
ICM 2022

Introduction to Decoupling

in Fourier Analysis



What is Fourier analysis?

In Fourier analysis, we write a function f as

f (x) =
∑
n

f̂ (n)e2πinx .

Why? The building blocks behave nicely with respect to

I Differentiation: d
dx e

2πinx = 2πine2πinx .

I Translation: e2πin(x+x0) = e2πinx0e2πinx .

Many problems that involve derivatives or translation-structure of
the real line connect naturally with Fourier analysis.



A problem with Fourier analysis

In Fourier analysis, we write a function f as

f (x) =
∑
n

f̂ (n)e2πinx .

This representation can be hard to work with.

To find f (2) we have to add up many terms.
They have positive and negative parts.
It’s hard to tell if f (2) is positive or negative.
It’s hard to tell if f (2) is big or small.

We will see a deep open problem in a minute.



Decoupling is a recently developed set of tools that helps transfer
information about f̂ into information about f .

Decoupling has led to the solution of several longstanding
problems in harmonic analysis, PDE, and analytic number theory.

Introduced by Wolff (2000).
Breakthrough by Bourgain-Demeter (2014).



Plan for the day

Introduce one old problem which has been solved using decoupling.

Talk through some of the ideas of the proof.
(Draw lots of pictures.)



Fourier analysis and diophantine equations

In the circle method, the number of solutions of a diophantine
equation can be encoded using Fourier analysis.

Sample problem (raised by Hardy-Littlewood).

Let HLs,k(N) be the number of integer solutions of

nk1 + ...+ nks = nks+1 + ...+ nk2s , with 1 ≤ ni ≤ N (HL).

For fixed s, k, what are the asymptotics of HLs,k(N) as N →∞?



Fourier analysis and diophantine equations

In the circle method, the number of solutions of a diophantine
equation can be encoded using Fourier analysis.

Notation: e(x) = e2πix .

Let h(x) = hk,N(x) :=
∑N

n=1 e(nkx).

Proposition
∫ 1
0 |hk,N(x)|2sdx = HLs,k(N), the number of integer

solutions of

nk1 + ...+ nks = nks+1 + ...+ nk2s , with 1 ≤ ni ≤ N (HL).

On the next slide, we sketch the proof of the Proposition. It is a
good example of how Fourier analysis interacts nicely with the
addition structure of the real line.



Proof sketch of Proposition

If m ∈ Z, then

∫ 1

0
e(mx)dx =

{
1 if m = 0

0 if m 6= 0

Let h(x) :=
∑N

n=1 e(nkx).

|h|2s = hsh
s

=
∑N

n1,...,n2s=1 e((nk1 + ...+ nks − nks+1 − ...− nk2s)x).

∫ 1
0 |h|

2s =
∑N

n1,...,n2s=1

∫ 1
0 e((nk1 + ...+ nks − nks+1 − ...− nk2s)x)dx ,

the number of integer solutions of

nk1 + ...+ nks = nks+1 + ...+ nk2s , with 1 ≤ ni ≤ N



Fourier analysis and diophantine equations

HLs,k(N) is the number of integer solutions of

nk1 + ...+ nks = nks+1 + ...+ nk2s , with 1 ≤ ni ≤ N (HL).

We understand the asymptotics of HLs,k(N) as N →∞ in the
following cases:

I If k = 2, classical.

I If s is much bigger than k. (Hardy-Littlewood, Vinogradov,
...)

For many other values of s, k , the asymptotics are poorly
understood.

Example: k = 3, s = 3.



Fourier analysis and diophantine equations

hk,N(x) :=
N∑

n=1

e2πin
kx . (∗)

Proposition HLs,k(N) =
∫ 1
0 |hk,N(x)|2sdx

(∗) is the Fourier series of hk,N . But it is difficult to convert this
explicit Fourier series into accurate information about hk,N(x).

Deep open problems:

I Estimate the order of magnitude of |h3,N(
√

2)|.
I Estimate the order of magnitude of

∫ 1
0 |h3,N(x)|6dx .



Vinogradov system

In the 1930s, Vinogradov studied the number of solutions of the
following system of equations:

nj1 + ...+ njs = njs+1 + ...+ nj2s for all 1 ≤ j ≤ k . (V )

(Note: 2s variables and k equations.)

Js,k(N) = the number of integer solutions of (V) with 1 ≤ ni ≤ N.

Vinogradov proved good estimates for Js,k(N) for some k and s.
He applied these estimates to the Hardy-Littlewood problem above
and other problems in number theory.

On the next slide, I’ll show one of the results he got in this way.



Asymptotics for Hardy-Littlewood problem

HLs,k(N) is the number of integer solutions of

nk1 + ...+ nks = nks+1 + ...+ nk2s , with 1 ≤ ni ≤ N (HL).

We understand the asymptotics of HLs,k(N) in the following cases.

I k = 2. Classical.

I s > 2k , Hardy-Littlewood-Hua.

I s > Ck2 log k . Vinogradov.

I s > k2/2 + lower order terms. Current record.



Vinogradov system

In the 1930s, Vinogradov studied the number of solutions of the
following system of equations:

nj1 + ...+ njs = njs+1 + ...+ nj2s for all 1 ≤ j ≤ k . (V )

(Note: 2s variables and k equations.)

Js,k(N) = the number of integer solutions of (V) with 1 ≤ ni ≤ N.

Vinogradov proved good estimates for Js,k(N) for some k and s.

In the last decade, mathematicians have proven good estimates for
all k and s.



Sharp estimates for Vinogradov system

nj1 + ...+ njs = njs+1 + ...+ nj2s for all 1 ≤ j ≤ k . (V )

Js,k(N) = the number of integer solutions of (V) with 1 ≤ ni ≤ N.

Theorem (Sharp estimate for Vinogradov system)

For every ε > 0, there is a constant C (ε, k) so that

Js,k(N) ≤ C (ε, k)Nε
(
Ns + N2s− k(k+1)

2

)
.

This upper bound is sharp up to the factor C (ε, k)Nε.



Sharp estimates for Vinogradov system

nj1 + ...+ njs = njs+1 + ...+ nj2s for all 1 ≤ j ≤ k . (V )

Js,k(N) = the number of integer solutions of (V) with 1 ≤ ni ≤ N.

Theorem (Sharp estimate for Vinogradov system)

Js,k(N) ≤ C (ε, k)Nε
(
Ns + N2s− k(k+1)

2

)
.

There are several proofs of this theorem.

I Wooley, k=3, efficient congruencing.

I Bourgain-Demeter-G, all k, decoupling.

I Wooley, all k, efficient congruencing.

I Guo-Li-Yang-Zorin-Kranich, all k, 10 pages, combined ideas.



Goals of the talk

Main goal: Describe some main ideas of the proof(s).

I All proofs involve complex formulas and computations. But
we will try to explain the ingredients of the computations
without writing long formulas.

I I will focus on the decoupling proof, but I will try to make
some comments that apply to all the proofs.



Hardy-Littlewood vs. Vinogradov

Hardy-Littlewood: nk1 + ...+ nks = nks+1 + ...+ nk2s .

2s variables. One equation.
Open problem for many values of k , s.

Vinogradov: nj1 + ...+ njs = njs+1 + ...+ nj2s for all 1 ≤ j ≤ k.

2s variables. k equations.
Understood for all k, s up to factor CεN

ε.

Why is the Vinogradov system easier to understand?

Roughly: in the Vinogradov system, it is possible to combine
information from many different scales (of N).
Vinogradov used this idea in his work in the 1930s.
Recent work in the area carries the multiscale idea even further.



Fourier analysis and the Vinogradov system

nj1 + ...+ njs = njs+1 + ...+ nj2s for all 1 ≤ j ≤ k . (V )

Js,k(N) = the number of integer solutions of (V) with 1 ≤ ni ≤ N.

Can write Js,k(N) as an integral

Js,k(N) =
∫
[0,1]k |f (x)|2sdx

where f (x) has a nice Fourier series.

CAN’T estimate |f (x)| pointwise. That would be at least as hard
as full understanding of Hardy-Littlewood problem.

CAN estimate
∫
[0,1]k |f (x)|pdx for any p.



Comments on the proof

In the dcoupling proof, we estimate
∫
[0,1]k |f (x)|pdx using purely

analytic methods.
The ingredients are things like

I Orthogonality

I Holder’s inequality

I Elementary geometry

I Induction on scales. (Or combining information from many
scales.)

It is perhaps surprising that these ingredients are enough to prove
sharp estimates for the Vinogradov system.



Comments on the proof 2

The decoupling proof is purely analytic. The ingredients are things
like

I Orthogonality

I Holder’s inequality

I Elementary geometry

I Induction on scales. (Or combining information from many
scales.)

The induction on scales is crucial. It plays a crucial role in
Vinogradov’s work and in all the proofs of the sharp bounds for
Vinogradov system.

Goal: Explain what we mean by induction on scales and discuss
why it is helpful.



Comments on the proof 3

The decoupling proof is also quite visual (or geometric).

We will draw pictures.

At the beginning we choose a coordinate system that makes the
pictures nice.

To keep the discussion simple, we will focus on dimension k = 2
and we will prove a weaker estimate. The discussion will illustrate
some of the main tools in the proof.



Our exponential sum

x = (x1, x2) ∈ R2.

f (x) =
∑N

n=1 e
(

n
N x1 + n2

N2 x2
)

.

The frequencies ( n
N ,

n2

N2 ) lie on a parabola:
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Our exponential sum

f (x) =
∑N

n=1 e
(

n
N x1 + n2

N2 x2
)

.

(Here x ∈ R2.)

We write QS(x) for a square of side length S centered at x .

To get sharp estimates for Vinogradov system of degree 2, need to
bound∫
QN2 (0)

|f (x)|6dx .



Our exponential sum

f (x) =
∑N

n=1 e
(

n
N x1 + n2

N2 x2
)

.

I f (0) = N.
I Because of orthogonality, |f (x)| ≤ 10

√
N for most points x .

I f (x) is N-periodic in x1 variable.
I |f (x)| is roughly constant on each unit square.

N2
• unit balls

where
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Our exponential sum

f (x) =
∑N

n=1 e
(

n
N x1 + n2

N2 x2
)

.

N2
• unit balls

where

/ fcx ) / ~ N
X2

0 g•
• • • •

µ• zN 2N

✗
,

Uλ(f ) := {x : |f (x)| > λ}. |U| = measure of U.

Theorem (Baby version of main theorem)

|UN/10(f ) ∩ QN2 | ≤ CεN
1+ε.



Notation to remember:

I e(x) = e2πix .

I QS(x) is a cube of side S centered at x .

I Uλ(f ) := {x : |f (x)| > λ}.
I |U| = measure of U.

f (x) =
∑N

n=1 e
(

n
N x1 + n2

N2 x2
)

.

Goal: |UN/10(f ) ∩ QN2 | ≤ CεN
1+ε.

We will now introduce one tool at a time and see how close we get
to our goal.



f (x) =
∑N

n=1 e
(

n
N x1 + n2

N2 x2
)

.

Goal: |UN/10(f ) ∩ QN2 | ≤ CεN
1+ε.

Tool 1: Orthogonality.

The functions {e
(

n
N x1 + n2

N2 x2
)
}Nn=1 are orthogonal on each QN .

So |UN/10(f ) ∩ QN(x)| ≤ CN for any x .
So |UN/10(f ) ∩ QN2(0)| ≤ CN3.
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f (x) =
∑N

n=1 e
(

n
N x1 + n2

N2 x2
)

.

Tool 2: Pieces of the sum. If I ⊂ {1, ...,N},

fI (x) =
∑

n∈I e
(

n
N x1 + n2

N2 x2
)

.

We can partition {1, ...,N} into intervals I of length L, and then

f (x) =
∑

I length L fI (x).

All theorems about Vinogradov system involve estimates for fI for
many different I with many different length scales L.

This idea goes back to Vinogradov.



f (x) =
∑N

n=1 e
(

n
N x1 + n2

N2 x2
)

.

Tool 2: Pieces of the sum. If I ⊂ {1, ...,N},

fI (x) =
∑

n∈I e
(

n
N x1 + n2

N2 x2
)

. f (x) =
∑

I length L fI (x).

Lemma If x ∈ UN/10(f ), then x ∈ UL/20(fI ) for most I .

Proof idea.

I |f (x)| ≤ N.

I |fI (x)| ≤ L.

I The number of I is N/L.

So if |f (x)| = N, then |fI (x)| = L for every I .
If |f (x)| is close to N, then |fI (x)| is close to L for most I .



f (x) =
∑N

n=1 e
(

n
N x1 + n2

N2 x2
)

.

Tool 2: Pieces of the sum. If I ⊂ {1, ...,N},

fI (x) =
∑

n∈I e
(

n
N x1 + n2

N2 x2
)

. f (x) =
∑

I length L fI (x).

Lemma If x ∈ UN/10(f ), then x ∈ UL/20(fI ) for most I .

Questions:

I What can we say about shape of each set UL/20(fI )?

I What can we say about how these sets overlap?



f (x) =
∑N

n=1 e
(

n
N x1 + n2

N2 x2
)

.

Goal: |UN/10(f ) ∩ QN2 | ≤ CεN
1+ε.

Tool 3: The shape of fI .

The set of frequencies {( n
N ,

n2

N2 )}n∈I lie in a small box.

Wz
•

← Wz =Wf

•

•
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,

I

In other words, f̂I is supported in the red box. What does this tell
us about fI ?



Warmup problem

Suppose that g is a function on R and ĝ is supported in
[−1/2, 1/2]. What could g look like?

1 2 3 4 5 6 7 8 9 10
x

1

2

3

4

Answer: The blue function has ĝ supported in [−1/2, 1/2].
The orange function does not.
The sharp peaks in the orange function require a large support in
Fourier space.



Warmup problem

Suppose that g is a function on R and ĝ is supported in
[−1/2, 1/2]. What could g look like?

1 2 3 4 5 6 7 8 9 10
x

1

2

3

4

Answer: The blue function has ĝ supported in [−1/2, 1/2].
The orange function does not.
The sharp peaks in the orange function require a large support in
Fourier space.



Warmup problem

Suppose that g : R→ R and ĝ is supported in [−1
2 ,

1
2 ].

What could g look like?

1 2 3 4 5 6 7 8 9 10
x

1

2

3

4

Theorem. (Shannon-Nyquist) If ĝ supported in [−1
2 ,

1
2 ], then g

can be recovered from g(n) for n ∈ Z.

Heuristic: If ĝ is supported in [−1/2, 1/2], then g is roughly
constant on each interval of length 1.



f (x) =
∑N

n=1 e
(

n
N x1 + n2

N2 x2
)

.

Goal: |UN/10(f ) ∩ QN2 | ≤ CεN
1+ε.

Tool 3: The shape of fI .

The set of frequencies {( n
N ,

n2

N2 )}n∈I lie in a small box.

Wz
•

← Wz =Wf

•

•
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,

I

In other words, f̂I is supported in the red box. What does this tell
us about fI ?



Tool 3: The shape of fI .

The set of frequencies {( n
N ,

n2

N2 )}n∈I lie in a small box.
TI is a tiling of R2 by rectangles that are dual to the small box.

Wz

✗
2

¥ w
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✗
,

Then |fI (x)| is roughly constant on each rectangle in the tiling.



Tool 3: The shape of fI .
The set of frequencies {( n

N ,
n2

N2 )}n∈I lie in a small box.
TI is a tiling of R2 by rectangles that are dual to the small box.

Wz

✗
2

¥ w
.

✗
,

The box on the left has dimensions L
N ×

L2

N2 .

Each tile on the right has dimensions N
L ×

N2

L2
.

The long axis of the tile corresponds to the short axis of the box
on the left.



Recap and combine Tools 1-3

f (x) =
∑N

n=1 e
(

n
N x1 + n2

N2 x2
)

.

Goal: |UN/10(f ) ∩ QN2 | ≤ CεN
1+ε.

Tool 1: The exponentials in the sum are orthogonal on each QN .
Can compute

∫
QN
|fI |2dx .

Tool 2: Look at fI for many different intervals. I ⊂ {1, ...,N}
interval of length L.
If x ∈ UN/10(f ), then x ∈ UL/20(fI ) for most I .

Tool 3: The shape of fI . |fI | roughly constant on each rectangular
tile of a tiling that is “dual to I”.
So UL/20(fI ) is a union of these dual rectangles.

Let us combine all these tools and see what we can figure out
about fI when L = N1/2. We would like to understand UL/20(fI ).



Recap and combine Tools 1-3

We study fI where I has length L = N1/2.
Tool 1 (orthogonality) tells us that |UL/20(fI ) ∩ QN | ≤ CN3/2.

Tool 3 tells us that UL/20(fI ) is organized into N1/2×N rectangles.
So there are O(1) rectangles in each QN .
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f (x) =
∑N

n=1 e
(

n
N x1 + n2

N2 x2
)

.

Goal: |UN/10(f ) ∩ QN2 | ≤ CεN
1+ε.

Tool 4: Transversality. For different I , the rectangles are oriented
in different directions.

Wz

✗
2

_¥¥¥
U⇐ If I . ) Etc .

×
,



f (x) =
∑N

n=1 e
(

n
N x1 + n2

N2 x2
)

.

Goal: |UN/10(f ) ∩ QN2 | ≤ CεN
1+ε.

Tool 4: Transversality.

Wz

✗
2
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U⇐ If I . ) Etc .

×
,

Recall: If x ∈ UN/10(f ), then x ∈ UL/20(fI ) for most I .



Tool 4: Transversality. For different I , the rectangles are oriented
in different directions.

0
Wz

✗
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Recall: If x ∈ UN/10(f ), then x ∈ UL/20(fI ) for most I .

So UN/10(f ) ∩ QN is contained in O(1) smaller squares QN1/2 .



Tool 4: Transversality.

0
Wz

✗
a O

'

E. ⇐ ¥ 0

☒
,✓⇐ If -1 . ) Etc .

Wyo (f) c- red circles 0

UN/10(f ) ∩ QN is contained in O(1) smaller squares QN1/2 .
Can use the same method to study f inside each of these smaller
squares.

|UN/10(f ) ∩ QN | ≤ Nε. So |UN/10(f ) ∩ QN2 | ≤ N2+ε.



Historical remarks

0
Wz

✗
a O

'

E. ⇐ ¥ 0

☒
,✓⇐ If -1 . ) Etc .

Wyo (f) c- red circles 0

Transversality depends on the curvature of the parabola.
Stein began a program to investigate this connection between
curvature and Fourier analysis in the 1960s.
It was developed by many people.

The argument we just sketched is due to Wolff and
Bennett-Carbery-Tao.
We will call it the orthogonality/transversality argument.



Taking stock

f (x) =
∑N

n=1 e
(

n
N x1 + n2

N2 x2
)

.

Goal: |UN/10(f ) ∩ QN2 | ≤ CεN
1+ε.

Just orthogonality: |UN/10(f ) ∩ QN2 | ≤ CN3.
Orthogonality/transversality: |UN/10(f ) ∩ QN2 | ≤ CN2+ε.

This was the best estimate available in harmonic analysis before
Bourgain-Demeter.

Decoupling applies these tools at many different scales.



fN(x) =
∑N

n=1 e
(

n
N x1 + n2

N2 x2
)

.

Goal: |UN/10(f ) ∩ QN2 | ≤ CεN
1+ε.

Tool 5: Induction on scales.

We discussed estimates for fI and for UL/20(fI ).
This is actually similar to our original problem.

For each I of length L, there is a linear change of variables that
converts fI to fL, our original function but with L in place of N.
So our previous tools give estimates about UL/20(fI ).



fN(x) =
∑N

n=1 e
(

n
N x1 + n2

N2 x2
)

.

Goal: |UN/10(f ) ∩ QN2 | ≤ CεN
1+ε.

Look again at fI with length L = N1/2.

I Local orthogonality bounds |UL/20(fI ) ∩ QN | for each QN .
I Induction on scales bounds |UL/20(fI ) ∩ QN2 |.
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I Local orthogonality bounds |UL/20(fI ) ∩ QN | for each QN .

I Induction on scales bounds |UL/20(fI ) ∩ QN2 |.

Wz

✗
2

1 m¥
✗

,

U÷(f± )

The two bounds are complementary.
Induction gives a better bound on the number of tiles in UL/20(fI ).
Local orthogonality controls how the tiles pack.



We add this new information into the transversality method.

Old: Local orthogonality bounds |UL/20(fI ) ∩ QN | for each QN .
New: Induction on scales bounds |UL/20(fI ) ∩ QN2 |.

0 0
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0¥ (f) lies in red circles

This improves bound for |UN/10(f ) ∩ QN2 | all the way to the goal.



Recap of our approaches

1. Just orthogonality.

|UN/10(f ) ∩ QN2 | ≤ CN3.

2. Orthogonality and transversality.
(Harmonic analysis of the 70s, 80s, 90s.)

|UN/10(f ) ∩ QN2 | ≤ CεN
2+ε.

3. Orthogonality and transversality and induction on scales.
(Decoupling theory of Wolff and Bourgain-Demeter.)

|UN/10(f ) ∩ QN2 | ≤ CεN
1+ε.

Sharp up to factor of Nε.



Reflecting on the induction step

Why does the induction step help so much?

In the orthogonality/transversality argument, we considered fI at
scale L = N1/2.
We used transversality between the rectangles at that scale.

When we use induction and unwind the induction, the argument
involves scales Lα for a dense set of α ∈ [0, 1].

This is a common feature of all proofs of sharp bounds for the
Vinogradov system. Each proof

I uses fI at a dense set of scales.

I takes advantage of some type of transversality at all those
scales.



The current landscape of the field

Decoupling has changed the landscape of the field.

Combining information from many scales is more powerful than
anyone had realized.

People have been thinking a lot about:

I What other problems can we solve by combining information
from many scales?

I How can we combine information from many scales in a
systematic way?

I What problems are out of reach of this multiscale method?


