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The assumption in the second statement holds, e.g., for P (ξ) = ξ2−1. The curvature

of the sphere rSd−1 goes like r−2, whereas (∇P )(|ξ| = r) = r.

Proof. (1) By Bak–Seeger
BakSeeger2011
[2, Theorem 1.1], it suffices to show |(dσSt)∨(x)| .τ <

x >−(d−1)/2. Since this bound is known at t = 0, we are left to show

|(dσSt)∨(x)− (dσS)∨(x)| .τ < x >−(d−1)/2 .

We recall (
eq:diffftmeaseq:diffftmeas
6.7), i.e.,

(dσS)∨(x)− (dσSt)
∨(x) =

∫
S

dσS(ξ)e2πix·ξΨt,x(ξ) , (6.2) eq:diffftmeas2

where

Ψt,x(ξ) :=

[
1−e2πix·(ψ(t)ξ−ξ) exp

(∫ t

0

div j(ψ(µ)ξ) dµ

)]
.

Decomposing Ψt,x(ξ) on S smoothly into (sufficiently small) compactly supported

functions, say {Ψt,x(ξ)χj(ξ)}Nj=1 for χj ∈ C∞c (Ω) and some N ∈ N, shows that there

is, for every x ∈ Rd \ {0}, at most one point ξ = ξ(x) ∈ S with a normal pointing

in the direction of x. Then, by stationary phase arguments, Hlawka
Hlawka1950
[10] and Herz

Herz1962
[9]

(see also Stein
Stein1993
[19, p. 360]) already showed that the leading order in the asymptotic

expansion (as |x| → ∞) of (
eq:diffftmeas2eq:diffftmeas2
6.2) with the cut off amplitude Ψt,xχj is given by

|x|−(d−1)/2Ψt,x(ξ(x))χj(ξ(x))|K(ξ(x))|−1/2e−iπd/4 .

Here, |K(ξ)| is the absolute value of the Gaussian curvature at ξ(x). But since

|Ψt,x(ξ)| .τ 1 on S, we are done.

(2) Recall that our restriction and extension operators FSt and F ∗St are defined

with respect to the canonical measure dσSt(ξ) = |∇P (ξ)|−1dΣSt(ξ), where dΣSt is the

induced (Lebesgue) surface measure. Since the Fourier transform d̂ΣSt(x) is to leading

order in |x| proportional to |K(ξ(x))|−1/2 < x >−(d−1)/2 (where ξ(x) is some point in a

patch of St where the cut-off measure dΣ is Fourier transformed), see, e.g., Stein
Stein1993
[19,

p. 360]), the claim follows. �

We are now ready to prove the Hölder continuity for more general dispersion sur-

faces.

genholdercont Lemma 6.2. Assume T (ξ) satisfies the assumptions stated at the beginning of Section
s:defress:defres
2. Let 1 ≤ p < pc, 1/q = 1/p − 1/p′, i.e., 1 ≤ q < (d + 1)/2, and 0 < α <

min{(d+ 1)/2− q, 1}. Then, the assertions of Lemma
holdercontabstractholdercontabstract
4.1 hold.

In fact, P ∈ Cdd/2e+4(Ω) would suffice for our purposes, but see also Remarks
possiblegenspossiblegens
2.4.

Proof. First note that St = Sot ∪Sit where Sot , S
i
t lie outside, respectively inside S. Thus,

F ∗StFSt − 2F ∗SFS = (F ∗SotFS
o
t
)−F ∗SFS + (F ∗

Sit
FSit)−F

∗
SFS and it suffices to consider only

one of these surfaces. In the following, we treat the outer one and abuse notation by

writing St ≡ Sot . By Lemma
holdercontabstractholdercontabstract
4.1, it suffices to prove

|(dσSt)∨(x)− (dσS)∨(x)| . tα(1 + |x|)α−(d−1)/2 (6.3) eq:ptboundmugen
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for all t ∈ (0, τ) and α = 0, 1. But since

|(dσS)∨(x)| . (1 + |x|)−(d−1)/2

by the assumptions on T and stationary phase, and t ∈ [0, τ ] for some fixed τ , it

suffices to prove (
eq:ptboundmugeneq:ptboundmugen
6.3) for α = 1.

We will now express (dσSt)
∨ in terms of (dσ)∨. By standard facts from differential

geometry (see, e.g., Yafaev
Yafaev2010
[23, Chapter 2, Section 1]), we have∫

St

e2πix·ξdσSt(ξ) =

∫
S

e2πix·ψ(t)ξτ(t, ξ) dσS(ξ) . (6.4) eq:ftmeasuret

Here ψ(t) : S → St is a diffeomorphism defined by the formula

ψ(t)ζ = ξ(t) , ζ ∈ S (6.5) eq:defdiffeo

where ξ(t) solves the differential equation{
dξ(t)
dt

= j(ξ(t))

ξ(0) = ζ ∈ S

and

j(ξ) =
∇P (ξ)

|∇P (ξ)|2
∈ C∞(P−1[0, t]) ,

i.e., j(ξ(t)) is a flow along the normals of St. Moreover,

τ(t, ξ) =
dσSt(ψ(t)ξ)

dσS(ξ)
, ξ ∈ S (6.6) eq:rnderivative

is the Radon–Nikodým derivative of the preimage of the measure dσSt under the

mapping ψ(t) with respect to the measure dσS. By
Yafaev2010
[23, Chapter 2, Lemma 1.9] it can

be expressed as

τ(t, ξ) = exp

(∫ t

0

(div j)(ψ(µ)ξ) dµ

)
, ξ ∈ S .

Thus, we have

(dσS)∨(x)− (dσSt)
∨(x) =

∫
S

dσS(ξ)e2πix·ξ
[
1−e2πix·(ψ(t)ξ−ξ) exp

(∫ t

0

div j(ψ(µ)ξ) dµ

)]
.

(6.7) eq:diffftmeas

By the mean value theorem, there is a t̃ ∈ [0, t] such that

1− e2πix·(ψ(t)ξ−ξ) exp

(∫ t

0

div j(ψ(µ)ξ) dµ

)
= t

[
x · dψ(t)ξ

dt
(t̃) + div j(ψ(t̃)ξ)

]
· e2πix·(ψ(t̃)ξ−ξ) exp

(∫ t̃

0

div j(ψ(µ)ξ) dµ

)

= t
[
x · j(ξ(t̃)) + div j(ξ(t̃))

]
· e2πix·(ξ(t̃)−ξ) exp

(∫ t̃

0

div j(ξ(µ)) dµ

)
.



16 EIGENVALUE ASYMPTOTICS — MAY 15, 2020

Writing x = |x|η with η ∈ Sd−1, we are left to show∣∣∣∣∣
∫
S

[
j(ξ(t̃)) · η + div j(ξ(t̃))

]
exp

(∫ t̃

0

div j(ξ(µ)) dµ

)
· e2πix·ξ(t̃) dσS(ξ)

∣∣∣∣∣ . (1 + |x|)−
d−1
2 ,

(6.8) eq:perturbation

uniformly in t̃ ∈ [0, t] and t ∈ (0, τ). If τ is chosen small enough, then the integrand can

be understood as a tiny perturbation of the integrand when t̃ = 0. In this situation,

the assertion is well known and its proof can be found, e.g., in Stein
Stein1993
[19, Chapter VIII,

Theorem 1]. Let us first rewrite the left side of (
eq:perturbationeq:perturbation
6.8) as∣∣∣∣∫

S

F (ξ(t̃), ξ(µ)) · e2πix·ξ(t̃) dσS(ξ)

∣∣∣∣
with

F (ξ(t̃), ξ(µ)) =
[
j(ξ(t̃)) · η + div j(ξ(t̃))

]
exp

(∫ t̃

0

div j(ξ(µ)) dµ

)
χτ (ξ) ,

where χτ was defined after (
eq:defmeeq:defme
3.7). Since F ∈ C∞c (Rd) 2 whose support intersects S

in a compact subset of S, we can apply a stationary phase argument and repeat the

strategy in
Stein1993
[19, Chapter VIII, Theorem 1]. To this end we describe S, locally at least,

by the graph of a C∞ function. More precisely, let ξ0 be any point of S and consider a

rotation and translation of the ambient Rd such that ξ0 is moved to the origin, and the

tangent plane to S at ξ0 becomes the hyperplane ξd = 0. Then near the origin (i.e.,

near ξ0), the surface S can be given as a graph ξd = ϕ(ξ′) (with ξ′ = (ξ1, ..., ξd−1)) for

some ϕ ∈ C∞(Rd−1) with ϕ(0) = ∇ϕ(0) = 0. Moreover, since S is supposed to have

non-vanishing Gaussian curvature, we have

det

(
∂2ϕ

∂ξj∂ξk

)
(ξ0) 6= 0 , (6.9) eq:nondegcond

i.e., the principal curvatures do not vanish at ξ0 = 0. Thus, dσS(ξ) = (1+ |∇ϕ|2)1/2 dξ′

and we are left to consider∣∣∣∣∫
Rd−1

G(ξ(t̃), ξ(µ)) · e2πi|x|Φ(η,ξ(t̃)′) dξ′
∣∣∣∣

with ξ(t̃) = ψ(t̃)(ξ′, ϕ(ξ′)) and G(ξ(t̃), ξ(µ)) := F (ξ(t̃), ξ(µ))(1 + |∇ϕ(ξ′)|2)1/2. More-

over,

Φ(η, ξ(t̃)) := η · ψ(t̃)(ξ′, ϕ(ξ′)) = η · [(ξ′, ϕ(ξ′)) + t̃j(ψ(t̃1)ξ)]

=
d−1∑
j=1

ηjξj + ηdϕ(ξ′) + t̃η · j(ψ(t̃1)ξ)

2In fact, if P is assumed to be in C4+dd/2e(Ω), then F ∈ C2+dd/2e
c (Ω) which just suffices to run

the classic stationary phase argument to obtain the estimate |(dµ)∨(x)| . |x|−(d−1)/2.
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where we used the mean value theorem for some t̃1 ∈ (0, t̃). We distinguish now

between three cases, depending on the position of η ∈ Sd−1, namely

(1) η is sufficiently close to the “north pole” ηN = (0, 0, ..., 1),

(2) η is sufficiently close to the “south pole” ηS = (0, 0, ...,−1), and

(3) η lies in the complementary set on the unit sphere.

By the arguments of the proof of
Stein1993
[19, Chapter VIII, Theorem 1], the proof is concluded,

once we show that, for sufficiently small τ ,

det

(
∂2Φ

∂ξj∂ξk

)
(ηN , ξ

′ = 0) 6= 0 (6.10a) eq:condstatphase1

(and analogously for ηS instead of ηN) and

|∇ξ′Φ(η, ξ(t̃))| > 0 (6.10b) eq:condstatphase2

for η lying in the complementary set on the unit sphere. We start with the verification

of (
eq:condstatphase2eq:condstatphase2
6.10b) and compute

∇ξ′Φ(η, ξ(t̃)) = η′ + ηd∇ξ′ϕ(ξ′) + t̃∇ξ′η · j(ξ(t̃1)) .

Since∇ϕ(ξ′) = O(ξ′) as ξ′ → 0 and j ∈ C1(P−1[0, t]), we see that |∇ξ′Φ(η, ξ(t̃))| > 0 if

τ is chosen sufficiently small and the support of G is a sufficiently small neighborhood

of the origin. Let us now finally verify (
eq:condstatphase1eq:condstatphase1
6.10a). Since

∂2Φ(η, ξ(t̃))

∂ξj∂ξk
= ηd

∂2ϕ(ξ′)

∂ξj∂ξk
+ t̃η · ∂

2j(ξ(t̃1))

∂ξj∂ξk

the non-degeneracy condition (
eq:nondegcondeq:nondegcond
6.9) implies that also (

eq:condstatphase1eq:condstatphase1
6.10a) holds, if t and the support

of G are sufficiently small. This concludes the proof of Lemma
genholdercontgenholdercont
6.2. �

7. A larger class of admissible potentials

Let us now see how to incorporate more general potentials. First, we show how to

generalize Theorem
asymptoticsgen2asymptoticsgen2
2.5 on weighted L2 spaces to Agmon–Hörmander spaces.

Afterwards we show how to get rid of some local regularity assumptions.
ss:agmonhormander

7.1. Generalization to Agmon–Hörmander spaces.
ss:mixedlp

7.2. Weaker local regularity assumptions. Let {Qs}s∈Zd be a collection of axis-

parallel cubes such that Rd = ∪sQs. For 1 ≤ q1, q2 <∞ we introduce the norms

‖V ‖`q2Lq1 :=
[∑

s

‖V ‖q2Lq1 (Qs)

]1/q2
,

‖V ‖`∞Lq1 := sup
s
‖V ‖Lq1 (Qs).

Lemma 7.1. Let λ ≥ 1, η ∈ C∞c (Rn) a bump function adapted to 1/2 ≤ |ξ| ≤ 2 and

2r′ ≥ p′n (which means 1 ≤ r ≤ (n+ 1)/2). Then

‖|V |1/2η(p/λ)‖p′n→2 + ‖η(p/λ)|V |1/2‖2→pn . λ
n( 1
p′n
− 1

2r′ )‖V ‖1/2

`
n+1
2 Lr

. (7.1) eq. sr weak loc. reg. dyadic bound


