fermi sphere in physics. Here, Γ0(λ) is the operator that maps
functions ψ on Rd to functions on Sd−1 by restricting their Fourier transform to the sphere of
radius

√
λ, i.e.,

(Γ0(λ)ψ)(ω) := 2−
1
2λ(d−2)/4ψ̂(

√
λω), ω ∈ Sd−1. (18.30)

By the Stein–Tomas theorem, we can therefore see that Γ0(λ)|V |1/2 and its adjoint are bounded
and therefore S(λ) is well-defined.

Under rather weak decay assumptions on the potential V , the scattering matrix differs from
the identity by a compact operator. The next result provides quantitative information in terms
of trace ideals properties.

Theorem 18.9. Let d ≥ 2 and assume V ∈ Lq(Rd : R) with{
1 < q ≤ 3

2 if d = 2,
d
2 ≤ q ≤ d+1

2 if d ≥ 3
.

Then, S(λ) − 1 ∈ S(d−1)q/(d−q)(L2(Sd−1)) for every λ > 0 and the mapping (0,∞) ∋ λ 7→
S(λ)− 1 ∈ S(d−1)q/(d−q)(L2(Sd−1)) is continuous. Moreover,

∥S(λ)− 1∥αq ≲ λ−1+d/(2q)∥V ∥Lq(Rd), λ > 0, αq := max{2, (d− 1)q

d− q
}. (18.31)

Proof. By scaling and the Stein–Tomas theorem in Schatten spaces,

∥Γ0(λ)V Γ0(λ)
∗∥ (d−1)q

d−q
≲ λ−1+ d

2q ∥V ∥q. (18.32)

Moreover, by Hölder in Schatten spaces and the LAP in Theorem 18.7, we have, for r = 2(d −
1)q/(3d− 2q − 1) < (d− 1)q/(d− q) and |z| large enough,

∥Γ0(λ)V (−∆+ V − λ− i0)−1V Γ0(λ)∥r
≤ ∥Γ0(λ)|V |1/2∥2(d−1)q/(d−q)∥V 1/2(−∆+ V − λ− i0)−1|V |1/2∥2q
≲ λ−2+d/q∥V ∥2q.

(18.33)

This shows that S(λ) is well-defined and belongs to 1 + S(d−1)q/(d−q)(L2(Sd−1)).
The continuity statement follows from the continuity statement in Theorem 18.7 and conti-

nuity of λ 7→ Γ0(λ)W ∈ S2(d−1)q/(d−q) as shown, e.g., in [CM21].
Finally, we show (18.31). Using the Neumann series expansion, we have

V 1/2(−∆+ V − z)−1|V |1/2 =
1

1 + V 1/2(−∆− z)−1|V |1/2V
1/2(−∆− z)−1|V |1/2,

and hence

S(λ)− 1 = 2πiΓ0(λ)|V |1/2
(
1 + V 1/2(−∆− λ− i0)−1|V |1/2

)−1

V 1/2Γ0(λ)
∗

= 2πiΓ0(λ)V
1/2 sgn(V )

(
1 + V 1/2(−∆− λ− i0)−1V 1/2 sgnV

)−1

V 1/2Γ0(λ)
∗.

This operator is of the form considered in [Yaf10, Secs. 7.7 and 7.9]. Therefore, the abstract
theorem [Yaf10, Theorem 7.9.4] (originally from [SY89]) yields

∥S(λ)− 1∥Sαq (L2(Sd−1)) ≤ καq∥
√
V (−∆− λ− i0)−1V 1/2∥Sαq (L2(Rd))

with κpp = 2pmin0<β<1(β
−p+2(1−β)−p). The proof is concluded by applying Theorem 18.6. □
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19. Connection between Fourier restriction and eigenvalue estimates

We are mainly motivated by [Fra11] who used the Birman–Schwinger principle and the Kenig–
Ruiz–Sogge estimate to obtain bounds on every eigenvalue of −∆− V in L2(Rd) with complex-
valued V . In [CM22a], the Stein–Tomas estimate for Schatten ideals, Theorem 4.15, was used
to analyze eigenvalue sums of |∆+ 1| − V with real-valued V . (It transpires from the approach
that the kinetic energy can be much more general.)

19.1. Definition of resolvent for large class of potentials. To analyze eigenvalues of −∆+
V , it is helpful to understand how the resolvent

RV (λ) = (−∆+ V − λ2)−1, λ ∈ C (19.1)

is defined.

19.1.1. Compactly supported potentials.

Theorem 19.1 ([DZ19b, Theorem 3.8]). Let d ≥ 3 be odd and V ∈ L∞
comp(Rd). If Im(λ) > 0,

then RV (λ) : L
2 → L2 is a meromorphic family of operators with finitely many poles. In fact, it

extends to a meromorphic family of operators RV (λ) : L
2
comp → L2

loc for all λ ∈ C.

Definition 19.2. Let V ∈ L∞
comp(Rd). Then the poles of the meromorphic continuation RV (λ) :

L2
comp → L2

loc with λ ∈ C are called scattering resonances. See [DZ19b, Cue22]

For recent effective bounds on the number of resonances #{resonancesλ : |λ| < r}, see [Cue22].

19.1.2. Lp-potentials. When analyzing real-valued potentials and λ ∈ R, we may assume V ∈ Lq

with q ∈ [1, (d + 1)/2]. If not, we have to sacrifice the end-point (d + 1)/2 and assume there is
γ > 0 such that V ∈ e−γ|·|Lq with q ∈ [1, (d+ 1)/2) or V ∈ e−γ|·|L(d+1)/2,1 at most. We use the
notation

v0 := ∥V ∥(d+1)/2 and vγ : −∥e2γ|·|V ∥(d+1)/2,1 (19.2)

with the Lorentz norm

∥V ∥p,q := p
1
q

(∫ ∞

0

dα

α
αq|{x ∈ Rd : |V (x)| > α}|q/p

)1/q

, p, q ∈ (0,∞) (19.3)

∥V ∥p,∞ := sup
α>0

α|{x ∈ Rd : |V (x)| > α}|1/p. (19.4)

Define the Birman–Schwinger operator

BS(λ) := |V |1/2R0(λ)V
1/2. (19.5)

If V is bounded, then by iterating the second resolvent identity,

RV (λ) = R0(λ)−R0(λ)V
1/2(1 +BS(λ))−1|V |1/2R0(λ). (19.6)

This formula is valid for Imλ≫ 1 since, by the Stein–Tomas theorem

∥BS(λ)∥ ≲ |λ− 2
d+1 ∥V ∥(d+1)/2, Imλ > 0. (19.7)

If V is unbounded, one can use (19.6) as a definition of RV (λ) for Imλ≫ 1. This idea goes back
to Kato [Kat66], but see also [GLMZ05, GLMZ20] for abstract results in the non-self-adjoint
setting.

Recall the Stein–Tomas theorem for Schatten ideals (Theorem 4.15) saying

∥BS(λ)∥d+1 ≲ λ−
2
d+1 ∥V ∥(d+1)/2, Im(λ) ≥ 0. (19.8)
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On the other hand, Frank–Laptev–Safronov [FLS16a] considered numbers of eigenvalues of
Schrödinger operators with complex V and extended this to Imλ < 0. They showed

∥BS(λ)∥d+1 ≲ λ−
2
d+1 ∥e2βd(Imλ)−/(d+1) |·|V ∥(d+1)/2, λ) ∈ C, for some βd ≥

2(e(d+1)/2 − 1)

e− 1
.

(19.9)

In particular, BS(λ) is compact whenever βd(Imλ)−/(d + 1) < γ and vγ < ∞. By the mero-
morphic Fredholm theorem (see, e.g., [DZ19b, Theorem C.8]), the definition (19.6) then defines
a meromorphic continuation of RV to the region Imλ > −(d + 1)γ/βd; in partiular, scattering
resonances are then poles of the operator-valued function λ 7→ (1+BS(λ))−1. Moreover, it turns
out [Cue22, Corollary 3.2] that, for (Imλ)− < γ, BS(λ) ∈ S(d+1),∞, the weak Schatten class
consisting of compact operators whose singular values sn obey supn∈N n

1/(d+1)sn <∞.

Theorem 19.3 ([Cue22, Proposition 2.1]). If d ≥ 3 is odd and V ∈ L(d+1)/2,1, then RV (λ) has
a meromorphic continuation to Im(λ) > −γ.
19.1.3. Pointwise decaying potentials. See [Cue22, Section 2].

19.2. Alternative proof of Stein–Tomas inequality in Schatten spaces. We provide an
alternative proof for the Stein–Tomas theorem in Schatten spaces (Theorem 4.15) which does not
rely on complex interpolation. Such proof can be helpful to investigate the isospectral operator
E∗V E and allowes to keep possible valuable oscillation of V .

Theorem 19.4. Let V ∈ L(d+1)/2,1. Then ∥E∗V E∥Sd+1,∞ ≲ ∥V ∥ d+1
2 ,1.

Proof. We perform a dyadic horizontal decomposition

V (x) =
∑
j≥0

Vj with Vj = V 1Hj≤|V |≤Hj+1
(19.10)

where

Hj = inf{t > 0 : {|V | > t}| ≤ 2j−1. (19.11)

This is called horizontal decomposition, because |supp(Vj)| ∼ 2j . In particular,

∥V ∥Lq,r ∼ ∥Hj2
j/q∥ℓrj (Z+). (19.12)

Then, by the triangle inequality and the fact that |Vj | ∼ Hj ,

∥E∗V E∥Sd+1,∞ ≲
∑
j∈Z+

Hj∥E∗1supp(Vj)E∥Sd+1,∞ . (19.13)

In Theorem 19.5 below, we show

sn(E∗1ΩE) ≲ n−
1
d+1 |Ω| 2

d+1 , Ω measurable, (19.14)

which, together with the definition of weak Schatten spaces23, yields

∥E∗1supp(Vj)E∥Sd+1,∞ ≲ |supp(Vj)|
2
d+1 ∼ 2

2j
d+1 . (19.15)

This concludes the proof. □

Theorem 19.5. Let Ω ⊆ Rd be measurable and sk(E∗1ΩE) be the k-th singular value of E∗1ΩE.
Then

sk(E∗1ΩE) = sk(1ΩEE∗1Ω) ≲ k−
1
d+1 |Ω| 2

d+1 . (19.16)

23Recall that the singular values sn(T ) of T ∈ Sp,∞ obey supn∈N n
1/psn(T ) ∼ ∥T∥p,∞ <∞.
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The following proof is not efficient for oscillating potentials, since we entirely work with
1ΩEE∗1Ω.

Proof. Let Ω =
⋃
α∈ρZd Qα be a disjoint partition of Ω into cubes Qα = ρα + [0, ρ]d with side

length ρ centered at α ∈ ρZd. Let χα := 1Qα . We split

T := 1ΩEE∗1Ω = T1 + T2 (19.17)

with

T1(s) :=
∑

|α−β|>s
χαEE∗χβ and T2(s) :=

∑
|α−β|≤s

χαEE∗χβ . (19.18)

We now use Fan’s inequality sn+m+1(A+B) ≤ sn+1(A) + sm+1(B) for all n,m ≥ 0 and obtain

sn(T ) = sn(T1 + T2) ≤ sn(T1) + ∥T2∥. (19.19)

We begin with estimating ∥T2∥. To that end, we use Plancherel’s theorem and regard S =
{(ξ′, φ(ξ′) : ξ′ ∈ D ⊆ Rd−1} as the graph of a function φ : D → R with D ⊆ Rd−1. Then

(Eg)(x) =
∫
Rd−1

e(xdφ(ξ
′) + x′ · ξ′)g(ξ′, φ(ξ′))1D(ξ

′) dξ′. (19.20)

Writing Fxd(ξ
′) = e(xdφ(ξ

′))g(ξ′, φ(ξ′))1D(ξ′) and using Plancherel in Rd−1 yields

∥χαEg∥2L2(Rd) ≤
∫ αd+ρ

αd

dxd

∫
Rd−1

dx′
∣∣∣ ∫

Rd−1

dξ′ Fxd(ξ
′)
∣∣∣2

=

∫ αd+ρ

αd

dxd

∫
Rd−1

dξ′|Fxd(ξ′)|2

=

∫ αd+ρ

αd

dxd

∫
Rd−1

dξ′|g(ξ′, φ(ξ′))1D(ξ
′)|2 = ρ∥g∥2L2(S).

(19.21)

This shows, by Young’s inequality for sums,

∥T2(s)∥ ≤ sup
g1,g2∈L2(Rd),∥g1∥,∥g2∥≤1

∑
|α−β|≤s

|⟨E∗χαg1, E∗χβg2⟩|1|α−β|≤s

≤ sup
∥g∥2≤1

∑
α∈ρZd

∥E∗χαg∥22 ·
∑
|β|≤s

1

≲ ρsd sup
∥g∥2≤1

∑
α∈ρZd

∥χαg∥22 ≤ ρsd.

(19.22)

To estimate sn(T1), we use

sn(T1) ≤ ∥T1∥p,∞n−1/p = n−1/p sup
λ>0

λ(#{k : sk(T1) ≥ λ})1/p. (19.23)

We take p = 2 and estimate the right side using Markov’s inequality,

#{k : sk(T1) ≥ λ} ≤ k−2∥T1∥22. (19.24)

The integral kernel of T1 is

T1(x, y) =
∑

|α−β|>s
χα(x)χβ(y)(EE∗)(x− y). (19.25)
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Since |(EE∗)(z)| ∼ ⟨z⟩−(d−1)/2, we have

∥T1∥22 =

∫
R2d

dx dy

∣∣∣∣∣∣
∑

|α−β|>s
χα(x)χβ(y)(EE∗)(x− y)

∣∣∣∣∣∣
2

≲ (ρs)−(d−1)

∫
R2d

dx dy
∑
α,β

χα(x)χβ(y)

= (ρs)−(d−1)
∑
α,β

|Qα||Qβ | ≲ (ρs)−(d−1)|Ω|2.

(19.26)

Here we used ∑
α,β

χα(x)χβ(y)

2

=
∑
α,β

χα(x)χβ(y) (19.27)

by the disjointness of the cubes Qα, and that the summations over α and β only run over such
α, β ∈ ρZd for which Qα ∩ Ω ̸= ∅ and Qβ ∩ Ω ̸= ∅. Thus, combining (19.23)–(19.26) shows

sn(T1) ≲ n−1/2 (sρ)−(d−1)/2|Ω|. (19.28)

Combining this with (19.19)–(19.22) shows

sn(T ) ≲ n−1/2 (sρ)−(d−1)/2|Ω|+ sdρ. (19.29)

Optimizing over ρ, with optimizer ρ∗ satisfying ρ
d+1
2∗ = c(s)|Ω|n−1/2 shows

sn(T ) ≲ c(s)|Ω|2/(d+1)n−1/(d+1) (19.30)

as desired. This concludes the proof. □

19.3. Estimates for singular values. Recall Stone’s formula saying that dE(k2) = π−1Im((−∆−
k2 ± i0)−1) = cdk

d−2
2 E(k)E∗(k) for all k ∈ R with the scaled extension operator

E(k) : L1(Sd−1) → L∞
comp(Rd)

E(k)g(x) =
∫
Sd−1

e2πikx·ξg(ξ) dω(ξ), x ∈ Rd, k ∈ R,
(19.31)

where dω(ξ) denotes the induced Lebesgue measure on Sd−1. Clearly, E(k) can be analytically
continued to k ∈ C. In this case, we have, from Stone

R0(λ)−R0(−λ) = cdλ
d−2E(λ)E(λ), Imλ < 0. (19.32)

We record the scaled Stein–Tomas and Agmon–Hörmander estimates,

∥E(λ)g∥
L

2(d+1)
d−1 (Rd)

≲ |λ|−
d(d−1)
2(d+1) ∥g∥L2(Sd−1) (19.33)

∥E(λ)g∥L2(B(R)) ≲ R
1
2 |λ|− d−1

2 ∥g∥L2(Sd−1). (19.34)

In fact, in combination with the Stein–Tomas estimate for Schatten spaces, one has

∥|V 1/2E(λ)E(λ)∗V 1/2∥d+1 ≲ |λ|−
d(d−1)
d+1 ∥V ∥(d+1)/2, Imλ ≥ 0. (19.35)

20. Cuenin’s toolbox

We collect some standard tools of Cuenin.
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20.1. Phragmén–Lindelöf. We follow [Rui02, Section 5] and start with the Helmholtz equation

(∆ + k2)u = f (20.1)

whose solution is

u(x) =

∫
Φ(x− y)f(y) dy (20.2)

where

Φ(x− y) = cdk
d−2
2

H
(1)
(d−2)/2(k|x− y|)
|x− y|(d−2)/2

, where cd =
1

2i(2π)(d−2)/2
(20.3)

where H
(1)
λ = Jλ + iYλ is the Hankel function of the first kind, which coincides, up to innocent

prefactors, with the modified Bessel function Kλ(±ix) with imaginary argument. (Recall that
the modulus of Hankel functions decays like |x|−1/2, thus, |Φ(x)| ≲ ⟨x⟩−(d−1)/2 for k = 1.)
Clearly,

Φ̂(ξ) =
(
−ξ2 + k2 + i0

)−1
. (20.4)

This distribution can be expressed in terms of homogeneous distributions of degree −1, principal
value (p.v.), and Dirac delta, see, e.g., [GS16, pp. 209–236]. We can obtain the expression from
the one variable formula

lim
ε↘0

(t+ iε)−1 = p.v.
1

t
+ iπδ (20.5)

which can be extended to Rd-function t = H(ξ) (e.g., H(ξ) = ξ2) as far as we can take locally
H as a coordinate function in a local patch of a neighborhood in Rd at any point ξ0 at which
H(ξ0) = 0. We have

Proposition 20.1. Let H : Rd → R be such that |∇H(ξ)| ̸= 0 at any point ξ where H(ξ) = 0.
Then we can define the distribution limit

(H(ξ) + i0)−1 = lim
ε↘0

(H(ξ) + iε)−1 , (20.6)

and we have

(H(ξ) + i0)−1 = p.v.
1

H(ξ)
+ iπδ(H(ξ)) (20.7)

in distributional sense.

In the above δ(H(ξ)) is defined via

δ(H)[ψ] :=

∫
Rd
δ(H(ξ)− 0)ψ(ξ) dξ =

∫
{H(ξ)=0}

ψ(ξ) dσH(ξ) (20.8)

where dσH(ξ) = dΣH(ξ)
|∇H(ξ)| is the Leray measure with dΣH(ξ) being the Lebesgue measure induced

by dξ on the hypersurface {H(ξ) = 0}. We summarize this in

Lemma 20.2. Let H(ξ) = −ξ2 + k2. Then

(H(ξ) + i0)−1 = p.v.
1

H(ξ)
+
iπ

2k
dΣ{ξ2=k2} . (20.9)

Thus,

(R+(k
2)f)(x) = ((∆ + k2 + i0)−1f)(x) = p.v.

∫
Rd

f̂(ξ)e2πix·ξ

−ξ2 + k2
+
iπ

2k
(dσ∨

kSd−1 ∗ f)(x) . (20.10)

We begin with the well-known KRS bound.
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Theorem 20.3 ([Rui02, Theorem 5.2]). Let k > 0 and 2
d ≥ 1

p − 1
p′ ≥ 2

d+1 and d ≥ 3 or

1 > 1
p − 1

p′ ≥ 2
3 and d = 2. Then

∥R+(k
2)f∥Lp′ ≲ k

−2+d( 1
p− 1

p′ ) . (20.11)

The proof of the endpoint estimate was carried out earlier and used Stein’s complex inter-
polation method. To treat 1/p − 1/p′ > 2/(d + 1) it suffices to use real interpolation and the
following estimates.

Lemma 20.4. Let χ ∈ S and denote dσε := f(·)dσ(·) ∗ ε−dχ( ·
ε ), where f ∈ L∞(Sd−1). Then

sup
ξ

|dσε(ξ)| ≲ ∥f∥L∞(Sd−1)ε
−1 (20.12)

Proof. Without loss of generality suppose f = 1. We first make the reduction to the case where
χ is compactly supported. This part of the argument is called “Schwartz tail argument”. Take
a C∞

c partition of unity of Rd such that ∑
j∈N0

ψj(ξ) = 1 , (20.13)

where ψ0 is supported in B0(1) and ψj(ξ) = ψ(ξ/2j) for j ≥ 1, where ψ is supported in the
annulus {ξ ∈ Rd : 1/2 ≤ |ξ| ≤ 2}. We adapt this partition to the resolution ε, i.e., we take∑

j∈N0

ψj(ξ/ε) = 1 . (20.14)

Now write

dσε(ξ) = dσ(·) ∗ ε−d
∑
j∈N0

ψj(
·
ε
)χ(

·
ε
)(ξ) . (20.15)

Observe that for any N ∈ N,

|χ(ξ − η

ε
)| ≲N

1

(1 + 2j)N
, |ξ − η| ∼ ε2j (20.16)

and so

|dσ(·) ∗ ε−dψj(
·
ε
)χ(

·
ε
)(ξ)| = ε−d

∣∣∣∣∫
Sd−1

dσ(η)ψj(
ξ − η

ε
)χ(

ξ − η

ε
)

∣∣∣∣ ≲ (2jε)d−1

(1 + 2j)N
· ε−d . (20.17)

Taking N sufficiently large makes the j-summation convergent so that

dσε(ξ) ≲ ε−1 . (20.18)

Since the j = 0-term satisfies the estimate trivially, the proof is concluded. □

Lemma 20.5 ([Rui02, Lemma 5.2]). Let χ ∈ S and

Rε(ξ) =

(
1

−| · |2 + k2 + i0
∗ ε−dχ( ·

ε
)

)
(ξ) . (20.19)

Then

|Rε(ξ)| ≲ ε−1 , (20.20)

and so in particular

|Rε(ξ)| ≲
1

| − ξ2 + k2|+ ε
. (20.21)
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Moreover, for δ ∈ R, a Phragmén–Lindelöf argument combined with the previous estimates yields(
1

−| · |2 + k2 + iδ
∗ ε−dχ( ·

ε
)

)
(ξ) ≲

1

| − ξ2 + k2|+ ε
. (20.22)

First proof of Lemma 20.5. Explicit estimates in [Rui02, Lemma 5.2]. Recall

1

∆ + 1 + i0
= p.v.

1

∆ + 1
+
iπ

2
dΣSd−1 . (20.23)

By Lemma 20.4 it suffices to estimate the convolution with the first summand, i.e.,

Pε(ξ) := p.v.
1

−ξ2 + 1
∗ ε−dχ( ·

ε
)(ξ) . (20.24)

Denoting χε(ξ) = ε−dχ(ξ/ε), we shall estimate

Pε(ξ) = −p.v.

 ∫
1−ε<|η|<1+ε

+

∫
|η|<1−ε

+

∫
|η|>1+ε

χε(ξ − η)
1

|η|2 − 1
dη

= I1 + I2 + I3 .

(20.25)

The summands I2 + I3 ≲ ε−1∥χ∥1 are easily estimated. To estimate I1 we write

I1 = lim
δ→0

∫
δ≤|1−|η||≤ε

χε(ξ − η)

|η|2 − 1
dη

= lim
δ→0

(∫ 1−δ

1−ε
+

∫ 1+ε

1+δ

)∫
Sd−1

χε(ξ − rθ)
rd−1

(r + 1)(r − 1)
dΣ(θ) .

(20.26)

Changing r = 2− s in the second integral, we obtain

I1 = lim
δ→0

∫ 1−ε

1−ε
F (r, ξ)(r − 1)−1 dr , (20.27)

where

F (r, ξ) =

∫
Sd−1

χε(ξ − rθ)
rd−1

r + 1
dΣ(θ)

−
∫
Sd−1

χε(ξ − (2− r)θ)
(2− r)d−1

3− r
dΣ(θ) .

(20.28)

If we observe that F (1, ξ) = 0, we may write by the mean value theorem∫ 1−δ

1−ε
F (r, ξ)(r − 1)−1 dr ≤ ε sup

1−ε≤r≤1

∣∣∣∣∂F∂r (r, ξ)
∣∣∣∣ . (20.29)

The radial derivative of the first integral in the definition of F (r, ξ) is given by

∂

∂r

(
rd−1

r + 1

)∫
Sd−1

χε(ξ − rθ) dΣ(θ) +
rd−1

r + 1

∫
Sd−1

θ · ∇χε(ξ − rθ) dΣ(θ) . (20.30)

The second of these integrals can be written as

ε−1
d∑
j=1

rd−1

r + 1

∫
Sd−1

θj

(
∂

∂xj
χ

)
ε

(ξ − rθ) dΣ(θ) . (20.31)

Thus, both integrals can be understood as mollifications with resolution ε of the measures
θi dΣ(θ), which, from Lemma 20.4, are bounded by C(χ)ε−1. This gives the desired estimate for
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the first integral in the definition of F (r, ξ). The second integral can be treated in the same way.
Thus, ∣∣∣∣∂F∂r (r, ξ)

∣∣∣∣ ≲ ε−2 , (20.32)

and so we obtain the desired estimate |I1(ξ)| ≲ ε−1. This concludes the proof. □

Second proof of Lemma 20.5. Alternatively (JC’s arguments): by a partition of unity we may
assume that m(ξ) := (−ξ2 + k2 + i0)−1 is supported in a small conic neighborhood of the first
coordinate axis. The implicit function theorem (see also (20.48) in the proof of Lemma 20.9
below) then allows us to reduce the proof to the bound

| 1

ξ1 + i0
∗ γε| ≲ ε−1 , (20.33)

where γε(ξ1) = ε−1γ(ξ1/ε) is a function of one variable. By Riemann–Lebesgue and Hausdorff–
Young,

| 1

ξ1 + i0
∗ γε| ≲ ∥γ∨ε ∥1 ≲ ε−1 , (20.34)

where we also used that the Fourier transform of (ξ1+i0)
−1 is bounded, see also [Hör90, Example

7.1.17]. The final estimate is a consequence of the estimate for δ = ±0 and the Phragmén–
Lindelöf principle, since better estimates are available for δ > 0. Alternatively, one can appeal
to the Malgrange preparation theorem [Hör90, Theorem 7.5.5] and follow the proof of [BC23,
Lemma 23], which we present later in Lemma 20.9. □

The KRS bound with zero imaginary part in Theorem 20.3 then implies

Theorem 20.6. Let z ∈ C and 1/p − 1/p′ ∈ [2/(d + 1), 2/d] for d ≥ 3 or 1/p − 1/p′ ∈ [2/3, 1)
for d = 2. Then for any u ∈ C∞

c , one has

∥u∥p′ ≲ |z|−1+d( 1
p− 1

p′ )∥(∆ + z)u∥p . (20.35)

The proof uses the following version of the Phragmén–Lindelöf maximum principle.

Proposition 20.7. Let F (z) be holomorphic in {z ∈ C : Im(z) > 0} ≡ C+ and continuous on
the closure. Assume that |F (z)| ≤ L for z ∈ ∂C+ and that for any ε > 0 there is C = Cε such
that |F (z)| ≤ Cεe

ε|z| as |z| → ∞, uniformly in the argument of z. Then |F (z)| ≤ L for any
z ∈ C+.

Proof of Theorem 20.6. Suppose û and v̂ are compactly supported on Rd and consider in C+ the
holomorphic function

F (z) = z
1− d

2 (
1
p− 1

p′ )⟨v, (∆ + z)−1u⟩ = z
1− d

2 (
1
p− 1

p′ )⟨v̂, (−ξ2 + z)−1û⟩ . (20.36)

where we use the principal determination of log z and thereby of monomials zα = eα log(z) for
α ∈ R. By the convergence of the distribution (−ξ2 + z + iε)−1 → (−ξ2 +Re(z) + i0)−1, we see
that F (z) is continuous on the closure of C+. By Theorem 20.3, we know F (z) ≤ C∥u∥p∥v∥p for
z ≥ 0, where C is independent of z. For z ≤ 0, better, i.e., elliptic, estimates are available, so
F (z) ≤ C∥u∥p∥v∥p for all z ∈ R.

We now estimate F (z) for |z| ≫ 1. In particular, let |z| be so large such that for all ξ ∈ supp(û),
we have

(−|ξ|2 + |z|)−1 ≤ 2

|z| . (20.37)
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Then we obtain

|F (z)| ≤ C|z|1− d
2 (

1
p− 1

p′ ) · |z|−1

∫
|û(ξ)||v̂(ξ)| ≤ Ceε|z| , ξ ∈ supp(û) . (20.38)

By the Phragmén–Lindelöf principle, we obtain

|F (z)| ≤ C∥u∥p∥v∥p ⇔ |⟨v, (∆ + z)−1u⟩| ≤ C|z|−1+ d
2 (

1
p− 1

p′ )∥u∥p∥v∥p , (20.39)

which proves the assertion by density of C∞
c in Lp spaces. □

20.2. Clever factorization of general kinetic energies. Let h0 be a tempered distribution
on Rd, smooth in a neighborhood of some point ξ0 ∈ Rd such that λ := h0(ξ

0) is a regular value
of h0, i.e., that the level set

Sλ := {ξ ∈ Rd : h0(ξ) = λ} (20.40)

is a smooth nonempty hypersurface near ξ0. Locally, i.e., for ξ near ξ0 the implicit function
theorem implies that Sλ is the graph ξ1 = a(ξ′, λ) for some real-valued function a(ξ′, λ). This
yields the factorization

h0(ξ)− λ = e(ξ, λ)(ξ1 − a(ξ′, λ)) , (20.41)

where ξ = (ξ1, ξ
′) ∈ R×Rd−1, and a(ξ′, λ), and e(ξ, λ) are real-valued, smooth functions, e(ξ, λ)

being bounded away from zero. Locally, e(ξ, λ) is given by the expression

e(ξ, λ) =

∫ 1

0

dt ∂ξ1h0(tξ1 + (1− t)a(ξ′, λ), ξ′) . (20.42)

By a linear change of coordinates one may always assume a(0, λ) = 0 and ∂ξ′a(ξ
′, λ)|ξ′=0 = 0.

Then a(ξ′, λ) = O(|ξ′|2).
Now suppose I ⊆ R is a fixed compact subset of the set of regular values of h0(ξ), i.e.,

{λ ∈ R : ∇h0(ξ) ̸= 0 for all ξ ∈ Rd such that h0(ξ) = λ} , (20.43)

and let

S =
⋃
λ∈I

Sλ = {ξ ∈ Rd : h0(ξ) ∈ I} . (20.44)

We assume that Sλ is compact and has everywhere non-vanishing curvature for each λ ∈ I.
The following lemma is closely related to the Stein–Tomas theorem for the Fourier restriction
operator.

Lemma 20.8 ([Cue17, Lemma 3.3]). Let η be a bump function. Then

sup
λ∈I,|ε|≤1

∥η(D)[h0(D)− (λ+ iε)]−1∥p→p′ ≲ 1 . (20.45)

The following is a more precise version which tracks the precise ε-dependence.

Lemma 20.9 ([BC23, Lemma 23]). Let η be a bump function, ζ ∈ C such that 0 ≤ Re(ζ) ≤
(d+1)/2, and ε ∈ [−1, 1]. Let also Rη,ζλ,ε = η(D)[h0(D)−(λ+ iε)]−ζ . Then we have for all N ∈ N
the kernel bound

sup
λ∈I

|Rη,ζλ,ε(x)| ≲N eC|Im(ζ)|2⟨x⟩− d−1
2 +Re(ζ)⟨εx⟩−N (20.46)

for some C > 0.
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Proof. It suffices to prove this assertion for fixed λ. Thus, we absorb λ into the symbol and
consider p(ξ) = h0(ξ)− λ. Let Ω ⊆ Rd be a precompact subset such that S ⋐ Ω. By a partition
of unity and a linear change of coordinates we may assume that, locally near an arbitrary point
of Ω, we have either p ̸= 0, or ∂p/∂ξ1 > 0. In case p ̸= 0 we get the stronger bound

|Rη,ζλ,ε(x)| ≲N ⟨x⟩−N . (20.47)

by non-stationary phase.
Suppose now p = 0 and ∂p/∂ξ1 > 0 and consider first ζ = 1, i.e., we are dealing with the

resolvent. By the implicit function theorem, the set {p(ξ) = 0} is then the graph of a smooth
function ξ1 = a(ξ′) and we have the factorization

(p(ξ)− iε)−1 = q(ξ)(ξ1 − a(ξ′)− iεq(ξ))−1 , (20.48)

where

q(ξ) =
ξ1 − a(ξ′)
p(ξ)

> 0 , (20.49)

see, e.g., [Hör83, Section 14.2], [Cue17, Lemma 3.3], or [TT19, Section 3.1]. There it is sufficient
to work with the limiting distributions corresponding to ε = ±0, which would yield the assertion
of the lemma in this case. However, we claim the estimates also for non-zero ε. To obtain the
desired decay for fixed ε > 0, we use another factorization in which q(ξ) will be replaced by a
function which does not depend on ξ1. The following approach is motivated by Koch and Tataru
[KT05], albeit in the much simpler setting of constant coefficients. Their [KT05, Lemma 3.8]
provides the alternative factorization

e(ξ)(p(ξ)− iε) = ξ1 + a(ξ′) + iεb(ξ′) , (20.50)

where e is elliptic (e ̸= 0) and a, b are real-valued. This is a version of the Malgrange prepa-
ration theorem [Hör90, Theorem 7.5.5] or the classical Weierstrass preparation theorem [Hör90,
Theorem 7.5.1] in the analytic case. We appeal to [KT05] because it makes the dependence on
ε explicit. Note that the imaginary part b is now independent of ξ1. The symbols e, a, b can
be found by iteratively solving a system of algebraic equations and using Borel resummation of
the resulting formal series (see [KT05, Lemmas 3.9 and 3.10]). Moreover, a, b have asymptotic
expansions in powers of ε, while e has an asymptotic expansion in powers of ε and ξ1. We will
only need the first term b1 in the expansion of b. Changing variables ξ 7→ ξ1 + a(ξ′) we are
reduced to p(ξ) = ξ + iεq(ξ) for some real-valued function q. By the proof of [KT05, Lemma
3.9] we have b1 = 1/(1 + q21), where q1 = ∂ξ1q|ξ1=0. Therefore, b ≥ c on the closure of Ω for
some constant c > 0 (we used compactness and the smallness of ε). Since we have constant
coefficients, the simple parametrix [KT05, (5.5)] with (operator-valued) kernel K(x1− y1), given
by

K(x1) = 1{x1<0}e
εx1b(D

′)e−ix1a(D
′) , (20.51)

is actually exact, i.e., we have (D1 + a(D′) + iεb(D′))−1K is the identity (we denote both the
operator and the kernel by K here). By the stationary phase estimate for complex-valued phase
functions [Hör90, Theorem 7.7.5], we have

|K(x)| ≲ ⟨x⟩− d−1
2 e−c|εx| +ON (⟨x⟩−N ) . (20.52)

Using the factorization (20.50) and extending 1/e globally as a Schwartz function, we obtain the
claimed estimate of the lemma in the case ζ = 1.

The case ζ ̸= 1 requires only minor modifications. The kernel in (20.51) is replaced by

Kζ(x1) = χζ−1
− (x1)e

εx1b(D
′)e−ix1a(D

′) , (20.53)
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where χw−(τ) := 1{τ<0}|τ |w/Γ(w + 1), w ∈ C, and Γ is the usual Gamma function. Then

(D1 + a(D′) + iεb(D′))−ζKζ is the identity. This follows immediately by applying the inverse
Fourier transform to the following identity (see, e.g., the explanation after [Hör90, Example
7.1.17])

F
(
τ 7→ e−δτχζ+(τ)

)
(ξ) = e−iπ(ζ+1)/2(ξ − iδ)−ζ−1 , δ > 0 , ζ ∈ C . (20.54)

Again by stationary phase,

|Kζ(x)| ≲ eC|Im(ζ)|2
(
⟨x⟩− d−1

2 +Re(ζ)e−c|εx| +ON (⟨x⟩−N )
)
, 0 ≤ Re(ζ) ≤ d+ 1

2
. (20.55)

The growth estimate in |Im(ζ)| comes from a standard estimate on the Gamma function, cf. [Gra14a,
Appendix A.7]. □

21. Stationary phase and microlocal analysis

We start with a classic review of the technique of stationary phase and apply it to obtain
estimates on the Fourier transform of surface measures of curved, smooth surfaces. This material
is classic and is covered exhaustively, e.g., in Stein [Ste93, Chapter VIII]. Here, we will actually
inspect the proofs a bit more closely and seek sufficient conditions on the smoothness of the
manifold in question. Afterwards we will connect the stationary phase techniques to analyze
certain distributions defined by oscillatory integrals and review the lattice counting problem.
Then, we review some facts from pseudodifferential operators and microlocal analysis on Rd
and transfer them to the setting of compact manifolds. Finally, we study the propagation of
singularities and prove Egorov’s theorem.

Concerning the first problem of obtaining bounds on d̂σ, let S ⊂ Rd be a CNφ manifold
of codimension one with non-vanishing Gaussian curvature and surface measure dσ(ξ). Let

ψ ∈ C
Nψ
c (Rd) whose support intersects S in a compact subset of S. Denoting dµ = ψdσ, we

wish to obtain the smallest Nφ, Nψ ∈ N such that

|(dµ)∨(x)| ≲ < x >−(d−1)/2 .

In Proposition 21.5, we show that Nφ ≥ 4 + ⌈d/2⌉ and Nψ ≥ 2 + ⌈d/2⌉ are sufficient conditions.
Herz [Her62] showed that this regularity condition can even be relaxed to Nφ ≥ [(d− 1)/2 + 2],
if one sets ψ = 1 on S. (If Nφ ≥ [(d− 1)/2 + 4], he obtained the leading term in the asymptotic
expansion for (dσ)∨ as |x| → ∞.)

The decay estimate for (dµ)∨ is often proved using a stationary phase argument. Here, we
follow the presentation of Stein [Ste93, Chapter VIII] and start with a repetition on oscillatory
integrals of the first kind.

21.1. Oscillatory integrals of the first kind in one dimension. In this section we consider
integrals of the form

I(λ) :=

∫
R
eiλφ(x)ψ(x) dx (21.1)

for λ≫ 1, ψ ∈ C
Nψ
c (R), φ ∈ CNφ(R), and certain Nφ, Nψ ∈ N.

Proposition 21.1. Let N ∈ N. If ψ ∈ CNc (R) and φ ∈ CN+1(R) with φ′(x) ̸= 0 on suppψ,
then

|I(λ)| ≲ λ−N .
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Proof. We define the “covariant derivative” D and its adjoint by

(Df)(x) :=
1

iλφ′(x)
f ′(x) and (tDf)(x) := − d

dx

(
f(x)

iλφ′(x)

)
.

Since DNeiλφ = eiλφ, integration by parts yields∣∣∣∣∫
R
eiλφ(x)ψ(x) dx

∣∣∣∣ = ∣∣∣∣∫
R
eiλφ(x)(tD)Nψ(x) dx

∣∣∣∣ ≲ λ−N

what was asserted. □

We will now consider the situation where φ′ vanishes somewhere on suppψ. The case where
also higher derivatives vanish can be found in [Ste93, Chapter VIII, Proposition 3]. In particular,
an asymptotic expansion is derived whose coefficients can be computed explicitly for certain phase
functions φ, see also [Ste93, Chapter VIII, Section 5.1].

Proposition 21.2. Assume ψ ∈ C
Nψ
c (R), φ ∈ CNφ(R) with Nψ ≥ 3 and Nφ ≥ 5. Let x0 ∈

suppφ be such that φ(x0) = φ′(x0) = 0, but φ′′(x0) ̸= 0. Assume further that ψ is supported in
a sufficiently small neighborhood around x0. Then

|I(λ)| ≲ λ−1/2 .

Proof. We split the proof into four steps.
Step 1. We show that∫

R
eiλx

2

xℓe−x
2

dx ∼ λ−(ℓ+1)/2
∞∑
j=0

c
(ℓ)
j λ−j ℓ ∈ N0 . (21.2)

The proof is contained in [Ste93, Chapter VIII, Formula (9)].

Step 2. Let η ∈ C
⌈(ℓ+1)/2⌉+1
c (R). We will then show∣∣∣∣∫

R
eiλx

2

xℓη(x) dx

∣∣∣∣ ≲ λ−(ℓ+1)/2 ℓ ∈ N0 . (21.3)

To prove this, let α ∈ C∞ with

α(x) =

{
1 for |x| ≤ 1 ,

0 for |x| ≥ 2

and decompose, for some ε > 0 to be chosen in a moment,∫
R
eiλx

2

xℓη(x) dx =

∫
R
eiλx

2

xℓη(x)α(x/ε) dx+

∫
R
eiλx

2

xℓη(x)(1− α(x/ε)) dx

Clearly, the first summand is bounded by a constant times εℓ+1. To estimate the second sum-
mand, recall the covariant derivative D from Proposition 21.1 which, in this context, acts as

(Df)(x) =
1

2iλx
f ′(x) and (tDf)(x) =

i

λ

d

dx

(
f(x)

2x

)
.

Thus, we have for N > (ℓ+ 1)/2,∣∣∣∣∫
R
eiλx

2

xℓη(x)(1− α(x/ε)) dx

∣∣∣∣ = ∣∣∣∣∫
R
eiλx

2

(tD)N
[
xℓη(x)(1− α(x/ε))

]
dx

∣∣∣∣
≲ λ−N

∫
|x|≥ε

|x|ℓ−2N dx = const λ−Nεℓ+1−2N .
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Choosing ε = λ−1/2 shows (21.3). Similarly, one obtains for any g ∈ S(R) vanishing near the
origin, ∣∣∣∣∫

R
eiλx

2

g(x) dx

∣∣∣∣ = ∣∣∣∣∫
R
eiλx

2

(tD)Ng(x) dx

∣∣∣∣ ≲ λ−N , N ∈ N0 . (21.4)

Step 3. We will now prove the assertion for φ(x) = x2 and ψ ∈ C
Nψ
c (R) with Nψ ≥ 3. Let

ψ̃ ∈ C∞
c (Rd) with ψ̃(x) = 1 on suppψ, write∫

R
eiλx

2

ψ(x) dx =

∫
R
eiλx

2

e−x
2
(
ex

2

ψ(x)
)
ψ̃(x) dx ,

and Taylor expand to zeroth order

ex
2

ψ(x) = b0 + h0(x) · x
where h0(x) = o(x) belongs to CNψ−1(R). Plugging this this into the above integral gives three
terms, namely

b0

∫
R
eiλx

2

e−x
2

dx ∼ b0λ
−1/2

∑
m

cmλ
−m (21.5a)∣∣∣∣∫

R
eiλx

2

xh0(x)e
−x2

ψ̃(x) dx

∣∣∣∣ ≲ λ−1 (21.5b)∣∣∣∣∫
R
eiλx

2

b0e
−x2

(
ψ̃(x)− 1

)
dx

∣∣∣∣ ≲ λ−N (21.5c)

where we used (21.2) for the first summand, (21.3) for the second one (since h0 ∈ CNψ−1(R) ⊆
C2(R)), and (21.4) for the third one.

Step 4. We finally consider general phase functions φ ∈ CNφ(R) with Nφ ≥ 5. We expand φ
near x0, i.e., φ(x) = c(x−x0)2[1+ε(x)] for some c ̸= 0 and ε ∈ CNφ−2(R) with ε(x) = O(|x−x0|),
i.e., |ε(x)| ≤ 1 for x sufficiently close to x0. For such x, one has in particular φ′(x) ̸= 0. Thus,
let us fix a neighborhood U around x0 so small such that these conditions hold. Since we
assumed that the support of ψ was small enough, we can in particular assume suppψ ⊆ U .
Now, let y := (x − x0)[1 + ε(x)], i.e., x 7→ y(x) is a CNφ−2(R) diffeomorphism from U to some
neighborhood of the origin. Since φ(x) = cy2, we have∫

R
eiλφ(x)ψ(x) dx =

∫
R
eicλy

2

ψ̃(y) dy

for some ψ̃ ∈ CNψ (R) ∩ CNφ−2(R) whose support intersects any neighborhood of the origin.
Thus, we can apply the results of the third step and conclude the proof. □

21.2. Oscillatory integrals of the first kind in higher dimensions. We will now generalize
Propositions 21.1 and 21.2 to Rd with d ≥ 2. We will say that phase function φ defined in a
neighborhood of a point x0 ∈ Rd has x0 as a critical point if

(∇φ)(x0) = 0 .

Similarly as before, let

I(λ) :=

∫
Rd

eiλφ(x)ψ(x) dx .

Proposition 21.3. Let N ∈ N. If ψ ∈ CNc (Rd) and φ ∈ CN+1(Rd) has no critical points in
suppψ, then

|I(λ)| ≲ λ−N .
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Proof. For each x0 ∈ suppψ there is a ξ ∈ Sd−1 and a ball Bx0(δ) for some δ ≪ 1 such that

ξ · (∇φ)(x) ≥ c > 0 for all x ∈ Bx0
(δ) .

Decompose ψ =
∑
k ψk into a finite sum where each ψk ∈ CNc (Rd) is supported in one of these

balls. Now choose a coordinate system x1, ..., xd such that x1 lies along ξ. Then∫
Rd

eiλφ(x)ψk(x) dx =

∫
Rd−1

dx2...dxd

(∫
R
eiλφ(x1,...,xd)ψk(x1, ..., xd) dx1

)
and we can apply Proposition 21.1 to the x1 integral to conclude the proof. □

Next, suppose φ has a critical point at x0 but is non-degenerate. By that we mean that the
d× d matrix

∂2φ

∂xj∂xk

is invertible. Using a Taylor expansion (e.g., for φ ∈ CNφ(Rd) with Nφ ≥ 3), one sees that
non-degenerate critical points are in fact isolated.

Proposition 21.4. Suppose φ ∈ CNφ(Rd) with Nφ ≥ 4 + ⌈(d+ 1)/2⌉, and x0 ∈ Rd is a

non-degenerate, critical point of φ where additionally φ(x0) = 0. If ψ ∈ C
Nψ
c (Rd) with Nψ ≥

2 + ⌈(d+ 1)/2⌉ is supported in a sufficiently small neighborhood of x0, then

|I(λ)| ≲ λ−d/2 . (21.6)

Moreover, for each j = 1, 2, 3, ...∣∣∣∂jλ [e−iλφ(y0)I(λ)]∣∣∣ ≲j λ−j−d/2 , λ ≥ 1 (21.7)

and additionally

|I(λ)| ≲ λ−1−d/2 , λ ≥ 1 , if ψ(y0) = 0 . (21.8)

Proof. The proof follows closely the lines of that of Proposition 21.2. First, let Q(x) denote the
unit quadratic form given by

Q(x) =

m∑
j=1

x2j −
d∑

j=m+1

x2j

for some fixed m ∈ {0, 1, ..., d}. The analogue of (21.2) is∫
Rd

eiλQ(x)e−|x|2xℓ dx ∼ λ−d/2−|ℓ|/2
∞∑
j=0

cj(m, ℓ)λ
−j , (21.9)

whose proof can be found in [Ste93, p. 345].
Next, the analogue of (21.3) is the statement that∣∣∣∣∫

Rd
eiλQ(x)xℓη(x) dx

∣∣∣∣ ≲ λ−d/2−|ℓ|/2 (21.10)

if η ∈ C
⌈(ℓ+d)/2⌉+1
c (Rd). (As in the proof of Proposition 21.2, we will apply this estimate for

ℓ = 1 with h0(x)ψ̃ ∈ CNψ−1(Rd) in place of η, i.e., Nψ ≥ 2 + ⌈(1 + d)/2⌉.) To prove it, we
consider the cones

Γj := {x ∈ Rd : |xj |2 ≥ |x′|2/(2d)}
and the smaller

Γ0
j := {x ∈ Rd : |xj |2 ≥ |x′|2/d} ,
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where x′ = (x1, ..., xj−1, xj+1, ..., xd). Then, since

d⋃
j=1

Γ0
j = Rd ,

we can find functions Ω1, ...,Ωd with suppΩj ⊆ Γj which are homogeneous of degree zero and
smooth away from the origin such that

d∑
j=1

Ωj(x) = 1 for all x ̸= 0 .

Thus, we can write ∫
Rd

eiλQ(x)xℓη(x) dx =

d∑
j=1

∫
Rd

eiλQ(x)xℓη(x)Ωj(x) dx .

Now, as in the proof of (21.3), let α ∈ C∞
c (Rd) be a radial function such that

α(x) =

{
1 for |x| ≤ 1 ,

0 for |x| ≥ 2 ,

and decompose∫
Rd

eiλQ(x)xℓη(x)Ωj(x) dx =

∫
Rd

eiλQ(x)xℓη(x)Ωj(x)α(x/ε) dx

+

∫
Rd

eiλQ(x)xℓη(x)Ωj(x)(1− α(x/ε)) dx .

As before, the first summand is bounded by a constant times εℓ+d. To treat the second summand,
we integrate by parts in the cone Γj , using the covariant derivative

Dje
iλQ(x) = eiλQ(x) with (Djf)(x) = ± 1

2iλxj

∂f(x)

∂xj
.

This, together with the fact that |xj | ≥ |x′|/
√
2d in Γj , and

|(tDj)
NΩj(x)| ≲N λ−N |x|−2N ,

allows us to estimate∣∣∣∣∫
Rd

eiλQ(x)xℓη(x)Ωj(x)(1− α(x/ε)) dx

∣∣∣∣
=

∣∣∣∣∫
Rd

eiλQ(x)(tDj)
N
[
xℓη(x)Ωj(x)(1− α(x/ε))

]
dx

∣∣∣∣
≲ λ−N

∫
|x|≥ε,|xd|≥|x′|/

√
2d

|x|ℓ−2N dx ≲ λ−Nεℓ−2N+d

for N > (ℓ+ d)/2. Choosing ε = λ−1/2 as before shows (21.10).
A similar argument shows that whenever g ∈ S(Rd) and g vanishes near the origin, then∣∣∣∣∫

Rd
eiλQ(x)g(x) dx

∣∣∣∣ ≲ λ−N , N ∈ N0 , (21.11)

which is the analog of (21.4). Combining this with (21.9) and (21.10) as in the proof of Propo-
sition 21.2 yields the assertion in the special case φ(x) = Q(x).
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To pass to the general case, one can appeal to the change of variables guaranteed by Morse’s
lemma. Since φ(x0) = ∇φ(x0) = 0, and the critical point is assumed to be non-degenerate,
there exists a CNφ−2(Rd) diffeomorphism from a small neighborhood of x0 in x-space to a small
neighborhood of the origin in y-space under which φ is transformed into

m∑
j=1

y2j −
d∑

j=m+1

y2j ,

for some m ∈ {0, ..., d}. The index m is the same as that of the quadratic form corresponding to[
∂2φ

∂xj∂xk

]
(x0) .

The proof of this can found in [Ste93, p. 346-347]. Combining this with the findings in the
special case where φ(x) = Q(x), concludes the proof. □

21.3. Fourier transforms of measures supported on surfaces. Let φ ∈ C
Nφ
c (Rn) with

Nφ ≥ 4 + ⌈(n+ 1)/2⌉, and φ(0) = ∇φ(0) = 0. Let us further assume that the determinant of
the n× n matrix (

∂2φ

∂ξj∂ξk

)
(ξ = 0)

never vanishes. Then φ describes a n-dimensional CNφ surface S, which is given by the graph
ξn+1 = φ(ξ1, ..., ξn) and has non-zero Gaussian curvature at every point. Let dσ denote the

measure on S induced by the Lebesgue measure on Rn+1, and fix a function ψ ∈ C
Nψ
c (Rn+1)

with Nψ ≥ 2 + ⌈(n+ 1)/2⌉ whose support intersects S in a compact subset of S. Let us now
consider the finite Borel measure dµ(ξ) = ψ(ξ)dσ(ξ) on Rn+1, which is of course carried on S.
We wish to discuss the behavior of the Fourier transform

(dµ)∨(x) =
∫
S

e2πix·ξψ(ξ) dσ(ξ)

for large |x|. For convenience, we relabel d = n+ 1 in the following

Proposition 21.5. Suppose S is a CNφ surface in Rd of codimension one with Nφ ≥ 4+ ⌈d/2⌉,
whose Gaussian curvature is non-zero everywhere. Let further dµ = ψdσ be as above. Then

|(dµ)∨(x)| ≲ |x|−(d−1)/2 .

Proof. For the purpose of the proof (in applying Proposition 21.4), we will work with n = d− 1
as in the beginning of this section and assume, by compactness, that S is given by the graph

ξn+1 = φ(ξ1, ..., ξd) ,

so dσ(ξ) =
√
1 + |∇φ(ξ)|2dξ1...dξn. Thus, we can reduce matters to showing that, if ψ̃ ∈

C
Nψ
c (Rn) with Nψ ≥ 2 + ⌈(n+ 1)/2⌉ is supported in a small neighborhood of the origin,∣∣∣∣∫

Rn
eiλΦ(ξ,η)ψ̃(ξ) dξ

∣∣∣∣ ≲ λ−n/2 (21.12)

where λ = |x| > 0, x = λη, and η = (η1, ..., ηn+1) is a unit vector, and

Φ(ξ, η) = ξ · η =

n∑
j=1

ξjηj + φ(ξ1, ..., ξn)ηn+1 .

Also, we have that φ(0) = ∇φ(0) = 0, and

det
1≤j,k≤n

(
∂2φ

∂ξj∂ξk

)
(0) ̸= 0 .
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We divide the proof into three cases, depending on the position of η ∈ Sn, namely

(1) η is sufficiently close to the “north pole” ηN = (0, 0, ..., 1),
(2) η is sufficiently close to the “south pole” ηS = (0, 0, ...,−1), and
(3) η lies in the complementary set on the unit sphere.

The first and second case are analogous. We have that ∇ξΦ(ξ, ηN )|ξ=0 = 0 and want to see that
for each η sufficiently close to ηN , there is a unique ξ = ξ(η) so that

∇ξΦ(ξ, η)|ξ=ξ(η) = 0 .

The latter is a series of n equations, and one can find the desired solution by the implicit function
theorem, which requires that we check that the Jacobian determinant

det

[
∂2φ

∂ξj∂ξk

]
(0, ηN ) ̸= 0 ,

but this is of course our assumption of the non-vanishing curvature. In particular, if the η-
neighborhood of ηN is sufficiently small, then also

det

[
∂2φ

∂ξj∂ξk

]
(ξ(η), η) ̸= 0 ,

and we can invoke Proposition 21.4 (with x0 = ξ(η)) as long as the support of ψ̃ is small enough.
This shows that the left side of (A.8) is bounded by a constant times λ−n/2 and concludes the
discussion in the first two cases.

Thus, we are left with the third class of η. By definition,

∇ξΦ(ξ, η) = (η1, ..., ηn) + ηn+1∇φ(ξ) .

However, (η21 + ...+ η2n)
1/2 ≥ c > 0 for η away from the poles, and

∇φ(ξ) = O(ξ) as ξ → 0 .

Thus, |∇ξΦ(ξ, η)| ≥ c′ > 0, if the support of ψ̃ is a sufficiently small neighborhood of the origin.
We may now invoke Proposition 21.3 (with N = 2+ ⌈(n+ 1)/2⌉) which shows that the left side
of (A.8) is bounded by a constant times λ−2−⌈(n+1)/2⌉ ≤ λ−n/2. □

21.4. Oscillatory integrals and wave front sets. Here, we follow Sogge [Sog14, Section 4.1.1]
but refer also to the classic exposition of Hörmander [Hör90, Section 7.8 and Chapter VIII].

We now apply the “nonstationary phase lemma” (Proposition 21.4) to analyze certain distri-
butions defined by oscillatory integrals. Specifically, let us consider integrals of the form

IΦ(x) =

∫
RN

eiΦ(x,θ)a(x, θ) dθ ≡ lim
ε→0

∫
RN

eiΦ(x,θ)a(x, θ)ρ(εθ) dθ (21.13)

where in this definition ρ ∈ C∞
c (RN ) is a bump that equals one near the origin. In fact, for the

oscillatory integrals that we consider here, we will see that the definition does not depend on the
particular choice of ρ.

Here, we assume x ∈ Ω ⊆ Rd where Ω is an open subset of Rd with d possibly different from
N . Moreover, we assume Φ ∈ C∞(Ω× RN \ {0}) is real, homogeneous of degree one, i.e.,

Φ(x, λθ) = λΦ(x, θ) , λ > 0 (21.14)

and, additionally, if d denotes the differential with respect to all variables, we assume

dΦ ̸= 0 on Ω× RN \ {0} . (21.15)



172 K. MERZ

As an example, one may think of Φ(x, θ) = x′ · θ + xN+1θ
2 with x = (x′, xN+1) ∈ RN+1 and

ξ ∈ RN . Finally, we shall also assume that the amplitude a(x, θ) is a standard symbol of order
m, i.e., for all multi-indices α and γ, we have

|Dγ
xD

α
θ a(x, θ)| ≲α,γ (1 + |θ|)m−|α| , (21.16)

whenever x belongs to a fixed compact subset of Ω and θ ∈ RN . In this case, we shall abbreviate

a ∈ Sm ⇔ (21.16) is valid.

We will now give a sufficient condition when IΦ in (21.13) is smooth.

Theorem 21.6. If Φ is as above and a ∈ Sm, then IΦ ∈ D′(Ω) and its definition (21.13) does
not depend on the choice of ρ. Additionally, if x0 ∈ Ω and

∇θΦ(x0, θ) ̸= 0 for all θ ∈ RN \ {0} ,
then IΦ is smooth in a neighborhood of x0.

Before we turn th the proof, we restate the last part of the theorem. We recall

Definition 21.7. Let v ∈ D′(Ω). Then the singular support sing supp v of v is defined as the
complement of the set of points x0 ∈ Ω which have the property that v restricts as an element
of C∞(Nx0

) for some neighborhood Nx0
of x0.

Using this notion, the last part of Theorem 21.6 says

sing supp IΦ ⊆ {x ∈ Ω : ∇θΦ(x, θ) = 0 for some θ ∈ RN \ {0}} . (21.17)

Proof. We first show IΦ ∈ D′(Ω). To do so, we decompose IΦ dyadically. So, let β ∈ C∞
c (RN )

be a bump function with

β(θ) = 0 if |θ| /∈ [1/2, 2] , and

∞∑
j=−∞

β(θ/2j) = 1 , θ ̸= 0 .

We then define for u ∈ C∞
c (Ω),

IjΦ[u] =

∫
Ω

dx

∫
RN

dθ eiΦ(x,θ)β(θ/2j)a(x, θ)u(x)

and

I0Φ[u] =

∫
dx

∫
dθ eiΦ(x,θ)

1−
∞∑
j=1

β(θ/2j)

 a(x, θ)u(x) .

Clearly, each IjΦ is a distribution on Ω for j = 0, 1, 2, ... (which is just integration against a
smooth function on Ω, depending on j). To prove that also IΦ belongs to D′(Ω), we show, for a
given relatively compact subset K ∈ Ω and a number M ∈ N there is k(M) such that

|IjΦ[u]| ≲M 2−Mj sup
|α|≤k(M)

sup |Dαu| , u ∈ C∞(K) for all j = 1, 2, ... (21.18)

Setting λ = 2j , one obtains

IjΦ[u] = λN
∫∫

eiΦ(x,θ)β(θ/2j)a(x, θ)u(x) dθ dx .

But since a ∈ Sm, we have

|Dγ
xD

α
θ (β(θ)a(x, λθ))| ≲α,γ,K λm , for x ∈ K .

Consequently, (21.18) follows from stationary phase (Proposition 21.3) and the assumption dΦ ̸=
0. Moreover, (21.18) implies that the definition (21.13) is indeed independent of ρ since we
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assumed that ρ ∈ C∞
c (RN ) equals one near the origin; consequently, if ρ̃ were another function

with this property, then ρ̃− ρ ∈ C∞
c (RN \ {0}).

To prove (21.17), let x0 ∈ Ω have the property that ∇θΦ(x0, θ) ̸= 0 for θ ∈ RN \ {0}. We
will now show that there is a δ > 0 such that IΦ(x) is smooth on {x : |x− x0| < δ}. Since Φ is
homogeneous of degree one, we see that there is δ > 0 and c > 0 such that

|∇θΦ(x, θ)| ≥ c if |x− x0| < δ .

Therefore, if

L :=
∇θΦ(x, θ)

iλ|∇θΦ(x, θ)|
· ∇θ ,

we have that for every M and {x : |x− x0| ≤ δ} that

IjΦ(x) = λN
∫
RN

eiλΦ(x,θ)(L∗)M (β(θ)a(x, λθ)) dθ = O(λN+m−M ) .

Thus, if M > N +m and χ(θ) =
∑∞
j=1 β(θ/2

j), then

IΦ(x)− I0Φ(x) =

∫
RN

eiΦ(x,θ)(L∗)M (χ(θ)a(x, θ)) dθ

is an absolutely convergent integral. But that shows that IΦ−I0Φ is continuous on {x : |x−x0| ≤
δ} and, by similar arguments, that this difference is indeed smooth on this set. Since I0Φ ∈ C∞(Ω),
this shows (21.17). □

While this theorem locates the possible locations of the singularities of IΦ, it does not yet
assert anything about the “directions of propagation” of these singularities.

Example 21.8. Let x′ = (x1, ..., xd−1) and δ0(xd) = dx′ be the induced Lebesgue measure on
the hyperplane xd = 0. Then the distributions v = ρdx′ with ρ ∈ C∞

c (Rd) satisfy sing supp v ⊆
suppρ ∩ {x ∈ Rd : xd = 0}. On the other hand, since δ0(xd) is a distribution that does not
depend on the x′ variables, the “directions of the singularities of v” is just those spanned by
the unit vectors (0, ..., 0,±1). (We will make this saying precise below.) This fact is captures by
the Fourier transform, v̂(ξ), which is rapidly decreasing in any closed cone through the origin
which does not contain (0, ..., 0,±1). For a generalization of this example, see Hörmander [Hör90,
Theorem 8.1.5].

Let us now consider more general u ∈ E ′(Rd) (compactly supported distributions). By a
Paley–Wiener–Schwartz theorem, we have u ∈ C∞

c (Rd) if and only if û(ξ) is rapidly decreasing,
i.e., |û(ξ)| ≲N< ξ >−N eH(Im(ξ)) for any ξ ∈ Cd where H(ξ) = supx∈suppu⟨x, ξ⟩ is the supporting
function (see Sogge [Sog14, §A.2] or Hörmander [Hör90, Theorem 7.3.1]). However, the above
example indicates that it is possible that û ∈ C∞ is rapidly decreasing in some directions but not
in the others, i.e., only some high-frequency components of û may contribute to the singularities
of u. The wave front set, which we are about to define unifies these along with the singular
support. Recall that a conic neighborhood of a set Σ ⊆ Rd \ {0} is an open set N containing Σ
and having the property that if ξ ∈ N , then so is λξ for every λ > 0.

Definition 21.9. For u ∈ E ′ let Γ(u) ⊆ Rd \{0} be the closed cone consisting of all η ∈ Rd \{0}
such that η has no conic neighborhood in which

|û(ξ)| ≲N< ξ >−N , N ∈ N

holds.
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Note that if u ∈ E ′(Rd), then, by Paley–Wiener, we have u ∈ C∞
c if and only if Γ(u) = ∅.

We may therefore interpret sing suppu as measuring the location of the singularities of u and
Γ(u) as measuring the the directions of the singularities of u. Keeping this in mind, we have the
following natural result.

Lemma 21.10. If ρ ∈ C∞
c (Rd) and u ∈ E ′(Rd), then

Γ(ρu) ⊆ Γ(u) .

Proof. Our goal is to control

ρ̂u(ξ) =

∫
ρ̂(ξ − η)û(η) dη .

Since u ∈ E ′(Rd), we know that û is smooth and satisfies

|û(η)| ≲ (1 + |η|)m

for some m (by integration by parts, see also [Hör90, Theorem 7.3.1]). Next, we note that if ξ is
outside of a fixed conic neighborhood of Γ(u) and η is inside a slightly smaller conic neighborhood,
then |ξ − η| ≥ c(|ξ|+ |η|) for some c > 0. In this case, we obtain

|ρ̂(ξ − η)û(η)| ≲N (1 + |ξ|+ |η|)−N (1 + |η|)m ≲N (1 + |ξ|+ |η|)−N+m , N ∈ N .
On the other hand, if η is outside of a fixed small conic neighborhood of Γ(u), we obtain for any
ξ ∈ Rd,

|ρ̂(ξ − η)û(η)| ≲N (1 + |ξ − η|)−N (1 + |η|)−N .
Combining these two observations gives

|ρ̂u| ≲N
∫
(1 + |ξ|+ |η|)−N+m dη +

∫
(1 + |ξ − η|)−N (1 + |η|)−N dη

= O(|ξ|−N+m+d + |ξ|−N+d) ,

thereby showing Γ(ρu) ⊆ Γ(u). □

This lemma affords us a further localization.

Definition 21.11. Let Ω ⊆ Rd be open and u ∈ D′(Ω). For x ∈ Ω, let

Γx(u) :=
⋂

{ρ∈C∞
c : ρ(x)̸=0}

Γ(ρu) .

One easily verifies Γ(ρju) → Γx(u) if ρj is a sequence of C∞
c (Ω) functions with ρj(x) ̸= 0 and

supp ρj → {x}, see also [Hör90, pp. 253-254]. The set Γx(u) ⊆ Rd \ {0} essentially captures
the directions of the singularities of u at x. This allows us to define a basic object in microlocal
analysis.

Definition 21.12 (Wave front set). For u ∈ D′(Ω), the wave front set of u is defined as

WF (u) := {(x, ξ) ∈ Ω× Rd \ {0} : ξ ∈ Γx(u)} .
Since u ∈ D′(Ω) is smooth near x if and only if Γx(u) = ∅ (by Paley–Wiener), it follows that

the projection of WF (u) onto Ω is exactly sing suppu. Similarly, one shows (see also [Hör90,
Proposition 8.1.2]) that the projection ofWF (u) onto the frequency component is precisely Γ(u).
In particular, this shows thatWF (u) is conic in the sense that it is invariant under multiplication
by positive scalars in the second variable. It could therefore be considered as a subset of Ω×Sd−1.

Theorem 21.13. Let Ω be a linear subspace of Rd and u = u0 dΣ where u0 ∈ C∞(Ω) and dΣ is
the Euclidean surface measure. Then

WF (u) = suppu× (Ω⊥ \ {0}) .



SOME NOTES ON RESTRICTION THEORY 175

As an example, think of u = u0 dx
′, i.e., where dx′ = δ(xd) dx and Ω = {x ∈ Rd : xd = 0}.

Proof. See Hörmander [Hör90, Theorem 8.1.5]. □

The following theorem naturally extends Theorem 21.6 and gives a first localization ofWF (IΦ).

Theorem 21.14. Let IΦ ∈ D′(Ω) be as in (21.13). Then

WF (IΦ) ⊆ {(x,∇xΦ(x, θ)) : (x, θ) ∈ Ω× RN \ {0} and ∇θΦ(x, θ) = 0} . (21.19)

Proof. The proof is very similar to the one of Theorem 21.6. Let u ∈ C∞
c (Ω). To prove (21.19),

it therefore suffices to show that

I(ξ) :=

∫∫
eiΦ(x,θ)−ix·ξu(x)a(x, θ) dθ dx

is rapidly decreasing when ξ is outside of an open cone Γ0 containing

{∇xΦ(x, θ) : (x, θ) ∈ suppu× RN \ {0}, ∇θΦ(x, θ) = 0} .
Repeating the previous arguments, this amounts to showing that for such ξ we have∣∣∣∣∫∫ eiλΦ(x,θ)−ix·ξu(x)β(θ)a(x, λθ) dx dθ

∣∣∣∣ ≲M (λ+ |ξ|)−M , M ∈ N (21.20)

whenever β ∈ C∞
c (RN \ {0}). Let us define

Ψ(x, θ) :=
λΦ(x, θ)− x · ξ

λ+ |ξ| .

Then we claim that

|∇x,θΨ(x, θ)| ∼ |λ∇xΦ(x, θ)− ξ|+ λ|∇θΦ(x, θ)|
λ+ |ξ| ≥ c > 0 , ξ /∈ Γ0 , (21.21)

on the support of u(x)β(θ)a(x, λθ). This would show (21.20) after an application of the nonsta-
tionary phase lemma (Proposition 21.3).

To verify that claim, first note that (21.21) clearly holds, unless

c ≤ λ/|ξ| ≤ C

for certain constants 0 < c < C <∞, since dΦ ̸= 0. So let us assume this in the following. Also,
if ∇θΦ = 0, then |λ∇xΦ(x, θ) − ξ| ≥ c′(|λ∇xΦ(x, θ)| + |ξ|) for some c′ > 0 if ξ is outside of Γ0.
Thus, the claim holds when |∇θΦ(x, θ)| is small and β(θ) ̸= 0. Since (21.21) also clearly holds
for such θ when |∇Φ(x, θ)| is bounded from below, the proof is complete. □

We conclude this subsection by showing that WF (u) is invariant under diffeomorphisms. Let

κ : Ω → Ω̃

be a diffeomorphism between two open sets. Then if, say, u is a L1
loc(Ω̃) function, then it defines

a distribution in D′(Ω̃), defined via

u(Ψ) :=

∫
Ω̃

u(y)Ψ(y) dy , Ψ ∈ C∞
c (Ω̃) .

Likewise, the pullback of u via κ, i.e., (κ∗u)(x) ≡ u(κ(x)), defines an element of D′(Ω). In this
case, if ψ ∈ C∞

c (Ω), we get

(κ∗u)(ψ) =
∫
Ω

u(κ(x))ψ(x) dx =

∫
Ω̃

u(y)ψ(κ−1(y))

∣∣∣∣det dκ−1

dy
(y)

∣∣∣∣ dy , ψ ∈ C∞
c (Ω) .
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To be consistent, we must then define the pullback of a general u ∈ D′(Ω̃) by the formula

(κ∗u)(ψ) = u(Ψ) , Ψ(y) = ψ(κ−1(y))

∣∣∣∣det dκ−1

dy
(y)

∣∣∣∣ dy , ψ ∈ C∞
c (Ω) . (21.22)

Note that if κ : Rd → Rd is a linear transformation, then (21.22) immediately gives the change
of variables formula for wave front sets, i.e.,

WF (κ∗u) = κ∗WF (u) , u ∈ D′(Ω̃) , (21.23)

whenever the pullback of a subset Λ ⊆ Ω̃×Rd \{0} is defined via the pullback map for cotangent
bundles, i.e.,

κ∗Λ := {(x, ξ) : (κ(x), (tκ′)−1ξ) ∈ Λ} . (21.24)

The following result says that this fact remains true for general diffeomorphisms.

Theorem 21.15. Let κ : Ω → Ω̃ be a diffeomorphism between two open subsets of Rd. Then
(21.23) is valid.

Remark 21.16. Note that the pullback formula (21.24) is exactly the change of variables for
the cotangent bundle that one encounters in dealing with C∞ manifolds. Thus, ifM is a smooth
d-dimensional manifold and u ∈ D′(M), then its wave front setWF (u) can be defined as a subset
of T ∗M \ {0} using local coordinates.

Proof of Theorem 21.15. □

21.5. The lattice counting problem. The goal of this section is to prove a primitive result
concerning lattice counting in Rd. Specifically, we show that

#{j ∈ Zd : |j| ≤ λ} = |B0(1)|λd +O(λd−2+ 2
d+1 ) , λ ≥ 1. (21.25)

Using the decay of the Fourier transform of surface measures (Proposition 21.5) which in
particular applies to the sphere, we obtain the following estimate on the Fourier transform of the
ball multiplier.

Corollary 21.17. Let χ(x) denote the characteristic function of the unit ball in Rd, i.e., χ(x) =
1B0(1)(x). Then it satisfies

|χ̂(ξ)| ≲< ξ >− d+1
2 . (21.26)

Proof. First, since χ(x) is compactly supported, its Fourier transform is bounded (in fact even
real analytic), i.e., it suffices to consider |ξ| ≥ 1, say. Next, we reduce the problem to that region
where χ(x) lacks continuity, i.e., an annulus around the unit sphere. For that purpose, let

C∞(R) ∋ β(r) :=

{
0 for r ≤ 1/4

1 for r ≥ 1

and smooth in [1/4, 1]. Then (1 − β(|x|))χ(x) ∈ C∞
c (Rd), i.e., it has rapidly decaying Fourier

transform. Thus, it suffices to prove∫
Rd
χ(x)β(|x|)e−2πix·ξ dx =

∫ 1

1/4

dr rd−1β(r)

∫
Sd−1

e−2πirω·ξdσ(ω) = O(|ξ|−(d+1)/2)

where dσ(ω) denotes the usual Lebesgue measure on Sd−1. We already saw that the Fourier
transform of measures supported on curved surfaces is of the form (see, e.g., Stein [Ste93, p. 360]
or Sogge [Sog14, Theorem 4.1.10]) ∑

±
e±2πir|ξ|a±(r|ξ|) ,
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where

dj

dsj
a±(s) = O(s−

d−1
2 −j) , j = 0, 1, 2, ... , s > 1 .

Plugging this in and integrating by part gives∫
Rd
χ(x)β(|x|)e−2πix·ξ dx =

∑
±

1

±2πi|ξ|

∫ 1

1/4

dr rd−1β(r)a±(r|ξ|)
d

dr
e±2πir|ξ| = O(|ξ|− d+1

2 ) ,

where the main contribution in the last step comes from the boundary term of the integration
by parts. □

The other ingredient in the proof of (21.25) is

Theorem 21.18 (Poisson summation). If φ ∈ S(Rd), then∑
j∈Zd

φ(j) =
∑
j∈Zd

φ̂(j) .

Proof. See, e.g., Grafakos [Gra14a, Theorem 3.2.8]. □

Proof of (21.25). If χ(x) ≡ 1B0(1)(x), then we can rewrite the assertion (21.25) as

N(λ) =
∑
j∈Zd

χ(j/λ) = |B0(1)|λd +O(λd−2+ 2
d+1 ) , λ ≥ 1 . (21.27)

To prove this, we replace χ(x) by a smoother function that can be controlled using the Fourier
transform and Poisson summation. To do so, fix β ∈ C∞

c (Rd) satisfying

β ≥ 0 ,

∫
Rd
β(y) dy = 1 , and β(y) = 0 , for |y| ≥ 1/2 .

Then, for some ε > 0, depending on λ and to be specified later, we shall compare the sum in
(21.27) to the smoothened version

Ñ(ε, λ) :=
∑
j∈Zd

χ̃λ(ε, j) , (21.28)

where

χ̃λ(ε, x) :=
(
ε−dβ(·/ε) ∗ χ(·/λ)

)
(x) =

∫
Rd
ε−dβ ((x− y)/ε)χ(y/λ) dy .

Note that 0 ≤ χ̃λ, and, by the support properties of β, we also have χ(x/λ) = χ̃λ(ε, x) whenever
|x| /∈ [λ− ε, λ+ ε]. Therefore,

χ̃λ−ε(ε, x) ≤ χ(x/λ) ≤ χ̃λ+ε(ε, x) ,

i.e.,

Ñ(ε, λ− ε) ≤ N(λ) ≤ Ñ(ε, λ+ ε) . (21.29)

Since x 7→ χ̃λ(ε, x) is Schwartz with Fourier transform given by

λdχ̂(λξ)β̂(εξ) ,

Poisson summation gives (recalling
∫
χ = |B0(1)| and

∫
β = 1)

Ñ(ε, λ) = λd
∑
j∈Zd

χ̂(λj)β̂(εj) = |B0(1)|λd + λd
∑

{j∈Zd: j ̸=0}
χ̂(λj)β̂(εj) . (21.30)
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Since |β̂(ξ)| ≲N (1+ |ξ|)−N (for any N ∈ N) and |χ̂(ξ)| ≲ (1+ |ξ|)− d+1
2 (by Corollary 21.17), the

second term in (21.30) is bounded by

λd
∑

{j∈Zd: j ̸=0}
(1 + |λj|)− d+1

2 (1 + |εj|)−N ∼ λd
∫

|ξ|≥1

(1 + |λξ|)− d+1
2 (1 + |εξ|)−N dξ .

for any N ∈ N. But since for 0 < ε ≤ 1 and N > d one has∫
|ξ|≥1

(1 + |λξ|)− d+1
2 (1 + |εξ|)−N dξ

≲
∫

1≤|ξ|≤ε−1

(1 + |λξ|)− d+1
2 dξ +

∫
|ξ|≥ε−1

(1 + |λξ|)− d+1
2 (1 + |εξ|)−N dξ

≲ λ−
d+1
2 ε−

d−1
2 + (λ/ε)−

d+1
2 ε−d = λ−

d+1
2 ε−

d−1
2 ,

one concludes

Ñ(ε, λ) = |B0(1)|λd +O(λ
d−1
2 ε−

d−1
2 ) .

Combining this with (21.29) thus yields

N(λ) = |B0(1)|λd +O(ελd−1) +O(λ
d−1
2 ε−

d−1
2 ) ,

since (λ± ε)d = λd +O(ελd−1) (coming from the |B0(1)| term). Optimizing in ε (i.e., choosing

ε = λ−
d−1
d+1 so that both remainders are of the same order), finally shows the asserted (21.27). □

21.6. Pseudodifferential operators.

21.6.1. Basics from the calculus of pseudodifferential operators.

21.6.2. Microlocal properties. We shall now go over various microlocal properties of ΨDOs that
we shall need later on. Among others, we shall give an equivalent definition of wave front sets
that will be useful later on.

First, it will be useful to have microlocal versions of the existence of parametrices (i.e., ap-
proximate inverses) for elliptic pseudodifferential operators (satisfying |P (x, ξ)| ≥ c|ξ|m for some
c > 0, m > 0, and sufficiently large |ξ|). Recall that a parametrix of an elliptic ΨDO of orderm is
another ΨDO of order −m, say E(x,D) having the property that, modulo smoothing operators
in S−∞,

P ◦ E = E ◦ P = 1 .

Any other operator with this property differs from E only via a smoothing operator. (See, e.g.,
Sogge [Sog14, Theorem 4.2.5].)

To state a microlocal version of this fact 24, we need to denote the characteristic set of a ΨDO
P (x,D) of order m, which is a subset of Rd × Rd \ {0} = T ∗Rd \ {0}.
Definition 21.19. Let P (x,D) be an elliptic ΨDO of order m. Then CharP , the characteristic
set of P (x,D), is that closed subset of T ∗Rd \ {0} whose complement is all points (x0, ξ0) ∈
T ∗Rd \ {0} for which there is a conic neighborhood Nx0,ξ0 ⊆ T ∗Rd \ {0} of (x0, ξ0) on which
lower bounds of the form

|P (x, ξ)| ≥ c|ξ|m

hold for large |ξ| with c > 0 possibly depending on Nx0,ξ0 .

24that distinguishes between directions where P (x,D) is elliptic and where not
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Remark 21.20. Alternatively (as is standard in the analysis of differential operators P (x,D) =∑
|α|≤m aα(x)D

α), one could have simply defined

CharP := {(x, ξ) ∈ T ∗(Rd) \ {0} : Pm(x, ξ) = 0} ,
where Pm(x, ξ) is the principal part defined by Pm(x, ξ) =

∑
|α|=m aα(x)ξ

α.

The following is the microlocal version of the existence of parametrices for ΨDOs which are
elliptic only in certain directions. For a symbol a(x, ξ) and a conic neighborhood N , we write
a ∈ S−∞(N ), whenever we have for any N , α, and β that∣∣∣∣∣

(
∂

∂x

)α(
∂

∂ξ

)β
a(x, ξ)

∣∣∣∣∣ ≲N,α,β (1 + |ξ|)−N , if (x, ξ) ∈ N .

Theorem 21.21. Let P (x,D) be a ΨDO of order m and assume that (x0, ξ0) ∈ T ∗Rd \ {0} is
noncharacteristic for P , i.e.,

(x0, ξ0) /∈ Char(P ) .

Then there is a ΨDO E(x,D) of order −m so that

(P ◦ E)(x, ξ)− 1 , (E ◦ P )(x, ξ)− 1 ∈ S−∞(N )

for some conic neighborhood N of (x0, ξ0).

Next, let us recall that ΨDOs are in general (as opposed to differential operators) non-local.
Nonetheless, there remain certain remnants of locality in the sense that ΨDOs leave the singular
support invariant. This fact is called pseudolocality. It means that if P ∈ Sm, then

sing suppP (x,D)u ⊆ sing suppu , u ∈ H−∞ . (21.31)

This just follows from the fact that the kernel of P (x,D) is smooth away from the diagonal.
Similar considerations lead to the stronger microlocal property of P (x,D), namely

WF (P (x,D)u) ⊆WF (u) , u ∈ H−∞ . (21.32)

Later on we shall show the almost inverse inclusion

WF (u) ⊆WF (P (x,D)u) ∪ Char(P ) ,

see, e.g., Hörmander [Hör90, Theorem 8.3.1] or Sogge [Sog14, Corollary 4.2.11].

Remark 21.22. A final side remark is that if P is an elliptic differential operator, i.e., Pm(x, ξ) ̸=
0 in T ∗(Rd) \ {0}, then we indeed have the reverse inclusion, i.e.,

WF (Pu) =WF (u) , u ∈ D′(Rd)
and in particular sing suppPu = sing suppu for u ∈ D′(Rd) (Hörmander [Hör90, Corollary
8.3.2]).

Another fundamental object in microlocal analysis of ΨDOs is the notion of essential support.

Definition 21.23. Let P be a ΨDO. Then the essential support of P (x, ξ), denoted by ess sup P
is that closed subset of T ∗(Rd) \ {0} whose complement consists of points (x0, ξ0) having the
property that P (x, ξ) ∈ S−∞(Nx0,ξ0) for some conic neighborhood Nx0,ξ0 of (x0, ξ0) in T

∗(Rd) \
{0}.

Thus, if u ∈ H−∞(Rd), we have

WF (P (x,D)u) ⊆ ess sup P .

Our next goal is to give an alternative characterization of WF (u) whenever u ∈ H−∞. First,
we note also that, by the definition of WF (u), the statement (x0, ξ0) /∈ WF (u) means that
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P (x,D)u ∈ C∞ for certain ΨDOs P (x, ξ) ∈ S0 that are non-characteristic at (x0, ξ0). Specifi-
cally, let

C∞
c (Rd) ∋ ρ(x) =

{
1 for |x| < 1/2

0 for |x| ≥ 1

and smooth in between, and,

C∞
c (Rd) ∋ χ(ξ) =

{
0 for |ξ| ≪ 1

1 for |ξ| ≫ 1
.

Let us furthermore set

Qδ(x,D)v(x) :=

∫
dξ e2πix·ξρ(|x− x0|/δ)ρ

((
ξ

|ξ| −
ξ0
|ξ0|

)
/δ

)
χ(ξ)v̂(ξ) .

Then (x0, ξ0) /∈ WF (u) if and only if Q∗
δu ∈ C∞ when δ > 0 is small. This is due to the fact

that the Fourier transform of Q∗
δu equals

ρ((
ξ

|ξ| −
ξ0
|ξ0|

)/δ)χ(ξ)[ρ((· − x0)/δ)u]
∧(ξ) .

Based on this, one checks that (x0, ξ0) /∈WF (u) if and only if Q∗
δ(x,D)u ∈ S(Rd) when δ > 0 is

sufficiently small.
Moreover, since P (x,D) = Q∗

δ(x,D) is also not characteristic at (x0, ξ0) and we let for m ∈ R

Rm(u) := {P (x, ξ) ∈ Sm : P (x,D)u ∈ C∞} , u ∈ H−∞ (21.33)

denote the set of regularizing operators for a given u ∈ H−∞ 25, then by the above arguments,

(WF (u))c ⊆
⋃

P∈R0(u)

(CharP )c .

The main result here is, however, that we actually have equality and not only for m = 0, but
for all m ∈ R. This provides a useful equivalent definition of WF (u) (Definition 21.12).

Theorem 21.24. Let u ∈ H−∞ and m ∈ R. Then

WF (u) =
⋂

P∈Rm(u)

CharP .

In particular, we have for a given P ∈ Sm,

WF (u) ⊆ CharP , if P (x,D)u ∈ C∞ .

The following corollary provides a nice complement of the microlocal property (21.32) of
ΨDOs.

Corollary 21.25. If P ∈ Sm and u ∈ H−∞, then

WF (u) ⊆WF (P (x,D)u) ∪ CharP . (21.34)

In particular, if u solves P (x,D)u = 0, then WF (u) ⊆ CharP .

Proof. We prove the equivalent assertion

(WF (Pu))c ∩ (CharP )c ⊆ (WF (u))c .

25also including operators that may be characteristic at (x0, ξ0) /∈WF (u)
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If (x0, ξ0) /∈WF (Pu), then, by Theorem 21.24, there must be aQ ∈ S0 withQ(x,D)◦P (x,D)u ∈
C∞ and (x0, ξ0) /∈ CharQ. If also (x0, ξ0) /∈ CharP , then, by the Kohn–Nirenberg formula (cf.
[Sog14, Theorem 4.2.2])

(P ◦Q)(x, ξ) ∼
∑
α

1

α!
Dα
ξ P (x, ξ)

(
∂

∂x

)α
Q(x, ξ) ,

we also have (x0, ξ0) /∈ Char(Q ◦ P ) and so (x0, ξ0) /∈WF (u) also by Theorem 21.24. □

The proof of Theorem 21.24 relies on the following lemma, which is more or less equivalent to
the theorem.

Lemma 21.26. Let u ∈ H−∞. Then (x0, ξ0) /∈ WF (u) if and only if there is a conic neigh-
borhood N of (x0, ξ0) in T ∗Rd \ {0} so that P (x,D)u ∈ C∞ whenever P (x,D) is a ΨDO with
symbol P (x, ξ) supported in N .

Let us first see how the Lemma implies the above theorem.

Proof of Theorem 21.24. Let (x0, ξ0) /∈WF (u). Then by the lemma if Q(x, ξ) ∈ Sm is supported
in a small conic neighborhood of (x0, ξ0) and equals |ξ|m for |ξ| ≥ 1 with |ξ/|ξ| − ξ0/|ξ0|| and
|x− x0| small then Qu ∈ C∞. Since Q(x, ξ) is non-characteristic at (x0, ξ0), we conclude

(x0, ξ0) ∈
⋃

P∈Rm(u)

(CharP )c ,

and thus ⋂
P∈Rm(R)

CharP ⊆WF (u) .

Conversely, suppose that P (x, ξ) ∈ Sm, P (x,D)u ∈ C∞, and (x0, ξ0) /∈ CharP . We then must
show that (x0, ξ0) /∈ WF (u). By Theorem 21.21 we know that for such (x0, ξ0) there exists a
microlocal parametrix Q ∈ S−m such that

(Q ◦ P )(x, ξ)− 1 ∈ S−∞(Nx0,ξ0)

for some conic neighborhood Nx0,ξ0 of (x0, ξ0). But then if A ∈ Sµ and A(x, ξ) = 0 for (x, ξ) /∈
Nx0,ξ0 we have that A(x,D)(Q ◦ P − 1) is smoothing by the Kohn–Nirenberg theorem (i.e.,
P (x,D)◦Q(x,D) is a ΨDO of order m+µ whenever P and Q are ΨDOs of order m, respectively
µ, cf. [Sog14, Theorem 4.2.2]). Since

u = Q(Pu) + (1−Q ◦ P )u
and Q(Pu) ∈ C∞ (since Pu ∈ C∞), we conclude A(x,D)u ∈ C∞. Thus (x0, ξ0) /∈ WF (u) by
the lemma which concludes the proof. □

Proof of Lemma 21.26. □

21.6.3. Pseudodifferential operators on manifolds. Before we define ΨDOs on manifolds and dis-
cussing some of their properties, we prove a preliminary result showing how certain types of
ΨDOs on Rd transform under changes of coordinates.

We consider operators of the form

(Pφu)(x) =

∫
e2πiφ(x,y,ξ)P (x, y, ξ)u(y) dξ dy (21.35)

where the compound symbol P belongs to Sm, i.e., satisfies∣∣∣∣∣
(
∂

∂ξ

)α(
∂

∂x

)β1
(
∂

∂y

)β2

P (x, y, ξ)

∣∣∣∣∣ ≲α,β (1 + |ξ|)m−|α|
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and φ ∈ C∞(R2d × Rd \ {0}) is real-valued, homogeneous of degree one in ξ, and satisfies

φ(x, x, ξ) ≡ 0 and ∇xφ(x, y, ξ)
∣∣
x=y

≡ ξ . (21.36)

In particular this means that eiφ behaves like a plane wave near the diagonal, i.e., one has

φ(x, y, ξ) = ⟨(x− y), ξ⟩+O(|x− y|2||ξ|) .
Thus, if suppx,yP is contained in a sufficiently small neighborhood of the diagonal, we have that

|∇ξ(φ(x, y, ξ)− ⟨x− y, ξ⟩| ≤ 1

2
|x− y| on suppP . (21.37)

Under these hypotheses, we have the following

Proposition 21.27. Suppose P ∈ Sm as above vanishes when x or y is outside of a fixed compact
set in Rd and that φ satisfies (21.36) and (21.37)26. Then Pφ is a ΨDO of order m. Moreover,
if we set P (x, ξ) = P (x, x, ξ), then Pφ − P (x,D) is a ΨDO of order m− 1.

Proof. See Sogge [Sog14, Proposition 4.2.12]. □

We will now apply this result to see how ΨDOs in Rd behave under changes of variables. For
simplicity, we assume for the moment that the operators have symbols satisfying P (x, ξ) = 0 for
x outside of a compact set K. Recall that if κ : Rd → Rd is a diffeomorphism, then the pullback
of a function u ∈ C∞ via κ is κ∗u = uκ, defined by

uκ(x) = u(κ(x)) .

Proposition 21.28. Let κ : Rd → Rd be a diffeomorphism and assume that P (y, ξ) ∈ Sm

vanishes when y is outside of a compact set K. Then there is a symbol Pκ(x, ξ) ∈ Sm such that,
modulo smoothing operators,

(Pκ(x,D)uκ)(x) = (P (y,D)u)(y) , y = κ(x) ,

and

Pκ(x,
tκ′(x)ξ)− P (κ(x), ξ) ∈ Sm−1 . (21.38)

Remark 21.29. Note that (21.38) says that, modulo symbols of one order less, the symbols of
ΨDOs pull back according to the pullback map

(κ(x), ξ) 7→ (x, κ′(x)tξ)

which is the change of variables formula for the cotangent bundle coming from changes of coor-
dinates in the base. This fact will momentarily tell us that the principal symbol of a ΨDO on a
manifold M is invariantly defined as a function on T ∗M \ 0.
Proof of Proposition 21.28. Choose ρ ∈ C∞

c (Rd) satisfying ρ(y) = 1 near y = 0. Then if we set
y = κ(x), z = κ(w) and ξ =t κ′(x)η, we obtain, modulo a smoothing operator, that P (y,D) is
given by ∫

e2πi⟨y−z,η⟩P (y, η)ρ(z − y)u(z) dη dz =

∫
e2πiφ(x,ω,ξ)Q(x,w, ξ)uκ(w) dξ dw ,

where

φ(x,w, xi) = ⟨κ(x)− κ(w), (tκ′(x))−1ξ⟩
and

Q(x,w, ξ) = ρ(κ(w)− κ(x))P (κ(x), (tκ′(x))−1ξ)|κ′(w)||tκ′(x)|−1 .

26As we have seen above, the second condition is actually a consequence of the former, but we nevertheless
include it in the statement for the sake of clarity.
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Since φ is as in (21.36) and since

Q(x,w,t κ′(x)η)
∣∣
w=x

= P (κ(x), η) ,

the claim follows from Proposition 21.27. □

We may now define ΨDOs on a smooth compact manifold M .

Definition 21.30. A map P : C∞(M) → C∞(M) is called a ΨDO of order m if its kernel is
smooth away from the diagonal ∆ = {(x, y) ∈ M ×M : x = y}, and, whenever Ων ⊆ M is a
coordinate patch with coordinates

y = κν(x) ∈ Ω̃ν := κν(Ων) ⊆ Rd , x ∈ Ων ,

and ψν , ψ̃ν ∈ C∞
c (Ω̃ν), the operators

Pνu(y) = ψ̃ν(κν(x))P ((ψνu) ◦ κν(·)) (x) , y = κν(x) ∈ κν(Ων) ⊆ Rd , u ∈ C∞(Rd) (21.39)

are (usual) ΨDOs of order m.

In this formula (ψνu)◦κν is understood to be the C∞(M) function which equals ψν(κν(x))u(κν(x))
when κν(x) ∈ suppψν and zero otherwise. If

⋃
ν Ων =M is a finite covering of M by coordinate

patches and {Ψν} is a smooth partition of unity subordinate to this covering, i.e.,
∑
ν Ψν ≡ 1

and suppΨν ⊆ Ων , and if Ψ̃ν ∈ C∞(M) equals one on suppΨν and is supported in Ων for
each ν, then, modulo an operator with smooth kernel (i.e., a smoothing operator), we have

Pv =
∑
ν Ψ̃νP (Ψνv). Consequently, we can use (21.39) with ψν and ψ̃ν being the pushfor-

wards of Ψν and Ψ̃ν respectively, to write the symbol of P in local coordinates as a function
P (y, η) = Pν(y, η) ∈ Sm.

Definition 21.31. We say that P is a classical ΨDO of order m and write P ∈ Ψmcl (M) if in
every local coordinate system, we have

P (y, η) ∼
∞∑
j=0

Pm−j(y, η) ,

where Pm−j is homogeneous of degree m− j in η.

We shall restrict ourselves to such polyhomogeneous operators from now on since operators
such as

√
−∆g always have this form. As usual, ∆g denotes the Laplace–Beltrami operator on

M endowed with a Riemannian metric g.
If we use local coordinates (cf. Sogge [Sog14, Section §2.3])

T ∗M ∋ (x, ξ) 7→ (κν , ξ
ν) ∈ Rd × Rd \ {0} , x ∈ Ων ⊆M ,

then we can define the principal part of a classical ΨDO P by setting

p(x, ξ) = Pm(κν(x), ξ
ν) .

By Remark 21.29, this gives a well-defined function on C∞(T ∗M \ 0) which is homogeneous of
degree m. Naturally, we say that P is elliptic if its principal symbol never vanishes on T ∗M \ 0.
Moreover, we define the characteristic set of P as

CharP = {(x, ξ) ∈ T ∗M \ 0 : p(x, ξ) = 0} .
As we indicated in Remark 21.16, the wave front set of V ∈ H−∞(Rd) transforms according

to the change of variables formula (a.k.a. the pullback formula for the cotangent bundle)

(κ(x), ξ) 7→ (x, κ′(x)tξ)
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for the cotangent bundle. That means that we can use local coordinates to define the wave front
set of a given u ∈ H−∞(M) =

⋃
sH

s(M). For such u it is also clear that, if Rm(u) denotes
those P ∈ Ψmcl (M) for which Pu ∈ C∞(M), then, by Theorem 21.24, for each m ∈ R we have

WF (u) =
⋂

P∈Rm(u)

CharP . (21.40)

In particular, by using local coordinates, we see that the notion of essential support of P (x, ξ) ∈
ΨmL (M) is a well-defined subset of T ∗M \ 0, and so, as in the euclidean case (Theorem 21.24) we
have

WF (P (x,D)u) ⊆ ess suppP , u ∈ H−∞(M) .

If we are working on a Riemannian manifold (M, g), then P ∈ Ψmcl (M) is said to be self-adjoint
if

(Pu, v) = (u, Pv) :=

∫
M

uPv dVg , u, v ∈ C∞(M) .

Recall that P (x, ξ) − Re(P (x, ξ)) ∈ Sm−1 for m-th order, self-adjoint ΨDOs P (cf. [Sog14,
Corollary 4.2.8]). Thus, if P ∈ Ψmcl (M) is self-adjoint and elliptic, then its principal symbol must
be real and either be always positive or always negative on T ∗M \ 0.

As usual, we can define Sobolev saces of order s on M by setting

∥f∥Hs(M) =
∑
ν

∥fν∥Hs(Rd) , fν(y) = (Ψνf)(x) , y = κν(x) , x ∈ suppΨν

where, as before {Ψν} is a smooth partition of unity coming from a finite covering of M by the
coordinate patches (Ων , κν). It is straightforward to check that different partitions of unity give
comparable Sobolev norms. Thus, there is no loss in just defining the Sobolev norms via one of
them. Moreover, in view of classical ΨDO calculus, we have

P : Hs(M) → Hs−m(M) , P ∈ Ψmcl (M) .

If m > 0 and P ∈ Ψmcl (M) is elliptic, then

∥u∥Hm ≲ ∥Pu∥L2(M) + ∥u∥L2(M) .

If m = 1 and Q ∈ Ψ1
cl(M) is self-adjoint and elliptic, then, as noted above, after possibly

multiplying by −1, we may assume its principal symbol, q(x, ξ), to be positive. Then if A ∈
Ψ

1/2
cl (M) has principal symbol

√
q(x, ξ), the previous inequality shows

∥u∥H1/2(M) ≲ ∥Au∥2L2(M) + ∥u∥2L2(M) .

Since Q−A∗A ∈ Ψ0
cl(M), Cauchy–Schwarz gives

|(u,Qu)− (u,A∗Au)| ≲ ∥u∥2L2(M)

and therefore, by combining the last two inequalities and noting (u,A∗Au) = ∥Au∥2,

∥u∥2H1/2(M) ≲ (u,Qu) + ∥u∥2 = (u, (Q+ 1)u) .

Thus, Q+c is a positive self-adjoint operator, and, by Rellich–Kondrachov, has compact resolvent,
so purely discrete spectrum consisting of eigenvalues 0 < µ1 ≤ µ2 ≤ ...µj possibly accumulating
at infinity. In particular, Q has also purely discrete spectrum, possibly accumulating at +∞
with only finitely many negative eigenvalues (if any).
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We are now prepared to study
√
−∆g and show that it belongs to Ψ1

cl(M) with principal
symbol

p√−∆g
(x, ξ) =

√√√√ d∑
j,k=1

gjk(x)ξjξk (21.41)

whenever −∑d
j,k=1 g

jk(x)ξjξk is the principal symbol of the Laplace–Beltrami operator ∆g on

our Riemannian manifold (M, g).
Recall that if 0 = λ20 < λ21 ≤ λ22 ≤ ... are the eigenvalues of −∆g with corresponding eigen-

projections Ej , then

−∆gu =
∑
j≥0

λ2jEju , u ∈ C∞(M)

so naturally (by functional calculus), we define P =
√
−∆g by

Pu =
∑
j≥0

λjEju , u ∈ C∞

which satisfies P 2 = P ◦ P = −∆g.
Because of the zero-eigenvalue λ0, the operator −∆g is not invertible. However, by modifying

it by the rank-one projection E0, i.e., setting

Lu = E0u+
∑
j≥1

λ2jEju , u ∈ C∞(M) ,

we see that L > 0 is invertible and that L only differs from −∆g by E0, i.e., a smoothing operator
with kernel (volg(M))−1 on M ×M .

We now show that P ∈ Ψ1
cl(M). To do so, we first construct a positive first order self-adjoint,

elliptic operator Q ∈ Ψ1
cl(M) that satisfies

L−Q2 = R (21.42)

for some smoothing operator R. Working in local coordinates, we first set

Q̃1(x, ξ) = χ(ξ)

 d∑
j,k=1

gjk(x)ξjξk

1/2

,

where χ ∈ C∞ vanishes near 0 but equals 1 when, say, |ξ||geq1. If we let Q1(x,D) = (Q̃1(x,D)+

Q̃∗
1(x,D))/2, then Q1 is self-adjoint, and in Ψ1

cl(M). Moreover (by the Kohn–Nirenberg theorem
[Sog14, Theorem 4.2.2]) (Q1)

2 − L ∈ Ψ1
cl(M). We can now continue inductively choosing self-

adjoint Qj ∈ Ψ2−j
cl (M) (j = 2, 3., , ,) so that L− (Q2

1+ · · ·+QN )2 ∈ Ψ2−N
cl (M). As a result, if we

let Q ∈ Ψ1
cl(M) be a representative of the formal series

∑
j≥1Qj , we would get that L − Q2 is

smoothing. Since each Qj is self-adjoint, Q equals its adjoint by a smoothing error. Thus, after
possibly adding such a smoothing error operator, we may indeed assume Q to be self-adjoint.
By what we did before, Q then has discrete spectrum accumulating at +∞. Thus, after possibly
modifying it on a one- (or finite-) dimensional set, we may also assume that Q is positive and
that L−Q2 = R indeed holds, as claimed.

Summarized, we found an approximation, i.e., Q2, of L = −∆g +E0. We now claim that also√
L − Q ≡ R0 is smoothing. To see this let γ ⊆ C be a contour encircling all eigenvalues of L.

Then by Cauchy’s integral formula,

L−1/2 = − 1

2πi

∫
γ

z−1/2(L− z)−1 dz
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and

Q−1 = − 1

2πi

∫
γ

z−1/2(Q2 − z)−1 dz = − 1

2πi

∫
γ

z−1/2(L−R− z)−1 dz

and therefore,

L−1/2 −Q−1 = − 1

2πi

∫
γ

z−1/2
[
(L− z)−1 − (L−R− z)−1

]
dz

=
1

2π

∫
γ

z−1/2
[
(L− z)−1R(L−R− z)−1

]
dz .

Since R is smoothing, the whole integrand is smoothing and the integral in particular converges
and defines a smoothing operator. Thus

√
L−Q =

√
L−

√
−∆g +

√
−∆g −Q = Q(Q−1 − L−1/2)L1/2 ≡ R0

is then smoothing as well, we obtain the claim. Since
√
L−

√
−∆g is a rank-one projection onto

constant functions, it follows from
√
L−Q being smoothing that

√
−∆g −Q is smoothing, too.

In summary, we have proven

Theorem 21.32. Let ∆g be the Laplace–Beltrami operator on a compact Riemannian manifold

(M, g). Then P :=
√
−∆g ∈ Ψ1

cl(M) is a self-adjoint, first-order classical ΨDO with principal

symbol p(x, ξ) =
√∑d

j=k=1 g
jk(x)ξjξk.

Similar arguments show that the operators defined by

(1−∆g)
s/2f =

∑
j≥0

(1 + λ2j )
s/2Ejf , f ∈ C∞(M) , s ∈ R

belong to Ψmcl (M) with principal symbol1 +

d∑
j,k=1

gjk(x)ξjξk

s/2

.

Moreover, for each s ∈ R we have

∥u∥Hs(M) ∼ ∥(1−∆g)
s/2u∥L2(M)

which just follows from (1−∆g)
s/2 : Hs → L2 and (1−∆g)

−s/2 : L2 → Hs boundedly.

21.7. Propagation of singularities and Egorov’s theorem. We follow Sogge [Sog14, Section
4.3].

Throughout this section we always take

P =
√
−∆g

and are concerned with the associated Schrödinger (or in this case, the half-wave) equation{
(∂t − iP (x,D))u(t, x) = F (x, t) , 0 < t < T

u
∣∣
t=0

= f .
(21.43)

Clearly, its solution is given by the Duhamel formula

u(x, t) = (eitP )f(x) + i

∫ t

0

ei(t−s)PF (s, x) ds .
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Before we discuss the solution operator eitP in more detail, let us go over some basic properties
of the solution directly via energy estimates. The following lemma resembles that for the usual
wave equation, cf. Sogge [Sog14, Formula (3.1.17)].

Lemma 21.33. Let s ∈ R. If

u ∈ C1([0, T ] : Hs) ∩ C([0, T ] : Hs+1) ,

then there is a constant Cs, independent of T such that

sup
t∈[0,T ]

∥u(t, ·)∥Hs(M) ≤ Cs

(
∥u(0, ·)∥Hs(M) +

∫ T

0

∥(∂t − iP )u(t, ·)∥Hs(M) dt

)
. (21.44)

Proof. □

These energy estimates allow one to prove an existence and uniqueness theorem for the half-
wave equation (21.43).

Theorem 21.34. Let s ∈ R. Then for every F ∈ L1([0, T ] : Hs) and f ∈ Hs there is a unique
solution u ∈ C([0, T ] : Hs) of the Cauchy problem (21.43) and it must satisfy (21.44).

Proof. □

This result gives the following

Corollary 21.35. Let F ≡ 0 and suppose u satisfies (21.43) with f ∈ Hs for every s ∈ R. Then
if u ∈ C1([0, T ] : Hs0(M)) for some s0 ∈ R, it follows that u ∈ C1([0, T ] : Hs(M)) for every s

and the same is true for ∂jt u for any j ∈ N. Thus, u ∈ C∞(R×M).

The main interest of this section is the propagation of singularities for the half-wave equation
(21.43). The analysis relies on the following

Proposition 21.36. Let Q ∈ Ψmcl (M). Then there exists a one-parameter family of ΨDOs
t 7→ E(t) ∈ Ψmcl (M) depending smoothly on t and satisfying

[∂t − iP,E(t)] = 0 , E(0) = Q , (21.45)

and having for each t ∈ R the principal symbol

E0(t;x, ξ) = q0(Φt(x, ξ)) (21.46)

with q0(x, ξ) being the principal symbol of Q and where Φt : T ∗M \ 0 → T ∗M \ 0 being the
Hamiltonian flow for to the Hamiltonian vector field

Hp :=
∂p

∂ξ

∂

∂x
− ∂p

∂x

∂

∂ξ
(21.47)

associated to the principal symbol p(x, ξ) of P (cf. (21.41)).

Before turning to the proof, we state some immediate consequences thereof. The first concerns
Hörmander’s theorem about propagation of singularities of solutions to (21.43).

Theorem 21.37. Let f ∈ H−∞(M) and let u ∈ C([0, T ] : H−∞(M)) be the solution of the
homogeneous Cauchy problem

(∂t − iP )u = 0 , u
∣∣
t=0

= f . (21.48)

Then for each fixed t ∈ R, we have Φt(WF (u(t, ·))) =WF (f), i.e.,

WF (u(t, ·)) = {(y, η) ∈ T ∗M \ 0 : Φt(y, η) = (x, ξ) for some (x, ξ) ∈WF (f)} . (21.49)

Besides the above propagation of singularities result, we have the following special case of
Egorov’s theorem as a consequence of Proposition 21.36.
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Theorem 21.38 (Egorov (special case)). If Q ∈ Ψmcl (M) with principal symbol q0(x, ξ) then

eitPQe−itP (21.50)

is a one-parameter family of ΨDOs EQ(t) ∈ Ψmcl (M) depending smoothly on t ∈ R. Their
principal symbol is given by q0(Φt(x, ξ)) where Φt is the Hamiltonian flow associated to the
principal symbol of P =

√
−∆g.

Proof. □

Remark 21.39. One can easily prove that the principal symbol of

Q(t;x,D) = eitPQ(x,D)e−itP

is q0(Φt(x, ξ)) if one just assumes that the evolved Q(t;x,D) is a ΨDO. The latter in turn can be
verified for small |t| using the Hadamard parametrix (cf. Sogge [Sog14, Theorem 2.4.1]), Theorem
21.32 (on the fact that

√
−∆g ∈ Ψ1

cl(M)), and the proof of [Sog14, Lemma 5.2.2]. Once the
small |t| result is established, the large result continues to hold for all t ∈ R by iteration using
the group property

ei(t1+t2)P = eit1P eit2P .

Now we verify the initial claim assuming Q(t) ≡ Q(t;x,D) is a ΨDO with principal symbol q0(t).
First note

∂tQ(t) = i[P,Q(t)]

and recall that the commutator of two ΨDOSs is of one order lower than their sum and that its
symbol is given by the Poisson bracket of their symbols (cf. [Sog14, Corollary 4.2.3]). Thus, the
principal symbol ∂tq0(t) of ∂tQ(t) = i[P,Q(t)] is given by

∂tq0(t) = {p, q0(t)} = Hpq0(t) =
∂p

∂ξ
· ∂q0(t)

∂x
− ∂p

∂x
· ∂q0(t)

∂ξ
.

This equation has a unique solution which satisfies the initial condition

q0(0;x, ξ) = q0(x, ξ) .

Since q0(Φt(x, ξ))
∣∣
t=0

= q0(x, ξ) and (by the classical Hamiltonian equations of motion Φt(x, ξ) =

(x(t), ξ(t)) with ẋ(t) = ∂ξp and ξ̇(t) = −∂xp)

∂tq0(Φt(x, ξ)) =
∂q0(Φt(x, ξ))

∂x
· dx(t)
dt

+
∂q0(Φt(x, ξ))

∂x
· dξ(t)
dt

=
∂q0(Φt(x, ξ))

∂x
· ∂p
∂ξ

− ∂q0(Φt(x, ξ))

∂ξ
· ∂p
∂x

= Hpq0(Φt(x, ξ)) ,

we indeed conclude q0(t;x, ξ) = q0(Φt(x, ξ)).

21.8. Friedrichs’ quantization and the sharp G̊arding inequality. A procedure that as-
signs to a function P (x, ξ) ∈ Sm (a symbol) an operator on H−∞(Rd) is called a quantization.
The Kohn–Nirenberg quantization

P (x,D)u =

∫
e2πi(x−y)·ξP (x, ξ)u(y) dy dξ =

∫
e2πix·ξP (x, ξ)û(ξ) , u ∈ S(Rd) (21.51)

is simple and natural as it closely resembles Fourier multiplier operators.
In application to quantum mechanics one would like the quantization of P (x, ξ) to be self-

adjoint if the symbol is real. However, this is not the case for the Kohn–Nirenberg quantization
but at least for the Weyl quantization

PWu(x) =

∫
e2πi(x−y)·ξP

(
x+ y

2
, ξ

)
u(y) dy dξ . (21.52)
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We will not make use of this quantization but excellent references describing it and the resulting
calculus include Martinez [Mar02, Theorem 2.7.1] (showing how to change between different
quantizations), as well as Folland [Fol89], Muscalu–Schlag [MS13], and Hörmander [Hör85].

Another desirable feature – that is lacking in the Kohn–Nirenberg quantization too – is that the
quantized operators are non-negative whenever their symbols are. The Friedrichs quantization
[Fri70] that we are about to discuss now remedies this failure. It is particularly useful in the
study of quantum ergodicity, see also Sogge [Sog14, Chapter 6].

Example 21.40. The following example illustrates that the Kohn–Nirenberg quantization does
not preserve non-negativity. Consider, e.g., a(x, ξ) := a(x)ξ2 with 0 ≤ a(x) ∈ C∞

c (R). Then
the associated operator −a(x)d2x is in general not non-negative. For instance, if u ∈ C∞

c (R) is
such that u(x) = u′′(x) for all x ∈ supp(a(x)), then (u, a(x,D)u) = −

∫
R |u(x)|2a(x) < 0. On

the other hand, the operator −dxa(x)dx is indeed non-negative and it agrees with the Kohn–
Nirenberg quantizaed a(x,D) up to an operator of lower order.

We will now consider a similar construction for general ΨDOs. Specifically, we show that if
0 ≤ a(x, ξ) ∈ Sm, then, up to an operator of one order less, a(x,D) is also nonnegative.

Theorem 21.41 (Friedrichs). Let a ∈ Sµ and assume that a(x, ξ) ≥ 0. Then one can write

a(x, ξ) = aF (x, ξ) + r(x, ξ) (21.53)

where r ∈ Sµ−1 and

(u, aF (x,D)u) ≥ 0 , u ∈ S . (21.54)

In particular, one choice for such an aF (x, ξ) is

aF (x, ξ) =

∫
ψ ((x− y)q(η), (ξ − η)/q(η)) a(y, η) dy dη (21.55)

where q(η) = (1+|η|2)1/4 and ψ(x, ξ) ∈ S(R2d) is the integral kernel of ψ(x,D) = φ(x,D)∗φ(x,D)
where φ ∈ C∞

c (R2d) is even with ∥φ∥2 = 1.

Proof. See Sogge [Sog14, Theorem 4.4.1]. □

Importantly, this result (and ∥u∥Hm ≲ ∥Pu∥2+∥u∥2 for any ΨDO P of order m) immediately
gives

Corollary 21.42 (Sharp G̊arding inequality). If a ∈ S2m+1 and Re(a(x, ξ)) ≥ 0, then

Re(u, a(x,D)u) ≳ −∥u∥2Hm , u ∈ S . (21.56)

Proof. We write

(Re a)(x,D) =
a(x,D) + a(x,D)∗

2
+

(
(Re a)(x,D)− a(x,D) + a(x,D)∗

2

)
and notice that the term in parantheses is a ΨDO of order 2m. Since ∥u∥Hm ≲ ∥Pu∥2 + ∥u∥2
for any ΨDO P of order m, it suffices to prove the assertion for a(x,D) instead of (Re a)(x,D).
Thus, we can without loss of generality assume a(x, ξ) ≥ 0. But now we can apply Friedrichs’
theorem and are done since r ∈ S2m. □

The following generalizes Theorem 21.41 to Riemannian manifolds.

Theorem 21.43. Let (M, g) be a Riemannian manifold of dimension d. Then there is a linear
map

a(x, ξ) 7→ aF (x,D)
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sending each function a ∈ C∞(T ∗M \ 0) which is homogeneous of degree zero in ξ to a ΨDO
aF (x,D) such that the principal part of aF (x,D) equals a(x, ξ) and, moreover,

(h, aF (x,D)h) ≥ 0 , h ∈ L2(M) , if a(x, ξ) ≥ 0 . (21.57)

Moreover, if A(x,D) ∈ ψ0
cl(M) is a classical ΨDO with principal symbol a(x, ξ), then aF (x,D)−

A(x,D) is of order −1.

Proof. After a partition of unity involving non-negative functions, we may assume that a(x, ξ)
vanishes when x is outside of a compact subset of a coordinate patch. We may also supppose
that the support of a(x, ξ) is so small that coordinates can be chosen so that |h| ≡ 1 in the
coordinate patch. If we then work in local coordinates and let ãF (x, ξ) denote the right side
of (21.55), we obtain a ΨDO ãF (x,D) with principal symbol a(x, ξ) which is non-negative on
L2(Rd) if a(x, ξ) ≥ 0. If 0 ≤ φ ∈ C∞(Rd) and φ(x) = 1 on the x-support of a, then the same is
true for the operator φãF (x,D)φ. If we assume as well that φ is supported in the image of our
coordinate patch, then the pullback, i.e., aF (x,D), of this operator to M will have the desired
properties. □

Let us finally denote by p(x, ξ) the principal symbol of
√

−∆g and define its unit cotangent
bundle

S∗M = {(x, ξ) ∈ T ∗M : p(x, ξ) = 1} .
Then to every a0 ∈ C∞(S∗M) we can naturally associate a homogeneous of degree zero function
(extension) a(x, ξ) ∈ C∞(T ∗M \ 0) given by a(x, ξ) = a0(x, ξ/p(x, ξ)). Then, using Theorem
21.43 we can easily obtain the following result saying that (21.57) associates to each h ∈ L2(M)
a natural distribution on S∗M .

Corollary 21.44. Let (M, g) be as above and fix h ∈ L2(M). Also given a0 ∈ C∞(S∗M)
as above, let a ∈ C∞(T ∗M \ 0) denote its homogeneous of degree zero extension and aF its
corresponding Friedrichs quantization in Theorem 21.43. Then the map

C∞(S∗M) ∋ a0 7→ uh(a0) = (h, aF (x,D)h)

defines a non-negative distribution uh ∈ D′(S∗M). Consequently, there is a non-negative Borel
measure µh on S∗M such that

uh(a0) =

∫
S∗M

a0 dµh , a0 ∈ C∞(S∗M) .

Proof. Since the map a0 7→ uh(a0) is a linear map from C∞(S∗M) to C, we would conclude
that uh ∈ D′(S∗M) if we could show that there is a constant Ch depending only on our fixed
h ∈ L2(M) such that whenever a0 ∈ C∗∞(S∗M) is real-valued, we had

|uh(a0)| ≤ Ch sup
(x,ξ)∈S∗M

|a0(x, ξ)| . (21.58)

To prove this we note that

a±0 (x, ξ) := sup |a0|+ a0(x, ξ) ≥ 0 .

If a± ∈ C∞(T ∗M \ 0) denotes the homogeneous of degree zero extension of a±0 , then, by (21.57)

(h, a±F (x,D)h) ≥ 0 . (21.59)

Let 1F (x,D) denote the ΨDO of order zero given by Theorem 21.43 when the symbol is identically
one. Then

a±F (x,D) = sup |a0|1F (x,D)± aF (x,D) .
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Therefore, by (21.59)

sup |a0|(h,1Fh)± uh(a0) ≥ 0 ,

and so

|uh(a0)| ≤ (h,1F (x,D)h) sup |a0| . (21.60)

Since zero-order ΨDOs are L2 bounded, we obtain by Cauchy–Schwarz

|(h,1F (x,D)h)| ≲ ∥h∥2L2(M) ,

which means that (21.58) is indeed valid. Thus, uh ∈ D′(S∗M).
Since (21.57) implies that uh is non-negative, the last part of the assertion follows from

Schwartz’ theorem saying that non-negative distributions coincide with Borel measures. □

Note that if µh is the above Borel measure, associated to h, then, by (21.60) with a0 ≡ 1, we
have the following bound for its mass, namely

µh(S
∗M) =

∫
S∗M

dµh ≤ ∥1F (x,D)∥L2→L2∥h∥2L2(M) .

22. Introduction to ℓ2 decoupling and some applications

Decoupling theory studies the “interference patterns” that occur when we add up functions
whose Fourier transforms are supported in different regions. The geometry of the regions in
Fourier space influence how much constructive interference can happen in physical space.

Before decoupling theory, special cases in the above-mentioned conjectures (Kakeya, restric-
tion, Strichartz, Bochner–Riesz) could be solved using number theory.

In Section 9 we already saw that the square function conjecture (Conjecture 9.2)

∥f∥L2d/(d−1)(Rd) ≲ε R
ε

∥∥∥∥∥∥∥
 ∑
θ:R−1/2−slab

|fθ|2
1/2

∥∥∥∥∥∥∥
L2d/(d−1)(Rd)

(22.1)

for all f ∈ Ŝ(Rd) with Fourier support in NR−1(Pd−1), together with the Kakeya conjecture
(Conjecture 16.6 in the form (9.3)) implies the restriction conjecture. Although we did not discuss
this so far, an argument of Carbery [Car15] in fact shows that the hypothesized square function
estimate (22.1) implies the Kakeya conjecture and, consequently, the restriction conjecture. 27

In this section, we will therefore consider a weaker “analog” of (22.1) which is known as
ℓ2-decoupling inequality

∥f∥Lp(Rd) ≲ε Rε
 ∑
θ:R−1/2−slab

∥fθ∥2Lp(Rd)

1/2

, (22.2)

where the order of the mixed-norms on the right sides of (22.1) are now interchanged. The idea
of this inequality is similar to the usual square function inequality, namely, it tries to separate or
decouple the different frequency portions fθ (contributing to ∥f∥p) from each other. This is done
in an efficient as possible way to take the cancellations between the fθ into account. In this regard
however, (22.2) is clearly weaker than (22.1) by the triangle inequality for 2 ≤ p(≤ 2d/(d− 1)),
since

∥(
∑
θ

|fθ|2)1/2∥2Lp = ∥
∑
θ

|fθ|2∥Lp/2 ≤
∑
θ

∥fθ∥2Lp .

27Attempting to prove the whole restriction conjecture from this point seems a quite optimistic strategy as
(9.2) appears to be very powerful and in all likelihood considerably more difficult than the restriction conjecture.
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Moreover, we emphasize that (22.2) does not act as a substitute for (22.1) in the sense that it is
not clear that it would imply the Kakeya or even the restriction conjecture. However, besides the
fact that the right side of (22.2) is much easier to compute than the right side of (22.1) (as only
size considerations will have to be made), decoupling theory does have a plethora of applications
in PDE, additive combinatorics and number theory, see, e.g, the discussion in Carbery [Car15].

To simplify the upcoming notation, we make the following

Definition 22.1 (Decoupling norms). For 1 ≤ p ≤ ∞ and f ∈ Ŝ(Rd), we denote the p-th
decoupling norm by

∥f∥Lp,R−1 (Rd) :=

 ∑
θ:R−1/2−slab

∥fθ∥2Lp(Rd)

1/2

.

For Ω ⊆ Rd with finite Lebesgue measure, we analogously define the local decoupling norms

∥f∥Lp,R−1 (Ωd) :=

 ∑
θ:R−1/2−slab

∥fθ∥2Lp(Ωd)

1/2

.

and

∥f∥
Lp,R

−1
avg (Ωd)

:=

 ∑
θ:R−1/2−slab

∥fθ∥2Lpavg(Ωd)

1/2

.

where we recall ∥f∥Lpavg(Ω) = ∥f∥Lp(Ω,|Ω|−1dx) = |Ω|−1/p∥f∥Lp(Ω).

In this notation, (22.2) takes the following form.

Theorem 22.2 (ℓ2-decoupling). With the above notation,

∥f∥Lp(Rd) ≲ε Rε+α(p)∥f∥Lp,R−1 (Rd) (22.3)

holds for all f ∈ S(Rd) with Fourier support in NR−1(Pd−1) and 2 ≤ p ≤ ∞ where

α(p) :=

{
0 if 2 ≤ p ≤ 2(d+ 1)/(d− 1)

(d− 1)/4− (d+ 1)/(2p) if p > 2(d+ 1)/(d− 1)
(22.4)

Remarks 22.3. (1) This theorem was already somewhat anticipated by Wolff [Wol00] (in
ℓp with p not necessarily 2) and proven for the first time by Garrigós–Seeger [GS10].
Bourgain [Bou13] obtained the result for 2 ≤ p ≤ 2d/(d − 1) and later, Bourgain and
Demeter [BD15] (see also their study guide [BD17]) proved the inequality for the total
“super-critical regime” p ≥ 2(d + 1)/(d − 1) (i.e., exponents above the Tomas–Stein
restriction endpoint) 28. Partial results in the super-critical regime were already obtained
earlier by Demeter [Dem14].

(2) There are also partial results for ℓp-decoupling. For p > 2, some bounds are known
for parabolic decoupling, but they are not as sharp or complete as in the ℓ2-case. In
particular, the involved constants grow with p and are not always optimal. For p < 2,
decoupling inequalities are more difficult to establish.

Proposition 22.4. Suppose p ≥ 2(d + 1)/(d − 1). Then the power α(p) in the ℓ2-decoupling
estimate (22.3) for the paraboloid Pd−1 is sharp and cannot be made smaller.

28The subcritical estimates follow from the p = 2(d+ 1)/(d−1) case together with the trivial p = 2 inequality.
The details of this argument will be discussed later.
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Proof. Consider

F̂ =
∑

θ:R−1/2−slab

ψθ

where ψθ is a bump on the slab θ. Then, for |x| ≪ 1,

|F (x)| ≥
∫
F̂ (ξ) dξ −

∫
F̂ (ξ)|e2πix·ξ − 1| ≳ vold(N1/R(Pd−1)) ∼ R−1.

On the other hand, ∑
θ:R−1/2−slab

∥Fθ∥2p =
∑

θ:R−1/2−slab

∥ψθ∥2p ∼ R
d−1
2 − d+1

p ,

which concludes the proof. □

Albeit the exponent 2d/(d − 1) plays a major role in the proof of the restriction conjecture,
it turned out that this exponent is no longer optimal when considering the weaker decoupling
inequalities; in fact, a more appropriate endpoint is the Tomas–Stein endpoint 2(d+ 1)/(d− 1).
For larger values of p, the obtained decoupling inequalities necessarily deteriorate when R→ ∞.
(In fact, the polynomial behavior in R is optimal!) In applications it is often necessary to have
the full power of Theorem 22.2 and, after discussing the preliminary estimate (22.2), we will
detail how the complete range of estimates was proved later.

They key tool in the proof of Theorem 22.2 is multilinear restriction theory, which is well
developed thanks to the work of Bennett–Carbery–Tao [BCT06], see also Subsection 8.7. Before
we discuss the proof in detail, let us have a brief look at some applications.

22.1. A first glimpse at applications.

22.1.1. The discrete restriction phenomenon. Recall the Tomas–Stein estimate for the paraboloid

∥f̂∥L2(Pd−1) ≲ ∥f∥Lp(Rd) , 1 ≤ p ≤ 2(d+ 1)

d+ 3

which is, via localization theory, equivalent to

∥F∥Lp(B(R1/2)) ≲ R−1/4∥F̂∥L2(N
R−1/2 (Pd−1)) , p ≥ 2(d+ 1)

d− 1

for any F with F̂ ∈ C∞(NR−1/2(Pd−1)) (see Lemma 7.3). Since F is localized to a ball of radius

R1/2 it is natural to expect that F̂ is constant on the scale R−1/2 and to approximate F̂ by a
weighted sum of indicator functions of balls of radius R−1/2, i.e.,

F̂ ∼
∑
η∈Λ

F̂ (η)1Bη(R−1/2) ,

where Λ ⊆ Pd−1 is a maximal R−1/2-separated subset (think of a lattice as a first approximation).

Since we are only really interested in the values of F̂ at the vertices of Λ, we can push this further
and consider expressions of the form ∑

η∈Λ

a(η)δη

where a(η) ∈ C are coefficients (weights) and δη is a Dirac δ mass concentrated at η. The inverse
Fourier transform of such an expression therefore becomes a trigonometric polynomial, and so
we see, heuristically at least, that the original Tomas–Stein estimate has the following discrete
analog corresponding to an exponential sum estimate.
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Corollary 22.5 (Discrete Tomas–Stein restriction theorem). For any maximal δ1/2 := R−1/2

separated set Λ ⊆ Pd−1 and any a : Λ → C, the extension estimate

∥∥∥∥∥∥
∑
η∈Λ

a(η)e2πi⟨·,η⟩

∥∥∥∥∥∥
Lpavg(B(R1/2))

≲ δ
d
2p−

d−1
4 ∥a∥ℓ2(Λ) , p ≥ 2(d+ 1)

d− 1
. (22.5)

Remarks 22.6. (1) In fact, the discrete restriction estimate (22.5) is equivalent to the classical
Tomas–Stein estimate, see, e.g., Demeter [Dem20, Propositions 1.29 and 1.37] for the converse
of what we proved here. Thus, the Tomas–Stein estimate measures the Lp-average of frequency-
separated exponential sums at a spatial scale which is reciprocal to the separation of the fre-
quencies. Observe also that (22.5) gives an improvement of δd/(2p) over the Cauchy–Schwarz
inequality (which corresponds to the situation when no oscillation/cancellation is present).

(2) In the early 90s, Vega already proved a discrete analog of the Stein–Tomas–Strichartz
restriction theorem. We recall

Theorem 22.7 (Vega [Veg92, Theorem 3]). Let N ∈ N and m ∈ Zd−1, d ≥ 2. Then

(∫
|t|≤N−1

∫
Td−1

∣∣∣∣∣
d−1∑
i=1

N∑
mi=1

ameit|m|2eim·x
∣∣∣∣∣
p

dx dt

)1/p

≤ Cp,N

(∑
m

|am|2
)1/2

holds where

Cp,N =


CpN

d−1
2 − d+1

p if p > 2(d+1)
d−1 ,

C if p = 2(d+1)
d−1 ,

CpN
− 1

2+
d+1
2 ( 1

2− 1
p ) if 2 ≤ p < 2(d+1)

d−1 ,

and Cp are constants independent of N .

(3) This corollary and the ensuing Theorem 22.5 also hold when Pd−1 is replaced by Sd−1,
but see also Bourgain–Demeter [BD15, Theorem 2.2].

Proof of Corollary 22.5. Without loss of generality, we assume that B(R1/2) is centered at the

origin. Let us now fix ψ ∈ Ĉ∞
c (Rd) with supp ψ ⊆ B0(1) and |ψ̌(x)| ≳ 1 for x ∈ B0(1). As usual,

let ψR−1/2(ξ) := Rd/2ψ(R1/2ξ). Abbreviating

F :=
∑
η∈Λ

a(η)e2πi⟨·,η⟩ ,

applying the localized Tomas-Stein estimate, and observing that the summands in

̂Fψ̌R−1/2(ξ) =
∑
η∈Λ

a(η)ψR−1/2(ξ − η)
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have pairwise disjoint Fourier support (by the separation hypothesis on Λ and the definition of
ψ) contained in NR−1/2(Pd−1), yields∥∥∥∥∥∥

∑
η∈Λ

a(η)e2πi⟨·,η⟩

∥∥∥∥∥∥
Lp(B(R1/2))

≲ ∥Fψ̌R−1/2∥Lp(B(R1/2)) ≲ R−1/4∥ ̂Fψ̌R−1/2∥L2(N
R−1/2 (Pd−1))

= R−1/4

∑
η∈Λ

|a(η)|2
∫
R̂d

|ψR−1/2(ξ − η)|2 dξ

1/2

= R−1/4+d/4

∑
η∈Λ

|a(η)|2
∫
R̂d

|ψ(ξ − η)|2 dξ

1/2

≲ R(d−1)/4∥a∥ℓ2(Λ) = δ−(d−1)/4∥a∥ℓ2(Λ) .

(The scaling ξ 7→ R−1/2 from the second to the third line yields a factor of R−d/2. Moreover, the
support of ψR−1/2 , i.e., roughly NR−1/2(Pd−1), is transformed into N1(Pd−1).) The claim follows
now from the definition of the Lpavg norm which yields the “missing” δd/(2p) factor. □

Bourgain and Demeter [BD15] made the fundamental observation that, as soon as one averages
in physical space over much larger balls, one obtains improvements over the classical Tomas–
Stein inequality because of additional cancellations (through oscillations). These cancellations
can be exploited / quantified using the ℓ2-decoupling theorem as we will see now.

Theorem 22.8 (Discrete restriction phenomenon). Let Λ ⊆ Pd−1 be a maximal δ1/2-separated
subset, a : Λ → C, and R ≥ δ−1. Then, for all ε > 0, we have the extension estimate∥∥∥∥∥∥

∑
η∈Λ

a(η)e2πi⟨·,η⟩

∥∥∥∥∥∥
Lpavg(B(R))

≲ε δ
d
2p−(d−1)/4+1/(2p)−ε∥a∥ℓ2(Λ) , p ≥ 2(d+ 1)

d− 1
. (22.6)

Remark 22.9. Observe two things.

(1) R ≥ δ−1 is now rather variable. But more importantly,
(2) we are now averaging over balls with the much larger radius R (instead of R1/2). This

averaging over larger balls is precisely the source of the δ1/2p-improvement over the
classical Tomas–Stein inequality.

Proof. Let us prepare the proof with some preliminaries. Fix an R-ball BR = Bx0
(R) and

let ψ ∈ Ĉ∞
c (Rd) be as in the previous proof with Fourier support contained in B0(1) and

ψR(ξ) = Rdψ(Rξ). Let furthermore g : Pd−1 → R be a nice function and observe that (gdσ)∗ψR
has Fourier support contained in the R−1-neighborhood NR−1(Pd−1) ⊆ Nδ(Pd−1). Clearly, the
left side of the classical, localized, Thomas–Stein estimate can be bounded by∫

BR

|(gdσ)∨(x)|p dx ≲
∫
BR

|((gdσ) ∗ ψR)∨(x)|p dx =

∫
BR

|(gdσ)∨ · ψ̌R(x)|p dx .

Now, applying the ℓ2-decoupling inequality (22.3) to f := ((gdσ) ∗ ψR)∨, we obtain (with the
previous estimate)(

1

|BR|

∫
BR

|(gdσ)∨(x)|p dx
)1/p

≲ε R
ε−d/p · δ d+1

2p −(d−1)/4

 ∑
θ:δ1/2−cap

∥(gθdσ)∨ · ψ̌R∥2p

1/2

(22.7)
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where gθ := g1θ is the restriction of g onto the cap θ∩Pd−1. (Recall that for p ≥ 2(d+1)/(d−1),
we had α(p) = (d − 1)/4 − (d + 1)/(2p) in the decoupling inequality, which is just the negative
exponent of δ on the right side of this formula.)

For a given ε > 0 and η ∈ Pd−1, let P (η, ε) := Pd−1 ∩ Bη(ε) be an arbitrary ε-cap, centered
at η of the paraboloid and consider the function

gε :=
∑
η∈Λ

a(η)
1

σ(P (η, ε))
1P (η,ε) ,

where we recall that σ(P (η, ε)) was the euclidean surface measure of the set P (η, ε) on Pd−1.
Now, observe first that (gεdσ)

∨(x) converges pointwise to the function on the left side of our
assertion (e.g., by Lebesgue’s differentiation theorem), i.e.,

lim
ε→0

(gεdσ)∨(x) = lim
ε→0

∑
η∈Λ

a(η)
1

σ(P (η, ε))

∫
P (η,ε)

e2πix·ξ dσ(ξ) =
∑
η∈Λ

a(η)e2πix·η .

Thus, by Fatou’s lemma, i.e.,

∥
∑
η∈Λ

a(η)e2πi⟨·,η⟩∥p ≤ lim inf
ε→0

∥(gεdσ)∨∥p

it suffices to estimate further the right side of (22.7) with gθ replaced by gεθ. First, for ε≪ δ1/2

(think of ε = R−1), we have the pointwise estimate

|(gεθdσ)∨(x)| =

∣∣∣∣∣∣
∑
η∈Λ

a(η)
1

σ(P (η, ε))

∫
P (η,ε)∩θ

e2πix·ξ dσ(ξ)

∣∣∣∣∣∣ ≤
∑

η∈Λ ,P (η,ε)∩θ ̸=∅
|a(η)|

≲

 ∑
η∈Λ ,P (η,ε)∩θ ̸=∅

|a(η)|2
1/2

where we used Cauchy–Schwarz together with the fact that

#{η ∈ Λ : P (η, ε) ∩ θ ̸= ∅} = O(1) ,

because Λ is a maximal δ1/2-separated set, θ is an δ1/2-cap, and P (η, ε) can intersect with at
most one such slab as ε ≪ δ. Plugging this estimate in the Lp norm of the right side of (22.7)
yields ∑

θ:δ1/2−cap
∥(gεθdσ)∨ψ̌R∥2Lp(Rd)

1/2

≲

 ∑
θ:δ1/2−cap

∑
η∈Λ, P (η,ε)∩θ ̸=∅

|a(η)|2∥ψ̌R∥2Lp(Rd)

1/2

≲ Rd/p

 ∑
θ:δ1/2−cap

∑
η∈Λ, P (η,ε)∩θ ̸=∅

|a(η)|2
1/2

≲ Rd/p∥a∥ℓ2(Λ)

where we used in the final inequality that the cardinality of the θ-sum is of order O(1) for fixed
η because ε≪ δ1/2 and θ is a δ1/2-cap. This concludes the proof of the theorem. □
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22.1.2. Strichartz estimates for the Schrödinger equation on the torus. We follow the notes of
Hickman and Vitturi [HV15, p. 22, Lecture 2, Section 2.2].

As we have already seen in Subsection 14.1, restriction estimates immediately imply estimates
for solutions of dispersive PDE posed in Rd. It is natural to generalize these ideas to PDEs posed
on finite domains with certain boundary conditions. Here, we focus on the unit cube with periodic
boundary conditions, more precisely on the Schrödinger equation on the torus Td = Rd \ Zd.
In the early 90’s Bourgain [Bou93a] (but see also [Bou07] for irrational tori and a “survey”)
found that the solution of the Schrödinger equation includes waves which travel with different
directions around the torus. As one may imagine, it is very challenging to estimate how these
different waves interfere with each other and to find estimates on them. At that time Bourgain
could prove sharp estimates only in d = 1, 2 because the Strichartz exponent p = 2(d + 2)/d
is even in these cases. Surprisingly, the analysis required many tools from number theory. For
instance, it uses unique factorization of integers in order to estimate the number of solutions
of some diophantine equations. For higher dimensions, the problem seemed out of reach and it
was supposed that the solution required both Fourier analysis and number theory. Bourgain and
Demeter found that decoupling inequalities were the crucial tool to obtain dispersive estimates
in higher dimensions.

To make things precise, we consider the solution

u(x, t) := e−2πit∆φ(x) :=
∑
ξ∈Zd

φ̂(ξ)e2πi(x·ξ+tξ
2)

of the Schrödinger equation on Td × R with initial datum φ. For the sake of getting a better
quantitative understanding of the problem, suppose φ has frequency support in the box QN :=
{(ξ1, ..., ξd) ∈ Zd : |ξj | ≤ N ∀ j}. Then, note u(0, 0) = |QN | ∼ Nd. Moreover, we also
have |u(x, t)| ∼ Nd for |x| ≤ (10dN)−1 and |t| < (10dN2)−1, because the phase could not yet
oscillate. However, as x and t increase, we get cancellation in the sum coming from oscillations in
exp(2πi(ξ ·x+ξ2t). In particular, we would expect classical Strichartz estimates. However, in the
torus case, |u(x, t)| is also large when (x, t) lies near to a rational point of the form (p1q , ...,

pd
q ,

pt
q ).

Taking account of all these peaks near rational points is quite difficult and clearly leads to worse
estimates than on Rd.

To prove dispersive estimates for u(x, t), we will use the previously discussed discrete restric-
tion estimates. Now, due to the above discussion, i.e., the fact that a general solution consists of
many waves traveling in different directions, we can certainly not expect the original Strichartz
estimates for the equation on Rd to hold. In fact, Bourgain [Bou93a] proved the failure of
Strichartz estimates on T1. (Observe that the exponent q = 6 really is the Strichartz exponent
in d = 1, see Theorem 14.1.)

Theorem 22.10 (Failure of Strichartz on T1 × [0, 1]). For every N ∈ N there exists a smooth
function φN on T with supp φ̂N ⊆ [−N,N ] such that

∥e−i(2π)−1t∆φN∥L6(T×[0,1]) ≳ (logN)1/6∥φN∥L2(T) . (22.8)

For the proof, see [Bou93a, p. 118] or [Dem20, Theorem 13.6].
In particular, we could take φ̂N (ξ) = 1{0,1,...,N}(ξ) (i.e., φN is a trigonometric polynomial) so

that we are in the situation of discrete restriction phenomena, i.e.,

e−i(2π)
−1t∆φN (x) =

N∑
n=0

e2πi(xn+tn
2) .

This solution is known as aWeyl sum (or Gauss sum, see also Bourgain’s counterexample [Bou16]
for the a.e. convergence of solutions to the Schrödinger equation) and it is of considerable interest
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in number theory. In fact, the lower bound in (22.8) can be obtained by appealing to number-
theoretic techniques (such as the Hardy–Littlewood–Ramanujan circle method).

Now, the question is whether one can nevertheless establish Strichartz estimates with a sharp
dependence on the size of the frequency support of the initial data. For instance, in view of the
above counterexample, we may pose the

Question: “Can one prove an L2
x(T) → L6

x,t(T × [0, 1]) Strichartz estimate for initial data
φN with supp φN ⊆ [−N,N ] but with a sub-polynomial dependence on N?”

Fortunately, with the help of the discrete restriction estimates proved above, we have

Theorem 22.11 (Strichartz on Td [BD15]). Let φ ∈ L2(Td) with supp φ̂ ⊆ [−N,N ]d. Then for
any time interval I ⊆ R with |I| ≳ 1, we have for any ε > 0,

∥e−i(2π)−1t∆φ∥Lp(Td×I) ≲ε Nd/2−(d+2)/p+ε|I|1/p∥φ∥L2(Td) , p ≥ 2(d+ 2)

d
. (22.9)

Remark 22.12. Note that it is necessary to consider bounded time intervals I. This is because
constant functions c solve the Schrödinger equation and are square-integrable. However, their
time evolution, eit∆c is clearly not integrable at large times.

Up to the subpolynomial loss, Theorem 22.11 is sharp. As we have outlined in the beginning
of this subsubsection, the earlier partial results in higher dimensions were crucially based on
number theoretic arguments which will not be able in the following argument. In particular, it
seems that the current techniques are more robust; in particular, one can apply the following

argument also to the analogous problem posed on “irrational tori”
∏d
j=1[0, βj ], see Bourgain–

Demeter [BD15] and more recent improvements by Deng–Germain–Guth [DGG17], which are
expected as rays are less likely to meet each other after winding around the torus.

Proof of Theorem 22.11. To ease the notation and make the connection with Theorem 22.8 clear,
we set n = d + 1. For ξ′ ∈ Zn−1 with |ξ′|∞ ≤ N , let η′ := N−1ξ′ and ηn := |η′|2 so that the
collection Λ of all η = (η′, ηn) becomes a (maximal) N−1-separated subset of Pn−1. Defining
a(η) := φ̂(Nη′) and scaling (x 7→ x/N and t 7→ t/N2), we obtain

(∫
Tn−1×I

|e−i(2π)−1t∆φ(x)|p dx dt
)1/p

= N−(n+1)/p

∫
D

∣∣∣∣∣∣
∑
η∈Λ

a(η)e2πiy·η

∣∣∣∣∣∣
p

dy

1/p

(22.10)

where the domain of integration D is given by

D := {y ∈ Rn : |yj | ≤ N/2 for 1 ≤ j ≤ n− 1 and yn ∈ N2I} ,
and we identified T with [−1/2, 1/2] for convenience.

We will now estimate the right side of (22.10) from above by a localized Lp norm on some ball of
radius ∼ N2 to apply (22.6). Since η′ ∈ N−1Zn−1 for each η ∈ Λ, the above integrand is periodic
with period N in the variables y′. Now, let R := N2|I| ≳ N2 =: δ−1 and BR := BN2|I|

2 en
(R).

Note that BR can be covered by O((|I|N)n−1) sets of the form D + N(k′, 0) where k′ ∈ Zn−1.
These observations allow us to estimate (22.10) from above by

|I|1/p
 1

|BR|

∫
BR

∣∣∣∣∣∣
∑
η∈Λ

a(η)e2πiy·η

∣∣∣∣∣∣
p

dy

1/p

≲ε |I|1/pN (n−1)/2−(n+1)/p+ε∥a∥ℓ2(Λ)

where we used the discrete restriction phenomenon (22.6) with δ = N−2. Since ∥a∥ℓ2(Λ) =
∥φ̂∥L2(Zn−1) by the definition of a(η) and Plancherel, the theorem is proved. □
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Remark 22.13. For the irrational torus, Deng–Germain–Guth [DGG17] proved better Strichartz
estimates. This is expected because the waves are less likely to meet each other again. With
irrational torus, one means that the underlying space is still the ordinary torus Td, but instead
of the Laplacian ξ21 + ... + ξ2d with ξj ∈ Z, one considers the Laplacian corresponding to the
quadratic form

∆β =

d∑
j=1

βj
∂2

∂x2j
. (22.11)

Taking βj = ℓ−2
j , this would mean considering the ordinary Laplacian on

∏d
j=1[0, ℓj ] with periodic

boundary conditions. Then, [DGG17] consider generic tori, meaning that (β1, ..., βd) is generic
in the sense that βj ∈ [1, 2] for all j = 1, ..., d outside a set with measure zero of [1, 2]d. In
[DGG17], genericity is often a consequence of a classical result on Diophantine approximation:
it is well-known (see [Cas72]) that, generically in (βj), there exists C > 0 such that

|k1 + β2k2 + ...+ βdkd| ≥
C

(|k1|+ ...+ |kd|)d−1 log(|k1|+ ...+ |kd|)2d
(22.12)

Remark 22.14. Burq–Gérard–Tzvetkov [BGT04] prove Strichartz estimates with fractional
loss of derivatives for the Schrödinger equation on any compact Riemannian manifold M . Their
estimates are optimal on spheres. That is, they show ∥eit∆Mu∥Lpt (I)Lqx(M) ≲I ∥u∥

H
1/p
x (M)

for

d ≥ 1, p ≥ 2, q < ∞, and 2/p + d/q = d/2 (standard scaling). Their result also holds if −∆m

is replaced by any elliptic self-adjoint operator P of order m, assuming that the vertical Hessian
of the principal symbol of P does not vanish outside the null section. Moreover, abstract lower
order perturbations can be incorporated, too. Furthermore, their results are sharp for spheres,
or, more generally, manifolds with the property that all their geodesics are closed with a common
period, i.e., Zoll manifolds.

22.1.3. Applications in analytic number theory. See Guth [Gut23, Section 1.2] or Zhang [Zha22,
Example 2.5].

More than one and a half centuries ago, Waring’s problem was raised that asks: For each
positive integer k, what is the minimal s such that every natural number can be written as a
sum of s k-th-powers of naturals? It is also of interest to ask: What is the minimal s such that
the above holds for every sufficiently large natural number? For example, Lagrange proved in
1770 that every natural number is a sum of four squares. On the other hand, there exist arbitrary
large natural numbers that cannot be written as a sum of three squares. Indeed everything that
is ≡ 7(mod 8) is not a sum of three squares.

Hilbert [Hil09] proved that s can be finite for every k. But it is very difficult to determine the
exact s and number theorists are interested in obtaining good upper bounds for s. The celebrated
circle method developed by Hardy and Littlewood (that originated in the work of Hardy and
Ramanujan) is very fruitful in estimating s. Via this method, the counting of solutions are
connected to estimates of both pointwise values and Lp norms of certain periodic functions. In
applications of this method it is important to understand the asymptotic count of solutions to
equations like

x41 + ...+ x410 = y41 + ...+ y410, xj , yj ∈ Z, |xj |, |yj | ≤ N. (22.13)

In the case of (22.13) we expect the number of solutions to have an upper bound Oε(N
16+ε)

predicted by a probabilistic consideration. Vinogradov [Vin47] made significant contributions to
the subject. He noticed that the above expected sharp upper bounds can be deduced from sharp
upper bounds of the solutions to the system

xi1 + ...+ xi10 = yi1 + ...+ yi10, 1 ≤ i ≤ 4, xj , yj ∈ Z, |xj |, |yj | ≤ N. (22.14)
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The expected solution count to the system (22.14) is O(N10) or Oε(N
10+ε), which implies the

sharp upper bound for solution count to equation (22.13). But (22.14) turns out to be easier
to study, as we have better “curvature” conditions to use in a corresponding Fourier restriction
type problem. To see this, note that by Plancherel, the number of solutions to (22.14) is simply
∥gN (α)∥20L20(T4), where

gN (α) =
∑

|n|≤N
e2πi(α1n+α2n

2+α3n
3+α4n

4

. (22.15)

Now by rescaling, gN
( ·
N ,

·
N2 ,

·
N3 ,

·
N4

)
can also be viewed as a periodic function on Rn (here

n = 4) whose Fourier support is on the truncated moment curve

Mn := {(x, x2, ..., xn) : |x| ≤ 1}. (22.16)

Since we care about the L20 norm of gN on a box (when we view gN as a periodic function), we
are looking at a typical Fourier restriction type problem. Since the moment curve is curved in a
very non-degenerate way, one may imagine that this helps us to get good estimates for gN .

Remark 22.15. The genesis of the circle method is in the a paper by Hardy and Ramanujan
in 1917 [Ram00] on the asymptotic number of the total number of partitions of n. The method
was then developed in great details in a series of papers by Hardy and Littlewood on “Partitio
Numerorum”. Among the series, [HL20, HL21, HL22, HL24, HL25, HL28] are mainly on Waring’s
problem. Davenport’s book [Dav05] has a good introduction to the circle method.

.

22.2. Some preliminary observations for the proof of decoupling estimates.

Definition 22.16. Let p ∈ [1,∞] and U = {U1, ..., Un} be a finite collection of non-empty
subsets of Rd for some n ≥ 1. (We permit repetitions, so U is in fact U may rather be a multi-set
than a set.) We define the decoupling constant Decp(U) to be the smallest constant for which
there is an inequality

∥
∑
j

fj∥Lp(Rd) ≤ Decp(U)(
∑
j

∥fj∥2Lp(Rd))1/2 (22.17)

whenever f ∈ S(Rd) has Fourier support in Uj .
Remarks 22.17. (1) We have the trivial bounds

1 ≤ Decp(U) ≤ n1/2 . (22.18)

The upper bound follows from applying the triangle inequality and then Cauchy–Schwarz whereas
the lower bound comes from taking just one fj to be non-zero. Clearly, it would be very desirable
to show Decp(U) = Op,d(1), uniformly in n. However, the best, one can do at the moment is
(because all so-far known proofs use an induction of scales argument) a subpolynomial loss, i.e.,
for any ε > 0, one has Decp(U) ≲ε nε.

(2) In Proposition 9.4 we observed that the reverse square function estimate holds in L2 and
L4 when we assume that the Uj (respectively the set-sums Ui + Uj) overlap only finitely. Thus,

by the triangle inequality, we obtain in these cases that Dec2(U) ≤ A
1/2
2 and Dec4(U) ≤ A

1/4
4

where A2, A4 are defined in Proposition 9.4.
(3) In the literature, the Uj are often assumed to be pairwise disjoint. However, here it is

convenient to allow them to be finitely overlapping to circumvent some minor technicalities.

Proposition 22.18 (Elementary properties of decoupling constants). Let 1 ≤ p ≤ ∞ and d ≥ 1.
Then, the decoupling constant has the following properties.
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(1) (Monotonicity) We have Decp(U) ≤ Decp(U ′) whenever U ′ = {U ′
j}nj=1 is a collection

whose elements contain Uj, i.e., Uj ⊆ U ′
j for all j = 1, ..., n.

(2) (Triangle inequality) We have

Decp(U),Decp(U ′) ≤ Decp(U ∪ U ′) ≤ (Decp(U)2 +Decp(U ′)2)1/2

for all non-empty collections U ,U ′ of open, non-empty subsets of Rd.
(3) (Affine invariance) Let U1, ..., Un be non-empty, open subsets of Rd and L : Rd → Rd be

an invertible affine transformation. Then, we have Decp(LU1, ..., LUn) = Decp(U1, ..., Un).
(4) (Interpolation) Let 1/p = (1 − θ)/p0 + θ/p1 for 1 ≤ p0 ≤ p ≤ p1 ≤ ∞ and 0 ≤ θ ≤ 1.

Suppose that we have for U = {U1, ..., Un} (with Uj ⊆ Rd non-empty, open) the projection
bounds

∥PUjf∥Lpi (Rd) ≲pi,d ∥f∥Lpi (Rd) , i = 0, 1 , j = 1, ..., n , f ∈ S(Rd) ,
where the Fourier multiplier PUj is defined by

P̂Ujf(ξ) := 1Uj (ξ)f̂(ξ) .

Then we have
Decp(U) ≲p0,p1,d,θ Decp0(U)1−θDecp1(U)θ .

(5) (Multiplicativity) Suppose that U = {U1, ..., Un} is a collection of non-empty open subsets
of Rd where each Uj is partinitioned (up to null-sets) into Uj =

⋃mj
ℓ=1 Uj,ℓ for some

disjoint non-empty open subsets of Rd. If p ≥ 2, then

Decp({Uj,ℓ : j = 1, ..., n , ℓ = 1, ...,mj}) ≤ Decp(U)× sup
j∈{1,...,n}

Decp({Uj,1, ..., Uj,mj})

(6) (Adding trivial dimensions) Suppose that {U1, ..., Un} is a collection of non-empty open
subsets of Rd and p ≥ 2. Then, for any d′ ≥ 1, we have

Decp(U1, ..., Un) = Decp(U1 × Rd
′
, ..., Un × Rd

′
)

where the right side is the decoupling constant in Rd × Rd′ = Rd+d′ .

Proof. □

The following observation shows that there can be no ℓ2 decoupling for an infinite partition
in Fourier space, i.e., when n→ ∞.

Proposition 22.19. Let U = {U1, .., Un} be a collection of non-empty open subsets in Rd. Then,
we have Decp(U) ≳ n

1
p− 1

2 . Equivalently, there exist smooth fj with supp fj contained in compact
subsets of Uj such that

∥
n∑
j=1

fj∥Lp(Rd) ≳ n
1
p− 1

2 (

n∑
j=1

∥fj∥2Lp(Rd))1/2

for any 1 ≤ p ≤ 2 and the implicit constant does not depend on U or n.

Proof. Set supp f̂j ⊆ Bηj (δ) for some ηj ∈ Uj and 0 < δ ≪ 1 and Lp-normalize the fj . Next, we

modulate the f̂j such that the fj are concentrated on balls Bxj (δ
−1) and decay rapidly away from

these balls. That is, the f̂j are of the form f̂j(ξ) = ψ(δ−1(ξ − ηj))e
2πixj ·ξ for some ψ ∈ C∞

c (Rd)
with supp ψ ⊆ B0(1). Moreover, we modulate the fj such that |xj − xi| ∼ δ−1 for any i ̸= j.
Therefore, we can bound

∥
n∑
j=1

fj∥p ≳ n1/p
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But since (
∑n
j=1 ∥fj∥2Lp(Rd))1/2 ≲ n1/2, this establishes the claim. □

Instead of modulating the fj , we could have also randomized them in the spirit of Subsection
16.2.

Note that the the reverse triangle inequality in Lp/2 for p < 2 would have merely lead us to

(E∥
∑
j

εjfj∥pp)2/p ∼ ∥(
∑

|fj |2)1/2∥2p = ∥
∑

|fj |2∥p/2 ≥
∑
j

∥|fj |2∥p/2 =
∑
j

∥fj∥2p .

Remark 22.20. The above proof sheds also some light on why the Hausdorff–Young inequality

∥f̂∥q ≲ ∥f∥p fails when p > 2, even when q = p′ (which is easily seen to be necessary by
“dimensional analysis”). The idea is to have f “spread out” in physical space to keep the Lp the

norm low. However, we would also like to spread out f̂ in Fourier space to prevent the Lp
′
norm

from dropping too much. To this end, let

f(x) =

n∑
j=1

εjφ(x− xj)

for random signs ε1, ..., εn and a non-zero bump function φ ∈ C∞
c (Rd) with supp φ ⊆ B0(1).

Here, we merely need that the centers xj are sufficiently separated; |xi − xj | ≥ 2 would do, for
example. Since the summands are disjointly supported, we have on the one hand

∥f∥p ∼ n1/p .

Thus, if Hausdorff–Young were true for p > 2, we would have the (probabilistic) bound ∥f̂∥p′ ≲
n1/p. But on the other hand, the Fourier transform is given by

f̂(ξ) =

n∑
j=1

εje
2πixj ·ξφ̂(ξ)

and so by Khintchine’s inequality E∥f̂∥p
′

p′ ∼ ∥(∑j |e2πi⟨xj ,·⟩φ̂|2)1/2∥
p′

p′ , we have

∥f̂∥p′ ∼ ∥(
n∑
j=1

|φ̂|2)1/2∥p′ ∼ n1/2

which clearly contradicts ∥f̂∥p′ ≲ n1/p unless p ≤ 2. The point of the randomization argument is
that it allows us to get rid of the phases e2πixj ·ξ in Fourier space which could lead to substantial

cancellations, thereby suppressing the Lq norm of f̂ .

Hence, we focus on ℓ2-decoupling for p ≥ 2 in what follows. We already saw that for p = 2, we
obtained decoupling when the sets overlap only finitely. For larger p this constraint is insufficient
as the next observation reveals. In particular, it tells us that we should require that the Uj are
somewhat curved (in analogy to the restriction phenomenon).

Proposition 22.21. If U = {(j, j + 1) : 0 ≤ j < n}, and p ∈ [2,∞], then

Decp(U) ∼ n
1
p− 1

2

Proof. □
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22.3. Uncertainty principles related to ℓ2-decoupling. Weighted estimates will be a com-
mon feature of our future analysis which motivates the following

Definition 22.22 (Smooth localization). We denote by wBc(R) ≥ 0 rapidly decaying weights
concentrated on a ball Bc(R), i.e., wBc(R) satisfies wBc(R)(x) ∼ 1 for x ∈ Bc(R) and

wBc(R)(x) ≲

(
1 +

|x− c|
R

)−N
for some large N = O(1) .

The precise choice of wBc(R) may vary from line to line or, indeed, within a single line. For
various technical reasons it is preferable to work with this fairly general class of weights rather
than with Schwartz functions. Let us also introduce the corresponding weighted norms.

Definition 22.23 (Smoothly localized norm). For p ∈ [1,∞], let

∥ · ∥Lp(wBc(R)) and

∥ · ∥Lpavg(wBc(R)) = ∥ · ∥Lp(|Bc(R)|−1wBc(R)) = |Bc(R)|−1/p∥ · ∥Lp(wBc(R))

(22.19)

denote the Lp norms defined with respect to the measures wBc(R)(x) dx, respectively |Bc(R)|−1wBc(R)(x) dx.

Let us state and prove the following local Bernstein inequality (cf. Proposition D.5) and
orthogonality principles that will be invoked frequently later on.

Lemma 22.24 (Local Bernstein inequality / Reverse Hölder inequality). Let r ≥ R ≥ 0. If f

satisfies supp f̂ ⊆ Bc(1/R), then

∥f∥Lqavg(Bc(r)) ≲ (rR)d(1/p−1/q)∥f∥Lpavg(wBc(r))
holds for all 1 ≤ p ≤ q ≤ ∞.

Proof. We follow Hickman–Vitturi [HV15], but see also Demeter [Dem20, Lemma 9.19]. For any
such f we have the global Bernstein inequality (Proposition D.5)

∥f∥Lq(Rd) ≲ Rd(1/p−1/q)∥f∥Lp(Rd) .
The local version follows by replacing f by fψBc′ (r) where ψBc′ (r) is a modulated Schwartz

function adapted to Bc′(r) such that supp ψ̂Bc′ (r) ⊆ Bc(1/r) ⊆ Bc(1/R) and it holds that

supp f̂ ∗ ψ̂Bc′ (r) ⊆ Bc(2/R). □

Proposition 22.25 (Local orthogonality). For r ≥ R1/2 we have

(1) ∥f∥L2
avg(B(r)) ≲ ∥f∥

L2,R−1
avg (wB(r))

and

(2) ∥f∥L2
avg(wB(r)) ≲ ∥f∥

L2,R−1
avg (wB(r))

,

whenever supp f̂ ⊆ NR−1(Pd−1).

This means, we can both control smoothly and non-smoothly localized L2-averages by smoothly
weighted decoupling norms (recall Definition 22.1).

Proof. (1) Let ψ2r ∈ S(Rd) such that ψ2r(x) ≳ 1 for x ∈ B(2r) and supp ψ̂2r ⊆ B0(1/(2r)).
Therefore,

∥f∥L2
avg(B(r)) ≲ r−d/2∥fψ2r∥L2(Rd) = r−d/2∥

∑
θ:R−1/2−slab

f̂θ ∗ ψ̂2r∥L2(Rd) .

This is already almost what we want. Now note that each f̂θ ∗ ψ̂2r is supported in

NR−1/2(θ). Moreover, since r−1 ≤ R−1/2, we have that supp(f̂θ ∗ ψ̂2r) is contained in
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the union of only O(1) many R−1/2-slabs. Thus, the supp(f̂θ ∗ ψ̂2r) overlap only finitely
and therefore, we have

∥f∥L2
avg(B(r)) ≲

r−d ∑
θ:R−1/2−slab

∥f̂θ ∗ ψ̂2r∥L2(Rd)

1/2

.

Using Plancherel and taking wB(r) := |ψ2r|2 yields the desired estimate.
(2) We reduce to the first case by observing that

∥f∥2L2
avg(wB(r))

≲
∑
k∈Zd

(1 + |k|)−N∥f∥2L2
avg(B(r)+kr)

due to the rapid decay of wB(r). (Here N = Od(1) is a large integer.) This allows us to
apply part (1) of the proposition to each of the ∥f∥L2

avg(B(r)+kr) to deduce

∥f∥2L2
avg(wB(r))

≲
∑
k∈Zd

(1 + |k|)−N∥f∥2
L2,R−1

avg (wB(r)+kr)
.

Now, the right side is given by∑
θ:R−1/2−slab

r−d
∫
Rd

|fθ(x)|2
∑
k∈Zd

(1 + |k|)−NwB(r)+kr(x)

 dx .

But since the expression in parentheses is just another weight adapted to Br, the right
side equals ∑

θ:R−1/2−slab

r−d
∫
Rd

|fθ(x)|2wB(r)(x) dx = ∥f∥2
L2,R−1

avg (wB(r))

and we are done.
□

23. Proof of decoupling theorems

(1) Study guide in Guth [Gut23]
(2) Guth’s lecture notes [Gut17]
(3) Zhang’s lecture notes [Zha20]
(4) Original study guide in Bourgain–Demeter [BD17]

23.1. Introduction to decoupling, general framework. Let us setup a general framework,
following Tao [Tao20], see also Demeter [Dem20].

Definition 23.1. Let U = (U1, ..., UN ) be a finite collection of non-empty open subsets of Rd,
and let 1 ≤ p ≤ ∞. We define the decoupling constant Decp(U) to be the smalles constant for
which one has

∥
n∑
j=1

fj∥Lp(Rd) ≤ Decp(U)

 n∑
j=1

∥fj∥2Lp(Rd)

1/2

(23.1)

for all fj ∈ S(Rd) with suppf̂j ⊆ Uj .

Clearly, we have 1 ≤ Decp(U) ≤ n1/2. The first bound follows by taking all but one fj to be

zero. The second bound follows from Cauchy–Schwarz, i.e., |∑n
j=1 fj | ≤ n1/2(

∑n
j=1 |fj |2)1/2.

Proposition 23.2 (Elementary properties [Tao20, Lecture 2, Exercise 10]). Suppose U is as
above.
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(1) (Monotonicity) We have

Decp({U1, ..., Un}) ≤ Decp({U ′
1, ..., U

′
n})

whenever Uj ⊆ U ′
j for all j = 1, ..., n.

(2) (Triangle inequality) We have

Decp(U),Decp(U ′) ≤ Decp(U ∪ U ′) ≤ (Decp(U)2 +Decp(U ′)2)1/2.

(3) (Affine invariance) Let L : Rd → Rd be an invertible addine transformation. Then

Decp(U) = Decp({LU1, ..., LUn}).

(4) (Interpolation) Let 1/p = (1− θ)/p0 + θ/p1 and suppose ∥PUjf∥Lpi (Rd) ≲ ∥f∥Lpi (Rd) for

all i = 0, 1 and j = 1, ..., n, where PUjf =
(
1Uj f̂

)∨
. Then

Decp(U) ≲p0,p1,θ,d Decp0(U)1−θDecp1(U)θ.

(5) (Multiplicativity) Suppose each Uj consists of further open non-empty sets (Uj,i)i=1,...,m.
Then

Decp({Uj,i : j = 1, ..., n, i = 1, ...,m}) ≤ Decp(U) · sup
j=1,...,n

Decp({Uj,1, ..., Uj,m}).

(6) (Adding dimensions) Suppose U1, ..., Un ∈ Rd, p ≥ 2. Then, for any d′ ≥ 1,

Decp({U1, ..., Un}) = Decp({U1 × Rd
′
, ..., Un × Rd

′}),

where the right-hand side is the decoupling constant in Rd+d′ .

That decoupling inequalities can be iterated is a key feature that distinguishes them from the
reverse square function estimates.

Proposition 23.3 (Iteration [Dem20, Proposition 9.17]). Let Θ be a collection consisting of
pairwise disjoint sets θ. Assume that each θ is partitioned into sets θ1. Call Θ1 the collection of
all these sets θ1. Assume that for each θ and each F , we have

∥PθF∥p ≤ D1(
∑
θ1⊆θ

∥Pθ1F∥2p)1/2. (23.2)

Assume also that

∥F∥p ≤ D2(
∑
θ∈Θ

∥PθF∥2p)1/2, (23.3)

whenever F̂ is supported on
⋃
θ∈Θ θ. Then, for each such F , we also have

∥F∥p ≤ D1D2(
∑
θ1∈Θ1

∥Pθ1F∥2p)1/2. (23.4)

Proof. It is clear. □

23.2. Optimality of decoupling exponent.
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23.2.1. Sharpness of p = 2(d+1)/(d−1). Let us consider the truncated parabola P1. We aim to
show that the decoupling exponent 6 is sharp. To that end, use the wave packet decomposition
to write

F (x) =
∑
T

wTWT (x),

where WT (x) are L∞-normalized wave packets adapted to T . Assume all R1/2 × R tubes T

are inside [−R,R]2. If ŴT is focused on θT ∈ ΘP1(R−1), we write T ∼ θT . Note for given
θ ∈ ΘP1(R−1), there are many corresponding dual tubes T oriented in the same direction, but

shifted and disjoint from each other. If ŴT is focused on θT , we have WT (x) ∼ 1T (x)e
2πix·ξT ,

where ξT is the center of θT . Then, by decoupling,

∥F∥6 ≲ε R
ε+1/4

∑
θ

(∑
T∼θ

|wT |6
)1/3

1/2

.

where R1/4 comes from ∥ψT ∥6 ∼ R1/4. Here, we used∫
dx |

∑
T∼θ

wTWT (x)|6 =
∑
T∼θ

|wT |6∥WT ∥6 ∼ R1/4
∑
T∼θ

|wT |6

because two different tubes adapted to θ are disjoint; more precisely, if T ∼ θ and T ′ ∼ θ, then
either T = T ′ or T ∩ T ′ = ∅.

Now assume that T contains N ≲ R1/2 many rectangles for each direction in the interval
[π/4, 3π/4]. Recall also that two tubes with different directions must have at least an angle
R−1/2 with each other. Assume further there is a collection S of about N many unit squares in
[−R,R]2 such that every T ∈ T intersects exactly one S ∈ S, but not more (and not less). To
enforce this scenario, place all squares S along a horizontal line segment at distance ∼ R/N from
each other and place a tube in each direction through each S. Hence, every cube S will be hit
by about R1/2 many tubes having different directions. For given S ∈ S, call TS the collection of
all tubes T ∈ T that intersect S. Then, taking |wT | = 1 and the phases of wT so that we have
constructive interference at a given cube S, we get

|
∑
T∈TS

wTWT (cS)| ≳ R1/2,

where cS denotes the center of the cube S. In particular, for |x− cS | ≪ 1, we get

|
∑
T∈TS

wTWT (x)| ≳ R1/2,

Moreover, for each such x, the contribution from those T outside TS is negligible. Therefore, we
have shown that

|
∑
T∈T

wTWT (x)| ≳ R1/2

holds for all x in a set of area ∼ N |S| = N . Therefore,

∥F∥6 ≳ N1/6R1/2.

On the other hand, for this configuration, we have by our previous decoupling estimate

∥F∥6 ≲ε R
ε+1/4

∑
θ

(∑
T∼θ

|wT |6
)1/3

1/2

∼ N1/6R1/2,
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where N1/6 comes from the number of tubes for every direction and because the number of
directions is R1/2. More precisely, we used

∑
T∼θ |wT |6 = N and

∑
θ 1 = R1/2 to get∑

θ

(∑
T∼θ

|wT |6
)1/3

1/2

∼ N1/6R1/4.

This shows that p = 6 is optimal for decoupling on the parabola.

We have learnt two things from these estimates.

(1) We constructed an almost extremizer for the ℓ2(L6)-decoupling.
(2) To that end, it sufficed to only consider the mass of F concentrated in the rather small

area covered by the N unit squares S. The decouopling theorem in fact reassures us that
by doing so we are not missing any important contribution to ∥F∥6.

23.2.2. Non-sharpness for p < 2(d+1)/(d−1). However, below the critical decoupling exponent,
decoupling may not give the strongest estimate possible. To that end, consider

F (x) =
∑
T

wTWT (x)

with |wT | ∼ 1 and only one wave packet for each direction. Then, one finds ∥F∥p ≲ Rε+1/2 for

each p ≥ 4 but (
∑
θ∈ΘP1 (δ)

∥Fθ∥2p)1/2 ∼ R1/4+3/(2p). Hence, decoupling is not sharp in the range

4 ≤ p < 6.

23.3. Proof of decoupling for paraboloid. We follow Demeter [Dem20]. We will focus here
on decoupling for the paraboloid. Here, we will call the best decoupling constant

Dec(δ, p) (23.5)

for decoupling of Nδ(Pd−1) using slabs of width δ1/2 and height δ. There are two fundamental
features that distinguish Pd−1 among all hypersurfaces in Rd, and that ultimately make its
decoupoling theory slightly easier.

(1) The intersection of Pd−1 with a vertical hyperplane is an affine copy of Pd−2. This
simplifies the multilinear-to-linear reduction and allows to prove decoupling by inductino
on n.

(2) Small caps on Pd−1 can be stretched (by parabolic rescaling) to the whole Pd−1 using
affine transformations.

The latter fact enables us to rescale decoupling as follows.

Proposition 23.4. Assume δ ≤ σ ≤ 1. Let Q = c + [−σ1/2, σ1/2]d−1 be a cube with center
c = (c1, ..., cd−1). Let ΘQ(δ) be a partition of Nδ(Q) into a subfamily of sets θ ∈ Θ(δ). Then

∥F∥Lp(Rd) ≤ Dec(
δ

σ
, p)

 ∑
θ∈ΘQ(δ)

∥PθF∥2Lp(Rd)

1/2

, (23.6)

whenever F̂ is supported on Nδ(Q).

Proof. Follows from parabolic rescaling, i.e., the observation that the affine function

(ξ′, ξd) 7→
(
ξ′ − c

σ1/2
,
ξd − 2ξ′ · c+ |c|2

σ

)
maps the partition ΘQ(δ) to a partition Θ(δ/σ) of Nδ/σ(Pd−1). □
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Inequality (23.6) is trivially true with Dec(δ/σ, p) replaced with Dec(δ, p), but the first bound
is morally stronger than the second one.

A rather immediate consequence of this and iteration (Proposition 23.3) is the following sub-
multiplicative structure of the ℓ2 decoupling constants for the paraboloid.

Corollary 23.5. For each 0 < δ1, δ2 < 1,

Dec(δ1δ2, p) ≲ Dec(δ1, p)Dec(δ2, p). (23.7)

24. Summary

[Proof of the restriction conjecture relies partly on understanding oscillatory

integrals and on set theoretic problems, e.g., of Kakeya’s type. See Tao [Tao01,

p. 298ff]]

There are three “classic” (i.e., outdated) approaches to prove restriction estimates.

(1) Compute (dσ)∨(x), perform a dyadic partition of unity of the kernel, and use interpola-
tion to bound ∥f ∗ (dσ)∨∥p′ ≲ ∥f∥p. This is the classic Tomas–Stein approach.

(2) Follow Strichartz’ approach and compute the kernel of (Q(−i∇) − z)−ζ where Q is the
(quadratic?) form associated to S (e.g., Q(ξ) = ξ2 or Q(ξ) = −ξ21 − ...− ξ2j + ξ2j+1 + ...ξ2d
for wave- (or Klein–Gordon)-like problems) for Re(ζ) ≥ 1 (often Reζ ∈ [d/2, (d+ 1)/2]).

(3) Go through the theory of inhomogeneous oscillatory integrals (see Theorem 4.6) where
the Carleson–Sjölin conditions may not be met (Stein’s and Bourgain’s approach) and
obtain the dual restriction (i.e., the extension) estimate as a corollary.

25. Recent results and progress

25.1. Kakeya.

(1) J. Zahl: sticky Kakeya

25.2. Restriction.

25.3. Bochner–Riesz.

25.4. Pointwise convergence of eit∆. [Had and extra section devoted to this.]

Appendix A. Selection of omitted proofs

A.1. The ε-removal lemma. We review the proof of Theorem 7.5 which is due to Tao [Tao99a,
Theorem 1.2].

Theorem A.1. Assume |(dσ)∨(x)| ≲ (1 + |x|)−ρ for some ρ > 0. If RS(p → p;α) holds for
some p < 2 and 0 < α≪ 1, then one has RS(q → q) whenever

1

q
>

1

p
+

Aρ
log(1/α)

.

The first step is to bootstrap the localized restriction estimate so that it applies to functions
which are supported on a sparse union of balls of constant radius. The idea is to exploit the
estimate (7.6), i.e., that the Fourier transforms of functions which are widely separated from
each other in physical space, are quasiorthogonal to each other. For completeness, recall estimate
(7.6), namely

| < f̂0|S , f̂1|S >L2(S,dσ) | ≲ R−ρ∥f0∥L1(B(x0,R))∥f1∥L1(B(x1,R)) . (A.1)

Let us make these considerations now more precise by defining what we mean by sparse
collections of balls.
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Definition A.2. A collection {B(xi, R)}Ni=1 of R-balls is sparse if the centers xi are RCNC

separated.

The observation (A.1) then leads to the following restriction estimate for functions supported
on a sparse collection of R-balls.

Lemma A.3. Suppose RS(p→ p;α) holds for some α > 0 and 1 < p < 2. Then

∥f̂ |S∥Lp(S,dσ) ≲ Rα∥f∥Lp(Rd)
whenever supp f ⊆ ⋃iB(xi, R) where {B(xi, R)} is a sparse collection of R-balls.

The proof of this lemma will be given at the end of this subsection. Let us now continue with
the proof of Theorem A.1. Suppose that RS(p → p;α) holds for some p < 2 and α > 0. By the
trivial (L1, L∞) restriction estimate, Hölder’s inequality, and Marcinkiewicz interpolation (see
also Remark A.5), it suffices to prove the Lorentz space estimate

∥f̂ |S∥Lp(S,dσ) ≲ ∥f∥q0,1 , (A.2)

where
1

q0
=

1

p
+

Aρ
log(1/α)

.

and Lp,q are the Lorentz spaces (which are Banach spaces, see, e.g., Stein and Weiss [SW71,
Chapter V, §3, Theorem 3.22]) which are equipped with the norm

∥g∥Lp,q(X,dµ) := p1/q
∥∥∥tµ{|g| > t}1/p

∥∥∥
Lq(R+,dt/t)

where 1 < p ≤ ∞ and 1 ≤ q ≤ ∞ .

(Note that the Lp,q spaces can also be defined for 0 < p ≤ 1 and 0 < q < 1; however, they are
not Banach spaces anymore, as they cannot be normed, see also [SW71, Chapter 5, §5.12]).

By averaging over translations, it suffices to show (A.2) when f is a measure supported on
a discrete lattice Zd and the Lq0,1 norm is replaced by the discrete norm ℓq0,1. One may then
replace f by f ∗χ (and come back to the continuous norm on Lq0,1) where χ is the characteristic
function of the cube of size c, and c ∼ 1 is chosen such that χ̂ is positive on the unit sphere.
Combining these two reductions we see that it suffices to verify (A.2) when f is constant on
c-cubes.

Since we are working in Lq0,1, we may take f = 1E for some set E which we can assume to
be the union of c-cubes. Thus, we are left to prove

∥1̂E |S∥Lp(S,dσ) ≤ Aα∥1E∥Lq0,1 ∼ Aα|E| 1p+
Aρ

log(1/α) . (A.3)

This will be accomplished with the help of the following Calderón–Zygmund type lemma which
covers such a set E by a reasonably small number of sparse collections of balls where one has
some modest control on the size of the balls29.

Lemma A.4 ([Tao99a, Lemma 3.3], [Tao98, Lemma 4.3]). Let E be a union of c-cubes and
N ≥ 1. Then there exist O(N |E|1/N ) sparse collections of balls which cover E such that the

radius of the balls in each collection is of order O(|E|AN ).
Deferring the proof of this lemma to the end of this subsection, we may now conclude the

proof of the ε-removal lemma. If E is a union of c-cubes, then by Lemma A.4, one can cover
E with O(N |E|1/N ) sets Ej which are each the union of a sparse collection of balls of radius

29The version below is copied from [Tao99a, Lemma 3.3], while a more detailed version is contained in [Tao98,
Lemma 4.3].
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O(|E|AN ). By Vitali’s covering lemma, one may assume |Ej | ≲ |E|. Applying now Lemma A.3
to each such Ej , one obtains

∥1̂Ej |S∥Lp(S,dσ) ≲ (|E|AN )α|E|1/p ,

and therefore, by the triangle inequality,

∥1̂E |S∥Lp(S,dσ) ≲ N |E|1/N (|E|AN )α|E|1/p .

Thus, (A.3) follows by taking N = A−1 log(1/α) for a sufficiently large A.

Proof of Lemma A.3. Our first step is to modify the restriction hypothesis slightly, namely de-
note by R̃ the restriction operator to the annulus AR, i.e., a R

−1-neighborhood N1/R(Sd−1) of

Sd−1 of thickness R−1 around the sphere Sd−1. (Recall that we denoted the classical restriction
operator by R). The restriction hypothesis RS(p→ p;α) then implies (see also Demeter [Dem20,
Proposition 1.27])

∥R̃f∥Lp(Rd) = ∥f̂ |AR∥Lp(Rd) ≲ R−1/p+α∥f∥Lp(Rd) whenever supp f ⊆ B(x0, R) (A.4)

(for any x0 by translational symmetry) by averaging the restriction hypothesis over all (1 +
O(R−1))-dilations.

Now, take f =
∑
i fiφi with supp fi ⊆ B(xi, R) (where {B(xi, R)}Ni=1 is the sparse collection

of R-balls) and φ ∈ S(Rd) satisfies

supp φ̂ ⊆ B(0, 1) , φ|B(0,1) ≥ 0 , φi(x) = φ

(
x− xi
R

)
.

Since the fi are disjointly supported, i.e., ∥f∥pp =
∑
i ∥fi∥pp, and Rf =

∑
i R̃fi ∗ φ̂i

∣∣
Sd−1 (because

|η| ≤ |η− ξ|+ |ξ| ≤ R−1+ |ξ| for ξ ∈ S and ξ−η ∈ suppφ̂ implies η ∈ N1/R(Sd−1)), the assertion
follows from∥∥∥∥∥∑

i

Fi ∗ φ̂i
∣∣
Sd−1

∥∥∥∥∥
Lp(Sd−1,dσ)

≲ R1/p

(∑
i

∥Fi∥pp

)1/p

for all Fi ∈ Lp(Rd) ,

taking Fi = R̃fi, and using the modified restriction hypothesis (A.4). This estimate follows
immediately for p = 1, since

∥
∑
i

Fi ∗ φ̂i|Sd−1∥1 ≤
∑
i

∫
Sd−1

dξ

∫
Rd
dη |Fi(η)||φ̂i(ξ − η)| ≲ R

∑
i

∥Fi∥1 .

By real interpolation, it therefore suffices to prove the estimate for p = 2. Renaming f̂i = Fi
and applying Plancherel’s theorem, the estimate is equivalent to

∥
∑
i

f̂i ∗ φ̂i|Sd−1∥2 = ∥
∑
i

R(fiφi)∥2 ≲ R1/2

(∑
i

∥fi∥22

)1/2

= R1/2∥{∥fi∥L2(Rd)}i∥ℓ2 . (A.5)

where we may interpret f⃗ = (f1, ..., fN ) and φ⃗ = (φ1, ..., φN ) as elements of ℓ2. Introduce

T : ℓ2(L2(Rd)) → L2(Rd) defined by Tf = R⟨φ⃗, f⃗⟩ℓ2 , i.e., the left side of the last estimate

equals ∥T f⃗∥2. Then T ∗ : L2(Rd) → ℓ2(L2(Rd)) acts as (T ∗g)j = φjR∗g for j ∈ {1, ..., N} and
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g ∈ L2(S). By Schwarz in L2 and then in ℓ2,

∥
∑
i

R(fiφi)∥2L2 = (f, T ∗Tf)ℓ2L2 =
∑
j∈N

(fj , φjR∗R
∑
i∈N

φifi)L2

≤
∑
j∈N

(
∥fj∥L2 · ∥φjR∗R

∑
i∈N

φifi∥L2

)

≤ ∥f∥ℓ2L2

∑
j∈N

∥φjR∗R
∑
i∈N

φifi∥2L2

1/2

for all f = (f1, f2, ...) ∈ ℓ2L2(Rd). Thus, it suffices to prove

∥T ∗Tf∥ℓ2L2 =

∑
j

∥φjR∗R
∑
i

(φifi)∥22

1/2

≲ R

(∑
i

∥fi∥22

)1/2

= R∥f∥ℓ2L2 . (A.6)

This will follow from self-adjointness of T ∗T in ℓ2L2, and the Schur test in ℓ2 (recall Lemma
4.18)

sup
j

∑
i

∥φjR∗Rφi∥2→2 ≲ R

which in turn will follow from the estimates

∥φiR∗Rφi∥2→2 ≲ R (A.7a)

∥φjR∗Rφi∥2→2 ≲ (RN)−C for j ̸= i . (A.7b)

To prove the former estimate, it suffices to prove

∥φ̂i ∗ (dσ(φ̂i ∗ g))∥2 ≲ R∥g∥2
by Plancherel’s theorem. This estimate, however, follows from the corresponding (obvious)
L∞ → L∞ estimate, duality (since the operator g 7→ φ̂i ∗ (dσ(φ̂i ∗ g)) is self-adjoint in L2(S))
and interpolation. (That is we use that if an operator T : L2 → L2 is self-adjoint and obeys
∥T∥L∞→L∞ ≤ A for some A > 0, then ∥T∥L1→L1 = ∥T ∗∥L∞→L∞ = ∥T∥L∞→L∞ ≤ A and
so ∥T∥L2→L2 ≤ A by interpolation.) Similarly, it suffices to prove the L∞ → L∞ analog of
(A.7b) to prove (A.7b) itself. This estimate follows from the rapid decay of φj and φi for

|xi−xj | ≫ R (which is the case due to the sparsity of the collection) and the decay |d̂σ(xi−xj)| ≲
(1 + |xi − xj |)−(d−1)/2 ≲ (RN)−C (for some other C) again because of the sparsity of the
collection. □

Proof of Lemma A.4. For 0 ≤ k ≤ N , we define radii by R0 = 1 and Rk+1 = |E|CRCk , i.e.,
Rk = O(|E|CK ) for each k. (In particular, R1 = |E|C).

For k ≥ 1, we recursively set

Ek := {x ∈ E : x /∈ Ej for j < k and |E ∩B(x,Rk)| ≤ |E|k/N}
and note that

⋃N
k=1Ek = E 30. By construction and the hypothesis, we have for every 1 ≤ k ≤ N

and x ∈ Ek,
|E ∩B(x,Rk)| ≳ |E|(k−1)/N .

Thus, for every x ∈ Ek, the set Ek ∩ B(x,Rk) can be covered by O(|E|1/N ) Rk−1-balls which
implies that the entire set Ek can be covered by O(|E|1/N ) Rk−1-balls which are Rk-separated.

30One might imagine that, for a connected, star-shaped set E, E1 is the union of very small sets sitting at the
boundary, E2 is the union of a bit bigger sets sitting at the inner boundary of E1 and so on when finally only a
“bubble” EN sitting at the center is going to be left.
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Since the cardinality of these collections can be at most O(|E|), the definition of Rk shows that
the collections are indeed sparse what had to be shown. □

Remark A.5. Let us shortly convince ourselves that it indeed suffices to prove the Lorentz

type estimate (A.2), i.e., ∥f̂ |S∥Lp(S,dσ) ≲ ∥f∥q0,1 and the trivial estimate ∥f̂ |S∥∞ ≲ ∥f∥1 to

deduce ∥f̂ |S∥Lq(S,dσ) ≲ ∥f∥Lq(Rd). Recall the numerology of the problem, i.e., q < q0 < p
where 1/q0 = 1/p + Aρ/ log(1/α). We make use of the following result, which can, e.g., be
found in [Theorem 4.6 in https://www.guillermorey.me/documents/Lorentz.pdf] which
is in fact based on Tao’s notes [Course 245C, https://terrytao.wordpress.com/2009/03/

30/245c-notes-1-interpolation-of-lp-spaces/] on interpolation of Lp spaces.

Theorem A.6 (Marcinkiewicz). Let T be a sublinear operator and suppose 0 < pi, qi ≤ ∞
(i = 1, 2) and q1 ̸= q2. If T satisfies

∥Tf∥Lqi,∞ ≲i ∥f∥Lpi,1 i = 1, 2

for all f in an appropriate dense function space, then for all 1 ≤ r ≤ ∞ and 0 < θ < 1 such that
qθ > 1, we have

∥Tf∥Lqθ,r ≲p1,p2,q1,q2,r,θ ∥f∥Lpθ,r .
In our case, q1 = ∞, p1 = 1, q2 = p, p2 = q0 ∈ (q, p), and pθ = qθ = r (since ∥f∥Lp,p = ∥f∥p,

see also [SW71, p. 192]). As usual, 1/pθ := (1− θ)/p1 + θ/p2 and qθ is defined analogously.
The condition of the former theorem is obviously satisfied for i = 1 (because of the trivial

restriction estimate) whereas the condition for i = 2 follows from Lp,r1 ⊆ Lp,r2 for any 0 < r1 ≤ r2
(see [SW71, Theorem 3.11]), i.e., ∥f̂ |S∥Lp,∞(S,dσ) ≤ ∥f̂ |S∥Lp(S,dσ) here, and the assumed Lorentz

type estimate ∥f̂ |S∥Lp(S,dσ) ≲ ∥f∥q0,1. Finally, θ is determined by

θ =

(
2− 1

p
− Aρ

log(1/α)

)−1

which is contained in (0, 1) if α satisfies α < exp(−Aρp/(p− 1)). □

A.2. Oscillatory integrals related to the Fourier transform. We follow [Ste93, Section
IX.1]. Let us discuss the oscillatory integral (the extension operator)

(Tλf)(x) =

∫
Rd−1

eiλφ(ξ,x)ψ(ξ, x)f(ξ) dξ , λ > 0 , (A.8)

mapping functions on Rd−1 to functions on Rd. We simultaneously consider the dual operator
(the restriction operator)

(T ∗
λf)(ξ) =

∫
Rd

e−iλφ(ξ,x)ψ(ξ, x)f(x) dx . (A.9)

[Note that x and ξ are interchanged in [Ste93] which is somewhat abusing the standard

convention.] Here, ψ ∈ C∞
c (Rd−1 × Rd) is a fixed smooth function of compact support in x

and y. The phase function φ is real-valued and smooth. We assume that, on the support of
ψ, the phase function satisfies a non-degeneracy and a curvature condition (the Carleson–Sjölin
conditions).

Let us start with the non-degeneracy condition. We require that for each (ξ0, x0) ∈ suppψ ⊆
Rd−1 × Rd, the bilinear form B(u, v) on Rd−1 × Rd, defined by

B(u, v) = ⟨v,∇ξ⟩⟨u,∇x⟩φ(ξ, x)
∣∣
(ξ0,x0)

=

d−1∑
j=1

d∑
k=1

vj · uk
∂2φ(ξ, x)

∂ξj∂xk

 (ξ0, x0) (A.10)

has maximal rank d− 1 (cf. (4.7)).

https://www.guillermorey.me/documents/Lorentz.pdf
https://terrytao.wordpress.com/2009/03/30/245c-notes-1-interpolation-of-lp-spaces/
https://terrytao.wordpress.com/2009/03/30/245c-notes-1-interpolation-of-lp-spaces/
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As a result, there exists a (unique up to sign) vector u ∈ Rd, |u| = 1, so that the scalar
function

ξ 7→ ⟨u,∇xφ(ξ, x
0)⟩

has a critical point at ξ = ξ0. Our further assumption is that this critical point is nondegenerate,
i.e., we suppose that the associated (d− 1)× (d− 1) quadratic form is nonsingular, i.e.,

det

(
∂2

∂ξi∂ξj
⟨u,∇xφ(ξ, x

0)⟩
)

̸= 0 (A.11)

at ξ = ξ0. Note that this is precisely the curvature condition (4.8) that we imposed earlier in
Theorem 4.6. The above two conditions are therefore just the Carleson–Sjölin conditions.

Theorem A.7. Under the above assumptions on φ, the operator (A.8) satisfies the estimate

∥Tλf∥Lq(Rd) ≲ λ−n/q∥f∥Lp(Rd−1) (A.12)

where

q =

(
d+ 1

d− 1

)
p′ and 1 ≤ p ≤ 2 .

Remark A.8. In several applications however, the above oscillatory integrals arise in combi-
nations with kernels of singular integral operators. Phong and Stein [PS86a] (see also [PS86b])
considered the following situation. Let T be a L2 bounded operator that is representable by a dis-
tribution kernel K, i.e., (Tf)(x) =

∫
K(x, y)f(y) dy for f ∈ S, where K satisfies |∂βy ∂αxK(x, y)| ≲

|x−y|−d−|α|−|β|. Let φ(x, y) be a real smooth phase function, let ψ ∈ C∞
c (Rd×Rd), and assume

det(∂xi∂xjφ) has no zeros on the support of ψ. Consider the operator

(Tλf)(x) =

∫
Rd

eiλφ(x,y)K(x, y)ψ(x, y)f(y) dy ,

defined by

⟨g, Tλf⟩ =
∫
Rd
dx

∫
Rd
dy g(x)eiλφ(x,y)K(x, y)ψ(x, y)f(y) .

Then the L2 operator norm of Tλ remains bounded as λ→ ∞.

Proof. See Stein [Ste93, Chapter IX, Section §1.2, Theorem 1] or [Ste86, Theorem 10].
It suffices to prove the case p = 2 since the case p = 1 is trivial and the rest follows by

interpolation. By duality, the asserted bound for p = 2 is equivalent to

∥T ∗
λF∥L2(Rd−1) ≲ λ−d/r

′∥F∥Lr(Rd) for r =
2(d+ 1)

d+ 3

where

(T ∗
λF )(ξ) =

∫
Rd

e−iλφ(ξ,x)ψ(ξ, x)F (x) dx , ξ ∈ Rd−1 .

Let us now rewrite the squared L2 norm as

∥T ∗
λF∥2L2(Rd−1) = ⟨F, TT ∗F ⟩ =

∫
Rd

∫
Rd
Kλ(x, y)F (x)F (y) dy dx

with the kernel

Kλ(x, y) =

∫
Rd−1

eiλ[φ(ξ,x)−φ(ξ,y)]ψ(ξ, x)ψ(ξ, y) dξ . (A.13)

Thus, it suffices to see that Kλ is the kernel of an Lr(Rd) → Lr
′
(Rd) bounded operator whose

norm does not exceed a constant times λ−2d/r′ .
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Our plan is to use Theorem 4.3 for the L2-boundedness of non-degenerate oscillatory integrals
(in Rd). To apply this theorem, we construct an appropriate new phase function φ̃ on Rd × Rd.
Because of our assumptions on φ, we can construct it in such a way that it indeed satisfies the
following two (non-degeneracy) conditions. Writing Ξ = (ξ, ξd) with ξ = (ξ1, ..., ξd−1) ∈ Rd−1,
the constructed φ̃ shall then obey

(1) φ̃(Ξ, x) = φ(ξ, x) + φ0(x)ξd and
(2) det(∇Ξ∇xφ̃) ̸= 0.

In fact, ∇ξ∇xφ already has rank d− 1 by the non-degeneracy condition, i.e., we need only chose
φ0(x) such that ⟨u,∇x⟩φ0(x) ̸= 0 to increase the rank of the matrix ∇Ξ∇xφ̃ to d.

Now, as in the shortest proof of the Tomas–Stein theorem (see Subsection 4.3), we construct
an analytic family of kernels Ks

λ on Rd × Rd by setting

Ks
λ(x, y) =

es
2

Γ(s/2)

∫
Rd

eiλ[φ̃(Ξ,x)−φ̃(Ξ,y)]ψ(ξ, x)ψ(ξ, y)|ξd|−1+sν(ξd) dΞ

with dΞ = dξ dξd and where ν ∈ C∞
c (R) is a bump function at the origin. Let T s

λ be the associated
integral operator. By an integration by parts, setting s = 0, and applying the fundamental
theorem of calculus along with φ̃(Ξ, x)|Ξ=(ξ,0) = φ(ξ, x), we have

K0
λ(x, y) = Kλ(x, y) . (A.14)

Remember that we want to estimate ∥T 0
λ ∥r→r′ ≲ λ−2d/r′ via complex interpolation. Next, by

Theorem 4.3 for non-degenerate oscillatory integral operators, we have ∥T 1+it
λ ∥2→2 ≲ λ−d/2 for

all t ∈ R because of the non-degeneracy condition on φ̃. Finally, we claim the following L1 → L∞

estimate, namely

|K−(d−1)/2+it
λ (x, y)| ≲ 1 . (A.15)

To see this, recall φ̃(Ξ, x) = φ(ξ, x) + φ0(x)ξd and write

Ks
λ(x, y) = Kλ(x, y) · ν̃s(λ(φ0(y)− φ0(x)))

where

ν̃s(λ(φ0(y)− φ0(x))) =
es

2

Γ(s/2)

∫ ∞

−∞
eiξd·λ(φ0(y)−φ0(x))ν(ξd)|ξd|−1+s dξd .

Since

|ν̂−(d−1)/2(λ(φ0(y)− φ0(x)))| ≲ |λ(φ0(y)− φ0(x))|
d−1
2 ≤ ∥∇φ0∥

d−1
2∞ · (λ|x− y|) d−1

2

for large arguments (i.e., large λ), we are left to show

|Kλ(x, y)| ≲ (λ|x− y|)−(d−1)/2 .

In proving this, we may assume that the integrand is supported in a sufficiently small neigh-
borhood around some ξ = ξ0 (for otherwise we can write it as a finite sum of such integrals).
Then, we observe that φ(ξ, x) − φ(ξ, y) = ∇xφ(ξ, z) · (x − y) + O(|x − y|2). So, the claimed
bound on |Kλ(x, y)| just follows from the estimates for non-degenerate oscillatory integrals in
d−1 dimensions (Theorem 4.3) because of the non-degeneracy condition for φ which clearly still
holds when we freeze one variable (see also the remark before Theorem 4.6). (In fact, if x − y
does not point in the “critical direction” of u, which arises in the non-degeneracy condition, we
even get |Kλ(x, y)| ≲ (λ|x− y|)−N for any N ∈ N since we can integrate by parts as often as we
wish.) This concludes the proof of the theorem. □
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Bourgain [Bou91b] proved that the theorem can in fact not be improved beyond the range
1 ≤ p ≤ 2 when d ≥ 3. To see this, let d = 3. Then there is an appropriate φ and a bounded f
having compact support such that

∥Tλf∥q ≳ λ−1/2−1/q as λ→ ∞ .

This is however only consistent with the assertion of Theorem A.7 if q ≥ 4 (i.e., p ≤ 2). To prove
this lower bound, take

φ(ξ, x) = ξ · x′ + 1

2
⟨A(x3)ξ, ξ⟩

for ξ ∈ R2, x = (x′, x3) ∈ R3 and A(x3) is a real, symmetric 2 × 2 matrix, depending smoothly
on x3. We will now impose two conditions on x3 7→ A(x3).

(1) dA(x3)/dx3 is invertible for each x3. This condition guarantees the curvature condi-
tion at the critical point, namely that the (d − 1) × (d − 1) quadratic form satisfies
det(∂xi∂xj ⟨u,∇xφ(ξ, x

0)⟩) ̸= 0 at ξ = ξ0.
(2) rank(A(x3)) ≡ 1 for all x3, i.e., the non-degeneracy condition is satisfied.

It is easy to check that these two conditions are compatible, and that indeed there are smooth
functions x3 7→ A(x3) that satisfy both simultaneously. Now let f(x) = 1 on the support of ψ.
Then

(Tλf)(x) =

∫
R2

eiλφ(ξ,x)ψ(ξ) dξ .

Let S = {x ∈ R3 : x′ ∈ Ran(A(x3))}. In view of our assumptions on rank(A(x3)), we see that S
is a smooth hypersurface. Note that if x ∈ S, the quadratic function ξ 7→ φ(ξ, x) has a critical
point, and moreover the rank of ∂xi∂xjφ(ξ, x) is exactly 1. Thus if x ∈ S, we can show, using
stationary phase, that

|(Tλf)(x)| ∼ λ−1/2 as λ→ ∞ .

The estimate also holds in a tubular neighborhood of S whose radius is a small multiple of λ−1.
The result is that

∥Tλf∥q ≳ λ−1/2λ−1/q ,

and the result is proved.
See also Bourgain [Bou91b] where it is also shown that for a certain class of phases φ, one

does have
∥Tλf∥q ≲ λ−d/q∥f∥∞

for some q with q < 2(d+ 1)/(d− 1).

Appendix B. Reverse Littlewood–Paley inequality for slabs in d = 2

In this section we will describe an argument of Córdoba and Fefferman [CF77] (see also

Córdoba [Cor77, C8́2]) yielding the reverse Littlewood–Paley inequality (9.2) in d = 2 if p = 4.
Combining this with the analysis of Section 9 yields a full proof of the restriction conjecture in
this case.

The heart of the argument is the fact that the Minkowski sums of all pairs of slabs θ + θ′ =
{ξ+ ξ′ : ξ ∈ θ , ξ′ ∈ θ′} have only bounded overlap (which in turn is somewhat a consequence of
the fact that two circles in R2 intersect in at most two points).

Proposition B.1. Let f be a smooth function with supp f̂ ⊆ N1/R(P1). With the notation of
Section 9, the inequality

∥f∥L4(R2) ≲

∥∥∥∥∥∥∥
 ∑
θ:R−1/2−slab

|fθ|2
1/2

∥∥∥∥∥∥∥
L4(R2)
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holds.

Proof. By the Fourier support condition, we have

∥f∥44 = ∥|f |2∥22 ∼
∫
R2

∣∣∣∣∣∑
θ

fθ(x)

∣∣∣∣∣
2 ∣∣∣∣∣∑

θ

fθ′(x)

∣∣∣∣∣
2

dx =

∥∥∥∥∥∥
∑
θ,θ′

fθfθ′

∥∥∥∥∥∥
2

2

(B.1)

We distinguish now between the cases dist(θ, θ′) ≶ constR−1/2 and start with dist(θ, θ′) ≲ R−1/2.
By Cauchy–Schwarz,∣∣∣∣∣∣

∑
θ,θ′:dist(θ,θ′)≲R−1/2

fθfθ′

∣∣∣∣∣∣ ≤ 2
∑
θ

|fθ|2
∑

θ′:dist(θ,θ′)≲R−1/2

1 ≲
∑
θ

|fθ|2 ,

i.e., it suffices to estimate the right side of (B.1) where the summation is restricted to slabs which
are at least R−1/2-separated. In particular, it suffices to show∥∥∥∥∥∥

∑
θ,θ′:dist(θ,θ′)≳R−1/2

fθfθ′

∥∥∥∥∥∥
2

2

≲
∑

θ,θ′:R−1/2−slab

∥fθfθ′∥22

which can be interpreted as the statement that fθfθ′ are pairwise almost orthogonal. (Observe
that this right side just agrees with the right side of the statement of the proposition).

Observing that the left side of the claimed inequality equals∥∥∥∥∥∥
∑

θ,θ′:dist(θ,θ′)≳R−1/2

f̂θ ∗ f̂θ′

∥∥∥∥∥∥
2

2

by Plancherel’s theorem and that

supp f̂θ ∗ f̂θ′ ⊆ θ − θ′ ,

it suffices to prove that the number of overlaps of θ − θ′ is bounded, i.e.,∣∣∣{θ, θ′ : R−1/2 − slab : dist(θ, θ′) ≳ R−1/2 and ξ ∈ θ − θ′
}∣∣∣ ≲ 1 for all ξ ∈ R2 .

To prove this, consider the pairs θ1, θ
′
1 and θ2, θ

′
2 which are such that θ1 − θ′1 ∩ θ2 − θ′2 ̸= ∅

and dist(θj , θ
′
j) ≳ R−1/2 (for j = 1, 2). In particular, that means that there are yj ∈ θj and

y′j ∈ θ′j such that y1 − y′1 = y2 − y′2. Moreover, since θj and θ′j belong to N1/R(P1), there are

tj , t
′
j ∈ [0, 1]d−1 such that

|yj − (tj , t
2
j )| ≲ R−1 and |y′j − (t′j , (t

′
j)

2)| ≲ R−1 for j = 1, 2 .

Defining tj = (tj , t
2
j ), adding and subtracting (y1 − y′1) − (y2 − y′2) = 0, and using the above

estimate yields

|(t1 − t′1)− (t2 − t′2)| ≲ R−1

which means in particular

|(t1 − t′1)− (t2 − t′2)| ≲ R−1 and |(t21 − (t′1)
2)− (t22 − (t′2)

2)| ≲ R−1 .

From these estimates, it can be inferred [by expanding everything?]

|t1 − t′1| · |(t1 + t′1)− (t2 + t′2)| ≲ R−1 .

Since dist(θ1, θ
′
1) ≳ R−1/2, it follows that

|(t1 + t′1)− (t2 + t′2)| ≲ R−1/2
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and in particular

|t1 − t2| ≲ R−1/2 and |t′1 − t′2| ≲ R−1/2

⇒ |y1 − y2| ≲ R−1/2 and |y′1 − y′2| ≲ R−1/2 .

But that means that for a given pair θ1, θ
′
1 there are only O(1) choices of pairs θ2, θ

′
2 such that

θ1 − θ′1 ∩ θ2 − θ′2 ̸= ∅ which means∣∣∣{θ, θ′ : R−1/2 − slab : dist(θ, θ′) ≳ R−1/2 and ξ ∈ θ − θ′
}∣∣∣ ≲ 1 for all ξ ∈ R2

as asserted. □

Appendix C. Interpolation theorems

See, e.g., Tao’s notes on harmonic analysis or Grafakos [Gra14a, Section 1.4].

C.1. Repetition on Lorentz spaces. See, e.g., Folland [Fol99, Section 6.4], Adams–Fournier
[AF03, pp. 221], the notes by G. Rey https://www.guillermorey.me/documents/Lorentz.

pdf, Grafakos [Gra14a, Section 1.4], Triebel [Tri01], and Bennett and Sharpley [BS88]. For in-
terpolation theory, consider Bennett–Sharpley (once more) and in particular Bergh and Löfström
[BL76].

Let (X,σ, µ) be a measure space, i.e., a set X equipped with a σ-algebra of subsets of it and
a function µ from the σ-algebra to [0,∞] that satisfies µ(∅) = 0 and

µ

 ∞⋃
j=1

Bj

 =

∞∑
j=1

µ(Bj)

for any sequence Bj of pairwise disjoint elements of the σ-algebra. The function µ is called a
(positive) measure on X and elements of the σ-algebra of X are called measurable sets.

Definition C.1. Let f be a measurable function on X. Its distribution function λf : R+ →
[0,∞] is defined by

λf (α) := µ ({x ∈ X : |f(x)| > α})
We collect some classic properties, see, e.g., Grafakos [Gra14a, Propositions 1.1.3 and 1.1.4].

Proposition C.2.

(1) λf is non-increasing and right-continuous.
(2) If |f | ≤ |g|, then λf ≤ λg.
(3) If |fn| increases to |f |, then λfn increases to λf .
(4) If f = g + h, then λf (α+ β) ≤ λg(α) + λh(β).
(5) We have the layer cake representation

f(x) =

∫ ∞

0

1λf (α)(x) dα =

∫ ∞

0

1[0,f(x)](α) dα .

(6) We have ∫
X

|f(x)|p dx = p

∫ ∞

0

αpλf (α)
dα

α
.

(7) We have ∥f∥∞ = inf{α ≥ 0 : λf (α) = 0}.
Chebyshev’s inequality asserts

λf (α) ≤ α−p∥f∥pp
which leads to the definition of weak Lp spaces.

https://www.guillermorey.me/documents/Lorentz.pdf
https://www.guillermorey.me/documents/Lorentz.pdf
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Definition C.3. Let 0 < p < ∞. Then we denote by Lp,∞(X) the class of all functions whose
quasi-norm (i.e., the triangle inequality only holds up to some constant)

∥f∥pp,∞ := sup
α>0

αpλf (α)

= inf
{
C > 0 : λf (α) ≤ α−pC for all α > 0

}
is finite.

Remarks C.4.

(1) Check that both definitions actually coincide!
(2) By Chebyshev’s inequality, we immediately see ∥f∥p,∞ ≤ ∥f∥p, i.e., Lp ⊆ Lp,∞.
(3) By construction, L∞,∞ isometrically coincides with L∞.
(4) Since λg+h(α) ≤ λg(α/2) + λh(α/2), it is easy to see that ∥g + h∥p,∞ ≤ 2Cp(∥g∥p,∞ +

∥h∥p,∞).

Example C.5. Let p ∈ [1,∞) and f(x) = |x|−d/p, then f /∈ Lp(Rd) for any p, but f ∈ Lp,∞

since

|{x ∈ Rd : |x|−d/p > α}| =
∫

|x|<α−p/d

dx ∼ α−p .

The equimeasurable decreasing rearrangement of f is the function f∗ on [0,∞), defined by

f∗(t) := inf
α>0

{λf (α) ≤ t} = inf
α≥0

{λf (α) ≤ t} ,

which is a non-increasing function since λf is non-increasing. In particular, λf∗(α) = λf (α). Let
us now define the Lorentz quasi-norm.

Definition C.6. Let f be a measurable function on X and 0 < p, q ≤ ∞. We define the Lorentz
quasi-norm as

∥f∥p,q :=


(∫∞

0

(
t1/pf∗(t)

)q dt
t

)1/q
if q <∞ ,

supt>0 t
1/pf∗(t) if q = ∞ .

By definition, Lp,p coincides isometrically with Lp.

Proposition C.7. Let f be a measurable function on X and 0 < p, q ≤ ∞. Then

∥f∥p,q =

p1/q
(∫∞

0

(
αλf (α)

1/p
)q dα

α

)1/q
if q <∞ ,

supα>0 αλf (α)
1/p if q = ∞ .

Proof. See Grafakos [Gra14a, Proposition 1.4.9]. □

We collect some useful properties.

Lemma C.8 (Monotone convergence). Let (fn)n∈N be a sequence of measurable functions with
|fn| ↗ |f | almost everywhere. Then ∥f∥p,q = limn→∞ ∥fn∥p,q.
Proof. See Lemma 1.3 in Rey’s notes. □

Lemma C.9 (Fatou). Let {fn}n∈N be a sequence of measurable functions. Then

∥ lim inf
n→∞

fn∥p,q ≤ lim inf
n→∞

∥f∥p,q .

Proof. See Lemma 1.9 in Rey’s notes. □
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Theorem C.10. Let 0 < p < ∞ and 0 < q ≤ ∞, then Lp,q is a quasi Banach space, i.e., it
is complete and satisfies the quasi triangle inequality. For p, q > 1, they are normable and in
particular actual Banach spaces.

Proof. See Grafakos [Gra14a, Theorem 1.4.11]. □

Proposition C.11 (Nestedness). Let 0 < p ≤ ∞ and 0 < q < r ≤ ∞. Then ∥f∥p,r ≲p,q,r ∥f∥q,
i.e., Lp,q ⊆ Lp,r.

Proof. See Grafakos [Gra14a, Proposition 1.4.10]. □

Proposition C.12 (Hölder’s inequality). Let 0 < p1, p2, p <∞ and 0 < q1, q2, q ≤ ∞ obey

1

p
=

1

p1
+

1

p2
and

1

q
=

1

q1
+

1

q2
.

Then ∥fg∥p,q ≲ ∥f∥p1,q1∥g∥p2,q2 .

Proof. See Tao [Tao06, Lecture 1, Theorem 6.9]. □

More details concerning the following proposition can be found in Grafakos [Gra14a].

Proposition C.13 (Dual characterization). Let 1 < p < ∞ and 1 ≤ q ≤ ∞. Then for any
f ∈ Lp,q,

∥f∥p,q ∼p,q sup
{∣∣∣∣∫ g(x)f(x) dµ(x)

∣∣∣∣ ∥g∥p′,q′ ≤ 1

}
.

Proof. See Tao [Tao06, Lecture 1, Theorem 6.12]. □

C.2. Marcinkiewicz interpolation. Typically, the Marcinkiewicz interpolation theorem is
stated under the condition that an operator satisfies two weak-type estimates. Recall that if
X and Y are two measure spaces and T is a linear operator from functions of X to functions of
Y , then T is said to be of strong-type (p, q) if

∥Tf∥Lq(Y ) ≲ ∥f∥Lp(X) for all f ∈ Lp(X) .

We say that T is of weak-type (p, q) if

|{y ∈ Y : |(Tf)(y)| ≥ λ}| ≲ ∥f∥qpλ−q for all λ > 0 , f ∈ Lp(X) .

Clearly, the strong-type estimate implies the weak-type estimate. One can weaken this concept
even further by only considering functions f which are characteristic functions of a set. This
leads to the notion of restricted weak-type estimates. We say that T is of restricted weak type
(p, q) if

|{y ∈ Y : |(T1E)(y)| ≥ λ}| ≲ |E|q/pλ−q for all λ > 0 , E ⊆ X . (C.1)

Note that every characteristic function belongs to Lp,1 with

∥1E∥p,1 = const |E|1/p

The enhanced Marcinkiewicz interpolation theorem (see, e.g., Tao’s notes [Tao99b, Lecture 2,
Lemma 2.3] or Grafakos [Gra14a, Theorem 1.4.19] and Tao [Tao06, Lecture 1, Lemma 8.5])
therefore says that if T is Lpj ,1 → Lqj ,∞ bounded for j ∈ {0, 1}, then T is Lpθ,r → Lqθ,r

bounded for all 0 < r ≤ ∞.
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Remark C.14. There is also a result by Bourgain [Bou85] (see also Grafakos [Gra14a, p. 71]),
but see also Carbery et al [CSWW99, Section 6.2] saying that if the sequence of linear operators
Tj maps

∥Tj∥Ai→Bi ≲i 2
jαi

for i ∈ {0, 1} and normed vector spaces Ai, Bi with α0 < 0 < α1, then T =
∑
j Tj extends

to a bounded operator mapping Aθ,1 to Bθ,∞. (Recall A = (A0, A1) and Aθ,1 and Bθ,∞ are
the Lions–Peetre interpolation spaces.) A more precise and explicit version is formulated in the
following proposition.

Proposition C.15 (Bourgain interpolation (Grafakos’ version [Gra14a])). Let 0 < p0 < p1 <∞
and 0 < β0, β1,M0,M1 < ∞. Suppose that for k ∈ Z a family of sublinear operators {Tk}
is of restricted weak-type (p0, p0) with constant M02

−kβ0 and of restricted weak-type (p1, p1)
with constant M12

kβ1 for all k ∈ Z. Then there is a constant C = C(β0, β1, p0, p1) such that∑
k∈Z Tk is of restricted weak-type (p, p) with constant CM1−θ

0 Mθ
1 where θ = β0/(β0 + β1) and

p−1 = (1− θ)/p0 + θ/p1.

Proposition C.16 (Bourgain interpolation (Carbery et al version [CSWW99])). Let 0 < p0, p1, q0, q1 <
∞ and 0 < β0, β1,M0,M1 < ∞. Suppose that for k ∈ Z a family of sublinear operators {Tk}
satisfies

∥Tj∥Lp0→Lq0 ≤M02
−β0j and ∥Tj∥Lp1→Lq1 ≤M12

+β1j .

Then there is a constant C = C(β0, β1, p0, p1, q0, q1) such that

∥
∑
k∈Z

Tkf∥Lq,∞ ≤ CM1−θ
0 Mθ

1 ∥f∥Lp,1

where θ = β0/(β0 + β1) and p and q are as usual.

It is convenient to reformulate (C.1) in a more symmetric, dual formulation.

Lemma C.17. Let 1 < p, q <∞. Then, one has (C.1) if and only if

|⟨1F , T1E⟩| ≲ |E|1/p|F |1/q′ (C.2)

for all E ⊆ X and F ⊆ Y .

This should be compared to the dual strong-type estimate

|⟨g, Tf⟩| ≲ ∥f∥p∥g∥q′ .
Proof. For our purposes, we only need the implication (C.1)⇒(C.2). (To prove the reverse direc-
tion, one sets F = {Re(T1E) > λ}.) Using the triangle inequality, the layer cake representation,
and Fubini to do the x-integration first, we have

|⟨1F , T1E⟩| ≤
∫
F

|(T1E)(x)| dx =

∫
F

∫ ∞

0

1{|T1E |>λ}(λ) dλ dx

=

∫ ∞

0

|{x ∈ F : |(T1E)(x)| > λ}| dλ .

We have two estimates for the integrand. The first is just |F |. The second is O(|E|q/pλ−q) by
assumption. Thus, the integral can be estimated by

O
(∫ ∞

0

min{|F |, |E|q/pλ−q} dλ
)

which yields the assertion after an elementary calculation. □

C.3. Stein interpolation. See Stein and Weiss [SW71, Chapter V, Theorem 4.1].
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Appendix D. Some remarks on the uncertainty principle

D.1. Bernstein inequalities. We follow the nice exposition of Wolff [Wol03, Chapter 5] and
the survey of Folland and Sitaram [FS97]. For the following discussion it will be helpful to
remember that for an invertible linear map T : Rd → Rd, one has

f̂ ◦ T = |det(T )|−1f̂ ◦ T−t

where T−t denotes the inverse transpose of T .
For us, most of the time, the uncertainty principle is the following heuristic statement. If a

measure µ is supported on an ellipsoid E, then for many purposes µ̂ may be regarded as being
constant on any dual ellipsoid E∗.

The simplest rigorous statement is as follows.

Proposition D.1 (L2 Bernstein inequality). Assume that f ∈ L2 and supp f̂ ⊆ B0(R) for some
R > 0. Then f is C∞ and it holds that

∥Dαf∥2 ≤ (2πR)|α|∥f∥2 .

Proof. Since f̂ is compactly supported, f is in fact holomorphic and the claimed estimate just
follows from Plancherel. □

A corresponding statement is also true in Lp, but proving this and other related results needs
a different argument (namely, the Mikhlin–Hörmander theorem) since there is no Plancherel the-
orem. In this context we state somme lemmas that are helpful to construct compactly supported
functions in Fourier space from Schwartz functions in physical space.

Lemma D.2. There is a fixed Schwartz function φ such that if f ∈ L1+L2 and supp f̂ ⊆ B0(R),
then

f = φR
−1 ∗ f

where φR
−1

(x) = Rdφ(Rx).

Proof. Take φ ∈ S such that φ̂|B0(1) = 1, i.e., φ̂R−1 |B0(R) = 1. Thus, (φR
−1 ∗ f − f)∧ ≡ 0 which

shows the assertion. □

Lemma D.3. There are radial bump functions χ̂ that satisfy χ ≥ 0 and χ > 1B0(1).

Proof. If g is an even bump function, then take χ̂(ξ) = AdB(g ∗ g)(Aξ) for some A,B > 0. □

Lemma D.4. There exists a radial 0 < φ ∈ S(Rd) such that supp φ̂ ⊆ (−1/2, 1/2)d and with
the property that ∑

n∈Zd
φ(x− n) = 1 , x ∈ R .

Proof. See Schlag–Shubin–Wolff [SSW02, Lemmas 2.4 and Lemma 3.1]. We only present the
proof for d = 1. The proof for higher dimensions is almost identical.

In Fourier space the claimed partition of unity reads

φ̂(ξ)
∑
n∈Z

e−2πinξ =
∑
k∈Z

φ̂(k)δk(ξ) = δ0(ξ) (D.1)

where the first equality follows from Poisson summation (
∑
n f(n) =

∑
k f̂(k)). To ensure the

second equality, it suffices to take supp φ̂ ⊆ (−1/2, 1/2) and set φ̂(0) = 131. To obtain the

31One could have also obtained this directly since
∑

n∈Z e−2πinξ = δξ,0.



222 K. MERZ

positivity, start with any even Schwartz function φ0 with supp φ̂0 ⊆ (−1/4, 1/4) and φ̂0(0) = 1.
Since φ2

0 extends to an entire function on C, one has

mes[φ2
0 = 0] = 0 .

Therefore, φ = φ2
0 ∗ φ2

0 > 0 everywhere, whereas

φ̂ = [φ̂0 ∗ φ̂0]
2

has support in (−1/2, 1/2). Finally observe that

φ̂(0) =

(∫
φ̂0(ξ)φ̂0(−ξ) dξ

)2

=

(∫
φ̂0(ξ)

2 dξ

)2

> 0 .

The second equation in (D.1) uses that φ̂0 is even whereas positivity follows since φ̂0 is real.
Hence, ∑

n∈Z
φ(x− n) = φ̂(0) , x ∈ R

by the preceeding argument. Dividing by the right-hand side finishes the proof. □

Proposition D.5 (Lp Bernstein inequality). Suppose that f ∈ L1 + L2 and supp f̂ ⊆ B0(R).
Then the following assertions hold.

(1) For any α and p ∈ [1,∞],

∥Dαf∥p ≲ R|α|∥f∥p .
(2) For any 1 ≤ p ≤ q ≤ ∞,

∥f∥q ≲ Rd(
1
p− 1

q )∥f∥p .
With the help of the second assertion it becomes obvious that Bernstein inequalities are an

invaluable tool in the analysis of (nonlinear) PDEs. The inequalities say that, for localized
frequency, low Lebesgue integrability can be upgraded to higher integrability (i.e., smoothness)
at the cost of certain powers of N . In fact, this cost is a gain when the frequency is small.

Proof. As before, let ψ = φR
−1

such that f = ψ ∗ f . Then the first claim just follows from

∥∇ψ∥1 = ∥φ∥1 ·R
and Young’s inequality. To prove the second assertion, we note

∥ψ∥r = ∥φ∥r ·Rd/r
′

for any r ∈ [1,∞]. Thus, for r being defined by 1 + 1/q = 1/p+ 1/r, Young’s inequality yields

∥f∥q = ∥ψ ∗ f∥q ≤ ∥ψ∥r∥f∥p ≲ Rd/r
′∥f∥p = Rd(

1
p− 1

q )∥f∥p ,
thereby showing the second claim. □

With this warm-up, we are ready to extend the above Lp → Lq bounds to ellipsoids instead
of balls using change of variables. An ellipsoid is a set of the form

E = {x ∈ Rd :
∑
j

|(x− a) · ej |2
r2j

≤ 1} (D.2)

for some a ∈ Rd (the center of E), some choice of orthonormal basis vectors {ej} (the axes), and
some choice of positive numbers rj (the axis lengths). We define the dual ellipsoid E∗ to E as
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the ellipsoid having the same axes as E but with reciprocal axis lengths, i.e., if E is given by
(D.2), then E∗ should be of the form

{x ∈ Rd :
∑
j

r2j |(x− b) · ej |2 ≤ 1} (D.3)

for some choice of the center point b.

Proposition D.6 (Lp Bernstein inequality for an ellipsoid). Suppose that f ∈ L1 + L2 and

supp f̂ ⊆ E for some ellipsoid E. Then

∥f∥q ≲ |E| 1p− 1
q ∥f∥p

if 1 ≤ p ≤ q ≤ ∞.

This statement reflects the heuristic fact that faster decay of the Fourier transform (i.e., the
smaller the ellipsoid E is) yields better smoothness properties (in terms of integrability) of the
function.

One could similarly extend the gradient bounds of the previous statements to ellipsoids cen-
tered at the origin, but that statement is awkward since one has to weight different directions
differently, so we ignore this here.

Proof. Let k be the center of E and T be a linear map taking the unit ball onto E − k. Let
S = T−t be the inverse transpose of T , i.e., also T = S−t. Let furthermore f1(x) = e−2πik·xf(x)

and g = f1 ◦ S. Since f̂ ◦ T = |det(T )|−1f̂ ◦ T−t, we have

ĝ(ξ) = |detS|−1f̂1(S
−t(ξ)) = |detS|−1f̂(S−t(ξ + k)) = |detT |f̂(T (ξ + k)) .

Thus, ĝ is supported in the unit ball, so by the Lp Bernstein inequality for balls, ∥g∥q ≲ ∥g∥p.
On the other hand,

∥g∥q = |detS|−1/q∥f∥q = |detT |1/q∥f∥q = |E|1/q∥f∥q
and likewise with q replaced by p. So

|E|1/q∥f∥q ≲ |E|1/p∥f∥p
as claimed. □

D.2. Locally constant lemma. Finally, we will also prove a “pointwise statement”, roughly

saying that if supp f̂ ⊆ E for some ellipsoid E, then f is roughly constant on any dual ellipsoid
E∗.

D.2.1. Motivation. Without any further information, we cannot say that f is “focussing” or
“biggest possible” on that dual ellipsoid centered at zero. To make such a statement, we would

need to understand the phase of f̂ , which, by the Fourier transform, tells us something about

the location where f will be big. In fact, imagine f̂ is real-valued and supported on E. Then,
indeed, f will focus and be roughly constant on the dual ellipsoid E∗ centered at the origin.

However, if f̂ has a constant phase, say eia·ξ with a ∈ Rd, then f full focus on the dual ellipsoid

E∗ centered around a ∈ Rd. In both cases, i.e., when f̂ has a constant phase, we then also know

that f decays rapidly away from the dual ellipsoid, at least if f̂ is sufficiently smooth. On the

other hand, what this observation suggests is to perform a Fourier series decomposition of f̂ .

The decomposition of f̂ into a Fourier series can also be motivated from a different point of

view: For simplicity, suppose d = 1 and f̂ is supported on [0, N ] for some N > 0. Looking at the

real part of the Fourier inversion f(x) =
∫
R f̂(ξ) exp(2πix ·ξ), we notice that cos(2πx ·ξ) does not

change sign for |x| < 1/(4N); hence Re(f(x)) will not make a sign change for x ∈ B(0, 1/(4N)),
the ball of radius 1/(4N), centered at 0. Now consider x ∈ B( 1

2N ,
1

4N ). Suppose x = 1/(2N).
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Then, the integral will now add both positive and negative contributions from the oscillation
of the phase exp(πiξ/N) and we expect it will be, in absolute value, smaller than the integral
for x = 0, i.e., we expect |f(1/(2N))| ≤ |f(0)|. However, whatever the outcome of this integral
is, moving with x through the ball B(1/(2N), 1/(4N)) will not change the sign of the resulting
integrals, i.e., we have sgn(Re(f(x))) = sgn(Re(f(1/(2N)))) for all x ∈ B(1/(2N), 1/(4N)).

To make the above motivation more concrete, suppose E is a (possibly high-dimensional)
rectangle (centered anywhere in Rd) and let E∗ denote its dual rectangle, centered at the origin.
Let us now tile Rd (physical) space using translates of dual rectangles, centered at positions
{cE,j}j∈N ∈ Rd. Then, we may decompose

f̂(ξ) =
∑
j∈N

e2πiξ·cE,jwj1E(ξ) (D.4)

with certain coefficients wj ∈ C obtained through

wj =

∫
Rd
f̂(η)e−2πiη·cE,j dη. (D.5)

This follows (morally) from

f̂(ξ) =
∑
j

∫
Rd
dη f̂(η)e2πicE,j(ξ−η) =

∫
Rd
dη f̂(η)δ(ξ − η) = f̂(ξ). (D.6)

Taking the Fourier transform of the Fourier series for f̂(ξ) then leads to

f(x) =
∑
j

wjχE∗(x− cE,j) (D.7)

with χE∗(x) a bump adapted to E∗. We will call this formula for f(x) the wave packet decom-
position of f below.

D.2.2. Rigorous discussion. Let us now turn to rigorous discussions. In the following, we show
that the values of f on E∗ can morally(!) be controlled by the average over E∗. To formulate
this precisely, let N be a large number and let φ(x) = (1 + |x|2)−N . Suppose an ellipsoid E∗ is
given. Then define φE∗(x) = φ(T (x − k)), where k is the center of E∗ and T is a self-adjoint
linear map taking E∗−k onto the unit ball. If T1 and T2 are two such maps, then T1 ◦T−1

2 is an
orthogonal transformation, so φE∗ is well defined. Essentially φE∗ roughly equals 1 on E∗ and
decays rapidly as one moves away from E∗. We could also write more explicitly

φE∗(x) =

1 +
∑
j

|(x− k) · ej |2
r2j

−N

.

Proposition D.7 (Locally constant lemma). Suppose that f ∈ L1 + L2 and supp f̂ ⊆ E for
some ellipsoid E. Then for any dual ellipsoid E∗ and any z ∈ E∗,

|f(z)| ≲N |E∗|−1

∫
Rd

|f(x)|φE∗(x) dx ≡ |E∗|−1∥f∥L1(φE∗ (x)dx) . (D.8)

Proof. Assume first that E is the unit ball so that E∗ is also the unit ball. Then f is the
convolution of itself with a fixed Schwartz function ψ. Accordingly,

|f(z)| ≤
∫
Rd

|f(x)||ψ(x− z)| dx ≲N

∫
Rd

|f(x)|(1 + |x− z|2)−N dx

≲N

∫
Rd

|f(x)|(1 + |x|2)−N dx
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where we used the rapid decay of ψ and 1 + |x − z|2 ≳ 1 + |x|2 uniformly in |x| when |z| ≤ 1.
This proves the assertion when E = E∗ is the unit ball.

Next, suppose E is centered at zero but E and E∗ are otherwise arbitrary. Let k and T be as
above (T took E∗ − k to the unit ball, i.e., T t maps the unit ball to E, and T−1 maps E onto
the unit ball, i.e., T−t maps the unit ball onto E∗ − k; more precisely, these maps also take any
translate of one set to the according translate of the other!), and consider

g(x) = f(T−1x+ k) ⇔ ĝ(ξ) = |detT | e2πik·ξ f̂(T tξ) .
Thus, ĝ is supported on T−1E, i.e., a unit ball. According to our above findings for the unit
ball, we have

|g(y)| ≤
∫
Rd
φ(x)|g(x)| dx

if y belongs to any unit ball. Hence, it follows that

f(T−1z + k) ≤
∫
Rd
φ(x)|f(T−1x+ k)| dx = |detT |

∫
Rd
φE∗+k(x)|f(x+ k)| dx

= |E∗|−1

∫
Rd
φE∗(x)|f(x)| dx

by a change of variables and the fact |detT | = |E∗|−1. This shows the assertion since the above
estimate holds for z in some unit ball which we may identify with T (E∗−k) (since T took E∗−k
to the unit ball) which however means that the argument T−1z + k belongs to E∗. □

When E is not centered at zero, one merely needs to replace f(x) by e−2πik·xf(x) where k is
the center of E.

Remark D.8.

(1) The above proposition is an example of an estimate “with Schwartz tails”. It is not
possible to make the stronger conclusion that, say, |f(x)| is bounded by the average of f
over the double of E∗ when x ∈ E∗ (even in the one dimensional case with E = E∗ being
the unit interval); i.e., taking the average over Rd is necessary! To see this, consider
a fixed Schwartz function g with g(0) ̸= 0 whose Fourier transform is supported in the
“unit interval” [−1, 1]. Consider also the functions

fN (x) =

(
1− x2

4

)N
g(x) .

Since f̂N are linear combinations of ĝ and its derivatives, they have the same support as
ĝ. Moreover, they converge pointwise boundedly to zero on [−2, 2], except at the origin.
It follows that there can be no estimate of the value of fN at the origin by its average
over [−2, 2].

(2) All the estimates related to Bernstein’s inequality are sharp except for the values of the
constants. For instance, if E is an ellipsoid, E∗ a dual ellipsoid, and N <∞, then there

is a function f with supp f̂ ⊆ E∗ and with

∥f∥1 ≥ |E| ,
|f(x)| ≤ AφE(x) ,

where φE = φ
(N)
E was defined above. In the case E = E∗ being the unit ball, this is

obvious; take f to be any Schwartz function with Fourier support in the unit ball and
with the appropriate L1 norm. The general case then follows as above by making a
change of variables.
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(3) The name “locally constant lemma” is motivated by the following counterexample. Con-

sider f ∈ S(R : R) with suppf̂ ⊆ [0, 1]. Then one might wonder whether f could not
actually look like a sequence of peaks whose distance to each other is extremely small.
The locally constant lemma says that this cannot occur. On the one hand, due to the
pointwise bound ∥f∥∞ ≲ ∥f∥L1(φE∗ dx), one sees that the peaks must not be too big.

However, these peaks then cannot add up to the given L1 norm. Hence, f cannot be a
sequence of narrow peaks, but must actually be roughly constant on the dual interval
(which is just [0, 1] again).

The last two estimates imply that ∥f∥p ∼ |E|1/p for any p which shows that the last proposition
is also sharp.

D.3. Localization and discretization. The following is taken from [CM22b]. The essence of
the following results is the uncertainty principle in the following verbal form.

Localization in x-space on the scale R induces a smoothing in ξ-space on the scale R−1. This
amounts to discretize ξ-space on the scale R−1. The roles of x and ξ are interchangable.

D.3.1. Localization in momentum space. Denote byQh the collection of all cubesQh of sidelength
h. Define the weight function

wQh(x) = (1 + h−1dist(x,Qh))
−100d, x ∈ Rd, Qh ∈ Qh. (D.9)

We start by restating the locally constant lemma (Proposition D.7)

Lemma D.9. Let v ∈ S(Rd) and assume that v̂ is supported in B(0, 1/h). Then v is locally
constant on all cubes Qh of sidelength h in the sense that

∥v∥L∞(Qh) ≲ |Qh|−1∥v∥L1(wQh )
.

This lemma allows us to compare the Lp(Rd) norm of a function with Fourier support con-
tained in a ball of radius 1/h with its ℓp-norm, when sampled on a lattice of h-distant points.

Lemma D.10. Let v ∈ S(Rd) and assume that v̂ is supported in B(0, 1/h). Let Λh ⊂ Rd be a
set of h-separated points. Then for any p ≥ 1, we have

∥v∥ℓp(Λh) ≲ h−d/p∥v∥Lp(Rd).

Proof. Again by scaling, we can assume h = 1. Thus, let Λ ⊂ Rd be a set of 1-separated points.
Pick a collection of cubes Q of sidelength one that cover Λ. By Lemma D.9,

∥v∥pℓp(Λ) =
∑
ν∈Λ

|v(ν)|p ≲
∑
Q

∥v∥pL1(wQ),

Write v =
∑
Q′ vQ′ , where vQ′ is supported on Q′. Then

∥vQ′∥L1(wQ) ≤ (1 + dist(Q,Q′))−100d∥vQ′∥L1(Rd).

By Hölder, ∥vQ′∥L1(Rd) ≤ ∥vQ′∥Lp(Rd). Hence, (by Young)∑
Q

∥v∥pL1(wQ) ≲
∑
Q,Q′

(1 + dist(Q,Q′))−100dp∥vQ′∥p
Lp(Rd) ≲ ∥v∥p

Lp(Rd),

where we summed a geometric series in Q. □
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D.3.2. Discrete Fourier extension operator. Let Mλ = {ξ ∈ Rd : |ξ| = λ}, and consider the
extension operator

Eλ : L2(Mλ,dσλ) → L∞(Rd) , (Eλg)(x) = (gdσλ)
∨(x),

where σλ is surface measure on Mλ. We write E ≡ E1 and M ≡M1, σ ≡ σ1.
In the following situation we will exploit the effects of a simultaneous position and frequency

(almost) localization. In local Fourier restriction theory we saw that a position localizationon
scale R allowed a smoothing, and thereby a discretization, of ξ-space on scale R−1.

Definition D.11. Let Discres(M,p, 2) be the best constant such that the following hold for each
R ≥ 2, each collection Λ∗

R consisting of 1/R-separated points on M , each sequence aν ⊂ C, each
ball BR and each collection Λ1 of 1-separated points in Rd:

∥
∑
ν∈Λ∗

R

aνe(ν · x)∥ℓp′ (Λ1∩BR) ≤ Discres(M,p, 2)R
d−1
2 ∥aν∥ℓ2(Λ∗

R). (D.10)

The following proposition replaces the Lp(B(R))-norm encountered in local Fourier restriction
theory by a ℓp(B(R))-norm, where we sample over points whose distance is dictated by the Fourier
length scale. Thus, if we were dealing with a sphere of radius 1/h, the sampling would have to
occur over h-distant points in x-space.

Proposition D.12. If 1 ≤ p ≤ ∞, then

Discres(M,p, 2) ≲ ∥E∥L2(M,dσ)→Lp′ (Rd). (D.11)

Moreover, if p ≥ 2, then the reverse inequality also holds.

Proof. The claim is a special case of [Dem20, Prop. 1.29], with one small difference. There,

Discres(M,p, 2) is defined with the Lp
′
(BR) norm in the left hand side of (D.10). Thus, let

Discres′(M,p, 2) be the best constant in the inequality

∥
∑
ν∈Λ∗

R

aνe(ν · x)∥Lp′ (BR) ≤ Discres′(M,p, 2)R
d−1
2 ∥aν∥ℓ2(Λ∗

R). (D.12)

Then [Dem20, Prop. 1.29] asserts that the proposition holds with Discres′(M,p, 2) in place of
Discres(M,p, 2). Thus, (D.11) follows once we show that

Discres′(M,p, 2) ≳ Discres(M,p, 2). (D.13)

Without loss of generality we may assume that BR = B(0, R). If we set

f(x) =
∑
ν∈Λ∗

R

aνe(ν · x), then F(fφ̂R)(ξ) =
∑
ν∈Λ∗

R

aνφR(ξ + ν),

where φR is as before and F denotes the Fourier transform. Note that F(fφ̂R) = f̂ ∗ φR is
supported in an 1/R-neighborhood of M . In particular, it is supported on the ball B(0, 2).
Thus, for any collection Λ1 of 1-separated points in Rd,

∥f∥ℓp′ (Λ1∩BR) ≤ ∥fφ̂R∥ℓp′ (Λ1)
≲ ∥fφ̂R∥Lp′ (Rd),

where we used φ̂R ≥ 1BR in the first inequality and Lemma D.10 in the second. By a partition
of unity and a sparsification argument we may assume that f is supported on a disjoint union
of balls of radius R. By the rapid decay of φ̂R and by the definition of Discres′(M,p, 2),

∥φ̂Rf∥Lp′ (Rd) ≲N
∞∑
j=1

j−N∥f∥Lp′ (B(xj ,R)) ≲ Discres′(M,p, 2)R
d−1
2 ∥aν∥ℓ2(Λ∗

R),

where we used that (D.12) holds uniformly in the centers of the balls. Combining the last two
estimates yields (D.13).
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To prove the reverse inequality to (D.11), we may assume that BR = B(0, R). By [Dem20,
Prop. 1.29] it suffices to prove the reverse inequality to (D.13). Let Λ1 be a 1-net of points
xj ∈ BR. Let f(x) be defined as above. Without loss of generality we may assume that f is
supported on a disjoint collection of balls B(xj , 10). Then

∥f∥Lp′ (BR) = (
∑
j

∥f∥p
′

Lp′ (B(xj ,10))
)1/p

′
= (

∫
B(0,10)

∑
j

|f(xj + y)|p′dy)1/p′

≲ Discres(M,p, 2)R
d−1
2 ∥aν∥ℓ2(Λ∗

R),

where we used that (D.10) holds for each collection xj + y of 1-separated points, uniformly in
y. □

D.3.3. Stein–Tomas theorem. The following is an immediate consequence of the Stein–Tomas
theorem and Proposition D.12 (see also [Dem20, Cor. 1.30]).

Proposition D.13. Let p′ ≥ 2(d+ 1)/(d− 1). Then Discres(M,p, 2) ≲ 1.

D.4. Preliminaries for the wave packet decomposition. If f̂ was smooth and real-valued
and supported on some ellipsoid E, then (by an integration by parts argument, say) f ∈ S(Rd)
is concentrated on E∗ with center of mass at the origin. In general, when f̂ is complex-valued,

one should expand f̂ in a Fourier series where one samples at the centers of masses of all E∗

tiling Rd. Let us make this more precise and assume for simplicity that supp f̂ ⊆ θω where
θω ⊆ Rd is a rectangle centered at the origin with side lengths R−1/2 × · · · × R−1/2 × R−1,
oriented along ω ∈ Sd−1. To make the computations more accessible, let φ ∈ C∞

c (Rd) with
suppφ ⊆ [−1/2, 1/2]d and

T : θω → [−1/2, 1/2]d

T = D ◦R , R ∈ SO(d) , D = diag(R1/2, ..., R1/2, R)

where R ∈ SO(d) rotates θω to θed , and D scales the rectangle to the unit box [−1/2, 1/2]d.
Let us denote by T aω a dual rectangle with side lengths R1/2 × · · · × R1/2 × R, oriented along
ω ∈ Sd−1, and centered at a ∈ Rd. Let us collect all centers of masses of these dual rectangles
that tile Rd by Tω. Then

f̂ = φ ◦ T
and we wish to expand

f̂(ξ) =
∑
a∈Tω

fω(a)e
2πia·ξ1θω (ξ)

for certain Fourier coefficients fω(a) that we shall now compute. We prepare for a ∈ Tω,

⟨e2πi⟨a,·⟩, f̂⟩ =
∫
dξ (φ ◦ T )(ξ)e2πia·ξ = 1

|det(T )|

∫
dξ φ(ξ)e2πi⟨T

−ta,ξ⟩

=
1

|det(T )| ⟨e
2πi⟨T−ta,·⟩, φ⟩ .

Since T−ta ∈ Zd whenever a ∈ Tω, we obtain by summing the equality over a ∈ Tω,∑
a∈Tω

|det(T )|⟨e2πi⟨a,·⟩, f̂⟩e2πi⟨T−ta,ξ⟩ = φ(ξ) .

Hence, replacing ξ 7→ Tξ, we obtain

f̂(ξ) = (φ ◦ T )(ξ) = |det(T )|
∑
a∈Tω

⟨e2πi⟨a,·⟩, f̂⟩e2πia·ξ1θω (ξ) . (D.14)
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Taking the inverse Fourier transform, we observe

f(x) ∼
∑
a∈Tω

⟨e2πi⟨a,·⟩, f̂⟩e2πia·ξχTω (x− a) (D.15)

where (recall |detT | = R(d+1)/2) χTω := R(d+1)/2F(1θω ) which is focused on Tω and obeys
∥χTω∥∞ ∼ 1. Finally observe that we do not immediately get a Plancherel identity, but

∥f̂∥22 = |det(T )|2
∑

a,b∈Tω

⟨e2πi⟨a,·⟩, f̂⟩ · ⟨f̂ , e2πi⟨b,·⟩⟩
∫
dξ e2πiξ·(a−b)|1θω (ξ)|2(δa,b + 1− δa,b)

= |det(T )|
∑
a∈Tω

|⟨e2πi⟨a,·⟩, f̂⟩|2 +
∑

a ̸=b∈Tω

⟨e2πi⟨a,·⟩, f̂⟩⟨f̂ , e2πi⟨b,·⟩⟩
∫
Rd
χTω (a− b− y)χTω (y) dy .

(D.16)

Since (χTω ∗ χTω )(a − b) is a Schwartz function adapted to, say, a doubly dilated tube Tω with

∥χTω ∗ χTω∥∞ ∼ R(d+1)/2, we have (with the abbreviation fω(a) := ⟨e2πi⟨a,·⟩, f̂⟩) for any N ∈ N,∑
a ̸=b∈Tω

|fω(a)||fω(b)|(χTω ∗ χTω )(a− b) ∼N R
d+1
2

∑
a̸=b∈Tω

|fω(a)||fω(b)|(1 + |a− b|)−N

≲N R
d+1
2

∑
a∈Tω

|⟨e2πi⟨a,·⟩, f⟩|2 .
(D.17)

Therefore,

∥f̂∥22 ∼ R(d+1)/2
∑
a∈Tω

|⟨e2πi⟨a,·⟩, f̂⟩|2 (D.18)

which reflects the almost orthogonality of the ⟨e2πi⟨a,·⟩, f⟩χTω for different a ∈ Tω.

D.5. Wave packet decomposition for the truncated paraboloid. The following is taken
from Demeter [Dem20, Chapter 2].

Let Υ ∈ C∞
c ([−4, 4]d−1) with ∑

j∈Zd
Υ(ξ − j) = 1 .

Now let us refine the mesh a bit. Let R≫ 1 and rescale the lattice Zd−1 to R−1/2Zd−1. Then∑
|j|≲R1/2

Υ(R1/2ξ − j) ∼ 1|ξ|≲1

where Υ(R1/2ξ−j) equals roughly an indicator function on a cube ω := cω+[−R−1/2, R−1/2]d−1

with cω = R−1/2j. The cω denote the centers of those cubes which are roughly R−1/2 distant
from each other and overlap at most O(1) many times. We collect these center of masses in the
set ΩR ⊆ R−1/2Zd−1. Then, as in (D.14) it is reasonable to decompose f in a Fourier series

f(ξ) =
∑

cω∈ΩR

∑
cq∈QR

R
d−1
2 ⟨e2πi⟨cq,·⟩, f1ω⟩e2πicq·ξΥ(R1/2(ξ − cω)) (D.19)

≡
∑

cω∈ΩR

∑
cq∈QR

⟨e2πi⟨cq,·⟩, f1ω⟩e2πicq·cωΥq,ω(ξ) (D.20)

where cq ∈ R1/2Zd−1 are centers of dual cubes cq + [−R1/2, R1/2]d−1 which are R1/2-separated
and collected in the set QR, and

Υq,ω(ξ) = R
d−1
2 e2πicq·(ξ−cω)Υ(R1/2(ξ − cω)) , ∥Υq,ω∥22 ∼ R

d−1
2 . (D.21)
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For future use, let us record the following almost orthogonality property, valid for any weight
wq,ω ∈ C (such as wq,ω = wqδω,ω0

for instance),

∥
∑

cω∈ΩR

∑
cq∈QR

wq,ωΥq,ω∥2 ∼ R
d−1
4

 ∑
cω∈ΩR

∑
cq∈QR

|wq,ω|2
1/2

(D.22)

which is a consequence of the fact that the cubes ω are only finitely overlapping (for the
∑
cω∈ΩR

summation) and similar computations as in (D.16)-(D.18) (for the
∑
cq∈QR summation). Our

goal is to understand F ∗
Sf in the case of the truncated paraboloid S = Pd−1 = {(ξ, ξ2) : ξ ∈

[−1, 1]d−1}. To that end, we first record

(F ∗
SΥq,ω)(x) = e−2πix·(cω,c2ω)

∫
Υq,ω(η)e

2πiφx,q,ω(η) dη

with a complicated expression for the phase (which just comes from exploiting the galilean
symmetries of Pd−1)

φx,q,ω(η) = η · x
′ − cq + 2cωxd

R1/2
+ η2

xd
R
.

By stationary phase, we anticipate that F ∗
SΥq,ω will be concentrated on a R1/2 × · · · ×R1/2 ×R

tube centered at (cq, 0) pointing in the direction (−2cω, 1) (which just follows from the observation
that the old x′ = 0 point gets mapped to the new point x′ which satisfies x′ +2cωxd = 0). That
is, F ∗

SΥq,ω(x) decays rapidly whenever (x′, xd) is no critical point in the sense that ∇ηφx,q,ω = 0.
More precisely, recall Theorem 21.14 which says

WF (F ∗
SΥq,ω) = {(x,∇xφx,q,ω(η)) : (x, η) ∈ Rd \ {0} × supp(Υq,ω), ∇ηφx,q,ω(η) = 0} .

That is, the singularities will propagate along rays pointing in the direction ∇xφx,q,ω. To make
these statements more precise we introduce the following definitions.

Definition D.14 (Tubes and wave packets). (1) We denote by Tq,ω the spatial tube in Rd given
by

Tq,ω = {x = (x′, xd) ∈ Rd : |x′ − cq + 2cωxd| ≤ R1/2, |xd| < R} (D.23)

The collection of these tubes for fixed ω is denoted by Tω. The collection of all tubes is denoted
by T.

(2) For M ≥ 1, let

MTq,ω = {x = (x′, xd) ∈ Rd : |x′ − cq + 2cωxd| ≤MR1/2, |xd| ≤ R} (D.24)

denote the dilate of Tq,ω around its central axis.
(3) For each tube T = Tq,ω we write Υq,ω ≡ ΥT and F ∗

SΥT ≡ φT . The latter function (or any
scalar multiple thereof) is called wave packet.

The following theorem (see [Dem20, Theorem 2.2]) summarizes the main features of the wave
packet decomposition.

Theorem D.15 (Wave packet decomposition). Let f ∈ C∞([−4, 4]d−1), then there is a decom-
position

f =
∑
T∈T

fT (D.25)
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with supp fT ⊆ ωT for some ωT = cω,T +[−R−1/2, R−1/2]d−1 with cω,T ∈ ΩR. Let F
∗
SfT = aTφT

with aT ∈ C so that

F ∗
Sf =

∑
T∈T

aTφT . (D.26)

Then the φT obey for any k ≥ 1,

∥φT ∥∞ ≲ 1 , ∥φT ∥2 ≲ R(d+1)/4 (D.27)

∥φT ∥L∞(Rd−1×[−R,R]\MT ) ≲k M
−k , M ≥ 1 (D.28)

supp φ̂T ⊆ {(ξ, ξ2) : ξ ∈ ωT } , (D.29)

the aT obey the Plancherel similarity (recall ∥ΥT ∥22 ∼ R
d−1
2 )

∥f∥2 ∼ R
d−1
2

∑
T∈T

|aT |2 (D.30)

∥f1ω∥22 ∼ R
d−1
2

∑
T∈Tω

|aT |2 , (D.31)

and the coefficients fT obey the Plancherel similarity

∥f∥22 ∼
∑
T∈T

∥fT ∥22 . (D.32)

In particular, th choices

aT = e2πicq·cω · ⟨e2πi⟨cq,·⟩, f1ω⟩ and fT = aTΥT

are admissible.

Proof. Taking aT and fT as above, then the bound

∥φT ∥L∞(Rd−1×[−R,R]\MT ) ≲k M
−k , M ≥ 1

follows from non-stationary phase arguments since

inf
η∈supp(Υ), x∈(Rd−1×[−R,R])\MT

|∇ηφx,q,ω(η)| ≳M .

The bound ∥φT ∥L∞(Rd) ≲ 1 is immediate while

∥f1ω∥22 ∼ R
d−1
2

∑
T∈Tω

|aT |2 ,

follows from the almost orthogonality of the Υq,ω (D.22) or Parseval’s identity∑
cq∈QR

|⟨e2πi⟨cq,·⟩, f⟩|2 = R− d−1
2 ∥f1ω∥22 .

Summing this over all ω ∈ ΩR and using the fact that these cubes overlap at most O(1) many
times (to exploit almost orthogonality), one infers

∥f∥2 ∼ R
d−1
2

∑
T∈T

|aT |2 .

Note also that

∥f∥22 ∼
∑
T∈T

∥fT ∥22 .

follows from the bound ∥ΥT ∥22 ∼ R(d−1)/2 and

supp φ̂T ⊆ {(ξ, ξ2) : ξ ∈ ωT } ,
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which in turn follows from a direct computation. Note that φ̂T is a measure supported on a
hypersurface. □

D.6. Other interesting uncertainty principles. Another interesting variant of the uncer-
tainty principle was found by Shubin–Vakilian–Wolff [SVW98, Theorem 2.1].

Definition D.16. Let ρ(x) = min{1, 1/|x|}. Then a set E ⊆ Rd is called ε-thin if

|E ∩Bx(ρ(x))| ≤ ε |Bx(ρ(x))| , x ∈ Rd .
Theorem D.17 ([SVW98, Theorem 2.1]). There are ε > 0 and C < ∞ such that if E and F
are two ε-thin sets in Rd, then for any f ∈ L2(Rd), it holds that

∥f∥2 ≤ C
(
∥f∥L2(Ec) + ∥f̂∥L2(F c)

)
.

Clearly, the theorem says that f and f̂ cannot both be concentrated on small sets at the
same time. There are numerous related results in the literature, see, e.g., Fefferman [Fef83] or
Havin–Jöricke [HJ94].

We keep track of the following lemma which says that sharp cut-offs in spatial variables
automatically lead to frequency smearings on the inverse scale.

Lemma D.18. Let N1, N2 > 0, N > N1 +N2, and F : Rd → Rd be measurable. Let γ1/N (ξ) :=

Ndγ(Nξ) where γ̌ is a smooth bump function on Rd such that γ̌(x) = 1 for |x| ≤ 1, i.e., γ1/N is

a smoothing operator in frequency space on scale N−1. Then

1|x|≤N1
F (D)1|x|≤N2

= 1|x|≤N1
F−1

(
F (ξ) ∗ γ1/N

)
F 1|x|≤N2

. (D.33)

Analogously, for any surface measure dσ on a codimension one manifold S that is embedded in
Rd, we have

1|x|≤N1
F ∗
SFS1|x|≤N2

= 1|x|≤N1
F−1

(
dσ ∗ γ1/N

)
F 1|x|≤N2

(D.34)

where FS and F ∗
S are the usual Fourier restriction and extension operators.

Proof. Let f ∈ S(Rd), then(
1|x|≤N1

F (D)1|x|≤N2
f
)
(x) = 1|x|≤N1

∫
F̌ (x− y)1|y|≤N2

f(y) dy .

Since |x| ≤ N1 and |y| ≤ N2, we automatically have |x − y| ≤ N1 + N2 < N . Thus, with the
smooth bump function γ̌, we obtain(

1|x|≤N1
F (D)1|x|≤N2

f
)
(x) = 1|x|≤N1

∫
F̌ (x− y)γ̌(|x− y|/N)1|y|≤N2

f(y) dy

=
(
1|x|≤N1

F−1
(
F (ξ) ∗ γ1/N

)
F 1|x|≤N2

f
)
(x) ,

which is the first part of the assertion.
Since F ∗

SFS acts as convolution with (dσ)∨, we obtain analogously(
1|x|≤N1

F ∗
SFS1|x|≤N2

f)
)
(x) = 1|x|≤N1

∫
(dσ)∨(x− y)γ̌(|x− y|/N)1|y|≤N2

f(y) dy

=
(
1|x|≤N1

F−1
(
dσ ∗ γ1/N

)
F 1|x|≤N2

f
)
(x)

since (
dσ ∗ γ1/N

)∨
(x− y) =

∫
Rd
dξ e2πiξ·(x−y)

∫
S

dσ(η) γ1/N (ξ − η)

=

∫
S

dσ(η) e2πiη(x−y)γ̌(|x− y|/N)

= (dσ)∨(x− y)γ̌(|x− y|/N) .
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This concludes the proof. □

Appendix E. Notions of dimensions

A fundamental characteristic of many mathematical spaces (e.g., vector spaces, metric spaces,
topological spaces, etc.) is their dimension, which measures the “complexity” or “degrees of
freedom” inherent in the space. There is no single notion of dimension; instead, there are a
variety of different versions of this concept, with different versions being suitable for different
classes of mathematical spaces. Typically, a single mathematical object may have several subtly
different notions of dimension that one can place on it, which will be related to each other, and
which will often agree with each other in “non-pathological” cases, but can also deviate from
each other in many other situations.

The notions of dimension as defined above tend to necessarily take values in the natural

numbers (or the cardinal numbers); there is no such space as, R
√
2 for instance, nor can one talk

about a basis consisting of linearly independent elements, or a chain of maximal ideals of length
. There is however a somewhat different approach to the concept of dimension which makes no
distinction between integer and non-integer dimensions, and is suitable for studying “rough” sets
such as fractals. The starting point is to observe that in the d-dimensional space Rd, the volume
V of a ball of radius r grows like Rd, thus giving the following heuristic relationship

log V

log r
≈ d

between volume, scale, and dimension. Formalising this heuristic leads to a number of useful
notions of dimension for subsets of Rn (or more generally, for metric spaces), including (upper and
lower) Minkowski dimension (also known as box-packing dimension dimension), and Hausdorff
dimension.

Minkowski dimension can either be defined externally (relating the external volume of δ-
neighbourhoods of a set E to the scale δ) or internally (relating the internal δ-entropy of E
to the scale). Hausdorff dimension is defined internally by first introducing the d-dimensional
Hausdorff measure of a set E for any parameter 0 ≤ d < ∞, which generalises the familiar
notions of length, area, and volume to non-integer dimensions, or to rough sets, and is of interest
in its own right. Hausdorff dimension has a lengthier definition than its Minkowski counterpart,
but is more robust with respect to operations such as countable unions, and is generally accepted
as the “standard” notion of dimension in metric spaces. We will compare these concepts against
each other later in these notes.

One use of the notion of dimension is to create finer distinctions between various types of
“small” subsets of spaces such as Rn, beyond what can be achieved by the usual Lebesgue
measure (or Baire category). For instance, a point, line, and plane in R3 all have zero measure
with respect to three-dimensional Lebesgue measure (and are nowhere dense), but of course have
different dimensions (0, 1, and 2, respectively). (The Kakeya set conjecture, discussed recently
on this blog, offers another good example.) This can be used to clarify the nature of various
singularities, such as that arising from non-smooth solutions to PDE; a function which is non-
smooth on a set of large Hausdorff dimension can be considered less smooth than one which is
non-smooth on a set of small Hausdorff dimension, even if both are smooth almost everywhere.
While many properties of the singular set of such a function are worth studying (e.g. their
rectifiability), understanding their dimension is often an important starting point. The interplay
between these types of concepts is the subject of geometric measure theory.
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E.1. Minkowski dimension. There are several equivalent ways to approach Minkowski dimen-
sion. We begin with an “external” approach, based on a study of the δ-neighbourhoods

Eδ := {x ∈ Rn : dist(x,E) < δ}
of E. For simplicity, suppose E is bounded so that the Eδ have finite volume.

Let 0 ≤ d ≤ N and suppose E is a bounded portion of a d-dimensional subspace, e.g.,
E = Bd(0, 1)× {0}n−d. Then, by the triangle inequality,

Bd(0, 1)×Bn−d(0, δ) ⊆ Eδ ⊆ Bd(0, 2)×Bn−d(0, δ),

for all 0 < δ < 1, which implies

cδn−d ≤ voln(Eδ) ≤ Cδn−d

for some constants c, C > 0 depending only no n, d. In particular,

lim
δ→0

(
n− log voln(Eδ)

log δ

)
= d.

This motivates our first definition of Minkowski dimension.

Definition E.1. Let E be a bounded subset of Rn. The upper Minkowski dimension dimM (E)
is defined as

dimM (E) := lim sup
δ→0

n− log voln(Eδ)

log δ

and the lower Minkowski dimension dimM (E) is defined as

dimM (E) := lim inf
δ→0

n− log voln(Eδ)

log δ
.

If the upper and lower Minkowski dimensions match, we refer to dimM (E) := dimM (E) =
dimM (E) as the Minkowski dimension of E. In particular, the empty set has a Minkowski
dimension of −∞.

We have the following equivalent formulations of Minkowski dimension of a bounded set E:

Lemma E.2. Let E ⊆ Rn and α ∈ R. Then the following statements hold.

• We have dimM (E) < α iff for every ε > 0, one has voln(Eδ) ≤ Cδn−α−ε for all suffi-
ciently small δ > 0 and some C > 0.

• We have dimM (E) < α iff for every ε > 0, one has voln(Eδ) ≤ Cδn−α−ε for arbitrarily
small δ > 0 and some C > 0.

• We have dimM (E) > α iff for every ε > 0, one has voln(Eδ) ≤ Cδn−α−ε for arbitrarily
small δ > 0 and some C > 0.

• We have dimM (E) > α iff for every ε > 0, one has voln(Eδ) ≤ Cδn−α−ε for all suffi-
ciently small δ > 0 and some C > 0.

Clearly

0 ≤ dimM (E) ≤ dimM (E) ≤ n, ∅ ≠ E ⊆ Rn

and the monotonicity properties

dimM (E) ≤ dimM (F ); dimM (E) ≤ dimM (F ), E ⊆ F ⊆ Rn bounded subsets.

It is this natural to extend the definitions of lower and upper Minkowski dimension to unbounded
sets E by defining

dimM (E) := sup
F⊆E bounded

dimM (F ) (E.1)
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and

dimM (E) := sup
F⊆E bounded

dimM (F ). (E.2)

Lemma E.3 ([Tao09a, Exercise 4]). Any subset of Rn with lower Minkowski dimension less than
n has Lebesgue measure zero. In particular, any subset E ⊆ Rn of positive Lebesgue measure
must have full Minkowski dimension dimM (E) = n.

We now consider other formulations of Minkowski dimension. Given a bounded set E and
δ > 0, we make the following definitions:

• N ext
δ (E) (the external δ-covering number of E) is the fewest number of open balls of

radius δ with centres in Rn needed to cover E.
• N int

δ (E) (the internal δ-covering number of E) is the fewest number of open balls of
radius δ with centres in E needed to cover E.

• N net
δ (E) (the δ-metric entropy of E) is the cardinality of the largest δ-net in E, i.e., the

largest set x1, ..., xk in E such that |xi − xj | ≥ δ for all 1 ≤ i < j ≤ k.

• N pack
δ (E) (the δ-packing number of E) is the largest number of disjoint open balls one

can find of radius δ with centres in E.

These four quantities are closely related to each other, and to the volumes voln(Eδ).

Lemma E.4 ([Tao09a, Exercise 5]). For any bounded set E ⊆ Rn and any δ > 0 we have

N net
2δ (E) = N pack

δ (E) ≤ voln(Eδ)

voln(Bn(0, δ))
≤ 2nN ext

δ (E)

and

N ext
δ (E) ≤ N int

δ (E) ≤ N net
δ (E).

As a consequence of this lemma, we see

dimM (E) = lim sup
δ→0

logN ∗
δ (E)

log δ
(E.3)

and

dimM (E) = lim inf
δ→0

logN ∗
δ (E)

log δ
(E.4)

where ∗ is any of ext, int, net, pack. One can now take the latter two formulae as definition of
Minkowski dimensions for bounded sets (and proceed as previously to extend them to unbounded
sets). The latter two formulations for ∗ being int, net, or pack have the advantage of being
intrinsic, i.e., they only involve E rather than the ambient space Rn. In particular, these
formulations of Minkowski dimension extend without any difficulty to arbitrary metric spaces
(E, d) (at least when the spaces are locally compact), and then to unbounded sets as before.

It is easy to see that Minkowski dimension reacts well to finite unions, and more precisely that

dimM (E ∪ F ) = max(dimM (E),dimM (F ))

and

dimM (E ∪ F ) = max(dimM (E),dimM (F ))

for any E,F ⊆ Rn. However, it does not respect countable unions. For instance, the rationals Q
have Minkowski dimension 1, despite being the countable union of points, which of course have
Minkowski dimension 0. More generally, it is not difficult to see that any set E ⊆ Rn has the
same upper or lower Minkowski dimension as its topological closure E, since both sets have the
same δ-neighbourhoods. Thus, we see that the notion of Minkowski dimension misses some of
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the fine structure of a set E, in particular the presence of “holes” within the set. We now turn
to the notion of Hausdorff dimension, which rectifies some of these defects.

E.2. Hausdorff measures and dimension. The Hausdorff approach to dimension begins by
noting that d-dimensional objects in Rn tend to have a meaningful d-dimensional measure to
assign to them. For instance, the 1-dimensional boundary of a polygon has a perimeter, the
0-dimensional vertices of that polygon have a cardinality, and the polygon itself has an area.
So to define the notion of a d-Hausdorff dimensional set, we will first define the notion of the
d-dimensional Hausdorff measure Hd(E) of a set E.

Inspired by the (oversimplified) construction of the Lebesgue measure voln(E) = inf{∑k |Bk| :
E ⊆ ⋃k Bk} with half-open boxes Bk, we build d-dimensional Hausdorff measure using open balls
B(x, r). For d-dimensional measure, we will assign each ball a measure rd. We can then make
the following definition.

Definition E.5. The unlimited Hausdorff content hd,∞(E) of a set E ⊆ Rn is defined by the
formula

hd,∞ := inf

{ ∞∑
k=1

r∞k : E ⊆
∞⋃
k=1

B(xk, rk)

}
where the infimum ranges over all at most countable families of balls that cover E.

Note that if E is compact, then it would suffice to use finite coverings, since every open cover of
has a finite subcover. But in general, for non-compact E we must allow the use of infinitely many
balls. The reason to call this object “unlimited” Hausdorff content (denoted by the subscript
∞) is because the radii of the balls used to cover E is allowed to be as big as one pleases.

As with Lebesgue measure, hd,∞ is easily seen to be an outer measure, and one could define the
notion of a hd,∞-measurable set on which Carathéodory’s theorem applies to build a countably
additive measure. Unfortunately, a key problem arises: once d is less than n, most sets cease to
be hd,∞-measurable as additivity breaks down. To that end, consider n = 1 and d = 1/2. Then
computations show that the unlimited 1/2-dimensional content of [0, 2] is 1, despite being the
disjoint union of [0, 1] and (1, 2], which each have an unlimited content of 2−1/2. In particular,
this shows that [0, 1] (for instance) is not measurable with respect to the unlimited content. The
basic problem here is that the most efficient cover of a union such as [0, 1]∪(1, 2] for the purposes
of unlimited 1/2-dimensional content is not coming from covers of the separate components [0, 1]
and (1, 2] of that union, but is instead coming from one giant ball that covers [0, 2] directly.

To fix this, we will limit the Hausdorff content by working only with small balls. More
precisely, for any r > 0, we define the Hausdorff content hd,r(E) of a set E by the formula

hd,r(E) := inf

{ ∞∑
k=1

r∞k : E ⊆
∞⋃
k=1

B(xk, rk); rk ≤ r

}
where the balls B(xk, rk) are now restricted to be less than or equal to r in radius. This quantity
is decreasing in r, and we then define the Hausdorff outer measure (Hd)∗(E) by the formula

(Hd)∗(E) := lim
r→0

hd,r(E).

The key advantage of moving to the Hausdorff measure rather than Hausdorff content is that we
obtain a lot more additivity. For instance:

Lemma E.6 ([Tao09a, Exercise 11]). Let E,F ⊆ Rn with non-zero separation, i.e., dist(E,F ) =
inf{|x− y| : x ∈ E, y ∈ F} > 0. Then (Hd)∗(E ∪ F ) = (Hd)∗(E) + (Hd)∗(F ).

A consequence of this is that there is a large class of measurable sets.
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Proposition E.7 ([Tao09a, Proposition 12]). Let d ≥ 0. Then every Borel subset of Rn is
(Hd)∗-measurable.

On the (Hd)∗-measurable sets E, we write from now on Hd(E) for (Hd)∗(E), i.e., Hd is a
Borel measure on Rn.

In the following we summarize some properties of Hausdorff measures following Wolff’s notes
[Wol03, Chapter 8].

Definition E.8. Fix α > 0 and let E ⊆ Rd. For ε > 0, we define

Hε
α(E) := inf{

∞∑
j=1

rαj }

where the infimum is taken over all countable coverings of E by balls Bxj (rj) with rj < ε.

Clearly, Hε
α(E) decreases when ε ↘ 0 and so we define the (spherical) Hausdorff measure

[Fal86, p. 7]

Hα(E) := lim
ε↘0

Hε
α(E) . (E.5)

It is also clear that for β < α we have Hε
α(E) ≤ Hε

β(E) whenever ε ≤ 1, i.e.,

Hα(E) is a non-increasing function in α . (E.6)

Remarks E.9. (1) If H1
α(E) = 0, then Hα(E) = 0. This follows from the definition since a

covering showing that H1
α(E) < δ will necessarily consist of balls of radius δ1/α.

(2) It is also clear that Hα(E) = 0 whenever α > n since one can then already cover Rd by
balls Bxj (rj) such that

∑∞
j=1 r

α
j is arbitrarily small.

Lemma E.10. Let E ⊆ Rd. Then there is a unique number α0, called the Hausdorff dimension
of E or dim(E) such that Hα(E) = ∞ if α < α0 and Hα(E) = 0 if α > α0.

Note that at the critical dimension d = dimH itself, we allow Hd(E) to be zero, finite, or
infinite, and we shall shortly see in fact that all three possibilities can occur.

• The unit ball Bd(0, 1) ⊆ Rd ⊆ Rn for d ≤ n has Hausdorff dimension d, as does Rd itself.
Note that the former set has finite d-dimensional Hausdorff measure, while the latter has
an infinite measure.

• More generally, any d-dimensional smooth manifold in Rn has Hausdorff dimension d.

Proof. Define α0 to be the supremum of all α such that Hα(E) = ∞. Thus, Hα(E) = ∞ if
α < α0 by (E.6). Now suppose α > α0, let β ∈ (α0, α), and define M := 1 +Hβ(E) < ∞. For

given ε ∈ (0, 1), we can therefore find a covering of balls with
∑
j r

β
j ≤M and rj ≤ ε. Thus,∑

j

rαj ≤ εα−β
∑
j

rβj ≤ εα−βM

which goes to zero as ε→ 0. Thus, Hα(E) = 0 for α > α0. □

Remarks E.11. (1) The set function Hα may seen to be countably additive on Borel sets, i.e.,
Hα defines a Borel measure. In particular, Hα(E ∪ F ) = Hα(E) +Hα(F ) for compact, disjoint
sets E,F . This is part of the reason one considers Hα instead of any other Hε

α (e.g., H1
α). We

refer to standard references in the area like Carleson’s survey [Car67], Falconer [Fal86], or Mattila
[Mat95].

(2) The Borel measure Hd coincides with |B0(1)|−1 times the Lebesgue measure. If α < d,
then Hα is non-sigma finite. The follows, e.g., by Lemma E.10 which implies that any set of
non-zero Lebesgue measure will have infinite Hα measure.
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Example E.12. (1) The canonical example is the usual 1/3-Cantor set on [0, 1] This has a
covering of 2n intervals of length 3−n, so it has finite H log 2

log 3
measure. It is not hard to show that

in fact its H log 2
log 3

measure is non-zero. This can be done geometrically (cf. [Fal86, Theorem 8.6]32

with similitudes ψ1(x) = x/3 and ψ2(x) = (x+2)/333), or one can apply Proposition E.15 below
to the Cantor measure. In particular, the Hausdorff dimension of the Cantor set is log 2/ log 3.

We now study what the Hausdorff measure looks like for other values of d.

• Every subset of Rn is (H0)∗-measurable and H0 is the counting measure.
• Just as Hn = |Bn(0, 1)|−1voln, we have for integer d ∈ (0, n) that the restriction of d-
dimensional Hausdorff measure to any d-dimensional linear subspace (or affine subspace)
V is equal to the constant |Bd(0, 1)|−1 times d-dimensional Lebesgue measure on V .

One can also compute d-dimensional Hausdorff measure for other sets than subsets of d-
dimensionial affine subspaces by changes of variable.

Proposition E.13 ([Tao09a, Exercise 15]). Let 0 ≤ d ≤ n be an integer, let Ω be an open subset
of Rd, and let φ : Ω → Rn be a smooth injective map which is non-degenerate in the sense that
the Hessian Dφ (which is a d × n-matrix) has full rank at every point of Ω. For any compact
subset E of Ω, one has

Hd(φ(E)) =

∫
E

J dHd =
1

|Bd(0, 1)|

∫
E

J dvold (E.7)

where the Jacobian J is the square root of the sum of squares of all the determinants of the
d × d minors of the d × n matrix Dφ. It is possible to extend this formula to Lipschitz maps
φ : Ω → Rn that are not necessarily injective, leading to the area formula∫

φ(E)

#(φ−1(y)) dHd(y) =
1

|Bd(0, 1)|

∫
E

J dvold (E.8)

for such maps.

There are various other notions of dimension. Let us mention only one of them, namely the
Minkowski dimension which we define here only for compact sets.

Definition E.14 (Minkowski dimension). Suppose E ⊆ Rd is compact, then let Eδ = {x ∈ Rd :
dist(x,E) < δ} be the δ-neighborhood of E.

Let α0 be the supremum of all α > 0 such that, for some constant C,

|Eδ| ≥ Cδd−α

for all δ ∈ (0, 1]. Then, α0 is called the lower Minkowski dimension of E, denoted by dL(E).
Let α1 be the supremum of all α > 0 such that, for some constant C,

|Eδ| ≥ Cδd−α

for a sequence of δ’s converging to zero. Then α1 is called the upper Minkowski dimension of E,
denoted by dU (E).

32See also Corollary 8.7 there which says that the Cantor set is indeed self-similar since it satisfies the open
set condition

⋃2
j=1 ψj([0, 1]) ⊂ [0, 1].

33See also Theorem 8.3 there which says that there is a unique compact set E ⊆ R such that ψ(E) :=⋃
j ψj(E) = E for any finite set of contractions, and for any non-empty compact set F ⊆ R, one has

limk→∞ ψk(F ) = E in Hausdorff metric.
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It would also be possible to define the Minkowski dimensions like the Hausdorff dimension
but restricting to coverings of balls of the same size. Namely, define a set S to be δ-separated if
any two distinct points x, y ∈ S satisfy |x− y| > δ. Let Eδ(E) be the δ-entropy on E, defined by
the maximal possible cardinality for a δ-separated subset of E. 34 Then, one can show that

dL(E) = lim inf
δ→0

log Eδ(E)

log(1/δ)
,

dU (E) = lim sup
δ→0

log Eδ(E)

log(1/δ)
.

Notice that countable sets may have positive lower Minkowski dimension; consider, e.g., the set
{1/n}∞n=1 ∪ {0} which has upper and lower Minkowski dimension 1/2.

In the following, we will give a potential theoretic characterization of the Hausdorff measure.
If E is a compact set, then let P (E) denote the space of all probability measures supported on
E. The following will be quite helpful.

Proposition E.15 (Frostman’s lemma). Suppose E ⊆ Rd is compact. Then the following two
assertions are equivalent.

(1) There is a µ ∈ P (E) such that

µ(Bx(r)) ≤ Crα (E.9)

for a suitable constant C and all x ∈ Rd, r > 0.
(2) Hα(E) > 0.

Proof. See Wolff [Wol03, Proposition 8.2] or Mattila [Mat15, Theorem 2.7]. □

Let us now define the α-dimensional energy of a (positive) measure µ with compact support
35 by the formula

Iα(µ) :=

∫
dµ(x)dµ(y)

|x− y|α , α < d . (E.10)

Let us also define the mean field potential

V αµ (x) :=

∫
|x− y|−αdµ(y) ,

i.e., we have

Iα(µ) =

∫
V αµ (x) dµ(x) . (E.11)

Roughly, one expects µ to have Iα(µ) <∞ if and only if it satisfies (E.9). Although this precise
statement is false, we will now see that the Hausdorff dimension of a compact subset can still be
defined in terms of the energies of measures in P (E).

Lemma E.16. Let µ be a probability measure with compact support. Then, the following two
assertions hold.

(1) If µ satisfies (E.9), then Iβ(µ) <∞ for all β < α.
(2) Conversely, if µ satisfies Iα(µ) < ∞, then there is another probability measure ν such

that ν(X) ≤ 2µ(X) for all sets X and such that ν satisfies (E.9).

34Show that Eδ(E) is comparable to the minimum number of δ-balls required to cover E.
35The compact support assumption is not needed; it is only included to simplify the presentation
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Proof. (1) Without loss of generality, we assume that the diameter of supp(µ) is ≤ 1. Then, by
(E.9), ∫

V βµ (x) dµ(x) ≲
∫ ∞∑

j=0

2jβµ(Bx(2
−j)) dµ(x) ≲

∫ ∞∑
j=0

2j(β−α) dµ(x) ≲ 1 .

(2) Let F = {x : V αµ (x) ≤ 2Iα(µ)}, then µ(F ) ≥ 1/2 by Iα(µ) =
∫
V αµ (x) dµ(x) (and the mean

value theorem). Let us now define the new probability measure ν by ν(X) = µ(X ∩ F )/µ(F ).
By the previous argument ν(X) ≤ 2µ(X) and we are left to show that ν satisfies (E.9). Suppose
first x ∈ F . If r > 0 then

r−αν(Bx(r)) ≤ V αν (x) ≤ 2V αµ (x) ≤ 4Iα(µ)

which shows (E.9) whenever x ∈ F . For general x we distinguish between the cases where
the intersection Bx(r) ∩ F is empty or not. Assume first that r is such that Bx(r) ∩ F = ∅.
Then evidently ν(Bx(r)) = 0. Else, if Bx(r) ∩ F ̸= ∅, let y ∈ Bx(r) ∩ F and observe that
ν(Bx(r)) ≤ ν(By(2r)) ≲ rα by the first part of the proof. □

We are now ready to give an alternative characterization of Hausdorff dimension for compact
subsets of Rd.

Proposition E.17. If E is compact then the Hausdorff dimension of E coincides with the
number

sup{α : ∃µ ∈ P (E) with Iα(µ) <∞} . (E.12)

Proof. Denote the above supremum by s. If β < s, then by (2) of the previous lemma, we
know that E supports a measure with µ(Bx(r)) ≤ Crβ . But then by Proposition E.15, we
have Hβ(E) > 0, i.e., β ≤ dimE which means s ≤ dimE. Conversely, if β < dimE, then
by Proposition E.15, E supports a measure with µ(Bx(r)) ≤ Crβ+ε for some sufficiently small
ε > 0. Then Iβ(µ) <∞ and so β ≤ s which shows dimE ≤ s. □

As the α-energy is the expectation value of a translational invariant function, the Fourier
transform should come in handy. In particular, we will make us of the elementary

Proposition E.18. Let µ be a positive measure with compact support and α < d. Then

Iα(µ) =

∫
dµ(x)dµ(y)

|x− y|α = cα

∫
Rd

|µ̂(ξ)|2
|ξ|d−α dξ , where cα =

Γ
(
d−α
2

)
πα−d/2

Γ(α/2)
. (E.13)

Using this and Proposition E.17 allows us to prove a lower bound on the Hausdorff dimension
of the support of probability measures.

Corollary E.19. Suppose µ is a compactly supported probability measure on Rd with

|µ̂(ξ)| ≲ |ξ|−β (E.14)

for some 0 < β < d/2, or more generally that (E.14) is true in the L2 sense∫
B0(N)

|µ̂(ξ)|2 dξ ≲ Nd−2β . (E.15)

Then the dimension of the support of µ is at least 2β.
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Proof. By Proposition E.17 it suffices to show that if (E.15) holds, then Iα(µ) < ∞ for all
α < 2β. But in view of the Fourier representation of Iα(µ), we have (using |µ̂(ξ)| ≤ ∥µ∥1 = 1)

c−1
α Iα(µ) =

(∫
|ξ|≤1

+

∫
|ξ|≥1

)
|µ̂(ξ)|2
|ξ|d−α dξ ≲ sup

ξ
|µ̂(ξ)|2 +

∞∑
j=0

2−j(d−α)
∫

2j≤|ξ|≤2j+1

|µ̂(ξ)|2 dξ

≲ ∥µ∥21 +
∞∑
j=0

2−j(d−α)+j(d−2β) <∞ ,

whenever α < 2β. This shows (E.15) and concludes the proof. □

One may ask the converse question, whether a compact set with dimension α must support a
measure µ satisfying

|µ̂(ξ)| ≲ε (1 + |ξ|)−α/2−ε (E.16)

for all ε > 0. The answer is (emphatically) no 36. Indeed, there are many counterexamples,
i.e., sets with positive Hausdorff dimension which do not support any measure whose Fourier
transform even decays as |ξ| → ∞. Consider, e.g., the line segment E = [0, 1] × {0} ⊆ R2.
Clearly, E has dimension 1, but if µ is a measure supported on E, then µ̂(ξ) only on ξ1, and so
it cannot go to zero as ξ21 + ξ22 → 0. If one considers only the case d = 1, this question is related
to the classical question of “sets of uniqueness”, see, e.g., Salem [Sal63] or Zygmund [Zyg02].
For instance, one can show that the standard 1/3 Cantor set does not support any measure such
that µ̂ vanishes at infinity. Indeed, it is non-trivial to show that a “non-counterexample” exists,
i.e., a set E with given dimension α which supports a measure satisfying (E.16). One can find a
construction of such a set due to Kaufman in Wolff [Wol03, Chapter 9].

Remark E.20. There is an important relation between the Fourier transform of Borel measures
and dynamical properties thereof in quantum mechanics. Consider a self-adjoint Hamiltonian
H in some Hilbert space H, the associated spectral measure (on Borel sets in R) dµψ(λ) =
(ψ, dEH(λ)ψ) for some ψ ∈ H, and its Fourier transform

µ̂ψ(t) =

∫
R
eitλ dµψ = (ψ, eitHψ) = (ψ(0), ψ(t)) .

Its absolute square, i.e., |µ̂ψ(t)| = |(ψ(0), ψ(t))|2, denotes the survival probability as ψ(0) is
evolved along the Hamiltonian flow. Usually, one is interested in its Cesaro average

< |µ̂|2 >T :=
1

T

∫ T

0

|µ̂(t)|2 dt .

Wiener’s theorem then asserts limT→∞ < |µ̂ψ|2 >T =
∑
λ∈R |µψ({λ})|2. Thus, if ψ ∈ Hc, the

continuous spectral subspace of H, the survival probability decays to zero. If µψ is uniformly
α Hölder continuous (UαH), i.e., µψ(I) ≤ |I|α for some α ∈ [0, 1] and where |I| denotes the
Lebesgue measure, then, Strichartz’s theorem [Str90] (see also Last [Las96, Theorem 3.1]) refines
Wiener’s theorem and says

< |µ̂ψ|2 >T ≲ T−α , ψ ∈ Huh(α)

where Huh(α) = {ψ : µψ is UαH}.
We say that a measure µ is α-continuous iff µ(E) = 0 for any set E for which the Hausdorff

measure Hα(E) = 0 and denote Hαc = {ψ : µψ is α-continuous}. Last [Las96, Theorem 5.2]

36On the other hand, if one interprets decay in an L2 averaged sense, the answer becomes ’yes’ since the
calculation on the proof of the above corollary is clearly reversible.
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showed that for all α ∈ [0, 1] one has Huh(α) = Hαc which means that Hαc must have a dense
subset of vectors for which supT T

α < |µ̂ψ|2 >T <∞.
Moreover, the α-dimensional energy defined in (E.10) is related, via the Fourier transform to∫ ∞

0

|µ̂ψ(t)|2
t1−α

dt = (µ̂ψ, | · |−1+αµ̂ψ) = (dµψ, | · |−α ∗ dµψ) =
∫
dµψ(x)dµψ(y)

|x− y|α = Iα(µψ) .

Recalling Proposition E.17 it is then interesting to observe that (cf. Last [Las96, Lemma 5.1] µψ
is α-continuous, whenever Iα(µψ) <∞.
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[BL76] Jöran Bergh and Jörgen Löfström. Interpolation Spaces. An Introduction. Springer-Verlag, Berlin-
New York, 1976. Grundlehren der Mathematischen Wissenschaften, No. 223.

[BLM89] J. Bourgain, J. Lindenstrauss, and V. Milman. Approximation of zonoids by zonotopes. Acta Math.,

162(1-2):73–141, 1989.
[BM18] Jean-Marc Bouclet and Haruya Mizutani. Uniform resolvent and Strichartz estimates for Schrödinger

equations with critical singularities. Trans. Amer. Math. Soc., 370(10):7293–7333, 2018.

[Bou85] Jean Bourgain. Estimations de certaines fonctions maximales. C. R. Acad. Sci. Paris Sér. I Math.,
301(10):499–502, 1985.

[Bou91a] J. Bourgain. Besicovitch type maximal operators and applications to Fourier analysis. Geom. Funct.
Anal., 1(2):147–187, 1991.

[Bou91b] J. Bourgain. Lp-estimates for oscillatory integrals in several variables. Geom. Funct. Anal., 1(4):321–

374, 1991.
[Bou91c] Jean Bourgain. On the restriction and multiplier problems in R3. In Geometric Aspects of Functional

Analysis (1989–90), volume 1469 of Lecture Notes in Math., pages 179–191. Springer, Berlin, 1991.
[Bou92] J. Bourgain. A remark on Schrödinger operators. Israel J. Math., 77(1-2):1–16, 1992.
[Bou93a] J. Bourgain. Fourier transform restriction phenomena for certain lattice subsets and applications to

nonlinear evolution equations. I. Schrödinger equations. Geom. Funct. Anal., 3(2):107–156, 1993.

[Bou93b] J. Bourgain. On the distribution of Dirichlet sums. J. Anal. Math., 60:21–32, 1993.
[Bou95] Jean Bourgain. Some new estimates on oscillatory integrals. In Essays on Fourier Analysis in Honor

of Elias M. Stein (Princeton, NJ, 1991), volume 42 of Princeton Math. Ser., pages 83–112. Princeton
Univ. Press, Princeton, NJ, 1995.



SOME NOTES ON RESTRICTION THEORY 243

[Bou99] J. Bourgain. On the dimension of Kakeya sets and related maximal inequalities. Geom. Funct. Anal.,
9(2):256–282, 1999.

[Bou00] J. Bourgain. Harmonic analysis and combinatorics: how much may they contribute to each other?

In Mathematics: Frontiers and Perspectives, pages 13–32. Amer. Math. Soc., Providence, RI, 2000.
[Bou02] Jean Bourgain. On random Schrödinger operators on Z2. Discrete Contin. Dyn. Syst., 8(1):1–15,

2002.

[Bou03] J. Bourgain. Random lattice Schrödinger operators with decaying potential: some higher dimensional
phenomena. In Geometric Aspects of Functional Analysis, volume 1807 of Lecture Notes in Math.,

pages 70–98. Springer, Berlin, 2003.
[Bou07] J. Bourgain. On Strichartz’s inequalities and the nonlinear Schrödinger equation on irrational tori. In

Mathematical Aspects of Nonlinear Dispersive Equations, volume 163 of Ann. of Math. Stud., pages

1–20. Princeton Univ. Press, Princeton, NJ, 2007.
[Bou13] J. Bourgain. Moment inequalities for trigonometric polynomials with spectrum in curved hypersur-

faces. Israel J. Math., 193(1):441–458, 2013.

[Bou16] J. Bourgain. A note on the Schrödinger maximal function. J. Anal. Math., 130:393–396, 2016.
[BPSTZ03] Nicolas Burq, Fabrice Planchon, John G. Stalker, and A. Shadi Tahvildar-Zadeh. Strichartz estimates

for the wave and Schrödinger equations with the inverse-square potential. J. Funct. Anal., 203(2):519–

549, 2003.
[BPSTZ04] Nicolas Burq, Fabrice Planchon, John G. Stalker, and A. Shadi Tahvildar-Zadeh. Strichartz estimates

for the wave and Schrödinger equations with potentials of critical decay. Indiana Univ. Math. J.,

53(6):1665–1680, 2004.
[BS88] Colin Bennett and Robert Sharpley. Interpolation of Operators, volume 129 of Pure and Applied

Mathematics. Academic Press, Inc., Boston, MA, 1988.
[BS11] Jong-Guk Bak and Andreas Seeger. Extensions of the Stein-Tomas theorem. Math. Res. Lett.,

18(4):767–781, 2011.

[BY81] M. Sh. Birman and D. R. Yafaev. Asymptotic behavior of the spectrum of the scattering matrix.
Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 110:3–29, 241, 1981. Boundary

value problems of mathematical physics and related questions in the theory of functions, 13.

[BY84] M. Sh. Birman and D. R. Yafaev. Asymptotic behavior of the spectrum of the scattering matrix.
Journal of Soviet Mathematics, 25(1):793–814, 1984.
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