Fourier Restriction and Applications Homework Sheet 1

Exercise 1.1

Let $0 and assume <math>f, (f_k)_{k \in \mathbb{N}}, g \in L^p(X, \mu)$.

1. Show that

$$\|\sum_{k=1}^{N} f_k\|_{L^p(X)} \le N^{1/p-1} \sum_{k=1}^{N} \|f_k\|_{L^p(X)}$$

holds for any $N \in \mathbb{N}$. (Hint: First show $\|\sum_{k=1}^{N} f_k\|_p^p \leq \sum_{k=1}^{N} \|f_k\|_p^p$ and then use Hölder's inequality for the sum on the right side.) Is the constant $N^{1/p-1}$ sharp?

2. If additionally $f, g \ge 0$, prove the reverse triangle inequality $||f + g||_p \ge ||f||_p + ||g||_p$.

Exercise 1.2

Show Proposition 1.1.3 (on simple properties of d_f) in the notes.

Exercise 1.3

Prove the marked items in Proposition 1.2.5 (on simple properties of f^*) in the notes.

Exercise 1.4

Let $\hat{f}(\xi) := \int_{\mathbb{R}^d} e^{2\pi i x \cdot \xi} f(x) dx$ denote the Fourier transform which is well-defined on $L^1(\mathbb{R}^d)$ or the Schwartz space $\mathcal{S}(\mathbb{R}^d)$ and then extended to $L^p(\mathbb{R}^d)$ for any $1 \leq p \leq 2$ by Plancherel (initially on $L^1 \cap L^2$ and then extended via density to L^2) and interpolation. Recall that the interpolation lead us to the (non-optimal) Hausdorff–Young inequality

 $\|\hat{f}\|_{L^{p'}(\mathbb{R}^d)} \le \|f\|_{L^p(\mathbb{R}^d)}.$

Suppose there was an inequality of the form

$$\|\hat{f}\|_{L^{q}(\mathbb{R}^{d})} \leq C_{p,q,d} \|f\|_{L^{p}(\mathbb{R}^{d})}$$

for some $1 \le p, q \le \infty$. Show (by a scaling argument) that necessarily q = p' and, by randomizing a sequence of functions and Khintchine's inequality, that $p \le 2$.

Exercise 1.5

Let f, g be measurable on a σ -finite measure space (X, μ) . Prove the Hardy–Littlewood inequality

$$\int_{X} |f(x)g(x)| \, d\mu(x) \le \int_{0}^{\infty} f^{*}(t)g^{*}(t) \, dt,$$

where f^*, g^* are the decreasing rearrangements of f and g, respectively.