Summer term 2020

Harmonic Analysis
Addendum to Homework Sheet 3

Exercise 3.4
Prove Hadamard’s three circle theorem. Let g(z) be holomorphic on the annulus A := {z € C:
r1 < |z| < r3} for some 0 < r; < r3 and denote

M(r) := max |g(rei9)| for r € (ry,73) . (1)
0€l0,27]
Prove that
r r r
loa(22) log M (r2) < loa(™) log M(ry) + log("2) log M (1) )
1 2 1

for any r; < ry < r3, i.e., log M(r) is a convex function of logr. (Hint: Convince yourself that
there is a vertical strip which the exponential function maps onto the annulus A.)
Compute both sides of the inequality when g(z) = cz* for some constants ¢ € C and )\ € Z.

Addendum

In the solution to the above exercise, we have seen that the inequality in becomes an equality
for g(z) = cz* for any ¢ € C and X\ € Z. Note that it is important to have A € Z since in
this case z* is holomorphic on C and so of course on A, too. On the other hand, z* is not
holomorphic on A for general A € R (or even A\ € C); consider, e.g., the paradigm A = 1/2.
The following theorem yields a converse to the above exercise.

Theorem 0.1. Let 0 <r; <r3, A:=={2€C: r; <|z| <r3}, and g: A — C be holomorphic.
Let M(r), r1 < r < r3 be defined as in . Suppose the inequality is an equality for all
ro € (r1,73). Then, there are c € C and A € Z such that g(z) = cz*.

The basic idea to prove Theorem is to show that all complex derivatives of g(z) coincide
with those of cz* at some point 2y € A and then use the analyticity of g to conclude equality
for all z € A. The constraint A € Z is enforced by the assumption that ¢ is holomorphic. An
important ingredient in the proof is precise control on the function M (r). To this end, we prove
the following lemma.

Lemma 0.2. Let 0 <r; <r3, A:={2€C: r <|z| <r3}, and g: A — C be holomorphic.
Let M(r), r1 < r < r3 be defined as in . Suppose the inequality is an equality for all
ry € (r1,73). Then, there are ¢ >0 and A € R such that

M(r) = er. (3)
Proof. Recall that if a convex function f : I — R for some interval I C R obeys the equality
flz+ (A =t)y) =tf(x)+ (1 =6)f(y), 0<i<1 zyeR,

then f must be affine linear, i.e., of the form f(z) = Az + B for some A\, B € R.
Note that asserts that M (r) is log-convex, i.e.,

log(M (ryr;™")) < tlog(M(r1)) + (1 — t)log(M(rs)). (4)



Indeed, this follows from by introducing t = % and noting

rirs ™" = exp(tlog(ry) + (1 — t)log(rs)) = ro. (5)

The log-convexity of M(r) as described in and is equivalent to saying that log(M(e"))
is convex in r. Therefore, if (2)) is an equality for all r9, we see that log(M(e")) = A\r + B, i.e.,
M(e") = eP - e*. This is equivalent to

M(r) = e - eMos(r) — B LA (6)
which concludes the proof. O]
Proof of Theorem[0.1] First, ([2)) is equivalent to

M. r
log(r) - log (Mg) + (log(rs) log(M;) — log(ry) log(Ms3)) = log (7"_3) log(Ms). (7)
1 1
Let us choose A, ¢ € R such that
log (%) ry
A=——— and ¢ -log (—) = log(rs) log(M;) — log(ry) log(Ms). (8)
log (ﬁ) m
Then, for all r € (ry,r3), we have the implication
Mog(r) + ¢ =log(M(r)) = M(r) = e  with ¢ = e (9)

Next, for every radius rg € (ry,r3) there is zg € A such that |z9| = ry and

M (ro) = [g(20)]- (10)

Since ¢ is continuous on the circle with radius ry, we have
Lo =0, == z0le? (1)

o ., T T

since |g(zo)| is the maximal value of g(z) for |z| = |z|. Next, since |g(z)| < M(|z|) for all
z € A, we see that M(|z]) — |g(2)] > 0. Moreover, the equality M(|z|) — |g(z)| = 0 holds if
z = z9. Thus, M(|z|) — |g(z)| has a local minimum at z = z,. Hence,

z=re. (12)

= M'(r)
|z[=lzo]
We now apply and to compute L g(z). To this end, for g(z) = R(2)e’**) we note

49 _ o) (d_R 4 Z'R(Z)d"p(z)>

Lig02)

)
r=|z0|

dz dz dz
o (1) 0 .

= Rlz)e ()<R(z) dz o dz )

Next recall, for f : C — C holomorphic at z € C the complex derivative in polar coordinates

d e Of i of
A (5—;%)' 14




Thus, by and ,

dR B e~
dz 2

| M'(r)]. (15)

Next, recall the Cauchy—Riemann conditions for f = w + v in polar coordinates,

ou 10v 10u ov
o e 1
ar  rof and r 00 or (16)
In particular, for Ing(z) = In R + i@ we have (away from the branch cut of the complex
logarithm),
Oln(R(z)) 10¢(z) 10In(R(2)) 0p(z)
= - d - = — : 1
ar o0 07 00 or (17)
Thus, since dy R = 0, we obtain
Op(2) Op(z) _rM'(r)
or 0 an 00 R(z) (18)
Thus,
;A0 !
dp(z) _ie"M (r) (19)
dz 2 R(r)
Combining this with (I5)), we obtain (recall (13))
dg , e i , ie M'(r)
22— R(2)e®) [ — ppf B il S
2, fe)e <2R(z) (r) +3 ( 2 R(2)
—i0 g/
R(z)e “Re)
= M'(r)e"ei*®)
Put differently, we see
Do) = DM = cpr (21)
ng z=z0 N ‘Z| -

for some ¢ € R and ¢ € C obeying |¢)| = 1; here we used Lemma in the last equality.

By iterating the above arguments, we can see that the constraint |g(z9)| < M(|zo|) is in fact
strong enough to control also all the higher derivatives, i.e., g(z) has all the same derivatives
as f(z) := az® at z = 2y with a := cy. Indeed, suppose that the derivatives of g and f do not
coincide. Then we can zoom in close enough that the lowest different derivative is the dominant
factor in the difference g — f, i.e., g(z + 20) = f(z + 20) + az™ + O(z"!) for some n € N and
a € C. We choose a direction 0 such that af™ has the same phase as f(zo); then, taking z = €6
for sufficiently small ¢ yields |g(z + z0)| & |f(z + 20)| + |a||z|" + O(]z["*1), which violates the
bound |g(z + z0)| < |f(z + 20)| which comes from the constraint |g(zo)| < M(]zo).

Thus, having shown that g(z) has all the same derivatives as az* at z = z, the analyticity of
g(z) implies

g(z) = az®, forall z € A (22)

The claim that A € Z follows from the condition that g is holomorphic. O]



