Fourier Restriction and Applications Homework Sheet 2

Exercise 2.1 Show the following

Lemma 0.1. Let $(X, \|\cdot\|)$ be a quasi-normed space, i.e., $\|f+g\| \leq c_1(\|f\|+\|g\|)$ for some $c_1 \geq 1$. Assume that a sequence $(f_k)_{k\in\mathbb{N}} \in X$ satisfies $\|f_k\| \leq A \cdot c_2^{-k}$ for some A > 0 and $c_2 > 1$. Then $\|\sum_{k=1}^N f_k\| \leq A \cdot c_3$ where c_3 does not depend on A or N (but possibly on c_1 and c_2).

(Why is this assertion non-trivial?)

Exercise 2.2

Let $0 , <math>1 < q \leq \infty$ and assume (X, μ) and (Y, ν) are two measure spaces. Let T be a sublinear operator (initially defined on the set of really simple functions $f = \sum_{k=1}^{N} a_k \mathbf{1}_{E_k}$ on X such that Tf is a ν -measurable function on Y), i.e., $|T(f+g)| \leq |Tf| + |Tg|$ and $|T(\lambda f)| = |\lambda||Tf|$ for $f, g \in \text{dom}(T)$ and $\lambda \in \mathbb{C}$. We say that T is of restricted weak type (p, q)if

$$\alpha d_{T\mathbf{1}_E}(\alpha)^{1/q} \lesssim |E|^{1/p}$$
 for all $\alpha > 0, E \subseteq X$.

Prove that T is of restricted weak type (p,q) if and only if

$$\left|\int_{F} (T\mathbf{1}_{E})(x) \, d\nu(x)\right| =: \left|\langle \mathbf{1}_{F}, T\mathbf{1}_{E} \rangle\right| \lesssim |E|^{1/p} |F|^{1/q'}$$

for all $E \subseteq X$ and $F \subseteq Y$. (Hint: Use Proposition 1.2.18 for " \Leftarrow " and Hölder's inequality or the layer-cake representation and Fubini to prove " \Rightarrow ".)

Exercise 2.3

Let $A, B_0, B_1 \ge 0$ such that $A \le \min(B_0, B_1)$. Show that for all $\theta \in (0, 1)$ we have

$$A \le B_{\theta} \min\left(\frac{B_0}{B_1}, \frac{B_1}{B_0}\right)^{\varepsilon}$$

for any sufficiently small $\varepsilon_{\theta} > 0$, where $B_{\theta} = B_0^{1-\theta} B_1^{\theta}$. Can you imagine a situation where this type of estimate is superior to the simpler estimate $A \leq B_{\theta}$? (For hints, see https://terrytao.wordpress.com/2009/03/30/245c-notes-1-interpolation-of-lp-spaces/.)