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Harmonic Analysis
Addendum to Homework Sheet 3

Exercise 3.4
Prove Hadamard’s three circle theorem. Let g(z) be holomorphic on the annulus A := {z ∈ C :
r1 < |z| < r3} for some 0 < r1 < r3 and denote

M(r) := max
θ∈[0,2π]

|g(reiθ)| for r ∈ (r1, r3) . (1)

Prove that

log(
r3
r1
) logM(r2) ≤ log(

r3
r2
) logM(r1) + log(

r2
r1
) logM(r3) (2)

for any r1 < r2 < r3, i.e., logM(r) is a convex function of log r. (Hint: Convince yourself that
there is a vertical strip which the exponential function maps onto the annulus A.)
Compute both sides of the inequality when g(z) = czλ for some constants c ∈ C and λ ∈ Z.

Addendum
In the solution to the above exercise, we have seen that the inequality in (2) becomes an equality
for g(z) = czλ for any c ∈ C and λ ∈ Z. Note that it is important to have λ ∈ Z since in
this case zλ is holomorphic on C and so of course on A, too. On the other hand, zλ is not
holomorphic on A for general λ ∈ R (or even λ ∈ C); consider, e.g., the paradigm λ = 1/2.
The following theorem yields a converse to the above exercise.

Theorem 0.1. Let 0 < r1 < r3, A := {z ∈ C : r1 < |z| < r3}, and g : A→ C be holomorphic.
Let M(r), r1 < r < r3 be defined as in (1). Suppose the inequality (2) is an equality for all
r2 ∈ (r1, r3). Then, there are c ∈ C and λ ∈ Z such that g(z) = czλ.

The basic idea to prove Theorem 0.1 is to show that all complex derivatives of g(z) coincide
with those of czλ at some point z0 ∈ A and then use the analyticity of g to conclude equality
for all z ∈ A. The constraint λ ∈ Z is enforced by the assumption that g is holomorphic. An
important ingredient in the proof is precise control on the functionM(r). To this end, we prove
the following lemma.

Lemma 0.2. Let 0 < r1 < r3, A := {z ∈ C : r1 < |z| < r3}, and g : A → C be holomorphic.
Let M(r), r1 < r < r3 be defined as in (1). Suppose the inequality (2) is an equality for all
r2 ∈ (r1, r3). Then, there are c > 0 and λ ∈ R such that

M(r) = crλ. (3)

Proof. Recall that if a convex function f : I → R for some interval I ⊆ R obeys the equality

f(tx+ (1− t)y) = tf(x) + (1− t)f(y), 0 ≤ t ≤ 1, x, y ∈ R,

then f must be affine linear, i.e., of the form f(x) = λx+B for some λ,B ∈ R.
Note that (2) asserts that M(r) is log-convex, i.e.,

log(M(rt1r
1−t
3 )) ≤ t log(M(r1)) + (1− t) log(M(r3)). (4)



Indeed, this follows from (2) by introducing t = log(r3/r2)
log(r3/r1)

and noting

rt1r
1−t
3 = exp(t log(r1) + (1− t) log(r3)) = r2. (5)

The log-convexity of M(r) as described in (4) and (5) is equivalent to saying that log(M(er))
is convex in r. Therefore, if (2) is an equality for all r2, we see that log(M(er)) = λr +B, i.e.,
M(er) = eB · eλr. This is equivalent to

M(r) = eB · eλ log(r) = eB · rλ, (6)

which concludes the proof.

Proof of Theorem 0.1. First, (2) is equivalent to

log(r2) · log
(
M3

M1

)
+ (log(r3) log(M1)− log(r1) log(M3)) = log

(
r3
r1

)
log(M2). (7)

Let us choose λ, c′ ∈ R such that

λ =
log

(
M3

M1

)
log

(
r3
r1

) and c′ · log
(
r3
r1

)
= log(r3) log(M1)− log(r1) log(M3). (8)

Then, for all r ∈ (r1, r3), we have the implication

λ log(r) + c′ = log(M(r)) ⇒M(r) = crλ with c = ec
′
. (9)

Next, for every radius r0 ∈ (r1, r3) there is z0 ∈ A such that |z0| = r0 and

M(r0) = |g(z0)|. (10)

Since g is continuous on the circle with radius r0, we have

d

dθ
|g(z)|

∣∣∣
z=z0

= 0, z = |z0|eiθ (11)

since |g(z0)| is the maximal value of g(z) for |z| = |z0|. Next, since |g(z)| ≤ M(|z|) for all
z ∈ A, we see that M(|z|) − |g(z)| ≥ 0. Moreover, the equality M(|z|) − |g(z)| = 0 holds if
z = z0. Thus, M(|z|)− |g(z)| has a local minimum at z = z0. Hence,

d

dr
|g(z)|

∣∣∣
|z|=|z0|

=M ′(r)
∣∣∣
r=|z0|

, z = reiθ. (12)

We now apply (11) and (12) to compute d
dz
g(z). To this end, for g(z) = R(z)eiφ(z) we note

dg

dz
= eiφ(z)

(
dR

dz
+ iR(z)

dφ(z)

dz

)
= g(z)

(
d ln(R(z))

dz
+ i

dφ(z)

dz

)
= R(z)eiφ(z)

(
1

R(z)

dR(z)

dz
+ i

dφ(z)

dz

)
.

(13)

Next recall, for f : C → C holomorphic at z ∈ C the complex derivative in polar coordinates

d

dz
f(z) =

e−iθ

2

(
∂f

∂r
− i

r

∂f

∂θ

)
. (14)



Thus, by (11) and (12),

dR

dz
=

e−iθ

2
|M ′(r)|. (15)

Next, recall the Cauchy–Riemann conditions for f = u+ iv in polar coordinates,

∂u

∂r
=

1

r

∂v

∂θ
and

1

r

∂u

∂θ
= −∂v

∂r
. (16)

In particular, for ln g(z) = lnR + iφ we have (away from the branch cut of the complex
logarithm),

∂ ln(R(z))

∂r
=

1

r

∂φ(z)

∂θ
and

1

r

∂ ln(R(z))

∂θ
= −∂φ(z)

∂r
. (17)

Thus, since ∂θR = 0, we obtain

∂φ(z)

∂r
= 0 and

∂φ(z)

∂θ
=
rM ′(r)

R(z)
. (18)

Thus,

dφ(z)

dz
= − i

2

e−iθM ′(r)

R(r)
. (19)

Combining this with (15), we obtain (recall (13))

dg

dz
= R(z)eiφ(z)

(
e−iθ

2R(z)
M ′(r) + i ·

(
− i

2

e−iθM ′(r)

R(z)

))
= R(z)eiφ(z) · e

−iθM ′(r)

R(z)

=M ′(r)e−iθeiφ(z).

(20)

Put differently, we see

d

dz
g(z)

∣∣∣
z=z0

= ψ · z
|z|
M ′(|z|) = cψλzλ−1 (21)

for some c ∈ R and ψ ∈ C obeying |ψ| = 1; here we used Lemma 0.2 in the last equality.
By iterating the above arguments, we can see that the constraint |g(z0)| ≤ M(|z0|) is in fact
strong enough to control also all the higher derivatives, i.e., g(z) has all the same derivatives
as f(z) := αzλ at z = z0 with α := cψ. Indeed, suppose that the derivatives of g and f do not
coincide. Then we can zoom in close enough that the lowest different derivative is the dominant
factor in the difference g − f , i.e., g(z + z0) ≈ f(z + z0) + azn +O(zn+1) for some n ∈ N and
a ∈ C. We choose a direction θ such that aθn has the same phase as f(z0); then, taking z = εθ
for sufficiently small ε yields |g(z + z0)| ≈ |f(z + z0)| + |a||z|n +O(|z|n+1), which violates the
bound |g(z + z0)| ≤ |f(z + z0)| which comes from the constraint |g(z0)| ≤M(|z0|).
Thus, having shown that g(z) has all the same derivatives as αzλ at z = z0, the analyticity of
g(z) implies

g(z) = αzλ, for all z ∈ A. (22)

The claim that λ ∈ Z follows from the condition that g is holomorphic.


