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I Hartree-Fock Theory of Coulomb Systems
One of the biggest triumphes of twentieth century science has been the discovery
of quantum mechanics (and quantum field theory) almost one hundred years ago
by Heisenberg [58], Born, Heisenberg, and Jordan [18], Schrödinger [89], Dirac
[33, 34, 35], and Pauli [84]. It is a remarkable fact that, while quantum mechanics
is of key importance for all technologies discovered in the past century and the
complexity of theoretic descriptions of quantum systems has increased by several
orders of magnitude, the basic conceptual framework of a complex Hilbert space
H of wave functions ψ(t) ∈ H which represent physical states at time t ∈ R and
evolve according to the (time-dependent) Schrödinger equation iψ̇(t) = Hψ(t),
with H = H∗ being the self-adjoint Hamiltonian operator, is unchanged until
today. In absence of external fields, the Hamiltonian H is independent of time t.
Then the solution of the time-dependent Schrödinger equation can be traced back
to determining the spectral resolution, in particular, all eigenvalues E ∈ R and
all corresponding eigenvectors ψE ∈ H of H . Eigenvalues and corresponding
eigenvectors do not cover all possible cases, and the general task to determine the
spectral resolution of H has lead to the mathematical theory of spectral analysis
of self-adjoint operators, see [86].

For a Coulomb system, i.e., a nonrelativistic atom (K = 1) or molecule (K ≥
2), consisting ofN ∈ Z+ := {1, 2, 3, . . .} dynamical, mutually repelling electrons
revolving aboutK ∈ Z+ attractive static nuclei of chargesZ := (Z1, Z2, . . . , ZK) ∈
[R+

0 ]K at pairwise distinct positions R := (~R1, ~R2, . . . , ~RK) ∈ [R3]K , the Hilbert
space of a single electron is h := L2(R3 × {↑, ↓}), and the Hilbert space

H(N) :=
{

Ψ ∈ h⊗N
∣∣∣ ∀π ∈ SN : Ψ(xπ) = (−1)π Ψ(x)

}
(I.1)

of the wave function of the system of N dynamical electrons is the space of
square-integrable functions of N coordinates xn = (~xn, τn) ∈ R3 × {↑, ↓} which
are antisymmetric under permutations xπ = (xπ(1), . . . , xπ(N)) of these coordi-
nates (x1, . . . , xN). (Here and henceforth we follow the convention from physics
and assume for Hilbert space always that (ϕ, ψ) 7→ 〈ϕ|ψ〉 is antilinear in ϕ and
linear in ψ.) The Hamiltonian generating the dynamics of these N electrons is

HN(Z,R) :=
N∑
n=1

{
−∆n −

K∑
k=1

Zk

|~xn − ~Rk|

}
+

∑
1≤m<n≤N

1

|~xm − ~xn|
. (I.2)

Note that the charges Z and the positionsR of the nuclei enterHN as fixed param-
eters, and HN(Z,R) may be considered the Born–Oppenheimer approximation
[19] to lowest order. We frequently omit to display the dependence of the Hamil-
tonian on Z and R and simply write HN ≡ HN(Z,R). The Hamiltonian HN is
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essentially self-adjoint and semibounded on the space S∧N := S⊗N ∩ H(N) of
antisymmetric Schwartz test functions of N variables which is a dense subspace
of H(N). (We henceforth largely ignore domain questions, omit to display S∧N ,
and implicitly assume sufficient regularity of the wave functions under consider-
tation.)

The semiboundedness of HN ensures the finiteness of the ground state en-
ergy, i.e., the infimum Egs(N) ≡ Egs(N,Z,R) := inf σ(HN) of the spec-
trum of HN . The ground state energy Egs(N) and, if Egs(N) happens to be an
eigenvalue, the corresponding ground state (eigenvector) Ψgs ∈ H(N) are basic
quantities for the physical description of the Coulomb system. The actual solution
of the corresponding eigenvalue equation HNΨgs = Egs(N)Ψgs, however, is in-
accessible to explicit solution or even numerical computation for large molecules
due to the large number of variables involved.

At this point the Rayleigh–Ritz principle becomes of key importance because
it yields a variational characterization of

Egs(N) = inf
{
〈Ψ | HNΨ〉

∣∣∣ Ψ ∈ H(N) , ‖Ψ‖ = 1
}

(I.3)

as the lowest energy expectation value the Hamiltonian HN admits. Instead of
solving the Schrödinger equation -which is virtually impossible- one computes
the energy expectation value of any normalized trial state Ψtrial ∈ H(N). This
yields an upper bound 〈Ψtrial|HNΨtrial〉 ≥ Egs(N) on the ground state energy.
If 〈Ψtrial|HNΨtrial〉 − Egs(N) is small, the trial state Ψtrial is assumed to be a
good approximation to (one of) the actual ground state(s) Ψgs. The mathematical
justification for this replacement, e.g., in terms of quantitative error bounds, is a
difficult and largely open mathematical problem.

The earliest and, perhaps, most natural choice of trial states for Coulomb sys-
tems made is known as the Hartree–Fock approximation, which had been origi-
nally proposed by Hartree [57] but without an antisymmetry contraint on the wave
function. This was followed by improvements of Fock [41] and Slater [93, 92],
who took the antisymmetry of the trial state correctly into account. It is a varia-
tional principle in which the variation in (I.3) is restricted to Slater determinants,
i.e., to wave functions of the form Φ(f) := f1 ∧ f2 ∧ · · · ∧ fN . These are anti-
symmetrized tensor products

f1 ∧ f2 ∧ · · · ∧ fN :=
1√
N !

∑
π∈SN

(−1)π fπ(1) ⊗ fπ(2) ⊗ · · · ⊗ fπ(N) (I.4)

of N -tuples f = (f1, . . . , fN) ∈ hN of mutually orthonormal orbitals, i.e., vec-
tors fi ∈ h in the one-particle Hilbert space

h = L2
(
R3 × {↑, ↓}

)
, (I.5)
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obeying 〈fi|fj〉h = δi,j The corresponding infimum

EHF(N) := inf
{〈

Φ(f)
∣∣ HN Φ(f)

〉 ∣∣∣ f1, . . . , fN ∈ h , 〈fi|fj〉h = δi,j

}
(I.6)

is called the Hartree–Fock ground state energy. A straightforward computation
gives

EHF(f) :=
〈
Φ(f)

∣∣HNΦ(f)
〉

(I.7)

=
N∑
i=1

〈fi |hfi〉h +
1

2

N∑
i,j=1

〈fi ∧ fj |V (fi ∧ fj)〉h⊗h ,

where the one-particle operator h := −∆ −
∑K

k=1 Zk |~x − ~Rk|−1 is a second-
order differential operator acting on (a suitable dense domain in) h, and the pair
interaction potential V := |~x − ~y|−1 is a multiplication operator on (a dense
domain in) h⊗ h. The energy functional EHF(f) can be written as a sum

EHF(f) = T (f) − U(ρf ) +
1

2
D(ρf ) −

1

2
X(γf ) (I.8)

of the kinetic energy T (f) minus the nuclear attraction U(ρf),

T (f) :=
∑
τ=↑,↓

∫
|~∇fi(~x, τ)|2 d3x , U(ρ) :=

K∑
k=1

∫
Zk ρ(~x)

|~x− ~Rk|
d3x , (I.9)

plus the direct term 1
2
D(ρf), representing the classical electrostatic energy, mi-

nus the exchange term 1
2
X(γf),

D(ρ) :=

∫∫
ρ(~x) ρ(~y) d3x d3y

|~x− ~y|
, X(γ) :=

∫∫
|γ(~x, ~y)|2 d3x d3y

|~x− ~y|
, (I.10)

where γf (~x, ~y) :=
∑

τ=↑,↓
∑N

i=1 fi(~x, τ) fi(~y, τ) and ρf (~x) := γf (~x, ~x) are the
one-particle density matrix and the one-particle density corresponding to Φ(f),
respectively. The explicit and relatively simple form of these terms are one main
reason for the success of the Hartree–Fock approximation.

For large neutral Coulomb Systems, i.e., for Z = N � 1, Z = Zz, with z =
(z1, . . . , zk) for fixed zk > 0 summing up to one, and nuclear positions R(Z) =(
~R1(Z), . . . , ~Rk(Z)

)
not too close to each other, infZ>0 mink<`{Z1/3|~Rk− ~R`|} >

0, the Hartree–Fock energy is seen [3] to obey

EHF(Z) = ETF(Z,Zz,R(Z)) +
Z2

4

K∑
k=1

z2
k + O

(
Z5/3

)
, (I.11)
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where the main contribution to leading order in Z is the Thomas–Fermi energy
ETF

(
Z,Zz,R(Z)

)
established by Lieb and Simon in [71], which is bounded

above and below by universal multiples of Z7/3, followed by the Scott correction
Z2

4

∑K
k=1 z

2
k of order Z2 derived by Hughes [61] and by Siedentop and Weikard

[90, 91] for atoms (K = 1), by Ivrii and Sigal [62] for molecules (K ≥ 1) and
by Solovej, Spitzer, and Sørensen in the relativistic and nonrelativistic case for
both atoms and molecules [96, 95]. (See also the contribution of Siedentop to this
volume.)

For our discussion we observe that if f (HF) is a minimizer of EHF (or an ap-
proximate minimizer, i.e., EHF(f (HF)) ≤ EHF(N) + ε, for ε > 0 sufficiently
small) under the orthonormality constraint 〈fi|fj〉h = δi,j , then there exist univer-
sal constants 0 < c < C < ∞ such that, for any choice of z = (z1, . . . , zk) and
R(Z) =

(
~R1(Z), . . . , ~Rk(Z)

)
,

c Z7/3 ≤ T (f (HF)) , U(ρHF) , D(ρHF) ≤ C Z7/3 , (I.12)

c Z5/3 ≤ X(γHF) ≤ C Z5/3 , (I.13)

where ρHF := ρf (HF) and γHF := γf (HF) . That is, the kinetic energy, the nuclear

attraction, and the classical electrostatic energy are all or the order Z7/3, while the
exchange energy is of order Z5/3 and hence much smaller in magnitude.

The dominance of the three contributions T (f (HF)), U(ρHF), and D(ρHF) to
the energy compared to the contribution of the exchange term X(γHF) can be
anticipated from the Cauchy-Schwarz inequality which implies that X(γf ) ≤
D(ρf ), for any model with repulsive pair interaction V (x−y) ≥ 0. Note, however,
that this takes only total ground state energies of the entire system into account; if
we compare energy differences, then the exchange contribution may become the
decisive quantity that determines whether a system binds or not.

Furthermore, if f (HF) is a minimizer of EHF under the orthonormality con-
straint 〈fi|fj〉h = δi,j then EHF is stationary at f (HF) = (f

(HF)
1 , . . . , f

(HF)
N ) and the

Euler–Lagrange equations -known in this context as Hartree–Fock equations-
become

hHF[f (HF)] f
(HF)
i = ei f

(HF)
i , (I.14)

for all i ∈ {1, . . . , N}, where the eigenvalues ei are Lagrange multipliers imposed
to fulfill the orthonormality constraint and hHF[f (HF)] is the Hartree–Fock ef-
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fective Hamiltonian acting on orbitals g ∈ h as(
hHF[f ] g

)
[~x, τ ] := (I.15)

(
h g
)
[~x, τ ] +

(∫
ρf (~y) d3y

|~x− ~y|

)
g(~x, τ) −

∫
γf (~x, ~y) g(~y, τ) d3y

|~x− ~y|
.

Even though the Hartree–Fock equations form a system of nonlinear partial
integro-differential equations in f , the reduction of N dynamical variables to two
makes it accessible to numerical solution. Concrete numerical algorithms to solve
the Hartree–Fock equations have been analyzed mathematically by Cancès and
Le Bris in [23]. More recently, the numerical solution of the corresponding self-
consistent equation of generalized Hartree–Fock theory described in Section VI,
the Bogolubov–Hartree–Fock equations, has been studied by Lewin and Paul in
[68].

Hartree–Fock theory is closely related to density functional theory and Kohn–
Sham (KS) theory. These latter two are based on the Hohenberg–Kohn theorem
[59] which asserts that the ground state energy of any Coulomb system can be
expressed as the infimum of a universal (but unknown) functional of the elec-
tron density only. A mathematically precise formulation of the Hohenberg–Kohn
theorem was given by Levy [65] and Lieb [72]. We describe the Kohn–Sham the-
ory from the viewpoint of Hartree–Fock theory, although this oversimplifies their
physical arguments somewhat. Namely, Kohn and Sham proposed to approxi-
mate the exchange term X(γf ) by a functional

∫
G[ρf (~x)] d3x of the one-particle

density ρf only, where G is yet to be determined. A natural candidate for G is
G[ρ] = CDirac ρ

4/3, which has been proposed by Dirac in [32] and whose quality
as an approximation to the exchange term has been analyzed in [4]. This ap-
proximation is known as the local density approximation (LDA) and the KS-LDA
theory is widely and successfully used in numerical studies in material science.
Its mathematical foundation including a proof of existence of minimizers of the
Kohn–Sham energy functional and, hence, of solutions of the corresponding sta-
tionarity condition known as Kohn–Sham equations was given by Anantharaman
and Cancès in [1]. An important improvement to the local density approximation
defined by a functionG[ρ] is the generalized gradient approximation (GGA). It ac-
commodates an additional dependence of the exchange term functionG[ρ,∇√ρf ]
on the gradient of the (square root of the) density, leading to KS-GGA theory. A
very successful proposal for the form ofG[ρ,∇√ρf ] was made by Perdew, Burke,
and Ernzerhof in [63] and is known as PBE.

The first mathematically rigorous treatment of the Hartree–Fock approxima-
tion and the corresponding Hartree–Fock equations was given by Lieb and Simon
in [70]. By applying the so-called direct methods of the calculus of variations,
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they prove the existence of a minimizer f (HF) of EHF, which then necessarly ful-
fills the Hartree–Fock equations, under the condition that the number N − 1 of
electrons minus one is strictly less than the total nuclear charge Z :=

∑K
k=1 Zk.

This is a natural HVZ-type condition reflecting the fact that, if one electron is spa-
tially separated far away from the nuclei, it is still attracted by a Coulomb force
induced by a net charge Z − N + 1 > 0. This force binds this outer electron to
the molecule and prevents its escape to infinity.

An important technical point in [70] is the conversion of the original orthonor-
mality condition 〈fi|fj〉h = δi,j into the equivalent statement G(f, f) = 1 onCN ,
where G(f, g)i,j := 〈fi|gj〉h denotes the Gram matrix of f = (f1, . . . , fN), g =

(g1, . . . , gN) ∈ hN . Lieb and Simon then observe that the minimization over
f ’s obeying G(f, f) = 1 can be relaxed to the quadratic form inequality 0 ≤
G(f, f) ≤ 1 without changing the minimum. This observation foreshadows
Lieb’s variational principle [69] formulated shortly after. As opposed to the set
of f ’s obeying G(f, f) = 1, the set of f ’s obeying the weaker constraint 0 ≤
G(f, f) ≤ 1 is weakly closed (in the appropriate topology) which is necessary
for the application of weak lower semicontinuity.

The HVZ-type condition EHF(N) < EHF(N − 1) mentioned above is the
key condition for the proof of existence of excited states of Coulomb systems in
Hartree–Fock theory, too. As the latter leads to nonlinear Euler-Lagrange equa-
tions, the concept of excited state as a higher eigenvalue of a linear operator can-
not be applied directly, but there is a natural notion for excited states in variational
analysis, namely, stationary points of the functional under consideration for val-
ues strictly above the minimum. The first proof that such excited states exist was
given by Lions in [74]. Building up on a contribution by Friesecke [44] and an
earlier paper [66], Lewin proved in [67] the existence of infinitely many excited
states below EHF(N − 1). The essential step is to prove that below EHF(N − 1),
the the Hartree–Fock functional for Coulomb systems fulfills a suitable Palais–
Smale condition. Moreover, opposed to [70] and [74], the proof in [66, 67] is
entirely given in the space N electrons and does not use any positivity of the pair
potential or its Fourier transform.
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II Fock Space, Density Matrices,
and Second Quantization

Before we turn to Lieb’s variational principle we provide a convenient mathemat-
ical framework and introduce the second quantization.

Fock Space: We henceforth assume the one-particle Hilbert space h to be a
complex separable Hilbert space - not necessarily L2

(
R3 × {↑, ↓}

)
as specified

in (I.5), although this is a good example to keep in mind. For N ∈ Z+, the
N -particle Hilbert space is

H(N) :=
N∧

h := span
{
f1 ∧ · · · ∧ fN

∣∣∣ f1, . . . , fN ∈ h
} ‖·‖

⊆ h⊗N , (II.1)

where ( · )
‖·‖

denotes norm closure. The fermion Fock space (over h) is defined
to be the orthogonal sum

F ≡ F[h] :=
∞⊕
N=0

H(N) , (II.2)

where H(0) := C ·Ω is the one-dimensional vacuum subspace spanned by a unit
vector Ω called the vacuum vector. The vacuum subspace represents the phys-
ical state of absence of any particle in the quantum system under consideration.
The elements of F are sequences Ψ = (ψ0, ψ1, ψ2, . . .) with ψN ∈ H(N). If no
confusion is possible, we henceforth consider H(N) a subspace of F by identifying
ψN ∈ H(N) with (0, . . . , 0, ψN , 0, . . .) ∈ F.

Second Quantization: We come to the second quantization of operators. Given
N ≥ 2 and three indices i, j, k ∈ {1, . . . , N}, i < j, we define two unitary
operators Π

(N)
i ∈ U(h⊗N) and Π

(N)
i,j ∈ U(h⊗N) by

Π
(N)
k [f1 ⊗ · · · ⊗ fN ] := fk ⊗ f1 ⊗ · · · ⊗ fk−1 ⊗ fk+1 ⊗ · · · ⊗ fN , (II.3)

Π
(N)
i,j [f1 ⊗ · · · ⊗ fN ] := (II.4)

fi ⊗ fj ⊗ f1 ⊗ · · · ⊗ fi−1 ⊗ fi+1 ⊗ · · · ⊗ fj−1 ⊗ fj+1 ⊗ · · · ⊗ fN .

Next, given a one-particle operator h on h and a two-particle operator V on h∧ h,
we define the corresponding N -particle operators hN , VN and furthermore HN on
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H(N) by h0 := V0 := 0, h1 := h, V1 := 0, and

hN :=
N∑
i=1

(
Π

(N)
i

)∗ (
h⊗ 1⊗(N−1)

)
Π

(N)
i (II.5)

VN := 2
∑

1≤i<j≤N

(
Π

(N)
i,j

)∗ (
V ⊗ 1⊗(N−2)

)
Π

(N)
i,j , (II.6)

HN := hN + 1
2
VN . (II.7)

Note thatHN agrees with the operator in (I.2) provided that h = −∆x−
∑K

k=1 Zk|~x−
~Rk|−1 and V = |~x− ~y|−1. Their second quantizations are the operators

h :=
∞⊕
N=0

hN , V :=
∞⊕
N=0

VN , H :=
∞⊕
N=0

HN = h+ 1
2
V , (II.8)

acting on finite vectors [defined in (II.19)]. The question whether H extends to a
semibounded quadratic form is subtle, in general. For Coulomb systems, however,
Dyson and Lenard [36, 37] and Lieb and Thirring [73] have shown stability of
matter to hold true, which in our context means that

Hµ := H − µN ≥ µZ −
∑

1≤k<`≤K

Zk Z` |Rk −R`|−1 , (II.9)

as a quadratic form on F, provided that the chemical potential µ < 0 is chosen
sufficiently small, where

N :=
∞⊕
N=0

N · 1H(N) (II.10)

is the number operator on F. (See also the contribution of Loss to this volume.)
Abstracting from this situation, we assume in the following the operator h to

be essentially self-adjoint on a suitable dense domain s ⊆ h and semibounded, so
that h(m) := h + m ≥ 0, for some sufficiently large constant m ∈ R. Further-
more, the pair potential is assumed to be an infinitesimal perturbation of h, i.e.,
V is defined on s and, for any ε > 0, there exists a constant bε < ∞, such that
‖V f‖h ≤ ε‖hf‖h + bε‖f‖h holds true for all f ∈ s.

Density Matrices: The energy expectation value 〈ψN |HNψN〉 of a state repre-
sented by an N -particle wave function ψN ∈ H(N) may be written as 〈Ψ |HΨ〉,
where Ψ = (0, . . . , 0, ψN , 0, . . .) ∈ F has only one non-vanishing component. Al-
lowing for linear combinations, it can be extended to all finite vectors Ψ ∈ Ffin of
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sufficient regularity. For these, we can further rewrite 〈Ψ |HΨ〉 = TrF
(
H|Ψ〉〈Ψ|

)
,

where |Ψ〉〈Ψ| ∈ B(F) denotes the rank-one orthogonal projection onto Ψ.
This suggests to further extend the notion of energy expectation value to all

density matrices

DM :=
{
ρ ∈ L1(F)

∣∣∣ ρ ≥ 0 , TrF(ρ) = 1 , ρ is even
}
, (II.11)

i.e., all even positive trace-class operators ρ on F of unit trace. (Here and hence-
forth we use the convention that a ≥ 0 includes the self-adjointness of an operator
a.) Evenness of ρ means that 〈φ|ρψ〉 = 0, whenever φ ∈ H(m) and ψ ∈ H(n) with
m − n odd. We remark that evenness of density matrices is a natural condition
for fermion, but not for boson systems. Since a given density matrix ρ ∈ DM
is, in particular, self-adjoint and compact, it can be written in diagonal form as
ρ =

∑∞
ν=1 rν |Ψν〉〈Ψν |, where rν ≥ 0 are its nonnegative eigenvalues, which sum

up to one, and {Ψν}∞ν=1 ⊆ F is an orthonormal basis in F of eigenvectors of ρ. If
a density matrix ρ ∈ DM obeys ρN = Nρ = N · ρ, for some N ∈ Z+, then ρ is
called anN -particle density matrix. These are collected in

DM(N) :=
{
ρ ∈ DM

∣∣ ρN = Nρ = N · ρ
}
, (II.12)

Note that ρ ∈ DM(N) if, and only if, all its eigenvectors belong to H(N). More-
over, the density matrices form a norm-closed convex subset DM ⊆ L1(F) in
which rank-one orthogonal projections, such as |Ψ〉〈Ψ| ∈ DM above, are ex-
tremal points called pure. In particular, the orthogonal projection onto ψN ∈
H(N) considered above is a pure N -particle density matrix.

Density matrices (and, in general, states) are not only natural objects mathe-
matically, but from a physics point of view they are also important conceptually:
For any reasonable theoretical framework for the description of a physical sys-
tem, the scenario that this system is a subsystem of a larger system (“the rest of
the universe”) ought to be built in. In the latter situation, however, density matri-
ces resulting from projecting onto the subsystem are the natural physical states,
not wave functions.

Equipped with the definitions of density matrices and N -particle density ma-
trices above, the Rayleigh–Ritz principle (I.3) assumes the following abstract
form:

Egs(N) = inf
{

TrF(ρH)
∣∣ ρ ∈ DM(N) , 〈H〉ρ <∞

}
, (II.13)

where it is implicity assumed that HN is bounded from below and we denote

〈A〉ρ := TrF(ρ1/2Aρ1/2) . (II.14)
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Similarly, for a sufficiently small chemical potential µ < 0 such that Hµ is
bounded below, we define the total ground state energy

Egs := inf
N∈Z+

Egs(N) = inf
{

TrF(ρHµ)
∣∣ ρ ∈ DM , 〈H〉ρ <∞

}
. (II.15)

Creation and Annihilation Operators: Next, we introduce creation operators.
Fixing f ∈ h, we define c∗(f) : H(0) → H(1) by c∗(f)Ω := f and c∗(f) : H(N) →
H(N+1), for N ∈ Z+, by

c∗(f)[f1 ∧ · · · ∧ fN ] := f ∧ f1 ∧ · · · ∧ fN (II.16)

and extension by linearity. One then easily checks that c∗(f) extends by continuity
to a bounded operator on F of norm ‖c∗(f)‖B(F) = ‖f‖h, called creation operator
c∗(f) ∈ B(F). We observe that

H(N) = span
{
c∗(f1) · · · c∗(fN)Ω

∣∣∣ f1, . . . , fN ∈ h
} ‖·‖

and (II.17)

F = span
{
c∗(f1) · · · c∗(fN)Ω

∣∣∣ N ∈ Z+
0 , f1, . . . , fN ∈ h

} ‖·‖
, (II.18)

for N ∈ Z+
0 := {0, 1, 2, 3, . . .}. Note that if s ⊆ h is a dense subspace then the

space

Ffin[s] := span
{
c∗(f1) · · · c∗(fN)Ω

∣∣∣ N ∈ Z+
0 , f1, . . . , fN ∈ s

}
⊆ F[h]

(II.19)

of finite vectors in F containing finite linear combinations of finite wedge-products
of orbitals in s is a convenient dense domain for second quantizations of one- and
two-particle operators on F.

The adjoint c(f) := [c∗(f)]∗ ∈ B(F) of c∗(f) is called annihilation op-
erator. We remark that, while h 3 f 7→ c∗(f) ∈ B(F) is linear, the map
h 3 f 7→ c(f) ∈ B(F) is antilinear. Moreover, one easily checks that the fam-
ily {c∗(f), c(f)}f∈h ⊆ B(F) of creation and annihilation operators define a Fock
representation of the canonical anticommutation relations (CAR), i.e., it ful-
fills {

c(f), c∗(g)
}

= 〈f |g〉h · 1F and c(f)Ω = 0 , (II.20)

for all f, g ∈ h, where {a, b} := ab+ ba is the anticommutator of two operators a
and b.
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The second-quantized operators h, V, H, and N have a convenient represen-
tation in terms of creation and annihilation operators. Assuming that h is infinite-
dimensional and that {fj}∞j=1 ⊆ s ⊆ h is an orthonormal basis of h of sufficiently
regular functions lying in a dense subspace s, we have that

N =
∞∑
j=1

c∗(fj) c(fj) , h =
∞∑

j,k=1

〈fj|hfk〉 c∗(fj) c(fk) , (II.21)

V =
∞∑

i,j,k,`=1

〈fi ⊗ fj|V (fk ⊗ f`)〉 c∗(fi) c∗(fj) c(f`) c(fk) , (II.22)

Reduced Density Matrices: We come to defining reduced density matrices -
the central object of this paper. Given a density matrix ρ ∈ DM with finite
expectation value 〈N〉ρ < ∞ of N, we define its reduced one-particle density
matrix ( 1-RDM) γ(1)

ρ as a linear operator on h. , Likewise, if 〈N2〉ρ < ∞
we define its reduced two-particle density matrix ( 2-RDM) γ(2)

ρ as a linear
operator on h⊗ h by their matrix elements〈

g
∣∣ γ(1)

ρ f
〉
h

:= TrF
[
ρ c∗(f) c(g)

]
, (II.23)〈

g1 ⊗ g2

∣∣ γ(2)
ρ (f1 ⊗ f2)

〉
h⊗h := TrF

[
ρ c∗(f1) c∗(f2) c(g2) c(g2)

]
, (II.24)

for all f, g, f1, f2, g1, g2 ∈ h. These definitions are meaningful because it turns
out that they define trace-class operators, as the following lemma asserts.

Lemma 1. Let ρ ∈ DM be a density matrix of finite particle number variance
〈N2〉ρ := TrF[ρN2] < ∞, and define its 1-RDM γ

(1)
ρ and its 2-RDM γ

(2)
ρ by

(II.23) and (II.24), respectively. Then γ(1)
ρ and γ(2)

ρ possess the following proper-
ties:

(i) The operators γ(1)
ρ ∈ L1(h) and γ(2)

ρ ∈ L1(h ⊗ h) are positive trace-class
operators of trace

Trh[γ
(1)
ρ ] =

〈
N
〉
ρ

and Trh⊗h[γ
(2)
ρ ] =

〈
N2 −N

〉
ρ
. (II.25)

(ii) As quadratic forms,

0 ≤ γ(1)
ρ ≤ 1h and 0 ≤ γ(2)

ρ ≤ (N − 1) 1h⊗h . (II.26)

(iii) Suppose that h and V are semibounded and 〈h〉ρ, 〈V〉ρ <∞. Then〈
H
〉
ρ

= EQ
(
γ(1)
ρ , γ(2)

ρ

)
:= Trh

[
h γ(1)

ρ

]
+ 1

2
Trh⊗h

[
V γ(2)

ρ

]
. (II.27)
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We finally remark that, in case of an N -particle density matrix ρ ∈ DM(N),
for someN ≥ 2, the corresponding 1-RDM γ

(1)
ρ can be obtained from its 2-RDM

γ
(2)
ρ by taking a partial trace,

〈
g
∣∣ γ(1)

ρ f
〉
h

=
1

N − 1

∞∑
j=1

〈
g ⊗ fj

∣∣ γ(2)
ρ (f ⊗ fj)

〉
h⊗h , (II.28)

where {fj}∞j=1 ⊆ h is an orthonormal basis.
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III Lieb’s Variational Principle
The formulation of the Hartree–Fock approximation in Section I turns out to be
too rigid and inconvenient, mathematically. A more flexible formulation is pro-
vided by Lieb’s variational principle which uses the reduced one-particle density
matrices introduced in (II.23).

We first link the 1-RDM γ
(1)
ρ corresponding to a density matrix ρ ∈ DM to

the one-particle density matrix γf corresponding to an orthonormal family f =

(f1, . . . , fN) ∈ hN of N orbitals that enter the Hartree–Fock energy functional
EHF(f) in (I.7). In fact, for pure states we have the following important relation
between these operators:

Lemma 2. For N ≥ 2, let f = (f1, . . . , fN) ∈ hN with G(f, f) = 1 and assume
that ρ(f) = |Φ(f)〉〈Φ(f)| ∈ DM(N) is the orthogonal projection onto the Slater
determinant Φ(f) = f1 ∧ · · · ∧ fN . Then the following statements hold true.

(i) The reduced one-particle density matrix of ρ(f) is the rank-N orthogonal
projection

γ
(1)
ρ(f) =

N∑
i=1

|fi〉〈fi| (III.1)

onto the subspace of h spanned by {f1, . . . , fN}.

(ii) The reduced two-particle density matrix of ρ(f) is twice the orthogonal
projection of rank 1

2
N(N − 1) ,

γ
(2)
ρ(f) =

N∑
i,j=1

|fi ∧ fj〉〈fi ∧ fj| =
(
1− Ex

)(
γ

(1)
ρ(f) ⊗ γ

(1)
ρ(f)

)
, (III.2)

onto the subspace of h ⊗ h spanned by {fi ∧ fj|1 ≤ i < j ≤ N}. Here,
Ex ∈ U(h⊗ h) denotes the exchange operator f ⊗ g 7→ g ⊗ f

Inserting (III.2) into (II.27), we immediately obtain

〈Φ(f) | HNΦ(f)〉 = EQ
(
γ

(1)
ρ(f), (1− Ex)(γ

(1)
ρ(f) ⊗ γ

(1)
ρ(f))

)
(III.3)

= Trh
[
h γ

(1)
ρ(f)

]
+

1

2
Trh⊗h

[
V (1− Ex)(γ

(1)
ρ(f) ⊗ γ

(1)
ρ(f))

]
,

if the energy expectation is evaluated on a Slater determinant Φ(f) = f1∧· · ·∧fN .
The right side of (III.3) is entirely expessed in terms of the rank-N orthogonal
projection γ(1)

ρ(f), and no other property than that enters the functional. That is,

EHF(N) = inf
{
EHF(γ)

∣∣∣ γ = γ∗ ∈ L1(h) , Tr(γ) = N , γ = γ2
}
, (III.4)
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where

EHF(γ) = Trh[h γ] +
1

2
Trh⊗h[V (1− Ex)(γ ⊗ γ)] . (III.5)

Lieb’s variational principle [69] asserts that the projection property γ = γ2 in
(III.4) can be relaxed to 0 ≤ γ ≤ 1h without changing the infimum of the func-
tional.

Theorem 3 (Lieb’s Variational Principle). For N ≥ 2,

EHF(N) = inf
{
EHF(γ)

∣∣∣ γ ∈ L1(h) , Tr(γ) = N , 0 ≤ γ ≤ 1h

}
. (III.6)

Proof. We define the auxiliary energy Eaux(N) to be the infimium on the right
side in (III.6) and observe that, clearly, Eaux(N) ≤ EHF(N). We make three
simplifying assumptions which are not essential for the validity of Theorem 3 and
can be avoided by suitable limiting arguments. The first is the strict positivity
of 〈ψ|V ψ〉 > 0, for nonvanishing ψ, as opposed to merely assuming 〈ψ|V ψ〉 ≥
0. The second simplifying assumption we make is that the infimum Eaux(N) is
actually a minimum. That is, Eaux(N) = EHF(γ0) is attained by a minimizer
γ0 which fulfills 0 ≤ γ0 ≤ 1 and Tr(γ0) = N . Since γ0 is compact, there
exist an orthonormal basis {fi}∞i=1 ⊆ h of eigenvectors of γ0 with corresponding
(not necessarily distinct) eigenvalues λi ∈ [0, 1] that sum up to N . The third
assumption we make is that γ0 is of finite rank J <∞, so that λ1, . . . , λJ > 0,

γ0 =
J∑
j=1

λj|fj〉〈fj| and EHF(γ0) =
J∑
i=1

λi hi +
1

2

J∑
i,j=1

λi λj Vi,j , (III.7)

where hi := 〈fi|hfi〉 and Vi,j := 〈fi ∧ fj|V (fi ∧ fj)〉 > 0.
Before we turn to Lieb’s original proof in [69] we sketch the proof thatEaux(N) ≥

EHF(N) given in [3], which, however, takes a different perspective. First note
that it suffices to show that γ0 = γ2

0 is a projection. To this end we assume
that γ0 is not a projection and derive a contradiction from this assumption. If
γ0 is not a projection then there are (at least) two indices p, q ∈ Z+, p < q
such that λp, λq ∈ (0, 1) because the sum

∑J
j=1 λj = N is an integer. We

set r := min{λp, 1 − λp, λq, 1 − λq} > 0 and I := [−r, r] and observe that
λp + δ, λq + δ ∈ [0, 1], for any δ ∈ I . We define

γδ := (λp + δ)|fp〉〈fp| + (λq − δ)|fq〉〈fq| +
∑

j∈Z+\{p,q}

λj|fj〉〈fj| . (III.8)

Then 0 ≤ γδ ≤ 1 and Tr(γδ) = N , so γδ is admissible for any δ ∈ I . Moreover
γ0 = 1

2
γδ + 1

2
γ−δ. A simple computation using that Vp,q > 0 shows the strict
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concavity of I 3 δ 7→ EHF(γδ). Hence, min{EHF(γr), EHF(γ−r)} < EHF(γ0),
which contradicts the assumption that γ0 is a minimizer of EHF. It follows that
γ0 is a projection, indeed. Note that this proof is constructive in the sense that,
fixing the orthonormal orbitals f1, . . . , fJ , it defines an algorithm to find the γ∗ of
minimal energy EHF(γ∗) among all rank-J operators of the form γ(τ1, . . . , τJ) =∑J

j=1 τj|fj〉〈fj| with 0 ≤ τj ≤ 1 and
∑J

j=1 τj = N .
We now turn to Lieb’s proof of Theorem 3 in [69], starting from (III.7). Its

heart is a lemma that, under the assumption that λ1, . . . , λJ > 0 and λ1+. . .+λJ =
N , asserts the existence of N orthonormal vectors G(1), . . . , G(N) ∈ CJ which
fulfill

∑N
n=1 |G

(n)
j |2 = λj , for all j ∈ {1, . . . , J}. We omit its interesting proof.

Given these vectors G(1), . . . , G(N), Lieb defines

g(θ)
n :=

J∑
j=1

e2πiθj G
(n)
j fj ∈ h , (III.9)

for all n ∈ {1, . . . , N} and any choice θ := (θj)
J
j=1 ∈ [0, 1)J of phases θ1, . . . , θJ .

Using the orthonormality of {f1, . . . , fJ} ⊆ h it is easy to check that the set
{g(θ)

1 , . . . , g
(θ)
N } ⊆ h is orthonormal, too. That is, G(g(θ), g(θ)) = 1, where g(θ) =

(g
(θ)
1 . . . , g

(θ)
N ) ∈ hN , and the corresponding Slater determinant is Φ(g(θ)) = g

(θ)
1 ∧

· · · ∧ g(θ)
N ∈ H(N). The energy expectation value of this Slater determinant is〈
Φ(g(θ))

∣∣HNΦ(g(θ))
〉

(III.10)

=
N∑
n=1

〈g(θ)
n |hg(θ)

n 〉h +
1

2

N∑
m,n=1

〈g(θ)
m ∧ g(θ)

n |V (g(θ)
m ∧ g(θ)

n )〉h⊗h .

This energy expectation value is now averaged over all possible choices of θ by
integrating over [0, 1)J . That is, for any integrable function F ∈ L1([0, 1)J) we
write Eθ[F ] :=

∫ 1

0
· · ·
∫ 1

0
F (θ) dθ1 · · · dθJ . Using that Eθ[e2πi(Θj−Θk)] = δj,k and

(III.9), Lieb obtains

Eθ

[ N∑
n=1

〈g(Θ)
n |hg(Θ)

n 〉h
]

=
N∑
n=1

J∑
j,k=1

Eθ
[
e2πi(Θj−Θk)

]
G

(n)
j G

(n)
k 〈fj |hfk〉h

=
J∑
j=1

( N∑
n=1

|G(n)
j |2

)
〈fj |hfj〉h =

J∑
j=1

λj hj . (III.11)

Similarly, if i 6= j and k 6= ` then Eθ[e2πi(Θi+Θj−Θk−Θ`)] = (δi,k δj,` + δi,` δj,k),
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and this implies that

Eθ

[ N∑
m,n=1

〈g(Θ)
m ∧ g(Θ)

n |V (g(Θ)
m ∧ g(Θ)

n )〉h⊗h
]

(III.12)

=
N∑

m,n=1

J∑
i,j,k,`=1

Eθ
[
e2πi(Θi+Θj−Θk−Θ`)

]
G

(m)
i G

(n)
j G

(m)
k G

(n)
` 〈fi ∧ fj |V (fk ∧ f`)〉h⊗h

=
N∑

m,n=1

J∑
i,j=1

(
|G(m)

i |2 |G
(n)
j |2 − G

(m)
j G

(n)
i G

(m)
i G

(n)
j

)
Vi,j

=
J∑

i,j=1

λi λj Vi,j −
J∑

i,j=1

∣∣∣∣ N∑
n=1

G
(n)
i G

(n)
j

∣∣∣∣2 Vi,j ≤ J∑
i,j=1

λi λj Vi,j .

Here, the positivity V ≥ 0 is crucial, see also (IV.2). Adding up (III.11) and half
of (III.12), Lieb arrives at

Eθ
[
〈Φ(g(Θ)) |HNΦ(g(Θ))〉

]
≤ Eaux(γ0) . (III.13)

Since Eθ is an average, Eq. (III.13) implies that there is at least one choice of
θ ∈ [0, 1)J , for which 〈Φ(g(θ))

∣∣HNΦ(g(θ))〉 ≤ Eaux(γ0). Thus, we finally have
EHF(N) ≤ Eaux(N).

Lieb’s variational principle is a formulation of the Hartree–Fock approxima-
tion in the natural variable γ. It justifies the introduction of the notion of a one-
particle density matrix as any self-adjoint trace-class operator

γ ∈ L1(h) that obeys 0 ≤ γ ≤ 1h , (III.14)

leaving aside the question whether it is the reduced one-particle density matrix
γ = γ

(1)
ρ corresponding to some density matrix ρ ∈ DM. We come back to this

point in the next section. The one-particle density matrices form a norm-closed,
and hence weakly closed, convex subset of L1(h) which makes them suitable for
variational analysis.

Lieb’s variational principle asserts, briefly speaking, that among one-particle
density matrices obeying (III.14) and of trace N the ones with lowest energy are
the rank-N projections. Under the assumption of the existence of a minimizer
γHF, this conclusion also follows from the stationarity of the Hartree–Fock func-
tional at EHF at γHF. In fact, the Hartree–Fock equations (I.14) turn into the fol-
lowing self-consistent equation:

γHF = 1N
(
hHF[γHF]

)
, (III.15)
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where 1N(A) denotes the projection onto the lowestN eigenvalues, counting mul-
tiplicities, for a self-adjoint operator A. In other words, 1N(A) is the projection
onto a subspace of dimension N such that Trh[A1N(A)] is minimal. (If a min-
imizer exists, this subspace is actually unique, as follows from the unfilled-shell
theorem of Lieb, Loss, Solovej, and the author [11].) Furthermore, hHF[γ] is the
corresponding form of the Hartree–Fock effective Hamiltonian, acting on orbitals
g ∈ h as(

hHF[γ] g
)
[~x, τ ] := (III.16)(

h g
)
[~x, τ ] +

(∫
ργ(~y) d3y

|~x− ~y|

)
g(~x, τ) −

∫
γ(~x|~y) g(~y, τ) d3y

|~x− ~y|
,

with ργ(~x) := γ(~x, ~x) being the one-particle density corresponding to γ and a
partial trace γ(~x, ~y) =

∑
τ=↑,↓ γ(~x, τ , ~y, τ) as well as a sufficiently regular choice

for the integral kernel for γ are understood.
Comparing Lieb’s variational principle to the original Hartree–Fock approxi-

mation, it is interesting to observe that the condition 0 ≤ G(f, f) ≤ 1CN consid-
ered by Lieb and Simon in [70] is actually equivalent to 0 ≤ γf ≤ 1h, if we set
γf :=

∑N
n=1 |fn〉〈fn|. Note, however, that γf is of rank N , at most, and hence that

Trh[γf ] < N unless γf is a rank-N projection. It follows that the relaxation of the
condition G(f, f) = 1CN on the Gram matrix to the bound 0 ≤ G(f, f) ≤ 1CN
is different from the relaxation of γ = γ2 to 0 ≤ γ ≤ 1h.
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IV Bogolubov Transformations
and Representability

We begin our discussion of the concept of representability by comparing the two
proofs of Theorem 3 given in the previous section. Lieb’s original proof seems to
be considerably more involved than the one in [3]. One must not overlook, how-
ever, that Lieb proves a stronger statement than Eq. (III.6). Namely, the averaging
procedure introduced after (III.10) above yields an N -particle density matrix

ρav := Eθ
(
|Φ(g(Θ))〉〈Φ(g(Θ))|

)
(IV.1)

=

∫ 1

0

· · ·
∫ 1

0

|Φ(g(θ))〉〈Φ(g(θ))| dθ1 · · · dθJ ∈ DM(N) ,

whose reduced one-particle density matrix equals the minimizing one-particle
density matrix γ0 = γ

(1)
ρav . Concerning the energy estimate, the key point in Lieb’s

construction is that

γ(2)
ρav ≤ (1− Ex)

(
γ(1)
ρav ⊗ γ

(1)
ρav

)
, (IV.2)

which leads to Estimate (III.12), thanks to the positivity V ≥ 0 of the pair in-
teraction potential V . To describe the significance of this observation we intro-
duce some more definitions and notation. We follow the paper [12] by Lieb,
Solovej, and the author, Solovej’s lecture notes [94], and the papers [9, 6, 10, 8]
by Breteaux, Hach, Menge, Knörr, and the author.

Generalized Reduced Density Matrices The HamiltonianH in (II.8) is a linear
operator on F =

⊕∞
N=0 H

(N) which leaves the N -particle Hilbert spaces H(N)

invariant. Thus the variation in the Rayleigh-Ritz principles (II.15) for the total
ground state energy Egs and (II.13) for the ground state energy Egs(N) for N
particles may both be restricted to density matrices ρ =

⊕∞
N=0 ρN ∈ DM that are

particle-number conserving and even to N -particle density matrices ρ ∈ DM(N)

without changing the infimum.
In general, however, density matrices ρ ∈ DM need not leave the N -particle

Hilbert spaces H(N) invariant, they are only assumed to be even. This can be
conveniently formulated with the aid of the self-dual algebra built from creation
and annihilation operators which was introduced by Araki [2]. We choose an
antiunitary involution j : h→ h and define the self-dual field operator

A∗(f1 ⊕ jf2) := c∗(f1) + c(f2) ∈ B(F) , (IV.3)
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of a generalized orbital F = f1 ⊕ jf2 ∈ h ⊕ h. Neither A∗(F ) and A∗(G) nor
A(F ) := [A∗(F )]∗ and A∗(G) anticommute, but rather

A(F ) = A∗(JF ) and
{
A(F ), A∗(G)

}
=
〈
F
∣∣G〉

h⊕h , (IV.4)

where J : h ⊕ h → h ⊕ h is the antiunitary involution defined by J(f1 ⊕ jf2) :=
f2 ⊕ jf1. All creation and annililation operators can be expessed as self-dual
field operators A∗(F ) for suitable choices of F . We remark that the antiunitary
involution j : h → h ensures the linearity of h ⊕ h 3 F 7→ A∗(F ), even though
h 3 f 7→ c(f) is antilinear. Its choice is arbitrary and may be adapted to the
model under consideration. The Riesz isomorphism h → h∗, |f〉 7→ 〈f | yields
one possible choice. Identifying h∗ with h, it is the only choice up to unitary
transformation of the domain h of definition and of the range h of j. The example
h = L2(R) with the maps (j1f)(x) := f(x) and (j2f̂)(ξ) := f̂(ξ) gives a good
illustration of the freedom in the choice of j.

Now, suppose that k ∈ Z+ is a positive integer and F1, . . . , F2k ∈ h ⊕ h are
generalized orbitals. The evenness of ρ ∈ DM is equivalent to the vanishing
TrF[ρA∗(F1) · · ·A∗(F2k−1)] = 0 of all expectation values of monomials of odd
degree in the self-dual field operators. If ρ ∈ DM does not preserve the particle
number then expectation values TrF[ρA∗(F1) · · ·A∗(F2k)] of monomials of even
degree in the self-dual field operators are, in general, non-vanishing - even if the
generalized orbitals are all of the form Fj = fj ⊕ 0, for all j = 1, . . . , 2k. While
the existence of each of these matrix elements is guaranteed by the boundedness
of A∗(F ), for any F ∈ h⊕ h, their summability requires an extra assumption. To
formulate this we define the subspace

L1
Nk(F) :=

{
ρ ∈ L1(F)

∣∣ (Nk/2ρNk/2) ∈ L1(F)
}
⊆ L1(F) , (IV.5)

which is a Banach space with respect to the norm ‖ρ‖Nk := TrF
∣∣(N+1)k/2ρ(N+

1)k/2
∣∣. We introduce the subset DMNk := DM ∩ L1

Nk
(F) of all density matrices

ρ ∈ DM for which the expectation 〈Nk〉ρ < ∞ of the kth power of the particle
number operator is finite.

Given k ∈ Z+ and a density matrix ρ ∈ DMNk , we define its reduced gener-
alized k-particle density matrix (k-gRDM) Γ(k)

ρ ∈ B
(
(h⊕ h)⊗k

)
by〈

G1 ⊗ · · · ⊗Gk

∣∣∣ Γ(k)
ρ (F1 ⊗ · · · ⊗ Fk)

〉
(IV.6)

:= TrF
[
ρ A∗(F1) · · ·A∗(Fk) A(Gk) · · ·A(G1)

]
,

where F1, . . . , Fk, G1, . . . , Gk ∈ h⊕h. We obtain the reduced k-particle density
matrix (k-RDM) γ(k)

ρ ∈ B
(
h⊗k
)

by restricting the matrix elements on vectors of
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the form gi ⊕ 0 and fj ⊕ 0, that is,〈
g1⊗ · · · ⊗ gk

∣∣∣ γ(k)
ρ (f1 ⊗ · · · ⊗ fk)

〉
(IV.7)

:=

〈(
g1

0

)
⊗ · · · ⊗

(
gk
0

) ∣∣∣∣ Γ(k)
ρ

[(
f1

0

)
⊗ · · · ⊗

(
fk
0

)]〉
.

We observe that in case ρ preserves particle numbers, i.e., ρN = Nρ, then Γ
(k)
ρ is

entirely determined by γ(1)
ρ , γ

(2)
ρ , . . . , γ

(k)
ρ .

The cases k = 1 and k = 2 are obviously of special interest. We first discuss
k = 1 and introduce the pairing operator αρ : h→ h corresponding to ρ by〈

g
∣∣ αρ(jf)

〉
:= TrF

[
ρ c(f) c(g)

]
, (IV.8)

noting that αρ vanishes if ρ preserves particle numbers and further that

α∗ρ = −jαρ j . (IV.9)

The pairing operator is convenient for the representation of the reduced general-
ized 1-pdm Γ

(1)
ρ : h⊕ h→ h⊕ h given by〈

G
∣∣ Γ(1)

ρ F
〉
h⊕h = TrF

[
ρA∗(F )A(G)

]
, (IV.10)

for all F,G ∈ h⊕ h. Viewed as an operator-valued 2× 2-matrix acting on vectors
F = f1 ⊕ jf2, the generalized 1-RDM Γ

(1)
ρ appears as

Γ(1)
ρ =

(
γ

(1)
ρ αρ
α∗ρ 1− j γ

(1)
ρ j

)
=

(
γ

(1)
ρ αρ
−jαρj 1− j γ

(1)
ρ j

)
, (IV.11)

where we recall that the 1-pdm γ
(1)
ρ is given by 〈g| γ(1)

ρ f〉 = TrF[ρc∗(f)c(g)].
Eq. (IV.11) is equivalent to

JΓ(1)
ρ J = 1 − Γ(1)

ρ . (IV.12)

Inserting G = F in (IV.10) and using the anticommutation relations, it is
easily checked that 0 ≤ Γ

(1)
ρ ≤ 1 holds true which, in turn, is equivalent to(

γ
(1)
ρ − (γ

(1)
ρ )2 − αρα∗ρ γ

(1)
ρ αρ − αρj γ(1)

ρ j

[γ
(1)
ρ αρ − αρj γ(1)

ρ j]∗ j [γ
(1)
ρ − (γ

(1)
ρ )2 − αρα∗ρ]j

)
= Γ(1)

ρ −
(
Γ(1)
ρ

)2 ≥ 0 .

(IV.13)

Note that this yields γ(1)
ρ − (γ

(1)
ρ )2 ≥ 0 and hence 0 ≤ γ

(1)
ρ ≤ 1, as asserted in

Lemma 1 (ii).
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Furthermore, if ρ ∈ DMN has finite particle number expectation then (IV.13)
implies that the pairing operator αρ ∈ L2(h) is Hilbert-Schmidt, with Trh[α

∗
ραρ] ≤

Trh[γ
(1)
ρ − (γ

(1)
ρ )2], and that Γ

(1)
ρ − (Γ

(1)
ρ )2 ∈ L1(h⊕ h) is trace-class. In particu-

lar, Γ
(1)
ρ − (Γ

(1)
ρ )2 and hence also Γ

(1)
ρ admits an expansion of the form Γ

(1)
ρ =∑∞

i=1 λ̃i |Fi〉〈Fi|, where λ̃i ∈ [0, 1] are its eigenvalues and {Fi}∞i=1 ⊆ h ⊕ h

is an orthonormal basis of eigenvectors Fi = f ′i ⊕ jf ′′i of Γ
(1)
ρ . The invariance

JΓ
(1)
ρ J = 1 − Γ

(1)
ρ implies that the eigenvalues and corresponding eigenvectors

come in pairs λ`, F` and 1− λ`, JF`. After changing the order of the eigenvalues,
if necessary, we obtain that

Γ(1)
ρ =

∞∑
`=1

(
λ` |F`〉〈F`| + (1− λ`) |JF`〉〈JF`|

)
, (IV.14)

where F` = f ′` ⊕ jf ′′` and {F`, JF`}∞`=1 ⊆ h ⊕ h is an orthonormal basis. If,
additionally, ρ is particle-number preserving and so αρ ≡ 0, then

Γ(1)
ρ = γ(1)

ρ ⊕
(
1− j γ(1)

ρ j
)

(IV.15)

=
∞∑
`=1

{
λ` |f` ⊕ 0〉〈f` ⊕ 0| + (1− λ`) |0⊕ jf`〉〈0⊕ jf`|

}
,

where λ` are the eigenvalues of γ(1)
ρ and {f`}∞`=1 ⊆ h is an orthonormal basis of

its eigenvectors. Since
∑∞

`=1 λ` = Trh[γ
(1)
ρ ] < ∞, the sequence of eigenvalues

including their multiplicities is summable.

Bogolubov Transformations For a density matrix ρ ∈ DMN of finite parti-
cle number expectation the block-diagonal form (IV.15) of Γ

(1)
ρ can always be

obtained by conjugation UWρU
∗
W of ρ by a (unitary) Bogolubov transformation

UW ∈ U(F) on Fock space corresponding to a Bogolubov linear map, i.e., a
unitary W ∈ U(h ⊕ h) on h ⊕ h, which additionally obeys JW = WJ. The lat-
ter condition and the unitarity precisely ensure that the CAR (IV.4) are preserved
under these transformations,

A(WF ) = A∗(JWF ) = A∗(WJF ) and (IV.16){
A(WF ), A∗(WG)

}
=
〈
WF

∣∣WG
〉
h⊕h =

〈
F
∣∣G〉

h⊕h , (IV.17)

The Bogolubov linear maps obviously form a subgroup

Bogh⊕h :=
{
W ∈ U(h⊕ h)

∣∣ JW = W J
}

(IV.18)
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of U(h⊕ h). Expressing W as a 2× 2-matrix of operators, the Bogolubov linear
maps can be alternatively characterized as

Bogh⊕h =

{(
u jvj
v juj

)
∈ U(h⊕ h)

∣∣∣∣ Trh
[
v∗v
]
< ∞

}
, (IV.19)

where the condition that v is of Hilbert-Schmidt class, Trh[v
∗v] < ∞, is known

as the Shale-Stinespring condition. Each Bogolubov linear map W ∈ Bogh⊕h
is unitarily implementable on Fock space which means that there exists a unitary
UW ∈ U(F) such that, for all F ∈ h⊕ h,

UW A∗(F )U∗W = A∗(WF ) (IV.20)

and, in fact, W 7→ UW is a bijection Bogh⊕h → BogF, where

BogF := (IV.21){
U ∈ U(F)

∣∣∣ ∃V ∈ B(h⊕ h) ∀F ∈ h⊕ h : UA∗(F )U∗ = A∗(V F )
}

is the subgroup BogF ⊆ U(F) of Bogolubov transformations. The Shale-
Stinespring condition ensures, that the vacuum vector remains in F under the ap-
plication ofUW , and the transformed creation and annihilation operators d∗(f) :=
UW c

∗(f)U∗W and d(f) constitute another Fock representation of the CAR with
UWΩ ∈ F as the new vacuum vector.

We return to the 1-gRDM Γ
(1)
ρ of a density matrix ρ ∈ DMN of finite parti-

cle number expectation. These assume the form (IV.11) with nonvanishing pair-
ing operator αρ unless ρ preserves particle numbers. In an orthonormal basis
{F`, JF`} ⊆ h ⊕ h of eigenvectors with eigenvalues λ` and 1 − λ`, respectively,
Γ

(1)
ρ can be represented as in (IV.14). Starting from this one can construct a Bo-

golubov linear map W ∈ Bogh⊕h such that

W ∗ Γ(1)
ρ W =

∞∑
`=1

{
λ` |f` ⊕ 0〉〈f` ⊕ 0| + (1− λ`) |0⊕ jf`〉〈0⊕ jf`|

}
.

(IV.22)

Since, for all F,G ∈ h⊕ h,

TrF
[
ρA∗(WF )A(WG)

]
= TrF

[
U∗W ρUW A∗(F )A(G)

]
, (IV.23)

we obtain that

Γ
(1)
U∗W ρUW

= W ∗ Γ(1)
ρ W (IV.24)

=
∞∑
`=1

{
λ` |f` ⊕ 0〉〈f` ⊕ 0| + (1− λ`) |0⊕ jf`〉〈0⊕ jf`|

}
.
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In other words, the pairing operator αU∗W ρUW = 0 of the transformed density
matrix U∗WρUW vanishes and γ(1)

U∗W ρUW
=
∑∞

`=1 λ`|f`〉〈f`| where {f`} ∈ h is an
orthonormal basis and λ` ∈ [0, 1]. Note that the vanishing αU∗W ρUW = 0 of the
pairing operator alone does not imply thatU∗WρUW is particle-number preserving.
Further note that if W =

(
u jvj
v juj

)
∈ Bogh⊕h then

0 ≤ γ
(1)
U∗W ρUW

= u∗γ(1)
ρ u+ v∗

(
1− jγ(1)

ρ j
)
v + v∗αρu+ u∗αρv

≤ u∗γ(1)
ρ u+ v∗v + v∗αρu+ u∗αρv , (IV.25)

from which we conclude that the transformed density matrix U∗WρUW has finite
particle number expectation, as well, since

‖γ(1)
U∗W ρUW

‖L1 ≤ ‖γ(1)
ρ ‖L1 + ‖v‖2

L2 + 2‖v‖L2 ‖αρ‖L2 < ∞ . (IV.26)

Inspired by these properties, we define by

G(1) := (IV.27){
Γ(1) =

(
γ(1) α

α∗ 1−j γ(1)j

)
∈ B(h⊕ h)

∣∣∣∣ Γ(1) = J(1− Γ(1))J ≥ 0 , γ(1) ∈ L1(h)

}
the set of generalized one-particle density matrices 1-gpdm and by

g(1) :=
{
γ(1) ∈ L1(h)

∣∣∣ 0 ≤ γ(1) ≤ 1
}

(IV.28)

the set of one-particle density matrices (1-pdm).

Representability of 1-gpdm We have just seen that any 1-gRDM of finite
particle-number expectation value necessarily is a 1-gpdm in G(1). Representabil-
ity asks for sufficient conditions for this relation. That is, a 1-gpdm Γ(1) ∈ G(1)

is called representable, if there exists a density matrix ρ ∈ DM whose reduced
generalized one-particle density matrix Γ

(1)
ρ coincides with Γ(1), i.e., if Γ(1) = Γ

(1)
ρ .

The following theorem gives an affirmative answer to question of representabil-
ity of generalized 1-pdm.

Theorem 4. Every generalized one-particle density matrix Γ(1) ∈ G(1) is repre-
sentable by a density matrix of finite particle number expectation value.

Proof. Given Γ(1) ∈ G(1) we can find a Bogolubov linear map W ∈ Bogh⊕h such
that

W ∗ Γ(1)W =

(
γ 0
0 1− j γj

)
and γ =

∞∑
`=1

λ` |f`〉〈f`| (IV.29)



Lieb birthday contribution, 30.03.2022 24

assumes the form (IV.22). Here, {f`}∞`=1 ⊆ h is an orthonormal basis of eigen-
vectors of γ with corresponding eigenvalues λ` ∈ [0, 1], which we assume w.l.o.g.
to be arranged in descending order, 1 ≥ λ1 ≥ λ2 ≥ . . . ≥ 0. More specifically,
we have that 1 = λ1 = . . . = λK−1 > λK ≥ . . . ≥ λL > λL+1 = λL+2 =
. . . = 0, for unique K ≤ Trh[γ] < ∞ and L ∈ Z+ ∪ {∞}. Note that, for
K ≤ ` ≤ L, the eigenvalues λ` ∈ [λL, λK ] ⊆ (0, 1) are away from 0 and 1, and
µ` := ln(1− λ`)− ln(λ`) ∈ R exists. Setting nk := c∗(fk) c(fk), for all k ∈ Z+,
and P1 := n1 n2 · · ·nK−1, we define

h0 :=
L∑

`=K

µ` n` , Z0 := TrF[e−h0 ] , and ρ0 := P1 Z
−1
0 exp[−h0] .

(IV.30)

Note that an orthonormal basis of F of eigenvectors of nk with eigenvalues νk ∈
{0, 1} is given by Ψν :=

∏∞
`=1[c∗(f`)]

ν`Ω, where ν = (ν`)
∞
`=1 ∈ {0, 1}Z

+ runs
through all sequences of occupation numbers ν` ∈ {0, 1} of finite sum |A(ν)| <
∞, with A(ν) := {` ∈ Z+|ν` = 1} ⊆ Z+. That is, nkΨν = νkΨν , for any
k ∈ Z+. Hence

Z0 =
∑

ν:|A(ν)|<∞

〈
Ψν

∣∣ e−h0Ψν

〉
=

L∏
`=K

(
1 + e−µ`

)
< ∞ , (IV.31)

since
∑∞

`=1 e
−µ` =

∑L
`=K(1 − λ`)−1λ` ≤ (1 − λK)−1

∑∞
`=1 λ` < ∞. It follows

that ρ0 ∈ DM is a density matrix, which is obviously particle-number preserving
and, therefore, has vanishing pairing operator αρ0 = 0. Moreover, if max{k, `} ≥
K then

〈f` | γ(1)
ρ0
fk〉 =

TrF[e−h0 c∗(fk) c(f`)]

Z0

=
δk,` e

−µk

1 + e−µk
= δk,` λk , (IV.32)

while, for min{k, `} ≤ K, we observe that 〈f`|γ(1)
ρ0 fk〉 = δk,` = δk,`λk, as well.

This implies that W ∗Γ(1)W = Γ
(1)
ρ0 and thus

Γ(1) = W Γ(1)
ρ0
W ∗ = Γ

(1)
UW ρ0U∗W

. (IV.33)

Since ρ0 ∈ DM is a density matrix, so is UW ρ0U
∗
W ∈ DM.

N -Representability of 1-pdm Similar to the notion of representability of a
generalized 1-pdm, we call a 1-pdm γ(1) ∈ g(1) with Tr[γ(1)] = N ∈ Z+ N -
representable, if there exists an N -particle density matrix ρ ∈ DM(N) such that
γ(1) = γ

(1)
ρ .

TheN -representability of any 1-pdm has actually been proved by Lieb in [69],
although this had not been its main purpose.
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Theorem 5. LetN ∈ Z+ withN ≥ 2 and γ(1) ∈ g(1) a one-particle density matrix
of particle number expectation Tr[γ(1)] = N . Then γ(1) is N -representable.

Proof. Given γ(1), the N -particle density matrix ρav ∈ DM(N) in (IV.1) fulfills
γ(1) = γ

(1)
ρav .

Representability of generalized 2-pdm Let N ∈ Z+ with N ≥ 2. As proven
in Theorems 4 and 5 above, the maps DMN → G(1), ρ 7→ Γ

(1)
ρ and DM(N) →

{γ ∈ g(1)|Tr[γ] = N}, ρ 7→ γ
(1)
ρ are bijections. The simple characterizations of

the sets G(1) and g(1) is an encouraging sign that the extension of the notion of
representability to reduced generalized k-pdm for k ≥ 2 leads to similarly simple
characterizations.

Following this sign, we call a pair (Γ(1),Γ(2)) ∈ B(h2)×B(h2⊗h2) of bounded
positive operators representable, if Γ(1) = Γ

(1)
ρ and Γ(2) = Γ

(2)
ρ , for some density

matrix ρ ∈ DM〈N2〉<∞ of finite particle number variance, where h2 := h⊕ h.
Somewhat more restrictive, we call a pair (γ(1), γ(2)) ∈ B(h) × B(h ⊗ h) of

bounded positive operators representable, if γ(1) = γ
(1)
ρ and γ(2) = γ

(2)
ρ , for some

particle-number preserving density matrix ρ ∈ DM〈N2〉<∞ of finite particle num-
ber variance. If ρ can additionally be chosen to be an N -particle density matrix
then (γ(1), γ(2)), respectively, is called N -representable. Note that necessarily
γ(1) results from γ(2) by taking a partial trace [see (II.28)] and N = Tr[γ(1)] in
this case.

With these definitions we obtain new characterizations of the total and the
N -particle ground state energies as

Egs = inf
{
EQ
(
γ(1), γ(2)

) ∣∣∣ (h γ(1)) ∈ L1(h) , (IV.34)

(γ(1), γ(2)) ∈ B(h)× B(h⊗ h) is representable
}
,

Egs(N) = inf
{
EQ
(
γ(1), γ(2)

) ∣∣∣ (h γ(1)) ∈ L1(h) , (IV.35)

(γ(1), γ(2)) ∈ B(h)× B(h⊗ h) is N -representable
}
.

This characterization of the ground state energy was first given by Coleman [28],
following a remark of Coulson [30]. It seems to yield a drastic simplification of
the task of determining ground state energies and ground states of many-fermion
systems, as the number of variables of the problem is reduced fromN to 4. This is,
however, too optimistic because the problem of restricting the variation in (IV.34)
and (IV.35) to representable respectively N -representable pairs (γ(1), γ(2)) is, per-
haps, as difficult as solving the corresponding Schrödinger equation on Fock space
altogether.
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The requirement that the density matrix from which (γ(1), γ(2)) derives is par-
ticle number preserving or even anN -particle density matrix adds considerably to
the degree of difficulty of the problem, as is seen when comparing the proofs of
Theorems 4 and 5 in case that k = 1. A characterization of the representability of
(Γ(1),Γ(2)) ∈ B(h2)× B(h2 ⊗ h2) would already be great progress.

Nevertheless, we now focus on particle number preserving density matrices ρ
for which the reduced generalized 1-pdm (Γ

(1)
ρ ,Γ

(2)
ρ ) are completely determined

by the 1-RDM (γ
(1)
ρ , γ

(2)
ρ ). The difficulty described above has lead to what is

known as the representability problem of quantum chemistry: Specify a condi-
tion A : L1(h)× L1(h⊗ h)→ {true, false} such that (γ(1), γ(2)) is representable
if A(γ(1), γ(2)) = true. The representability problem is considered open until to-
day (at least by those who do not accept tautologies as its solution). It is known
to be a hard problem in the sense of QMA complexity in computer science, as
demonstrated by Liu, Christandl, and Verstraete in [75]. An overview on ques-
tions of reduced density matrices and their representability is given by Coleman
and Yukalov in [29].

GPQ Condition andT1;2 Condition While the representability problem is about
the specification of a sufficient condition for the representability of a pair (γ(1), γ(2)),
research on conditions reduced one- and two-particle density matrices necessar-
ily fulfill has been more successful in the past. Namely, if a condition B :

L1(h) × L1(h ⊗ h) → {true, false} is such that B(γ
(1)
ρ , γ

(2)
ρ ) = true, for any

density matrix ρ ∈ DM then it is immediate that

Egs ≥ inf
{
EQ
(
γ(1), γ(2)

) ∣∣∣ (IV.36)

(h γ(1)) ∈ L1(h) , B(γ(1), γ(2)) = true
}
,

Egs(N) ≥ inf
{
EQ
(
γ(1), γ(2)

) ∣∣∣ (IV.37)

(h γ(1)) ∈ L1(h) , Tr[γ(1)] = N , B(γ(1), γ(2)) = true
}
.

In practise, B is not a single condition but a list of conditions that γ(1) and γ(2)

ought to fulfill, and (i) and (ii) in Lemma 1 are always part of this list. That is, it is
understood that γ(1) ∈ g(1) is a 1-pdm and obeys 0 ≤ γ(1) ≤ 1h and Tr[γ(1)] <∞.
Theorems 4 and 5 ensure that there are not more conditions on γ(1) alone, that do
not involve γ(2).

Almost sixty years ago Coleman [28] and Garrod and Percus [45] specified
three conditions, which a representable pair (γ(1), γ(2)) of a one- and two-particle
density matrix necessarily fulfill. These three conditions were orginally called
“G”, “P”, and “Q”, respectively, but we refer to them as a single condition which
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we call the GPQ condition. We apply the scheme described in (IV.36) and (IV.37)
above and introduce

EGPQ(N) := inf
{
EQ(γ(1), γ(2))

∣∣ (h γ(1)) ∈ L1(h) , (IV.38)

Tr[γ(1)] = N , (γ(1), γ(2)) fulfills GPQ
}
,

observing that Egs(N) ≥ EGPQ(N). In [9], Knörr, Menge, and the author con-
sidered self-adjoint, but not necessarily positive, trace-class operators ρ = ρ∗ ∈
L1(F) obeying TrF

(
|ρ|1/2N2|ρ|1/2

)
< ∞. It is easy to see that, for these ρ, the

operators Γ
(2)
ρ , given by (IV.6), define trace-class operators on h2 ⊗ h2. In [9],

the GPQ condition was proven to be is equivalent to the positivity of Γ
(2)
ρ ≥ 0

on h2 ⊗ h2. Furthermore, it was shown in [9] that the GPQ condition implies the
fermion correlation inequality

Trh⊗h
[
(P ⊗ P )γ(2)

]
≥ Trh⊗h

[
(P ⊗ P )(1− Ex)(γ(1) ⊗ γ(1))

]
(IV.39)

− Trh[Pγ
(1)] min

{
1 , 9 Trh

[
P
(
γ(1) − (γ(1))2

)1/2]}
,

where P = P ∗ = P 2 ∈ B(h) is an arbitrary orthogonal projection. This in-
equality is the key input for the proof in [3, 9] that, for large Coulomb systems,
the difference of the Hartree–Fock energy and EGPQ(N) is bounded by o(Z5/3),
which implies that the accuracy of the Hartree–Fock approximation is at least as
good,

0 ≤ EHF(Z)− Egs(N) ≤ EHF(Z)− EGPQ(N) ≤ o(Z(5/3)) . (IV.40)

Since the exchange term is in magnitude greater than a universal multiple of Z5/3,
see (I.12)-(I.13), Eq. (IV.40) proves that the accuracy of the Hartree–Fock approx-
imation is better than the smallest contribution to the Hartree–Fock energy.

In [39, 38], Erdahl found additional representability conditions he called T1

and T2. We refer to these as a single condition, the T1;2 condition. It arises
from observables of the form Q4 := P ∗3P3 + P3P

∗
3 , where P3 is any polynomial

in the self-dual field operators of degree three. Obviously, Q4 is a nonnegative
operator. Moreover, while both P ∗3P3 and P3P

∗
3 are polynomials of degree six,

their sum Q4 is an anticommutator and hence a polynomial of degree four or less.
Thus, TrF[ρQ4] ≥ 0 yields a condition the pair of reduced generalized 1-pdm and
2-pdm (Γ

(1)
ρ ,Γ

(2)
ρ ) corresponding to ρ necessarily fulfills. We introduce

EGPQ:T(N) := inf
{
EQ(γ(1), γ(2))

∣∣ (h γ(1)) ∈ L1(h) , (IV.41)

Tr[γ(1)] = N , (γ(1), γ(2)) fulfills GPQ and T1;2

}
.
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Erdahl’s theoretical discovery came into focus of quantum chemists some two
decades later, when numerical simulations demonstrated, that, in test cases with
small N , the accuracy of EGPQ:T(N) is comparable to the accuray of full CI
(configuration interaction) computations, i.e., the full solution of the N electron
Schrödinger equation (projected onto a finite dimensional subspace, as part of the
Galerkin approximation). These were carried out, e.g., by Erdahl and Mazziotti
in [77], Zhao, Braams, Fukuda, Overton, and Percus in [99], Cances, Lewin, and
Stoltz in [24], Braams, Percus, and Zhao in [20], and Naftchi-Ardebili, Hau, and
Mazziotti in [78].
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V Quadratic Hamiltonians and
Quasifree Density Matrices

Quadratic Hamiltonians: We return to the definition of Bogolubov linear maps
Bogh⊕h and Bogolubov transformations BogF. The former consists of unitary
linear maps W ∈ U(h ⊕ h) on h ⊕ h, which additionally obeys JW = WJ, the
latter are unitary operators UW ∈ U(F) obeying

∀F ∈ h⊕ h : UW A∗(F )U∗W = A∗(WF ) , (V.1)

and the map Bogh⊕h 3 W 7→ UW ∈ BogF is a group isomorphism.
Next, we define the second quantization Q(T ) ∈ B(D(N);Ff ) of a bounded

operator T = T ∗ =
(
a b
b∗ 0

)
∈ B[h⊕ h], with a = a∗ and b = −jb∗j by

Q(T ) :=
∞∑

i,j=1

〈Fi| TFj〉 A∗(Fi)A(Fj) , (V.2)

where {Fi}∞i=1 ⊆ h⊕h is an orthonormal basis. The definition ofQ(T ) is indepen-
dent of the choice of this orthonormal basis. Under the assumption that b ∈ L2(h)
is a Hilbert-Schmidt operator and a ≥ 0 is nonnegative, Q(T ) is self-adjoint and
semibounded on the domain of the particle number operator. (Generally, a rela-
tive bound in form of the Hilbert-Schmidt property of a−1/2ba−1/2 should be suf-
ficient, as this was shown to hold true for boson systems by Nam, Napiorkowski,
and Solovej in [79].) We refer to Q(T ) as the quadratic Hamiltonian corre-
sponding to T because it is of degree two in the self-dual field operators. An
explicit computation (on finite vectors and then extension by continuity) yields

[Q(T ) , A∗(F )] = A∗
(
T̂F
)
, (V.3)

which implies that

eiQ(T ) A∗(F ) e−iQ(T ) = A∗
(
eiT̂F

)
, (V.4)

for any F ∈ h⊕ h, where T̂ = −JT̂J :=
(

a 2b
2b∗ −a

)
∈ B[h⊕ h].

Indeed, if we set A∗t (F̃ ) := eitQ(T )A∗
(
e−itT̂ F̃

)
e−itQ(T ) for t ∈ [0, 1] then

Ȧ∗t (F̃ ) = 0, by (V.3), and hence eiQ(T )A∗
(
e−iT̂ F̃

)
e−iQ(T ) = A∗1(F̃ ) = A∗0(F̃ ) =

A∗(F̃ ) which directly yields (V.4) with F̃ := eiT̂F .
Note that we cannot directly quantize 1

2
T̂ in the sense of (V.2), for if we replace

T by 1
2
T̂ in (V.2), we obtain an expression 1

2
Q(T̂ ), say, which fulfilled 1

2
Q(T̂ ) =

Q(T ) + 1
2
Tr[a] and would, hence, not exist in case that a is not trace-class. Fur-

ther note that by the antilinearity of J, we have that [iT̂ ]J = −iJT = J[iT̂ ] and
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hence e−iT̂ J = Je−iT̂ . Since Q(T ) is self-adjoint, eiQ(T ) ∈ BogF is a Bogolubov
transformation with

exp[iQ(T )] = Uexp[−iT̂ ] . (V.5)

In fact, all Bogolubov transformations can be written in this form or, at least,
approximated in the strong topology. That is, we may identify the Bogolubov
transformations with the family of unitary operators generated by i times self-
adjoint quadratic Hamiltonians,

BogF =
{

exp[iQ(T )]
∣∣∣ T =

(
a b
b∗ 0

)
, a ∈ B(h) , a ≥ 0 , b ∈ L2(h)

}
, (V.6)

where the bar denotes closure in the strong operator topology.

Quasifree Density Matrices: It turns out that quadratic Hamiltonians play an
important role not only for Bogolubov transformations, but also for density matri-
ces. Recall from (IV.30) the definition of the density matrix ρ0 = P1Z

−1
0 exp[−h0] ∈

DM, where P1 = n1 n2 · · ·nK−1 and

h0 =
L∑

`=K

µ` c
∗(f`) c(f`) = Q(H0) (V.7)

is the quadratic Hamiltonian corresponding to

H0 :=

(
h0 0
0 0

)
and h0 :=

L∑
`=K

µ` |f`〉〈f`| . (V.8)

We now construct an approximation ρε ∈ QDM for ρ0, such that ρε → ρ0 in
DMN, as ε→ 0. For ε > 0, we define

τ`(ε) :=


1− ε/K , ` < K ,

µ` , K ≤ ` ≤ L ,

ε e−`
2
, ` > L ,

(V.9)

noting that τ`(ε) ∈ (0, 1), for all ` ∈ Z+. Next, we set Hε := hε ⊕ 0, where hε :=∑∞
`=1 τ`(ε)|f`〉〈f`|. Finally, Zε := TrF

(
exp[−Q(Hε)]

)
and ρε := Z−1

ε exp[−Q(Hε)].
We further recall from (IV.33) that ρ0, after conjugation with the Bogolubov

transformationUW ∈ BogF, yields the density matrix ρ̃0 := UWρ0U
∗
W whose re-

duced generalized 1-pdm Γ
(1)
ρ̃0

equals the prescribed generalized 1-pdm Γ(1) from
Theorem 4. If Tε =

(
aε bε
b∗ε 0

)
, aε ∈ B(h), aε ≥ 0, and bε ∈ L2(h), is such that

UWΨ = limε→0 exp[iQ(Tε)]Ψ, for all Ψ ∈ F, then in DMN

ρ̃ε := exp[iQ(Tε)] ρε exp[−iQ(Tε)] → ρ̃0 ε→ 0 , (V.10)
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due to the unitarity of UW and the fact that ρ0 ∈ DMN. On the other hand,

ρ̃ε = Z−1 exp[−Q(H̃ε)] , where H̃ε = e−iT̂ Hε e
iT̂ . (V.11)

So, defining the set of quasifree density matrices

QDM :=
{
Z−1 exp[−Q(H0)]

∣∣∣ H0 ∈ qh , Z := exp[−Q(H0)] <∞
}
,

(V.12)

where the bar indicates closure in DMN and

qh :=

{(
a b
b∗ 0

) ∣∣∣∣ a = a∗ ≥ 0 , e−a ∈ L1(h) , b ∈ L2(h)

}
, (V.13)

we conclude from (V.10)-(V.11) that every 1-gpdm is the 1-gRDM of a semi-
group generated by a quadratic Hamiltonian or a limit in DMN thereof.

Note that QDM ⊆ DM. Further note that the closure in the definition
(V.12) of quasifree density matrices is important because otherwise the orthog-
onal projection ρ = |Φf〉〈Φf | onto the Slater determinant Φf = f1 ∧ · · · ∧ fN
of orthonormal orbitals f1, . . . , fN ∈ h would be excluded. The Slater determi-
nant Φf , however, is the Bogolubov transform UWΩ of the vacuum vector, with

W =
(
P⊥ jP j

P jP⊥j

)
, where P =

∑N
n=1 |fn〉〈fn| is the orthogonal projection onto

the subspace spanned by f1, . . . , fn ∈ h. Hence, the corresponding rank-one pro-
jection ρ = |UWΩ〉〈UWΩ| is a (pure) quasifree density matrix. The Bogolubov
linear map W ∈ Bogh⊕h is not of the form exp[−iQ(T )], for any T ∈ qh, but can
be obtained as a strong limit of these.

With the definitions in Eqs. (V.12)-(V.13), we observe that the proof of Theo-
rem 4 actually yields the following stronger statement.

Corollary 6. Let Γ(1) ∈ G(1) be a generalized one-particle density matrix. Then
there exists a unique quasifree density matrix η ∈ QDM such that Γ(1) = Γ

(1)
η .

We omit to comment on the uniqueness part of Corollary 6 but point out the
following important consequence.

Corollary 7. The requirement Γ
(1)
ρ = Γ

(1)
η defines a map

q : DM → QDM , ρ 7→ q(ρ) = η . (V.14)

For a density matrix ρ ∈ DM, its image q(ρ) = η ∈ QDM is called its quasifree
reduction.
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For a quasifree state ρ ∈ QDM the reduced generalized k-pdm can be explic-
itly computed in terms of its reduced generalized 1-pdm, as the following theorem
asserts.

Theorem 8. Let ρ ∈ DM be a density matrix and denote 〈M〉 := TrF[ρM ], for
any M ∈ B(F). Then the following statements are equivalent.

(i) The density matrix ρ ∈ QDM is quasifree.

(ii) For all k ≥ 2, all truncated 2k-point functions vanish, i.e., for allF1, F2, . . . , F2k ∈
h⊕ h,

〈A1A2 · · ·A2k〉 =
∑
π∈P2k

(−1)π 〈Aπ(1)Aπ(2)〉 〈Aπ(3)Aπ(4)〉 · · · 〈Aπ(2k−1)Aπ(2k)〉 ,

(V.15)

where Ai := A∗(Fi), P2k is the set of permutations π : {1, 2, . . . , 2k} →
{1, 2, . . . , 2k} that obey π(1) < π(3) < . . . < π(2k − 1) and π(2j − 1) <
π(2j), for all 1 ≤ j ≤ k, and (−1)π denotes its sign.

(iii) All truncated four-point functions vanish, i.e., for all F1, F2, F3, F4 ∈ h⊕h,

〈A1A2A3A4〉 = 〈A1A2〉〈A3A4〉 − 〈A1A3〉〈A2A4〉+ 〈A1A4〉〈A2A3〉 ,
(V.16)

where Ai := A∗(Fi).

Characterization (ii) of quasifree density matrices in the above theorem is of-
ten taken as their definition. The somewhat surprising statement for a given den-
sity matrix, that already the vanishing of its truncated four-point functions implies
its quasifreeness originates in a theorem of Marcinkiewicz [76] in (classical) prob-
ability theory. In the context of quantum physics, it was first proved by Robinson
[87] and later generalized in [16, 17] for boson systems. The generalization to
fermions can be traced back to work of Rajagopal and Sudarshan [85], see also
the comment by Titulaer [98]. We refer to Salmhofer [88] for a modern presenta-
tion of truncated fermion correlation functions.

The quasifree reduction q : DM → QDM defined in Corollary 7 is a pro-
jection, i.e., an idempotent map q2 = q from the density matrices onto quasifree
density matrices. Mauser and Gottlieb [49] observed that the image q(ρ) ∈ QDM
of ρ ∈ DM under this projection is the closest element to ρ in QDM in the sense
that it minimizes the relative entropy among all quasifree density matrices, as the
following Theorem asserts.
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Theorem 9. Let ρ ∈ DM be a density matrix and q(ρ) ∈ QDM its quasifree
reduction. If the relative entropy

S[ρ, q(ρ)] := TrF
{
ρ
(

log[ρ]− log[q(ρ)]
)}

< ∞ (V.17)

exists, then

S[ρ, q(ρ)] = inf
η∈QDM

{
S[ρ, η]

}
. (V.18)

Proof. Let η ∈ QDM be a quasifree density matrix which, for simplicity, is
assumed to be given as the exponential η = Z−1 exp[−Q] of a quadratic Hamil-
tonian Q ≡ Q(H0), for some H0 ∈ qh, and that the von Neumann entropies
S[ρ] := −TrF{ρ log[ρ]}, S[η], and S[q(ρ)] of ρ, its quasifree reduction, and η
exist. Then − log[q(ρ)] = Q+ log(Z) and hence

S[ρ, η] = S[ρ] + TrF
{
ρ
(
− log[η]

)}
= log(Z) + S[ρ] + TrF{ρQ} (V.19)

= log(Z) + S[ρ] + TrF{q[ρ]Q} = S[ρ] − TrF{q[ρ] log[η]} ,

since quadratic observables have the same expectation value w.r.t. a density matrix
and its quasifree reduction. The same identity holds true, if we replace η by q[ρ],
and we obtain

S[ρ, η]− S[ρ, q(ρ)] = TrF
{
q(ρ)

(
log[q(ρ)]− log[η]

)}
= S[q(ρ), η] ≥ 0 ,

(V.20)

since relative entropy is nonnegative.

We remark that the existence of the von Neumann entropies S[ρ] := −TrF{ρ log[ρ]}
of ρ and q[ρ] is assumed in the proof of Theorem 9 only for convenience and is
not implied by the finiteness of their relative entropy S[ρ, q(ρ)]. Note, however,
that if ρ ∈ QDM is quasifree and S[ρ] <∞ then it assumes the simple form

S[ρ] = − TrF{ρ log[ρ]} = S(1)[Γ(1)
ρ ] := −Trh⊕h

{
Γ(1)
ρ log[Γ(1)

ρ ]
}
. (V.21)

This is not hard to check for a quasifree density matrix ρ0 ∈ QDM of the form
ρ0 = P1Z

−1
0 exp[−h0], as in (IV.30) by explicit computation. The general identity

(V.21) then follows from the invariance of S[ρ] and S(1)[Γ(1)] under unitary trans-
formations and the application of a suitable Bogolubov linear map W ∈ Bogh⊕h

to Γ
(1)
ρ to transform it to Γ

(1)
ρ0 and the corresponding Bogolubov transformation

UW ∈ BogF to ρ to transform it to ρ0. See also [12].
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VI Generalized Hartree-Fock Approximation and
Generalizations of Lieb’s Variational Principle

Generalized Hartree–Fock Approximation: Since quasifree density matrices
are, in particular, density matrices, we immediately observe that the generalized
Hartree–Fock energy

EgHF := inf
{

TrF(ρHµ)
∣∣ ρ ∈ QDM , 〈H〉ρ <∞

}
(VI.1)

defines an upper bound EgHF ≥ Egs on the total ground state energy Egs defined
in (II.15). For a quasifree density matrix ρ ∈ QDM, the energy expectation
value TrF(ρHµ) = EgHF(Γ

(1)
ρ ) depends only on its reduced generalized 1-pdm

Γ
(1)
ρ =

( γ(1)ρ αρ

α∗ρ 1−jγ(1)ρ j

)
∈ G(1), where

EgHF(Γ(1)
ρ ) := Trh

[
hµ γ

(1)
ρ

]
+

1

2
Trh⊗h

[
V (1− Ex)(γ(1)

ρ ⊗ γ(1)
ρ )
]

+
1

2
Trh⊗h

[
V Ex (α∗ρ ⊗ αρ)

]
, (VI.2)

where hµ := h − µ1. Moreover, since QDM 3 ρ 7→ Γ
(1)
ρ ∈ G(1) is a bijection,

we obtain

EgHF = inf
{
EgHF(Γ(1))

∣∣∣ Γ(1) ∈ G(1)
}
. (VI.3)

Note that if minimizers Γ
(1)
gHF exist then they necessarily fulfill a stationarity con-

dition, which in generalized Hartree–Fock theory also takes the form of a self-
consistent equation

Γ
(1)
gHF = 1¬

(
hgHF[Γ

(1)
gHF]

)
, (VI.4)

where hgHF[Γ(1)] is again an effective Hamiltonian on h ⊕ h and 1¬(hgHF[Γ
(1)
gHF])

is a certain projection onto the eigenspaces of hgHF[Γ
(1)
gHF] of negative and zero

eigenvalues such that 1(hgHF[Γ
(1)
gHF] < 0) ≤ 1¬(hgHF[Γ

(1)
gHF]) ≤ 1(hgHF[Γ

(1)
gHF] ≤

0). The precise form of 1¬ is difficult to determine because of the requirement
1 − Γ

(1)
gHF = JΓ

(1)
gHFJ which Γ

(1)
gHF and, therefore, also 1¬(hgHF[Γ

(1)
gHF]) necessarily

fulfills.
It is possible, however, to use the (yet another) generalization of generalized

Hartree–Fock theory to positive temperatures 1/β > 0, which is not reviewed
here, and obtain a minimizer Γ

(1)
gHF by the zero temperature limit β → ∞ of a



Lieb birthday contribution, 30.03.2022 35

family of minimizers
(
Γ

(1)
β

)
β∈R+ for inverse temperature 1/β. Fox fixed β, the

minimizer Γ
(1)
β necessarily fulfills the self-consistent equation

Γ
(1)
β = Fβ

(
hβ[Γ

(1)
β ]
)
, (VI.5)

where hβ[Γ] is a suitable effective Hamiltonian, itself depending on β, andFβ(x) =
(1 + eβx)−1 is the Fermi function.

We remark that the generalized Hartree–Fock theory for positive temperature
derives from a variational principle, namely the minimization of the Hartree–
Fock pressure functional−Pβ by

−Pβ(Γ(1)) := EgHF(Γ(1)) − β−1 S(1)(Γ(1)) . (VI.6)

Lieb, Solovej, and the author have demonstrated in [12] that it fulfills

Pβ(Γ(1)) ≤ β−1 log
[
TrF
{

exp[−βHµ]
}]
, (VI.7)

for any generalized 1-pdm Γ(1) ∈ G(1) and, hence, yields a lower bound to the
pressure (in the sense of statistical mechanics), in analogy to EgHF(Γ(1)) being an
upper bound to the total ground state energy Egs.

Repulsive Potentials: If h = L2(M,dν) for a measure space (M,dν), and
V (x, y) ≥ 0 is a repulsive potential, i.e., a nonnegative multiplication operator
on h⊗ h, then

Trh⊗h
[
V Ex (α∗ρ ⊗ αρ)

]
=

∫
V (x, y) |αρ(x, y)|2 dν(x) dν(y) ≥ 0 . (VI.8)

In other words: For repulsive pair potentials the pairing operator yields a nonneg-
ative contribution to the energy. Now, if Γ(1) =

(
γ(1) α

α∗ 1−jγ(1)j

)
∈ G(1) is a 1-gpdm,

so is Γ̃(1) :=
(

1 0
0 −1

)
Γ(1)
(

1 0
0 −1

)
=
(
γ(1) −α
−α∗ 1−jγ(1)j

)
∈ G(1), and by the convexity of

G(1) we conclude that Γ̂(1) = 1
2

(
Γ(1) + Γ̃(1)

)
=
(
γ(1) 0

0 1−jγ(1)j

)
∈ G(1) is a 1-gpdm,

too. Its energy expectation value, however, is

EgHF(Γ̂(1)) = Trh
[
hµ γ

(1)
]

+
1

2
Trh⊗h

[
V (1− Ex)(γ(1) ⊗ γ(1))

]
≤ EgHF(Γ(1)) . (VI.9)

It follows that for repulsive pair potentials, the generalized Hartree-Fock energy
agrees with the (total) Hartree-Fock energy and does not improve the approxima-
tion,

EgHF = EHF = inf
{
EHF(γ)

∣∣ γ ∈ L1(h) , 0 ≤ γ ≤ 1
}
, (VI.10)
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where the total Hartree–Fock energy is defined as EHF := infN∈Z+ EHF(N).
We stress that the total Hartree–Fock energy, as a function of the chemical po-
tential µ, is the Legrende transform of the Hartree-Fock energy EHF(N) for N
particles. This does not have a direct consequence for EHF(N).

Attractive Potentials: If h = L2(M,dν) and the pair potential V : M ×
M → R is strictly negative in some subset of M ×M then it may happen that
EgHF < EHF and the generalized Hartree–Fock approximation is, indeed, better
than the original Hartree–Fock approximation and pairing occurs, i.e., all mini-
mizers Γ(1) =

(
γ(1) α

α∗ 1−jγ(1)j

)
∈ G(1) have a nonvanishing pairing operator α 6= 0.

In this case the Hartree–Fock equations indicating the stationarity of the energy
functional at the minimum turn into BCS-type equations for which those found
by Bardeen, Cooper, and Schrieffer in [15] for the description of superconductiv-
ity are a special case. Because of similarity, the stationarity condition is usually
called BCS equation, and the latter have been systematically analyzed for transla-
tional invariant systems under the additional assumption, or constraint, that only
translation invariant states enter the energy functional [56], see Section VII.

There is no general criterion for the occurence of pairing, but in case the
fermions in the model are electrons or other spin-1

2
particles, the one-particle

Hilbert space is of the form h = ĥ ⊗ C2 with ĥ = L2(M,dν), the interaction
potential V is spin-independent and purely attractive, V ≤ 0, and the operators
h = ĥ ⊗ 1 and V = (−V̂ ) ⊗ (1 ⊗ 1) are real, i.e., j = ĵ ⊗ 1, ĵĥ = ĥ̂j, and
(̂j⊗ ĵ)V̂ = V̂ (̂j⊗ ĵ), an explicit characterization of pairing was given by Fröhlich,
Jonsson, and the author in [7]: Under these assumptions, the energy minimizing
1-gpdm always takes the form

Γ(1) ≡ Γ(1)[γ̂] :=


γ̂ 0 0

√
γ̂ − γ̂2

0 γ̂ −
√
γ̂ − γ̂2 0

0 −
√
γ̂ − γ̂2 1− γ̂ 0√

γ̂ − γ̂2 0 0 1− γ̂

 ,

(VI.1)

where the auxiliary 1-pdm γ̂ ∈ L1(ĥ), 0 ≤ γ̂ ≤ 1ĥ, on ĥ minimizes the resulting
auxiliary functional

Êaux(γ̂) :=
1

2
EgHF(Γ(1)[γ̂]) = Trĥ[ĥ γ̂] (VI.2)

− 1

2

∫∫
V̂ (x, y)

{
ργ̂(x) ργ̂(y)− |γ̂(x, y)|2 +

∣∣√γ̂ − γ̂2(x, y)
∣∣2} dν(x) dν(y) .
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Note that the minimizer is real in the sense that ĵγ̂ = γ̂ ĵ and jγ = γj. Further note
that the pairing operator entering Γ(1)[γ̂] assumes the form

α =
√
γ̂ − γ̂2 ⊗

(
0 1
−1 0

)
, (VI.3)

where the second 2 × 2-matrix factor
(

0 1
−1 0

)
ensures the antisymmetry condi-

tion α∗ = −α = −jαj, which an admissible pairing operator necessarily fulfills
according to (IV.9).

The physical system to which [7] was applied is a star consisting of neutrons,
which are spin-1

2
fermions that attract each other by gravity. While it is generally

important to prove statements about minimization problems without requiring the
actual existence of a minimizer, [7] left this existence question unresolved. Lenz-
mann and Lewin, however, proved in [64] the existence of a minimizer for these
neutron stars under natural conditions.

Dirac–Fock Equations: Shortly after the discovery of nonrelativistic quantum
mechanics and the formulation of the Hartree–Fock approximation, a relativis-
tic analogue, the Dirac–Fock (DF) equations, was formulated by Swirles [97].
The proof of existence of solutions the Dirac–Fock equations pose a consider-
ably more difficult problem as compared to proving this for the Hartree–Fock
equations, due to the unboundeness of the energy functional from below, direct
methods from the calculus of variations do not really apply, as was pointed out by
Chaix, Iracane, and Lions in [26, 27] who introduced and studied the Bogolubov–
Dirac–Fock (BDF) model. An effective renormalization and then control on the
unboundedness below of the BDF model, i.e., of the Hartree–Fock energy func-
tional for electrons and positrons for small particle number and coupling constant
was first obtained by Barbaroux, Helffer, Siedentop, and the author in [5]. The
existence of solutions for Coulomb systems was shown by Esteban and Séré [40]
and by Paturel [83]. In the case of atoms, Barbaroux, Farkas, Helffer, and Sieden-
top and Barbaroux, Esteban, and Séré related the Dirac–Fock equations to the
Hartree-Fock equations of the electron-positron field in [14, 13]. For the same
model, Hainzl, Lewin, and Séré proved in [52, 53] the existence of a minimizer
and its uniqueness for the BDF model, but in contrast to [5] Hainzl et al. chose
the projection on the free Dirac sea as a reference and extended their results later
to atoms and molecules with small particle number and small coupling constants.
Huber and Siedentop proved [60], in turn, that the Dirac–Fock equations for atoms
possess solutions if, among other smallness conditions on coupling constants, the
particle numberN is such that the shells of the corresponding hydrogen-like Dirac
operator are exactly filled.
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Generalization of Lieb’s Variational Principle: We come back to Lieb’s ar-
gument which establishes his variational principle. The N -particle density matrix
ρav in (IV.1) results from averaging the pure quasifree density matrices |Φ(g(θ))〉〈Φ(g(θ))|
over all possible values of θ. Hence, there exists at least one choice of θ such that
the energy expectation value 〈Φ(g(θ))| HΦ(g(Θ))〉 of this pure quasifree density
matrix is smaller or equal to the energy expectation TrF[ρavH] of ρav.

Derezinski, Napiorkowski, and Solovej [31] and, simultaneously, Breteaux,
Knoerr, Menge, and the author generalized this statement in [6] and demonstrated
that the generalized Hartree–Fock energy EgHF can be approximated by energy
expectation values of pure quasifree density matrices to arbitrary accuracy. More-
over, as we additionally point out here, if EgHF is a minimum then there is also a
pure quasifree density matrix among the minimizers.

The generalization does not only extend the set of density matrices, over which
the Hartree–Fock energy functional is being varied, but also allows for any semi-
bounded self-adjoint Hamiltonian with no additional repulsiveness assumption on
the pair potential and not even on the form of the Hamiltonian, that it be a sum of
a one-body term and a pair interaction.

Theorem 10. Suppose thatHµ = H∗µ is semibounded. ThenEgHF = ÊgHF, where

ÊgHF := inf
{
〈Ω | U∗HµUΩ〉

∣∣ U ∈ BogF

}
. (VI.4)

Moreover, if there is a quasifree density matrix ρgHF ∈ QDM ∩ DMN of finite
particle number such that TrF[ρgHFHµ] = EgHF, then there exists a Bogolubov
transformation UgHF ∈ BogF such that EgHF = 〈Ω|U∗HµUΩ〉.

Proof. We only prove the second part of the theorem and assume that ρgHF ∈
QDM ∩ DMN is a quasifree density matrix of finite particle number expec-
tation value and with TrF[ρgHFHµ] = EgHF. The requirement of finiteness of
〈N〉ρgHF

can be relaxed, but we do not carry this out here. We can find a Bogol-
ubov transformation Ũ ∈ BogF such that ρgHF takes the form ρgHF = Ũ∗ρ0Ũ,
where ρ0 = P1Z

−1 exp[−Q(H0)], with P1 = n1 n2 · · ·nK−1 and Q(H0) =∑L
`=K µ` c

∗(f`) c(f`), as in (IV.30) and in (V.7), respectively.
Since Hµ is semibounded, H̃ := Hµ − Egs ≥ 0, as a quadratic form, ẼgHF :=

EgHF − Egs ≥ 0, and ẼgHF = TrF[ρgHFH̃] = TrF[ρ
1/2
gHFH̃ρ

1/2
gHF]. It follows that

ẼgHF = TrF
[
ρ

1/2
gHF H̃ ρ

1/2
gHF

]
=

∑
ν:|A(ν)|<∞

〈
ρ

1/2
gHFŨ

∗Ψν

∣∣ H̃ ρ
1/2
gHFŨ

∗Ψν

〉
(VI.5)

=
∑

ν:|A(ν)|<∞

〈
ρ

1/2
0 Ψν

∣∣ Ũ∗H̃Ũ ρ
1/2
0 Ψν

〉
=
∑
ν∈A

〈
ρ

1/2
0 Ψν

∣∣ Ũ∗H̃Ũ ρ
1/2
0 Ψν

〉
,
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where the orthonormal basis
{

Ψν

∣∣ν ∈ {0, 1}Z+
, |A(ν)| < ∞

}
⊆ F is intro-

duced in (IV.31), and the convergence of the series is guaranteed by the pos-
itivity of each term. Moreover, the summation can be restricted to the subset
A := {ν ∈ {0, 1}Z+| |A(ν)| < ∞, ρ1/2

0 Ψν 6= 0} of indices ν, for which ρ1/2
0 Ψν

is nonvanishing. The latter vectors and the set A can, however, be determined
explicitly. Indeed, ρ1/2

0 Ψν 6= 0 only if A(ν) ⊇ {1, 2, . . . , K − 1}, and in this case,
up to a sign, we have that

ρ
1/2
0 Ψν = c∗1 · · · c∗K−1

∏
`∈A(ν)∩{K,...,L}

(√
λ` (1− λ`)−1 c∗`

)
Ω

=
∥∥ρ1/2

0 Ψν

∥∥ ∏
`∈A(ν)∩{1,...,L}

c∗`Ω . (VI.6)

It follows that A :=
{
ν ∈ {0, 1}Z+

∣∣ |A(ν)| <∞, A(ν) ⊆ {1, . . . , L}
}

and that

ẼgHF =
∑
ν∈A

‖ρ1/2
0 Ψν‖2 〈ŨΨν | H̃ŨΨν〉 . (VI.7)

Since Ψν is a Slater determinant, for each ν ∈ A, the pure density matrix |ŨΨν〉〈ŨΨν | ∈
QDM is quasifree and, hence, 〈ŨΨν |H̃ŨΨν〉 ≥ ẼgHF. Moreover, since ‖ρ1/2

0 Ψν‖2 >

0, for all ν ∈ A and
∑

ν∈A ‖ρ
1/2
0 Ψν‖2 = TrF[ρ0] = 1, Eq. (VI.7) implies that

∀ ν ∈ A : 〈ŨΨν | H̃ŨΨν〉 = ẼgHF (VI.8)

and thus the assertion.
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VII Symmetries and Restricted
Hartree–Fock Approximation

In this final section we discuss symmetries of the quantum system under consider-
ation. We assume that the HamiltonianH = h+ 1

2
V is given in second quantized

form as in (II.8) with h and V as in (II.21)-(II.22) and to obey stability of matter,
i.e., that Hµ = H − µN is semibounded for sufficiently small µ < 0 and hence
Hµ + E0 ≥ 1, for sufficiently large E0 > 0.

A family S of unitary operators U ∈ S is called a symmetry of H if U(H +
E0)−1 = (H + E0)−1U , for all U ∈ S . Given a symmetry S, we define the
restricted generalized Hartree–Fock (gHF) energy to be

EgHF(S) := (VII.1)

inf
{

TrF(ρHµ)
∣∣ ρ ∈ QDM , 〈H〉ρ <∞ , ∀U ∈ S : Uρ = ρU

}
.

Obviously, EgHF(S) ≥ EgHF, and the approximation made by the restricted gHF
energy is not better, and potentially worse, than the one without restriction. The
importance of the restricted gHF approxmiation, however, lies in its improved ac-
cessability to explicit computation. Translation invariant generalized 1-pdm, for
example, can be diagonalized by Fourier transform, or rotationally invariant gen-
eralized 1-pdm have a natural decomposition in terms of spherical harmonics.

• If EgHF(S) = EgHF then the symmetry S is called preserved.
• If EgHF(S) > EgHF then the symmetry S is called broken.

It turns out that both cases of preserved symmetry and broken symmetry occur in
different models. The reason is the hidden concavity of Hartree–Fock functionals,
which is used in the proof of Theorem 3 and which leads to instabilities at the
minimum of the restricted functional. We discuss symmetries on various examples
of physical interest.

Closed Shell Theorem in Unrestricted Hartree–Fock Theory and Rotation of
Atoms: We first discuss rotation symmetry and come back to the Hartree–Fock
approximation as originally introduced for atoms. The periodic table of the ele-
ments is usually described in terms of angular momentum shells, which contain
the electron states. This picture implicitly assumes that the electron orbitals are
eigenfunctions of the angular momentum operators L2 and Lz. Indeed, the Hamil-
tonian and the Hartree–Fock functional of an atom is invariant under rotations
about the origin, where the atomic nucleus is located. Its minimizers, however,
do generally not possess this rotational symmetry unless we study the restricted
theory. Indeed, Griesemer and Hantsch show in [50] that, without restriction by
symmetries, the HF minimizer of an atom with two electrons and a small nuclear
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charge Z breaks rotational symmetry, while the HF minimizer becomes rotation-
ally invariant forN electrons that fill up the lowest angular momentum shells (e.g.,
N = q, where q = 2 is the number of spin states), as Z � N becomes sufficiently
large.

This phenomenon is also reflected by the closed shell theorem in [11]: If a HF
minimizer γHF ∈ g(1) for a Coulomb system of N electrons exists, then it is the
rank-N orthogonal projection onto the smallest N eigenvalues e1 ≤ e2 ≤ . . . ≤
eN of the corresponding effective Hamiltonian hHF[γHF], as in (III.16), and the
lowest spectral point of hHF[γHF] greater or equal than eN is strictly bigger than
eN ,

eN+1 := inf
{
σ
(
hHF[γHF]

)
\ {e1, e2, . . . , eN}

}
> eN . (VII.2)

The interpretation of this statement is that, in Hartree–Fock approximation, atoms
and molecules never possess an open shell because the highest energy level is
always fully occupied. In particular, rare earth elements with one loosely bound
valence electron in a degenerate high momentum shell do no occur in Hartree–
Fock theory. Therefore, the Hartree–Fock approximation for a single Lithium
atom, say, does not yield orbitals which are products of a radial function and a
spherical harmonic.

Particle Number Conservation: The strongly continuous one-parameter group
N =

(
exp[−itN]

)
t∈R of unitary operators generated by the particle number op-

eratorN is a symmetry of all HamiltoniansH of the form (II.8), as these conserve
particle number.

In Section VI it is demonstrated that in case of a repulsive potential, choosing
a vanishing pairing operator is always favorable for the energy minimization, and
the particle number symmetry is always preserved. For attractive potentials, this
is not always the case and, depending on the model, the particle number symmetry
is sometimes preserved, sometimes it is broken.

Translation Invariance in R3: Three-dimensional systems are translation in-
variant, if (the resolvent of)H commutes with allU~a ∈ TR3 , where TR3 = {U~a|~a ∈
R3} and U~a = exp[−i~a · ~p] is the translation by ~a ∈ R3. These translations are
generated by ~p = (p1,p2,p3), where pν =

∑∞
j,k=1〈fj|(−i∂ν)〉c∗(fj)c(fk) is the

second quantization of the momentum operator −i∂ν in the νth coordinate direc-
tion.

From a physics point of view, it would be desirable to define these translational
invariant systems with the (single-fermion) configuration space R3 as described
above. This would necessitate general states, rather than density matrices, and
ultimately require an operator algebraic framework which we cannot provide here.
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Translation Invariance on a large Torus: To circumvent the problem related
to the thermodynamic (i.e., infinite volume) limit it is customary to replace the
configuration space R3 by a torus Λ := (R/LZ)3 of large, but finite, sidelength
L � 1. The Hamiltonian H then commutes with translations U~a = exp[−i~a · ~p]
by ~a ∈ Λ modulo L in TΛ := {U~a|~a ∈ Λ}. The resulting model is called Fermi
Jellium or Fermi gas, and one is interested in the limit L → ∞ and in the energy
per unit volume egs := limL→∞{L−3Egs}. As the ground state energy (at fixed
µ) is an extensive quantity, so are the generalized Hartree–Fock energy EgHF

and the restricted generalized Hartree–Fock energy EgHF(TΛ). For this reason,
we define the respective energies egHF := limL→∞{L−3EgHF} and egHF(TΛ) :=
limL→∞{L−3EgHF(TΛ)} per unit volume.

More than fifty years ago, Overhauser considered the above model with a
repulsive interaction, for which the pairing operator vanishes and the general-
ized Hartree–Fock energy agrees with the original total Hartree–Fock energy. At
high density, the paramagnetic state represented by a Slater determinant of plane
waves occupying for both spin-up and spin-down electrons all momenta k ∈ Λ∗

below the Fermi energy, i.e., for which ω(k) ≤ µ, is the natural tranlation in-
variant HF minimizer and yields egHF(TΛ). He demonstrated in [80, 81, 82],
however, that a lower energy egHF < egHF(TΛ) is produced by Slater determi-
nants which are not translation invariant but represent a spin wave. The precise
Hartree–Fock minimizer breaking the translation invariance is not known explic-
itly, but in a recent paper [47] Gontier, Hainzl, and Lewin estimated the difference
egHF(TΛ) − egHF > 0 of the energies and proved that it is exponentially small in
the interaction coupling. Thus, although the restricted HF energy is higher than
the HF energy without restriction, the two terms agree to any order in powers of
the coupling constant.

The BCS Model - Spin Invariance: We further introduce global spin transfor-
mations which rotate the spin variables C2 at each point in space by the same
unitary transformations S ∈ SU(2). As the Hamiltonian is invariant under such
global spin rotations, this defines an additional symmetry SU(2) of the system.
(One variant of) The BCS model is now defined to be the restricted generalized
Hartree–Fock energy EBCS(TΛ×SU(2)). In the simplest model case, EBCS(TΛ×
SU(2)) can be explicitly computed thanks to the restriction of the variation to
translation-invariant generalized 1-pdm which are in the same spin singlet state
at any point in Λ. Additionally choosing j to be complex conjugation in Fourier
space, the generalized Hartree–Fock energy functional is varied only over Γ(1) ∈



Lieb birthday contribution, 30.03.2022 43

G(1) of the form

Γ(1)(k, k′) = δk,k′

(
γ̂(k)⊗

(
1 0
0 1

)
α̂(k)⊗

(
0 1
−1 0

)
α̂(k)∗ ⊗

(
0 1
−1 0

)
[1− γ̂(k)]⊗

(
1 0
0 1

)) , (VII.1)

where γ̂ ∈ L1(Λ∗;R+
0 ) and α̂ ∈ L2(Λ∗) and Λ∗ = 2π

L
Z3. Inserting this into the

energy functional at zero temperature gives

EBCS(Γ(1)) =
∑
k∈Λ∗

(
ω(k)− µ

)
γ̂(k) +

1

2
‖V̂ ‖1‖γ̂‖2

1 (VII.2)

− 1

2

∫
Λ

V (x) |γ(x)|2 d3x +
1

2

∫
Λ

V (x) |α(x)|2 d3x ,

where V , γ, and α are the inverse Fourier transform of V̂ , γ̂, and α̂, respectively.
The potential V is assumed to be negative (attractive) for some part of Λ in order
not to rule out nonvanishing α 6= 0 to begin with. This model and its variants,
questions of existence and uniqueness of its minimizers, the characterization of
the resulting minimizers by the BCS gap equation and the analysis of its solution
for zero and positive temperatures have been analyzed and physically interpreted
by Hainzl and Seiringer and others in a remarkable series of papers [51, 42, 55, 54,
43, 21, 22], see [56] for a review. Spin symmetry breaking and a phase transition
between a ferromagentic and a paramagnetic phase has been recently proved for a
Hartree–Fock model like (VII.2) under the additional assumption of the absence
α = 0 of pairing, i.e., restriction to conserved particle numbers, by Gontier and
Lewin in [48].

The Hubbard Model at Half-Filling: An example of a translation and spin in-
variant model, for which both the translation invariance and the spin invariance
are broken and the generalized Hartree–Fock minimizers can be explicitly com-
puted is the Hubbard model at half-filling. Bach et al. proved in [12] that these
symmetries are indeed broken and determined all Hartree-Fock mimimizers ex-
plicitly.

Periodic structures: If the configuration spaceR3 is again a torus ΛL := (R/LZ)3

for some large integer L� 1 then the Hamiltonian often commutes only with in-
teger translations ~a contained in the subgroup Z3

L = (Z/LZ)3 ⊂ Λ, leading to
the symmetry SZ3

L
of H. A typical example is a system of the form H = h+ 1

2
V

with V having the full translation symmetry SΛ but h having only the smaller
symmetry SZ3

L
due to the presence of a periodic external potential.

The closed shell theorem described above does not only hold for Coulomb sys-
tems, but for generalN fermion systems with a repulsive interaction potential (for
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which the generalized and the original Hartree–Fock approximation coincide). In
general, it may fail, however, in case of restricted Hartree–Fock minimizers. For
periodic systems, the existence of minmizer was established by Catto, Le Bris,
and Lions in [25] where the 1-pdm are restricted to those which are invariant un-
der (integral) lattice translations. Ghimenti and Lewin have later shown in [46] a
kind of closed shell theorem and proved that the minimizer is a projection onto
the smallest energies of the corresponding Hartree–Fock effective operator.

Acknowledgement: I thank Mathieu Lewin and Konstantin Merz for numerous
very helpful corrections and suggestions.

References
[1] A. Anantharaman and E. Canés. Existence of minimizers for Kohn–Sham

models in quantum chemistry. Annales de l’I.H.P. Analyse non linéaire,
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[7] V. Bach, J. Fröhlich, and L. Jonsson. Bogolubov-Hartree-Fock mean
field theory for neutron stars and other systems with attractive interactions.
J. Math. Phys., 50:102102, 2009. doi:10.1063/1.3225565.

[8] V. Bach and A. Hach. On the ultraviolet limit of the Pauli-Fierz Hamiltonian
in the Lieb-Loss model. Ann. Henri Poincaré, 2021.
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[40] M. Esteban and E. Séré. Solutions of the Dirac-Fock equations for atoms
and molecules. Commun. Math. Phys., 203(3):499–530, 1999.
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Ann. Henri Poincaré, 1(6):1123–1157, 2000.

[84] W. Pauli. Probleme der modernen Physik. S. Hirzel, Leipzig, 1928.

[85] A.K. Rajagopal and E.C.G. Sudarshan. Some generalizations of the
Marcinkiewicz theorem and its implications to certain approximation
schemes in many-particle physics. Phys. Rev. A, 10(5):1852–1857, 1974.

[86] M. Reed and B. Simon. Methods of Modern Mathematical Physics I–IV.
Academic Press, San Diego, 2 edition, 1980.

[87] D.W. Robinson. A theorem concerning the positive metric. Com-
mun. Math. Phys., 1:89–94, 1965.

[88] M. Salmhofer. Continuous renormalization for fermions and Fermi liquid
theory. J. Stat. Phys., 134(5):941–952, 2009.

[89] E. Schrödinger. Quantisierung als Eigenwertproblem. Ann. d. Physik,
79:489, 1926.

[90] H. K. H. Siedentop and R. Weikard. On the leading energy correction for
the statistical model of the atom: Interacting case. Commun. Math. Phys. ,
112:471–490, 1987.

[91] H. K. H. Siedentop and R. Weikard. On the leading correction of the
Thomas-Fermi model: Lower bound – with an appendix by A. M. K. Müller.
Invent. Math. , 97:159–193, 1989.

[92] J. C. Slater. A simplification of the Hartree-Fock method. Phys. Rev. ,
81:385–390, 1951.



Lieb birthday contribution, 30.03.2022 51

[93] John C. Slater. A note on Hartree’s method. Phys. Rev. , 35:210–211, 1930.

[94] J.P. Solovej. Many body quantum mechanics. March 2014.

[95] J.P. Solovej, T. Østergaard Sørensen, and W. Spitzer. The relativistic Scott
correction for atoms and molecules. Commun. Pure Appl. Math., 63(1):39–
118, 2010.

[96] J.P. Solovej and W. Spitzer. A new coherent states approach to semiclassics
which gives Scott’s correction. Commun. Math. Phys., 241(2-3):383–420,
2003.

[97] B. Swirles. The relativistic self-consistent field. Proc. Roy. Soc. A, 152:625–
649, 1935.

[98] M. Titulaer. Marcinkiewicz’s theorem and approximation schemes for many-
particle correlation functions: Comment on a paper by Rajagopal and Sudar-
shan. Phys. Rev. A, 11(6):2204–2208, 1975.

[99] Z. Zhao, B.J. Braams, M. Fukuda, M.L. Overton, and J.K. Percus. The
reduced density matrix method for electronic structure calculations and the
role of three-index representability conditions. J. Chem. Phys., 120:2095–
–2104, 2004.


