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The assumption in the second statement holds, e.g., for P(£) = £2—1. The curvature
of the sphere rS?* goes like 72 Where% (VP)(|¢l =1) =

kS 20
Proof. (1) By Bak-Seeger H32a, Fieorem 1.1], it suffices to show |(dog,)¥(z)] <- <
x >~(@=1/2_ Since this bound is known at ¢ = 0, we are left to show
(dos,)" (x) = (dos)" ()] S <@ >0
-diffftmeas
We recall 15”, 1e.,
(dog)Y(x) — (dog,)"(x) = /dag(g)e%ix'fll’t,x(g), (6.2) ’eq:diffftmeasQ
S

where ,
T (6) = {1—@“%'@@%9 exp ( [ avitwe du>] .
0

Decomposing ¥, ,(£) on S smoothly into (sufficiently small) compactly supported

functions, say {W;,(&)x;(€)}L, for x; € C(2) and some N € N, shows that there

. d . s . s . . .

is, for every ¥ € R*\ {0}, at most‘ one point ¢ = {(z) € S with a\}ﬁ%%lﬁllgg(?mtlﬁ 1960

in the direction (gg . Then, by stationary phase arguments, Hlawka [[I0] and Herz [[9]

(see also Stein [19, p. 360]) already showed that the leading order in the asymptotic
leq:diffftmeas2

expansion (as |z| — 0o) of (6.2 with the cut off amplitude W, ,x; is given by
o 2 (€ ())x (€ (2)) LK (E()) |20 1

Here, |K ()| is the absolute value of the Gaussian curvature at &(z). But since
U, (&) S 1on S, we are done.

(2) Recall that our restriction and extension operators Fs, and F§ are defined
with respect to the canonical measure dog, (&) = |[VP(€)|71dXs,(€), where d¥g, is the
induced (Lebesgue) surface measure. Since the Fourier transform d/EE(:E) is to leading
order in || proportional to |K (&(x))|~Y/? < 2 >~@=1/2 (where £(x) is some point in a,

tein1993
patch of S; where the cut-off measure d¥ is Fourier transformed), see, e.g., Stein f‘l’g,—
p. 360]), the claim follows. O

We are now ready to prove the Holder continuity for more general dispersion sur-
faces.

nholdercont L%g%{r%g 6.2. Assume T(&) satisfies the assumptions stated at the beginning of Section
l% Let 1 < p < p., /g =1/p—1/p, ie, 1 < q;hé,d@jén&ég’crg?td 0 < a<

min{(d + 1)/2 — q,1}. Then, the assertions of Lemma [{.1] hold.

ibl
In fact, P € C1%921+4(Q) would suffice for our purposes, but see also Remarks Eiis B

Proof. First note that S; = S?US! where S?, S! lie outside, respectively inside S. Thus,
F§ Fs, —2F5Fs = (Fg Fsp) — FgFs + (Fgngg) — F§Fs and it suffices to consider only
one of these surfaces. In the follc(l)gicr(l)%zt we treat the outer one and abuse notation by

. abstract
writing S; = S7. By Lemma . T] 1t suffices o prove

((dos,) () — (dog) ()] S t(1 + |a])>~ @12 (6.3) ’eq:ptboundmugen
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for all t € (0,7) and a = 0, 1. But since
(dos)’ (@) S (1+ |2y~

by the assumptions on T and statlonary phase, and ¢t € [0, 7] for some fixed 7, it
Je.q_.ptbound.mu
suffices to prove (3] for a = i
We will now express (do gfale% deros of (do)Y. By standard facts from differential

geometry (see, e.g., Yafaev [23] Chapter 2, Section 1]), we have

/ 2o, (€) = /eme vt 7(t,&) dos(€) . (6.4) ’eq:ftmeasuret‘
St S
Here ¢(t) : S — S; is a diffeomorphism defined by the formula

() =¢&1t), Ces (6.5) ’eq:defdiffeo‘

where () solves the differential equation

{dfm JE®))

§0)=¢esS
and
1) = o pie € CX (P8,
ie., j(&(t)) is a flow along the normals of S;. Moreover,
7(t,€) = %, ces (6.6) |eq:rnderivative
is the Radon—Nikodym derivative of the preimage offaL et\geo [Measure dog, under the

mapping ¥ (t) with respect to the measure dog. By [23; Chapter 2, Lemma 1.9] it can
be expressed as

r(t,€) = exp ( /0 (v ) ()e) du) ces.

Thus, we have

(dos)(x) — (dos,) (x) = / dors (€)™ {1—e2m'<¢<t>ff> exp ( / v j(0) du)]

0

(6.7) ’eq:diffftmeas

By the mean value theorem, there is a ¢ € [0, ] such that

1 — ?m (WE8) oxp ( /0 div j(1h(1)€) du)

iy [x L 5y divjw(f)é)} 2 (D) oy, ( / div (1 (1)) du)

=t [ j(§(F) + div j(£(F))] - 2O exp ( /0 t div j (&) du) .



16 EIGENVALUE ASYMPTOTICS — MAY 15, 2020

Writing z = |x|n with € ST!, we are left to show

/S G(E®) -0+ div ()] exp ( / div j(€(u)) du) L2 o (¢)

d—1

SA+lz) =

(6.8) ’ eq:perturbation

uniformly in ¢ € [0,¢] and ¢ € (0, 7). If 7 is chosen small enough, then the integrand can
be understood as a tiny perturbation of the integrand when ¢ = 0. Ireli‘%his situation,
the assertion is well known and its proof can be found, e.g., in Stein [19, Chapter VIII,

) . Je.q_.pert%'r’batlon
Theorem 1]. Let us first rewrite the left side of (6.§) as

[ Pe®. ) - das@\

with

F(§(8),€(n) = [1(&(F) - n + divi(§(F))] exp (/0 diVJ(f(#))CW) x-(£)

where x, was defined after @d.e_f%%nce F € C=(RY) E|Whose support intersects S
in a compactt esiunl%sg%t of S, we can apply a stationary phase argument and repeat the
strategy in Wmmter VIII, Theorem 1]. To this end we describe S, locally at least,
by the graph of a C* function. More precisely, let &, be any point of S and consider a
rotation and translation of the ambient R¢ such that & is moved to the origin, and the
tangent plane to S at & becomes the hyperplane {; = 0. Then near the origin (i.e.,
near &), the surface S can be given as a graph {; = ¢(¢&') (with £ = (&, ..., &q—1)) for
some ¢ € C®(R4!) with p(0) = Vi(0) = 0. Moreover, since S is supposed to have
non-vanishing Gaussian curvature, we have

det <82—S0) (&) #0 (6.9) ’eq:nondegcond

9E; O}, ’ '

i.e., the principal curvatures do not vanish at & = 0. Thus, dog(&) = (1+|V|?)Y/2 d¢’
and we are left to consider

\/]Rdl G(f(Z?), g(lu)) . 627ri|x|<b(777§({)/) dfl
with £(F) = Y (#)(€, ¢(€)) and G(&(), &(n)) := F(£(F),&(w) (1 + [Vp(€)[*)!/2. More-

over,

®(n, £(1)) =1 - V(D) 0(€)) =n-[(§ 2(€) + Li((0)E)]
d—1

_ Z ;&5 +nap(€) + 1 j((0)E)

In fact, if P is assumed to be in C**14/21(Q), then F € ol (©2) which just suffices to run
the classic stationary phase argument to obtain the estimate |(dp)Y (z)| < ||~ (4=1/2,



onhormander
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where we used the mean value theorem for some #; € (0,#). We distinguish now
between three cases, depending on the position of € S¥~!, namely

(1) n is sufficiently close to the “north pole” ny = (0,0, ..., 1),
(2) n is sufficiently close to the “south pole” ng = (0,0, ..., —1), and

(3) 7 lies in the complementary set on the unit sphere.
teinl1993
By the arguments of the proof of fl'ge,m( ‘hapter VIII, Theorem 1], the proof is concluded,

once we show that, for sufficiently small 7,

det ( G ) (nn, & =0)#0 (6.10a)
908k ’
(and analogously for ng instead of ny) and
[Ve®(n,£(1))] > 0 (6.10D)
for Zﬂly}g dqu}c glpehgts)gzlplementary set on the unit sphere. We start with the verification

of (6.10D)) and compute
Ve®(n,&(t) =0+ naVep(&) +1Ven - j(E(t)) .

Since V(&) = O(¢') as & — 0 and j € CH(P10,1]), we see that |[Ve®(n, £(1))| > 0 if
7 is chosen sufficiently small and the supBO_rt og G is a sufficiently small neighborhood

L . statphasel
of the origin. Let us now finally verify (.I0a]]. Since
P, &(1) _ () | - 0%i(E())
= Md +in —a
9E; O}, 9E;08k 9E;08k

0

th d diti :nondegcond 1 leq:condstatphasel dth
€ non- egengracy condition (E?) 1mpi1es that also (6.10a]) holds 1 gl%%rcg he support
of G are sufficiently small. This concludes the proof of Lemma [6.2] 0J

7. A LARGER CLASS OF ADMISSIBLE POTENTIALS

Let us now see how to 1i:ngczor 0ra2te more general potentials. First, we show how to
ptoticsgen

generalize Theorem 2.5[on weighted L? spaces to Agmon-Hoérmander spaces.

Afterwards we show how to get rid of some local regularity assumptions.
7.1. Generalization to Agmon—-Hormander spaces.

7.2. Weaker local regularity assumptions. Let {Q}.cze be a collection of axis-
parallel cubes such that R? = U,Q,. For 1 < ¢i, ¢, < oo we introduce the norms

1/q2
HVHZDL‘H = [Z ||VHqLQt11(QS)} )

IV l[ee o = sup |V ][ s Qo)

Lemma 7.1. Let A > 1, n € C(R™) a bump function adapted to 1/2 < |£] < 2 and
2r' > pl. (which means 1 <r < (n+1)/2). Then

S —
IVI20(0/ Nl 2 + 1@/ IV, S N2V (7.1)

n+1
2 L7

’eq:condstatphas

’eq:condstatphas

’eq. sr weak lo




