SOME NOTES ON RESTRICTION THEORY

KONSTANTIN MERZ

ABSTRACT. In these notes, we review the state of progress on the restriction problem in
harmonic analysis with an emphasis on the developments of the past decade or so on the
euclidean space version of these problems for spheres and other hypersurfaces. As the field is
quite large, we will merely give the main ideas and developments in this area.

The restriction problem is connected to many other conjectures, most notably the Kakeya
and Bochner—Riesz conjectures, as well as PDE conjectures such as the local smoothing con-

jecture which will be discussed as well. Ta02004

These QL6854 5@8§tly based on Tao’s famous review ; 01ff£56%§10tes on restriction
problems [I59], the lecture notes by Wolff ig%g}lqlniigt%l%%lysis i; (9], Tecent g?é%{}gif%tf‘é by
i%Z], and the int .

Hickman and Vitturi on decoupling theory e infroductory review [I52] by Stovall
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1. THE RESTRICTION PROBLEM — SOME BACKGROUND

From now on, we fix d > 2 and remark that all constants A or a are allowed to depend
on d (although it would be interesting to track the precise dependence of the constants on the
dimension as d — 00). The Fourier transform of a function f on R? is formally defined as

f&) = y Fla)e ™8 da

By the Riemann-Lebesgue lemma we know that f is a continuous bounded function on R? which
vanishes at infinity if f € L!'(R?). In particular, f can be meaningfully restricted to any subset
S of R?, thereby creating a continuous bounded function on S.

For applications, the above definition needs to be extended to a larger class of functions. For
f € L' N L2, the Plancherel theorem states that || f|l2 = ||f]2 and since L' N L? is dense in
L?, the Fourier transform extends uniquely to a bounded linear operator of L? onto itself. By
interpolation, we obtain the Hausdorff-Young inequality which states that for 1 < p < 2, this
extension maps L? boundedly into L? and obeys ||f||p/ < Apallfllp- \hciﬁnre%% of LP — L1
estimates igb QSOEQSt possible; for the sharp constant A, 4, see Beckner and for extremizers,
see Lieb} I 5 .

For f € LP, p > 1, f is usually interpreted as an I limit, f = lim, fn where f, is a
sequence of integrable functions converging to f in LP. By the Hausdorff-Young inequality, one
can therefore restrict f to any set S of positive measure. However, the above interpretation leads
to an obvious obstruction to restricting a Fourier transform to sets of Lebesgue measure zero.
Indeed LP consists of equivalence classes within which its members are allowed to differ off of
sets of measure zero, i.e., it makes no sense to define Fourier restriction to a set of measure zero
as a simple composition. In particular, there is no meaningful way to restrict L? functions to
any set S of measure zero.

In 1967 Stein made the surprising discover S((g{lg%)&i%la%cei work) that when such sets contain
“sufficient curvature” (see also Subsection%ﬂm%a_nmdeed restrict {he Fourier transform
of LP functions for certain p > 1. This lead to the restriction pmblem%}ﬂﬁ which sets S C R?
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and which 1 < p < ¢ < oo can the Fourier transform of an L? function be meaningfully restricted,
ie.,

[f1sllLacs) < Ap.g.all fllze@a)
for smooth, compactly supported f?7
Of course, there are infinitely many such sets to consider, but we will focus on sets S which

are hypersurfaces, or compact subsets of hypersurfaces. In particular, we shall be interested in
the sphere

Ssphere = {f € R*: |£| = 1}7
the paraboloid

Sparab = {5 € Rd : gd = |§‘2/2}a

and the cone

Scone = {€ € R?: §a = |§‘}
where ¢ = (£,&4) € R9™! x R = R%. These three surfaces are model examples of hypersurfaces
with curvature, though of course the cone differs from the sphere and the paraboloid in that it
has one vanishing principal curvature. These three surfaces also enjoy a large group of symme-
tries (the orthogonal group, the parabolic scaling and Galilean groups, and the Poincaré group,
respectively). Moreover, these hypersurfaces are intimately related (via the Fourier transform) to
certain PDEs, namely the Helmholtz equation, the Sc%@ﬁiinger equation, and the wave equation,
respectively. This is going to be the topic of Section

Organization. The rest of the notes is structured as follows. In the next section, we will use a

duality argument to reformulate the restriction problem as an “extension problem” w%ig@e gggsgé’
we Wl

this writing) is a more convenient point of view to think of the problem. In Section

find two nec SSALY. o%(i'itljgergsr for the restriction problem which lead to the restriction conjecture.
In Sections Ea_ndfﬁm describe two classical tools to tackle the restrictign conjecture.
A more recent approach via Littlewood—Paley theory is discussed in Sectioné

Littlewood—Paley, ih

th aﬁgf% ences in K{ﬁ! , namely /2 decoupling, which is the topic of Section [IS[ In Sections
ll%E and we will illuminate certain relations between the restriction problem and conjectures
concerning nonlinear, dispersive PDEs, the Kakeya, and the Bochner—Riesz conjectures.

2. RESTRICTION AND EXTENSION ESTIMATES

From now on let S be a compact subset (but with non-empty interior) of one of the above
surfaces Ssphere, Sparabs O Scone- We endow S with a canonical measure do. For the sphere, it
is the surface measure; for the paraboloid, it is the pullback of the d — 1-dimensional Lebesgue
measure d¢ under the projection map £ — ¢; for the cone it is the pullback of d¢/|¢]| as it is
Lorentz invariant. a B

In order to restrict f to S, it will suffice to prove an a priori “restriction estimate” of the
form

[f1sllza(s.a0) < Ap.g.slfllLe e (2.1)
for all C2° or Schwartz functions f and some 1 < ¢ < oo, since one can then use density
arguments to obtain a continuous restriction operator from LP(R?) to L9(S,do) which extends
the restriction. operator R : f — f |s for such nice functions. (Finding the sharp value of A4, , s
in @mﬁh_er interesting difficult problem, which hase%ggcl%ggrrll solved in a few cases so far).

We will denote by Rg(p — ¢) the statement that olds for all f. From the introductory
remarks on the Hausdorff-Young inequality (the faster a function decays, i.e., f lives in low
LP spaces, the smoother is its Fourier transform, i.e., f lives in high L7 spaces), we see that
Rs(1 — ¢q) holds for all 1 < ¢ < oo by Holder’s inequality while Rg(2 — ¢) fails for all

. 1 lish. | . ourggﬁ%%@gw
c?%gvllbt%urr%cent y established tool by Bourgain and Demeﬁ Zzﬁt‘gé’ see 1 ZTDE

eq:restricti
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1 < g < co. The interesting question is what happens for intermediate values of p, i.e., our aim

is to find the highest value of p te}é%rsllg;vgoerslt decay of f) and ¢ (greatest smoothness of f ) such
(ﬁl FStill hold

that the restriction estimate S. (Observe the implication Rs(p — ¢q) = Rs(p — q)
for all p < p and ¢ < ¢ by Sobolev and Holder inequalities.)
The dual of the restriction operator Rg is the extension operator

(Re)* F(z) = EsF(z) = (Fdo)” / F(£)eX™ ™ do(g)

A simple duality argument based on Parseval’s identity (think of a change of variables to under-
stand (Fdo)V better, too)

swp Ilslliacsan = sup sw [ FOR@ do(o)
f1l e (ray=1 17 ep @y =L IF I Lot (5 g0y =1V S (2.2)
= sup sup / (Fdo)Y (z)f(x) dx = sup |(Fdo)Y | o (RY)
17N Lot 5,00y =L Il Lp(ray=1 /R 1FN Lo’ (sa0)=
L . -restriction . . .
shows that the restriction estimate 1@ ; 1S equivalent to the following extension estimate
||(Fd0)v||Lp'(1Rd) < Ap,q,d”FHLq’(s,do) (2.3)

for all smaoth functions F' on S. We use R5(¢" — p’) to denote the statement that the estimate
@;h_oﬁ? Due to the smooth e85 qggg one may use stationary phase arguments to obtain
asymptotics for (F'do)Y, see also l%l?gfﬁabpter VIII, Proposition 6]. However, such asymptotics
depend on t?e smooth norms of F, not just the Lq/(S ) norm, and so do not imply estimates
of the form n this sense, one can think of extension estimates as a more general way to
control oscillatory integrals since only magnitude bounds on F'(§) and no bounds on derivatives
are required.

Understanding the extension operator better. Let us clarify at this stage the meaning of
the restriction and extension operators. Suppose f € LP(R?) and F € Lq/(S, do) as in the above
duality argument. After rotating and translating S in the ambient space RY, we may assume
(since S is compact) that S is given as the graph

Ed = SO(£17 "'76(171)

where p € C°(R?!). This allows us to write the measure as

do(€) = (1 + |V|)Y2de, ..., dég_1

which is called the euclidean (or induced) surface measure. (Note that S is the level set of a
function ¥ : R? — R and that the measure is actually given by

(V) (&1, - Ea)l
do(&) =
&= vy, |
Compare this to the “canonical dXy VU ()| tdo(¢) which equals, locally at
afaev BB?O
least, |OW/0&4]7d¢’ in Yafaev RnTgI Chapter 2 Formula (1 4) and p. 111].) Using & =
(&1, ...,&4—1) and the chain rule (remember (3&/3@)1 1 = V), we (formally) have

(VD) (€1, s ) 0 /06| SEATESE asd
( O /0¢,] ) Z\a@/aw‘ |99 /0¢ Z

dfla "'7d§d71-

=1+[Vel*

which yields the previous representation. Alternatively, using the 1mphc1t function theorem,
we know that locally &5 = ¢(¢'), whenever (¢/,&;) € S where S denoted the level set of ¥ :
R? — R. Thus, locally, ¥(£) =0 = & — ¢(¢') = 0, ie., VU(E) = (=Vp(¢'),1) and OV /9¢; =

eq:duality

eq:extension
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1 on S. Therefore, |VW(£)|/|0W/0¢4] = (1 + |[Vp(€)|>)'/? and in particular do(§) = (1 +
[Ve(¢) ) /2dg’)

Now, using the above representation, abbreviatin gb{g)h? V1+|Ve(€)? and € = (€,&,) =
E?i as

(€1, ., €a-1,&4) € RY) we may write the left side of

/ FOF(E) do(c) = / FEF©w(e) dé = / FEFEWEN ey pie) dé
s Rd—1 R4

where 1e,—y(e) is to be understood as the one dimensional Dirac delta function which forces

&1 = ¢(&). Using Parseval’s theorem (in L?(R?)), the right side of the last formula equals (with
r € RY)

[ 1@ (Fote—vio)” @) do

where (using pullback)

(Fle,mp(e) (z) = / F(E))(E)1g,—p(ee®™ @€ d = F(&)p(€)emi@’etear(€)) ge

Rd Rd—l
- /SF@)e?mf do () = (Fdo)" (z)

. . . . , d—1 . . . . =dualit
with the inconsistent notation 2’ = (z1, ...,24-1) € R*"!. This clarifies the computation in .

n:dispersionsurfaces| Remark 2.1. Had we started with a set of the form

Sy:={¢ R a(é) =)}

for a function a : R* — R with
Va(€) #0 foré€a'(A),ACR,
then we define the measure on Sy by the equality
_ dox(§)
[Va ()]

where doy(€) is the euclidean (Lebesgue) surface measure on Sy. We remark that d¥, is some-

times also called the canonicyl measure associated to a (which is not intrinsic to Sy, however),
X richartz . . d .

see also Strichartz [I53]) p. . In particular, the elementary volume d¢ in R* satisfies

d¢ = dAdS,(€) .

d¥a(€)

Moreover, by the implicit function theorem, the equation a(§) = A for A close to some Ay € A CR
defines a function &; = F(¢',)\) for £ close to £(0) € S),. Since the euclidean surface measure is
given by doy (&) = (1+ |Ve F(€,))|?)1/2 d¢’ (as we have seen above), we have
__ &

|0a(§) /08l

Let us see the advantage of the introduction of dXy(£). If one defines the Fourier multiplier
Hy = F*AF, where A is multiplication by the symbol a(£) and X C R is some Borel set, then
it is well known that its spectral projection is given by

EO(X) = ]‘-*]_{a—l(X)}f.

Thus, be the above discussion, we have

wEow = [ et [ [ ifer e,

d¥x (&)
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In particular, for a given measurable function F : [0,00) — R, we have

(46, F(Ho) = /R ax F(\) [5 (E) 2 dSA(€)

3. NECESSARY CONDITIONS

In this section, we will derive two common necessary conditions on p and ¢ such that the
extension estimate [[(F'do)"| 1y gay Spad |Fllpe(s): 16 R§(q" — p'), holds. The restriction
conjecture asserts that these two conditions are in fact also sufficient. The conjecture has been
solved for the paraboloj ao%& the sphere in two dimensions, and for the cone in up to four
dimensions, but see also [164] Figures 1 and 2] for a more detailed [and probably out of datel
summary of progress on this problem. In fact, the restriction problems for the three surfaces
are related. Let us merely mention that the restriction conjecture of the sphere would imply
the conjecture for the parab?l%q since one can parabolically rescale the sphere to approach the
paraboloid, but see also Tao m%here the surprising fact that the Bochner—Riesz conjecture
implies the restriction conjecture is shown).

3.1. The trivial condition. By setting F = 1, we immediately see that we need (do)¥ €
¥’ (R%). In the case of the sphere and the paraboloid (which have non-vanishing Gaussian
curvature), stationary phase computations yield

(o) (2)] S (1 +Jaf) =172,

i.e., we need p’ > 2d/(d—1), respectively p < 2d/(d+1). For the sphere, an explicit computation
using the Fourier-Bessel transform yields (do)¥ = 27|¢|2=D/2J 4 5) 5(27|¢]). On the other
hand, the asymptotics for the cone are slightly different, giving the condition p’ > 2(d—1)/(d—2).

. . [Tomas1975,Strichartz1977
3.2. Knapp’s example. We will sketch this example [I68] [I53] only for the sphere and the

paraboloid (more precisely its intersection with the d dimensional unit cube). Assume that
R > 1 and take any interior point &, of the surface S. By a Taylor expansion, one sees that
S contains a “cap” k C S centered at & whose diameter is roughly R~!. The cap has surface
measure ~ R~(4~1) and can be packed into a d dimensional disk D of diameter R~! and thickness
R~2 which is oriented perpendicular to the unit normal of S at &. Now, let F = 1, be the
characteristic function of the cap x and T be the tube dual to D. This is the tube which is centered
at the origin, aligned along the unit normal to §na;cr§g.with length ~ R? and thickness ~ R. By
the uncertainty principle (see also Appendix Was magnitude ~ o(k) ~ R~(4~Y on a
large portion of T' (since the phase function e’*¢ is basically constant for ¢ € D and = € T') and
decays rapidly outside of T'. In particular, we have

H(FdU)VHLP’(]Rd) > ‘T|1/p’R—(d—1) ~ Rd+1)/p'=(d=1)
On the other hand,

1Fl| o (5,d0) ~ k[T ~ RV

Letting R — oo thus leads to the second necessary condition
1 —1
d+ < d

p q

/

for R%(¢" — p’) to hold. (Note that the Fourier transform do of the measure do associated to
S41 decays like |z|~(4=1D/2 ie. it is L? -bounded for any p’ > 2d/(d — 1). Thus the conjecture
says that this LP'-boundedness also holds for fd\a)

One can formulate a Knapp counterexample for any smooth hypersurface. Of course, the
obtained necessary conditions become stronger as the surface becomes flatter. In the extreme
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case where the surface is infinitely flat (e.g. when it is a hyperplane), there are no estimates.
In fact, the function g(x) := (1 + |x1])~* lies in LP for any p > 1 but has an infinite Fourier
transform on every point of the hyperplane {¢ € R% : & = 0}.

Hence, we have the following conjectures, which are in fact all equivalent to each other
Section 19.3].

Conjecture 3.1. ||g/d\a||Lq(Rd) S llgllze(sy for ¢ >2d/(d—1) and g = (d+ 1)p'/(d — 1).

WattilaQOlE

n

Conjecture 3.2. ||gdo||Lawray S ||9llL~(s) for ¢ > 2d/(d —1).

Conjecture 3.3. ||gdo||Laray S |lgllzecs) for ¢ > 2d/(d —1).
Proposition 3.4. The above three conjectures are equivalent to each other.

Proof. Clearly the third version implies the second by Holder. Once one shows the converse (i.e.,
second implies third version), the equivalence between the first and second version follows from
inteppolafign Observe that if ¢ = 2d/(d —1) and g = (d+1)p'/(d — 1), then p = g. For the rest,
see ;Pmmrem 19.8]. O

Before we come to the last example, we elaborate a bit on the situation of the paraboloid
and perform some explicit computations for the reader’s convenience. In fact, we will have a
first encounter avgf(tltl “wave packets”, an important tool that we will discuss in further detail in

. e
Section BI

Knapp’s example for the paraboloid - an explicit computation. Let F' be a smooth,
non-negative function with supp F C {|¢] < 0.1} and ||F||; = 1. For |z|,|zq| < 1 the integral
defining Re ((Fdo)Y(x)) has no cancellation (since the phase function is strictly positive in this
case), and hence |(Fdo)Y ()| is nearly as large as possible, i.e.,

(Fdo)¥ (z)| > / cos(x - (€, [€2)) F(€) dé > /R cos(0.1 4+ 0.01)F(€) dé ~ 1.

R
For large |z|, the integrand oscillates rapidly in £, leading to cancellation in the integral, and
hence a small contribution, i.e., |(Fdo)(z)| < 1 for |z| > 1.

We will now rescale the above F' such that “it lives on the paraboloid” by defining

FE (€)= RIS E I (R — &y))

for some R > 1 where R~! denotes the frequency scale of the parabolic subset (before it was
the disk D)
ke i ={6€P:0< (€~ &) vg, <0.01R™?}

(centered at &) of the paraboloid PP, as before. Here, vg, = (-2, 1) denotes the upward normal
to P at &. It is pretty clear that Hg is contained in a R™! x --- x R~ x R™2 rectangle centered
at & and whose short side is oriented along v¢,. We finally note that, due to the additional
phase factor, (Fgg,xoda)v is going to be concentrated around z in real space.

By scaling, the extension of this almost characteristic function on the inflated cap ﬁg) is given
by

(FE . do)Y (z) = > (==20% (Fdo)(R™ ((z — ) + 2(x — 20)ao), R 2(z — 20)a) -

£0,20

By the estimates on (Fdo)Y, we see that (Fe, »,do)Y ~ 1 on the tube

Te oo = {z € RY: (& — o) + 2(x — x0)aol < R, |za — (w0)al < R*}
which is centered at zo, has width R and length R?, and is aligned along vg,. Off this tube,
(FE  do)V decays rapidly. This shows that ||(F£  do)V| . ®RD) 2 |T|1/P" ~ READ/P" whereas

£0,%0 £0,%0

||F£’ch Lo @) ~ R(4=1/4 which again shows that (d 4 1)/p’ < (d — 1)/q is necessary.
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For T' = Tgwo and Fr = Fflj,xo’ the extension (Ff,xodo)v is called a wave packet associated
to T. For any R > 1, a partition of unity directly decomposes the original function F' as a sum
of (unmodulated) R-caps, indexed by a collection of O(R?~!) tubes, i.e.,

FZZCTFT, T=T&,.
T

Most of the coefficients ¢ are of order R~(4=1) by scaling, the rest of them are even smaller.
The curvature of P implies that distinct tubes T, T” with directions v and vp are separated by
at least R™! since

angle ~ sin(angle) = —— = R~ .

3.3. Hardy—-Littlewood majorant conjecture. The derivation of this conjecture is similar to
the first (trivial) condition. Assume that F'is a smooth function on S such that || F'[| gy < 1.
Since F'do is pointwise dominated by do, it seems intuitive that (Fdo)Y should be “smaller”
than (do)V, too. The conjecture then states that the necessary conditions of the trivial condition
should in fact be sufficient to obtain R (oo — p’) for completely general sets. It is known that
the conjecture is true when p’ is an even integer (using Plancherel’s theorem) but is false for
other values of p’. However, it may still be that the majorant conjecture is true if the set S is
“non-pathological”, e.g. in the cases for the sphere or the paraboloid.

3.4. Are there restriction estimates for the plane? We already mentioned in the intro-
duction, that curvature was crucial for Stein’s discovery of restriction estimates. Conversely, we
may ask what happens when the curvature is zero, i.e., are there restriction estimates for the
plane? Let us consider the hyperplane {4 = 0}, or even only the subset

S={¢cecR!: & =0,¢ <1}

with the obvious surface measure do. Thus, by the Holder and the Hausdorff-Young inequality,
we have || f[|La(s) S I|fllp for p = 1 and arbitrary ¢ > 1. However, these are the only estimates
available.

Proposition 3.5. Suppose Hf||Lq(S) S|l holds for all test functions f and the above S. Then
one must have p = 1.

Proof. The idea is to consider functions whose Fourier transform is concentrated on and near S.
For this, let 1 € S(RY) with 1) ~ 1 near the origin and let

f(xla ...,fEd) = T/)(%» "'7xd717xd/A)
for large A. Then || f||, ~ AY/? and

F&1, o €a) = M (&r, ooy €am1, Aa) -

In particular, f ~ ) on the pancake with dimensions 1 x ... x 1 x A~} and f|5 ~ A. Thus,
[ fllzacs) ~ A and for || f|zacs) S 1fllps 6., A S AVP to hold, we must have p = 1. O

In summary, there are no non-trivial restriction estimates for planes, even if we only consider
compact pieces. The reason for this failure is that the plane is so flat that one can easily find f
which are extremely large on and close to the plane.
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3.5. Curved surfaces, Fourier transforms of measures. We just saw that there are no
non-trivial restriction estimates for pieces of flat planes. Obviously, one may ask “how much
restriction is possible, if we bend the plane a bit”?

As a starting point, suppose S has dimension d — 1 and has non-vanishing Gauss curvature at
every point. By that we mean the following. Let &y be any point of S and consider a rotation and
translation of S such that & becomes the origin and that the tangent plane to S at &, becomes
the hyperplane £; = 0. Then, near the origin at least, S can be given as a graph

gd = 90(617 ceey fd—l)
where p € C°(R41) and ¢(0) = Vp(0) = 0. Now, consider the (d — 1) x (d — 1) Hessian of ¢,

ie.,
0% )
(853‘8516 gk o

Its eigenvalues v, ..., v4_1 are called the principle curvatures of S at &. The determinant of the
Hessian, i.e., Hj;l v; is called the Gaussian curvature of S at &. Then, the following decay

estimate for the Fourier transform of the surface measure do of S can be proven via a stationary
phase argument, see Stein [[I49, Chapter XIII, Section §3 and §5.7].

Proposition 3.6. Suppose S is a smooth hypersurface in R% with associated surface measure
do. Assume ¢ € C®(RY) is a fized function whose support intersects S in a compact subset of
S and let dp = do. If S has nowhere vanishing Gaussian curvature, then

|(dp)¥ ()] S la| =072 3.1

Remarks 3.7. (1) Herz Tﬁ%}l%wed that, for 1) = 1, the surface need only be Cl(d=1)/2+2 tq
obtain the above estimate on |(du)Y (x)|. If the surface is Cl(?=1)/2+4] he obtained the leading
coefficient of the asymptotic expansion {op |£géts>v(x)| as |z| — oo. If ¢ is not constant on S, one
can show (following the arguments of @%Hapter XIII, §3.1] that ¢ € CCM/Q]'|r2 and that the
surface is C1%/21+4 are sufficient conditions to obtain the above estimate on |(du)Y (z)).

(2) Fo lsgslog% 6kéypersurfaces where only k of the d — 1 principal curvatures are non-vanishing,

%'%2%8& T17] showed |(dp)Y ()| < |z|~*/2. (This is to be compared with the assertion in Stein

149, Chapter XII1, §3.2], where it is shown that |(du)" (x)| < |x|~'/* for hypersurfaces vanishing
to k-th order, i.e., (&1, ..., Ea—1) = O(|€]¥). (One says that S has finite type k € {2,3,...}.)

tein

1993
Proposition 3.8 (fm, Chapter XIII, §3.2, Theorem 2]). Suppose S is a smooth m-dimensional
(1 <m <d— 1) manifold in R? of finite type. Let du = +pdo be as above. Then
()" ()] < || ~H/*
where k is the type of S inside the support of .

Using a T*T argument (with T being the restriction operator) and the Hardy-Littlewood—
Sobolev inequality, it is possible to establish the following (far from sharp) restriction estimate
for finite type hypersurfaces.

Theorem 3.9. Suppose S is a smooth m-dimensional (1 < m < d — 1) manifold in R? of type
k. Then, one has Rs(p — 2) for any 1 < p < po with pg = 2dk/(2dk — 1).

Although the theorem is not sharp, its main idea, namely exploiting cancellations through L?
estimates, is the basis of the proof of the Tomas—Stein theorem.

eq:decayft
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Proof. If f € LP(R%), then the LP(RY) — L?(S, do)-boundedness of the restriction operator Rg
is equivalent to the L? — L?'-boundedness of EgR where Eg is the extension operator which is
dual to Rg. In particular, it suffices to show (cf. @)

(F.EsRs P S 1.

Using the definition of R, and Eg, namely (Rsf)(€) = f(¢)|s and (Esg)(z) = [s €™ Cg(€)do(€),

we have (f,EsRsf) = [ f(z)K(xz —y)f(y) dzdy (which also equals (f, fdo)y = (f, f * (do)V) <
1£llp1lf * (@)l < | /121(do)¥ | /20 using the weak Young inequality) where

K(z—y) = /S e do(£) = (do) (z — y)

Since |(do)Y(x)| < |z|~Y*, we have |(f,EsRsf)| < [f12 by the Hardy-Littlewood-Sobolev
lemma if p = 2dk/(2dk — 1), ie., p’ = 2dk. The assertion follows from interpolation with
p=1. O

. . . .restrictionplane, . L.
Extending the idea of Subsection [3.4] one can establish the following necessary condition for

urfaces vanishing to k-th order. This argument generalizes the Knapp example, see Subsection
e original “Knapp” condition is obviously restored for k = 2.

Proposition 3.10. Suppose p(£1,...,Eq-1) = O(|€|F) for some k > 2. Then, Rs(p — q) is only
possible if
d+k—1
/
>
P="a=

. . rictionplan d . ~ .
Proof. Let 1 be as in Proposition le, VY € ) with ¢ ~ 1 near the origin and let

flxe,.xg) = 1/)(x1/)\1/k, ...,xd_lx\l/k,xd/)\)

for some large \, i.e., f is a bump function on the A/*¥ x ... A% x X tube. In particular,
£l ~ A@=D/EAD/P ang f(€) = AA=D/E+Ly(\Vkey  NYERE,_ 1 M\E,). Since the volume of
the cap where f does not decay rapidly is roughly A~ (4=D/k ' we have Hf\SHLq(S) > A[d=D/k+1
A~ (@=1/(ka) - Comparing this with || f||, ~ A@~1+k)/P  vields the claimed necessary condition. [J

. . . :restrictionplane L. .
The last two results and in particular Subsection [B.4] 1.e.; the absence of non-trivial restric-

tion estimates on planes (which corresponds to the limit & — oo) underline the importance of
curvature in restriction theory.

4. THE TOMAS—STEIN RESTRICTION THEOREM

. As far as positive re 1ts gglg?giq,ggatsl}g7grivial LY — L™ e.stimate) g, we 13§Jéy have the follow-
ing theorem of Tomas [168] [169] and Stein (1975, unpublished and [146]) which says that the
restriction conjecture is indeed true for g = 2.

In fact, Stein gave two proofs of the restriction theorem. The first one relies on Tomas’ (two
pages long!) observation and on an extension of the classic Riesz—Thorin interpolation which is
unpublished. We will discuss this in more detail in the second subs section. The other one
establishes a theory of non-homogeneous oscillatory integral operators [146] That we will discuss
in the nex S%lg%bsection. We emphasize that this approach uses ideas of Carleson and Sj6lin

arlesonSjolin o o
EEZ who prove e restriction theorem for d = 3 and 1 < p < 4/3. The reader who o}nréteirge/%ted
in the history prior to the Tomas—Stein theorem is invited to consult Tomas’ paper [163].

Theorem 4.1. If1 <p <2(d+1)/(d+ 3), then Rs(p — 2) holds.
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S 2011
Remark 4.2. Bak and Seeger }:F‘Z extonded the Tomas Stein estimate to treat measures w that
satisfy

w(B)

su — <A 4.1
rad(BI))<1 rad(B)* — “.1)

and
sup [¢[°|a(§)] < C. (4.2)

lgl>1
The number inffa, 'Oﬁﬁ%lds for some A < oo} is called the “dimension of p”, whereas the
number inf{a : (é?% holds for some C < oo} is called the “Fourier dimension”. For (sufficiently)
smooth hypersurfaces with non-vanishing Gauss curvature, one has a = 2b = d — 1. Bak and
Seeger proved that the Tomas—Stein theorem extends to the stronger Lorentz-type estimate

~ b d—a
1 £llz2(s) Sdyap ATeT CT=at5 || £[|3,. 2 (RY) >

where p. = 2(d—a+b)/(2(d—a)+b). One interesting application of this (%onc%&s surfaces where
only k of the d — 1 principal curvatures are non-vanishing. Littman [TI7] s owed |(dp)V(z)] <
|| ~%/2 for smooth hypersurfaces. In this case, p. = (2 + k)/(2 + k/2).

As we shall see, the proof heavily relies on the fact ¢ = 2 and it has been very difficult (though
not completely impossible) to push this argument beyond ¢ < 2. We will now discuss the two
approaches of the proof of this theorem.

2017
4.1. h%gn-l}&glogeneous oscillatory integral operators. Following [I43 T 5" |, Chapter 2] and

Stein [149] Sections IX.1 and IX.2], the first approach consists in establishing a robust theory of
non-homogeneous oscillatory integral operators of the form

J(A):::jédefkv a(y) dy .

If ¢ has a non-degenerate critical point (i.e., V(yo) = 0 but det(8%¢/dy;0y;) # 0 when y = yq),
say at yo = 0, and a is a smooth cutoff function having small support, one can easily check that
IT(A)] ~ A2 as A — +o0,

2017
whenever a(0) # 0, see, e.g., fogge Theorem 1.1.4]. The situation can be naturally extended by

considering operators of the form
(D)) = [ N Dale ) )y, 2> 0
Rd

where a is now a smooth cutoff function and ¢ € C(R™ x R?) is real. One may then, e.g.,
ask whether T f belongs to some LP. The most basic result occurs when m = d. If ¢ is
non-degenerate in the sense that the mized Hessian satisfies the non-degeneracy condition

0%
det (8Ij8mk) #0,

IT>FllL2@ay S A1 Fll L2 eey -
This result obviously has the same flavor as the estimates for I(\), and, in fact, one can see that,
for every A, there are functions for which || T f|l2/lf]l2 ~ (1 + X)~%?2 if @ is non-trivial.
However, there are many natural situations where the non-degeneracy condition is not met.
The most popular example is of course p(z,y) = |x — y| for which the Hessian has only rank
d — 1! The Tomas—Stein theorem will immediately follow from estimates on oscillatory integral
operators with such phase functions.

then we shall find that

eq:fourierdi
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4.1.1. Non-degenerate oscillatory integral operators. Let us however start with the simpler sit-
uation where the non-degeneracy condition is satisfied. The main theorem of this subsection is
the following

Theorem 4.3. Suppose p is a real C* phase function satisfying the non-degeneracy condition

0%
det ((%jﬁxk) #0 (4.3)

on supp(a) where a € C(R? x R%). Then for A > 0,
/ N a(z,y) f(y) dy S A2 £l 2 ga) - (4.4)
R L2(RY)

3 -oscintnonde
If we let T be the operator in (ﬁ'z_ii, then clearly
1T flloo S N1

Thus, we obtain the following consequence by Riesz interpolation.

Corollary 4.4. If1 <p <2, then

| [ eemaasmar)| S x . (45)
Re L7 (R)

Remark 4.5. Clearly, the phase function xﬁt'%)o e y) leadin Egn%}ﬁgn%teandard Fourier trans-

form satisfies the hypotheses of Theorem urthermore, implies that

5 Hf||177

[ ate/ VR u VR @ |

. -oscintnonde . . ~
ie., 1@5 leads to another proof of the Hausdorfl-Young inequality || f]l,r < | fllp-

. L. -nonde .
Before we prove this theorem, we restate the non-degeneracy condition @35 n an equivalent
form. Expanding

Op(x,y)

AP (3= 2)+ Olly 5P,

Valp(a,y) — ol )] = (

-nonde
it is immediate that (ﬁ?i 1S equivalent to

intnond
This is the form that we shall use in the proof of Theoremﬁ gln—gnon €

intnonde
Proof of Theorem i@'g Using a smooth partition of uni%% We can decompose a(z,y) into a finite

number of pieces each of which has the property that olds on its support. Thus, we may
assume without loss of generality that

Valp(@,y) — ¢(x,2)]| 2 [y — 2| on supp(a)
ogee2017

holds. The assertion then follows from Young’s inequality for integral operators [143] Theorem
0.3.1], once we show that

|Kx(y,2) Sy L+ Ny —2))™ forall NeN

where

Ki(y,2z) = /d M@ =e@ Al gz y)a(z, 2) do
R

is the integral kernel of 1T&Téz (re)- Since the above estimate just follows from a stationary
phase argument (using > we are already done. (|

’eq:oscintnondeg‘

’eq:oscintnondegp

eq:nondeg?2
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4.1.2. Oscillatory integral operators related to the restriction theorem. The main result in this
subsection is that, under some natural additional geometric conditions on ¢, we can prove that
T also maps LP(R%1) functions to LI(R?) functions with norm A\~%4 (see @—@

As in the previous subsubsection, we will require a (modified) non-degeneracy condition of
the form

2
ke (1) =1 )

i.e., the mixed Hessian associated to the phase function has maximal rank. This condition alone
would yield that Ty : LP(R4"1) — L(R?) is bounded with norm O(A~(@=1/4) if ¢ > 2 and
p > ¢'. To get the better result O(A~%9), we need an additional condition, more precisely, a
curvature hypothesis.

-nondeg3
To state it, we first notice that, since C,, = {(z, ¥, (2,9), ¥y, =9, (2,9)) }, W’the constant
rank theorem imply that, for every zo € supp,(a), the image of y — ¢’ (z0,v), i-e.,

Szo = H (Ccp) = {90;(20711) : (ZOaQD;(ZO7y)7y7_%D?g(Zan)) € Ciﬂ}
T R4

is a C*° (immersed) hypersurface in T;ORd. Clearly, one can identify TZ*ORd with R%. In this
case, the curvature hypothesis says that

S., €T, R?  has everywhere non-vanishing Gaussian curvature. (4.8)

Since changes of coordinates induce caan§g§v%f (€10 din%g(ase in the cotangent bundle that are
l‘n@agngé ‘g,he fibers, one concludes that 1s (like an 1nvariant condition. uNrc‘),‘hice that
1S a condition involving second derivatives of the phase function whereas @Wﬁm fact a
condition involving third derivatives. |
If the two conditions (7)) and (B.8]) are met, we shall say that the phase function satisfies
the Carleson—Sjolin condition. The main result of this subsubsection concerns estimates on A
. . A . R ... |CarlesonSjolin1972
oscillatory integ olrod_}%%g%%% with such phase functions. It is g&en{cé)ssCarleson and Sjolin [[42]
and Hormander [95] in the two-dimensional case and to Stein [[146, Theorem 10] in the higher-
dimensional case.

-oscintnonde
Theorem 4.6. Let T, as i and suppose that the arlgsrovﬁijdlm condition (i.e., the non-
degeneracy condition and the curvature condition olds. Then
T ety S X oo (49)

ifq=(d+1)p'/(d—1) and
(1) 1<p<2 ford>3;
(2) 1<p<4ford=2.

in1991L
Bourgain H% pafl(?vea that the theore ogg&(i)lf?fact not be improved beyon écérll% ransge 1<p<2

t}é?}rhglg? 3. For the proof, we refer to [143] Theorem 2.2.1], sg?easlgg Stein [146, Theorem 10] or
1490 p. 380]. The details can also be found in Appendix et us now actually see why the

Tomas—Stein theorem is an immediate consequence of this theorem.

Corollary 4.7. Suppose that S C R%, d > 2 is a C™ hypersurface with everywhere non-vanishing
Gaussian curvature. Then, if do is the Lebesgue measure on S and if du = Bdo with 8 € CZ°,

it follows that
R 1/r
( / f<5>|’°du<§>) <s I

provided that r = (d —1)s'/(d + 1) and

Ls(R4) »
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(1) 1<s<2(d+1)/(d+3) ford>3;
(2) 1<s<4/3 ford=2.

. . . . eson . .
Notice that the exponents r and s are just conjugate to those in Theorem @IWthh indicates
that we will in fact prove the dual assertion, i.e., an extension estimate.

Proof. Without loss of generality, we may rotate and translate S such that £; = ¢(¢’) for some
¢ € C*°(R4™1) where as usual ¢ = (¢/,£,) € R?. We shall now actually prove the (dual) extension
estimate, i.e.,

[(Fdp)" |l s may S 1F v (s)

where

(Fdu)" () = / 7€ P(£)dpu(€)

s
= [ e P € DBE €)1 + V() de
and we used the pullback formula

du(€) = B, (€)1 + [Ve(¢)*)/2dg = W(¢, p(¢))d¢’

To apply the Qs%gesonijélin theorem, we merely need to verify the non-degeneracy condition of

Theorem ut this is easy since the Hes 'gr}) I(l)f o has rank d — 1 and the curvature hypothesis
holds by assumption. Thus, Theorem tmplies ||Tx||Lrri-1)—ro@e) S A\~/4 where Ty is
defined by

(T\F)(x) = / AR EN) g, VP (L, (€)W, p(¢)) dE

Rd—1
eson
By scaling 2 — /), this means that if p and ¢ are as in Theorem @IWhave

/RH e @M a(a /N EVF(E, (€)W p(€)) dy S 1FC o)W 90l @a-r)

L3 (RY)

for every A > 0. Using once more the pullback formula, we conclude

/ TR () du(€)
S

Sp [1F e sy
Lz (R)

thereby showing the assertion. O

a01999Notes
4.2. The original arguments of Tomas and Stein. Following Tao [[I59; Lecture 2|, we will

now outline the genesis of the Tomas—Stein theorem. In particular, we will encounter three basic
interpolation theorems which are vital tools in (harmonic) analysis in general.
Squaring the desired restriction estimate shows that we need to prove

JNGIREGHEH

We rewrite the left side as the L? inner product, use the convolution theorem and Hélder’s
inequality to obtain

/S [[(©)F do(€) = (f, fdo) = (f, FIf x do]) = (f, [ + do) <|If[pllf *do]], .
Thus, it suffices to prove

1 = doly < 1171 (4.10)
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Note that this is just the TT* method in disguise (i.e., showing that an operator 1" is LP — L*-
bounded is equivalent to showing that 7= T 1;% P — L”,—bounded). The above observation was

e

first made by Fefferman and Stein [65] p. -
We will now outline three proofs of @

4.2.1. First attempt: fractional integration. The most obvious tool to attack @ would of
course be to use the Hardy—Littlewood—Sobolev inequality (which is a special case of the “weak
Young inequality”).

Lemma 4.8. If0<a<d,1<p,q< oo, and

1 1 o
—+l==4—=,
q p d

then
N1 17 S Nfp

The other tool that we shall use is an interpolation theorem for weak-type operators. It turns
out that the assumption that an operator has weak-type can be relaxed even a bit more. Recall
that, for some measure spaces X, Y, a linear operator T : X — Y is said to have weak-type (p, q)
if

He e X [(Tf)(@)] > AH S AU Sl forall felP X>0.
One can weaken this by considering only characteristic functions. We say that T has restricted
weak-type (p, q) if
Hz e X : |(T1g)(z)] > A} SATYEP/Y forall EC X,A>0. (4.11)

It is convenient to rephrase this estimate in a more symmetric form.

Lemma 4.9. Suppose 1 < p,q < co. Then T has restricted weak-type (p,q) if and only if
(T1p,1p)| S| EVPIP[MY (4.12)
forall sets EC X, FCY.

As a comparison, recall that, by duality, the strong-type (p, ¢) estimate is equivalent to

(T S 1 nllgller
forall fe LP, ge LY.

Proof. For our purposes, the necessity of the restricted weak-type estimate suffices W?&gglls why
we will only deal with this direction. (For the other direction, one applies @v_mhe set
F ={Re(T1g) > A}.)

Using the layer cake representation and Fubini, we have

|<T1E,1F>|§/ |T1E(x)|dx:// 1{|T1E|>,\}(x)d)\dx:/ {2 € F:[T1a(x)| > A} d).
F F JO 0

Recalling the restricted weak-type hypothesis, the integrand can be estimated by
{z € F:|T1g(x)| > A\}| < min{|F|,\"9|E|7/?}.
Thus,
(T1p,16)| S [ min{[F| A} dA < B R
0
by an elementary computation. O

Let us recall now
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arcinkiewicz| Lemma 4.10 (Marcinkiewicz interpolation). Suppose 1 < pg < qo < 00, 1 < p1 < ¢1 < 00,
po < P1, qo < q1, and T is of restricted weak-types (po,qo) and (p1,q1). Then, T is of strong-type

(po, qo) for any 6 € (0,1) where 1/pg = (1 — 0)/po + 0/p1 and similarly for qs.
201999Notes rafakos2014C

ragkense Jao’s notes [I59, Lecture 2, Lemma 2.3] or Grafakos [85] Theorem 1.4.19] and Tao
165, Lecture 1, Lemma 8.5] for a further enhanced version. O

: ft
Using the decay estimate 1&1 ei iI'?om stationary phase)
|dor(x)| < |02,

and the Hardy-Littlewood—Sobolev inequality (Lemma @ with 1/p" +1 = 1/p + 2/p’ and
2/p' = (d—1)/(2d), i.e., p' =4d/(d — 1) and p = 4d/(3d + 1), we get

1 % dolly S AF*1- 174D S Al -

In other words, we just proved the restriction estimate Rg(4d/(3d + 1) — 2). By interpolation
with the trivial estimate Rg(1 — 2), we thus get Rg(p — 2) for any 1 < p < 4d/(3d + 1). This
is a non-trivial statement, however, it is far from the best possible. Recall that the restriction
conjecture says that p can go up to the endpoint 2(d + 1)/(d + 3).

The reason why we did not get a good estimate here is because we only performed pure size
estimates, i.e., we merely exploited the decay of the convolution kernel dvo(m). However, due to
taking a Fourier transform, do(x) actually also oscillates, in particular for large x. For instance,

we have 3
do(x) = const Jig_2)/2(|2])/v/|2]
for the sphere by the Fourier-Bessel transform. (Recall that |J, (z)| < |z|~'/2 for |z| — c0.) In

d = 3, this reduces to
sin(|z|)

||
Crudely estimating these formulae by |x|~! is very inefficient.

. . omas1975 X .
4.2.2. Second attempt: real interpolation. In [[I68] Tomas introduced a very simple argument

that made use both of the decay and the oscillations of the kernel do. This allowed him to get
within an e of the sharp result. The idea was to decompose do dyadically. This idea is a very
effective technique in harmonic analysis — break up your functions or kernels into many pieces in
such a way that the behavior close to the singularity or at infinity can be treated very precisely,
i.e., choose very small dyadic pieces where you need to obtain precise estimates. This approach
works quite well, except when one has to recombine, i.e., to glue, all the pieces back together.
In this way one often loses an ¢, but rarely does one lose more than this.

Let us start with the main idea, i.e., the dyadic decomposition of do. For this, let ¢ be a
radial bump function which equals 1 near 0 and is compactly supported. Then, define

Ui(2) = 927 ) — p(27" ).
Thus, v has size roughly 1 and is supported on the annulus |z| ~ 2¥. Moreover, the v are all
related to each other by

() = o(27"a)
and we have the telescopic identity
L= (@) + Y dil(e).
k>0
Thus, one can break up f * do as

f*db:f*(¢db)+2f*(¢kd5).

k>0
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Now, we may just use the triangle inequality, obtain

1f  dolly < 1Lf * (wdo)lp + D N * (rdo)lly
k>0
and estimate each term separately. Note that one can (and should usually) be more sophisticated
than the triangle inequality and use almost orthogon ht A g&g,ults such as the Cotlar—Stein lemma
(for operator norm bounds) or Carbery’s lemmagﬁy or Schatten norm bounds).

Since do is a compactly supported measure, do is a C function (it’s complex analytic in
fact). Thus, pdo € C2°, i.e., the first term can be bounded by a constant times | fll, by Young’s
inequality.

Next, our goal is to estimate

1F * (rdo)llr < 27 £l (4.13)

since this would sum up nicely. We will prove such an estimate by interpolating between and
L' — L™ and an L? — L? estimate. The latter is just the one that will capture the oscillations
of do!

Obtaining the L' — L estimate is easy because of the decay of the kernel do and the fact
that vy, localizes to the region |z| ~ 2¥. We obtain

1+ (rdo)lloo S N1 fIllrdollos < [1fl27HE@D72. (4.14)

For the L? — L? estimate, we use Plancherel and obtain

I f * (pda)l|a = || f - (Wrdo)ll2 S | Fll2lldn * dol|o -

Since 1y, is smooth and compactly supported and acts as a mollifier, we have the standard

estimate
2dk

[9k(€)] S

'3 < 2kE SN
for any V € N. Thus, we obtain by scaling

o do(©)] = | [ e~ maoo| 52
since we are integrating over S, i.e., an d — 1-dimensional subset of R? and therefore
1f * (¥rdo)ll2 S 25| fll2- (4.15)
udelin ude22

Interpolating (using Riesz—Thorin) between ﬁ 14; and (@.I5]) thus yields

1+ (Yrdo)lly < 275N £l

for some ¢, provided p < 2(d+1)/(d + 3).

Thus, by exploiting oscillation (via the Fourier transform-based L? — L? estimate) and decay,
we get Rg(p — 2) for all 1 <p < 2(d+1)/(d+3). This is almost, but not quite, the sharp result
as we are still missing the endpoint.

4.2.3. Last attempt: complex interpolation In 1975 Stein (unpublished) obtained the endpoint
estimate Rg(2(d + 1)/(d + 3 extending the classic Riesz-Thorin interpolation “by
adding a single letter to the alphabet” 68 esides that, we will refuse to give in to the
triangle inequality as we did in the last sectlon and we will also make a special assumption on
the localizing function .

Theorem 4.11 (Stein’s interpolation theorem). Assume T, is an operator depending analyti-
cally on z in the strip 0 < Re z < 1. Suppose T, is LP° — L% -bounded for Re z = 0 and
LPr — L% -pounded for Re z = 1. Then Ty is LP? — L% -bounded for 1/py = (1 — 0)/po + 0/p1,
1/g6 = (1—6)/q0+0/q1, and 0 € [0, 1].

eq:localized

eq:crudelinf

eq:crude22
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Let p =2(d+1)/(d + 3) and recall that we want to prove
1D f * @ndo)llyr SNl -

k>0
. . -localizedmeasure
At this endpoint, (ﬁl%i, e,
s —ck
1S * (rdo)llpr S 27y

only holds when ¢ = 0. In other words, to get the endpoint, we must not use the triangle
inequality at this stage. We will therefore show the following two enhanced versions of the
previous L' — L>™ and L? — L? bounds, namely

1> 2l #100 £ s (o) | oo S £ (4.162)
k>0
1Y 250k £ (o) |2 < £l (4.16b)

k
. =0 . exint | . .
for all t € R. These two estimates, together with Theorem ﬁ}_ﬂﬁl yield the desired estimate.
j i i xed L, the abov(«ia fwo estimates just correspond to
leq-enhancedljaftanhanced?2

and |ﬂ| and begin with the former. Rewriting

If * 37 27 40k (g oo < 11111

k>0
we see that it suffices (by Young’s inequality) to prove
1> 255 iR (o) oo S
k>0
But this just follows from the decay estimate |do(z)| < |z|~(@=1)/2 since 4 localizes onto the

dyadic region |z| € [2F, 281, ie.,

ZQ[ Ltit] k"/}k (z) = O(‘xl(dfl)/Q)

k>0

-crudelinft
Note how we are being mor: efﬁg'b%nt here than in the proof of (ﬁ I%i
2 ance!
%iggg By th

Now let us turn to e same arguments as in the previous section (i.e., Plancherel
and Holder), it suffices to prove

1" 2=+ (4, s dor) oo S 1
k>0

Ignoring the cancellation coming from the 27* factor (which would be helpful however for k > 1),
we will obtain this from

S 27k |4y % do) ()] S 1. (4.17)

k>0

In the previous section we already estimated | (1 * do)(z)| < 2%, which is however just not good
enough for our purpose. Instead, we shall establish the more sophisticated estimate

- 2k (2kd(x, S))~N for d(z,8) > 27F
(W x do)(@)] 5 {Q’f +28(28d(z,S))  for d(z,S) < 27*

hege d(z,S) = |1 — ||| is the distance of x to the unit sphere. Once we have this estimate,
ollows from a routine calculation. Our task is thus to estimate

Uz — w)do(w)

Sd—1

’ eq:enhancedlinfty ‘

eq:enhanced22
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For d(z,S) > 2% the claimed estimate follows, e.g., from the rapid decay | (z)| < 2F4(1 +
2%|z[)=N (possibly with N > N + d), decomposing S¢~! into regions where d(z,w) ~ 25+ for
some j > 0, and then summing in j.

Now, let us look at the region d(z,S) < 27%. If we just use the size estimate [y (z)] <

~

2kd(1 + 2F|2|)~", we will end up with a bound of order O(2*) which is just not good enough.
Instead, we shall impose and exploit some moment conditions on .
We first observe the Lipschitz bound

IV (0, % do)(z)| = 2*(((27F Vi) * do) ()| < 22

where we used that also Q_kV@ satisfies the above size estimate (by scaling) and that do is
supported on a d — 1-dimensional manifold. Thus, for y € S,

(% do) () = (% do) (y) + (r % do)(y) < (g o) (y) +d(,y) (Vi #do) (2) S 2F 427 d(, y)
Thus, it suffices to consider points z on the unit sphere. By rotational symmetry, we may assume
T = ey, i.e., we need to show

[, #rlen = w)do(w)] = O1).

Because of the rapid decay of 17}; we may as well restrict ourselves to the region, say, |e, —w| <
1/10. In this case, we parameterize w € S41 as

w=(w,V1-|w]?), weRL

Since we restricted our attention to |e, — w| < 1/10, this means, it suffices to consider |w| <
v/1—1(9/10)? <« 1. Thus, we will estimate in the following

/ Yrlw, 1= V1 - w?)J(w) dw
lw|<1
where J(w) is the Jacobian appearing from our parameterization of w. We may now rewrite this
as a constant times
Ui, 0(w”)(1 + O?)) du (4.18)
Rd-1
modulo extremely tiny errors. We claim that this is quantity is

Ur(w, 0) dw + O(1). (4.19)
Rd—1

If this were the case, then we can simply choose ¢, and thus v, so that

Rd—1

and this will achieve the desired estimate.

To prove the claimed approximation, we first observe that
— — 2(d+1)kw2

Ow?) = 0)+0|——r—v

(e, 0) = Tl 0) + 0 (g )

forall N > 0 b the.@pid decay of 7,//1; and the mean value theorem. Thus, the error between
eq-convpsikleqg:convpsi

2(d+1)kw2
O ———— | dw=0(1
L (<1+2k|w|>N> w=0()

which follows by scaling.

eq:convpsikl

eq:convpsik?2
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4.3. Complex interpolation once more. We shall give one further proof of the Tomas—
Stein theorem which, however, does not use the dyadic decomposition of the kernel (do)V.
The technique that we will outline here, is in particular useful to obtain “uniform” resolvent
estimates such as H(Q(D) - Z)flup%p < 1 uniformly in z € C for |z| > 1, Im(z) # 0,

Q) = € —¢2 —. gﬁ Tarios fd and p such that 2/(d+1) < 1/p—1/p’ < 2/d,
see, e.g., Kenig- Rulz Sogge ﬁ( eorem 2.3] where one interpolates between the L2 —

L? bounds of e¢*(I'(d/2 + ¢))~ (Q(D) — 2)¢ for Re(¢) = 0 and the L' — L bounds of
e (D(d/2+ Q)1 (Q(D) = 2)¢ for Re(() € [~(d+1)/2,—d/2].

Theorem 4.12. Suppose S is a smooth hypersurface in R with non-zero Gaussian curvature.
Then

R 1/2
( [ |f(£)l2d0(€)) <ot o e

holds for each f € S(R?), 1 < p < 2(d+ 1)/(d + 3), whenever Sy is an open subset of S with
compact closure in S.
. tein1986
The proof can be, found in %e&gﬁm Theorem 3]. A more detailed exposition can be found
in Stein—Shakarchi [I50, Chapter 8, Theorem 5.2].

Proof. Suppose 0 < 1 € C°(R9). It will then suffice to prove

R 1/2
( JUGRT dcr(g)) T . (4.20)

for po = 2(d + 1)/(d + 3), the other cases follow from interpolation El By covering the support
of ¢ by sufficiently many small open sets, it will be enough to prove the restriction estimate
when (after a suitable rotation and translation of coordinates) the surface S is represented (in
the support of 1) as the graph &4 = ¢(¢&’). Now, with du = ¢do, the usual Plancherel argument
implies

JIGRIGEY ReoierE
where (Tf)(x) = (K * f)(x) with
K@) = [ =€ du(e).

Thus, we are left to show the LPo — LPo boundedness of the convolution kernel K. To do so, we
consider the family of kernels
e

Ka(w) = gy [ el = o€ (e — o(€)IE") de (4:21)

where 17 € C2°(R?) is a bump function sitting at the origin and we set (") = (£, (£))(1 +
V(€))7 so that

dp(€) = $(€)do (&) = (1+ [Vp(€))) Py (E o(¢))de.
Now, the change of variables £; — £; + ¢(¢&’) in the above integrals shows that it equals

o) [ || @O dE = (@) K @)

82

n fact, the interpolation argument shows that we can take ¢ so that the restriction estimate holds where
the L2(S,do) norm is replaced by the L4(S,do) norm with ¢ = (d — 1)p’/(d + 1) which is the optimal relation
between p and gq.

’eq:surfacefamily
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with

o) = Ty [ el () dea.

(Note that we now only need to study a “classical” function (s(x4) and the “regularized” kernels
K, since Ko(z) = K (r) and we shall interpolate between K i and K_g/o1; fort € R.) So, first
it is well known that (s has an analytic continuation in s which is an entire function. Moreover,
¢o = 1 (by an integration by parts, setting s = 0, and applying the fundamental theorem of
calculus using 7(0) = 1) and |(s(xq)] <<ein§h5(afc°h(f2o Jyhere the real part of s remains bounded
from below (see also Stein-Shakarchi [[I50] Chapter 8, Lemma 4.6]). From these facts it follows
that K has an analytic continuation to an entire function of s (whose values are smooth functions
of 21, ...,z4 of at most polynomial growth). Moreover, one concludes

(1) Kola) = K(x),

(2) K(l—d)/?-‘rit is Ll — L bounded with |K(1—(i)/2+it(m)| < |<(1_d)/2+it($d)”K0(x)| g 1

for all z € R% and t € R, and
(3) Kiiit is L? bounded with |K;4:(€)] <1 for all € € R? and ¢ € R.

In fact, (2) follows from the estimates |Ko(x)| = |(dp)" scI)Ij A (d D72 and [C1—ayya-it(Zd )L

aceé facefamil
|z4|(@=1/2 whereas (3) follows from the definition e integrand in @ 1s just
K which is clearly bounded for s = 1.) Thus, we have shown that the analytic family 75 of
operators, defined by T f = K * f satisfies

1Ta—ay/2vitfllo SIfll1, tER

because of (2) and also

[Tiafl2 S Ifll2, teR
because of (3) and Plancherel. Thus, by complex interpolation (0 = (1 — 0) + 6 - (—=d/2), i.e
0=2/(d+1),1—-0=(d—-1)/(d+1),and 1/p = (1 —-6)/2+6/1 = (d + 3)/(2d + 2), i.e
=2(d+1)/(d + 3) = po), we obtain the asserted LP> — LPo boundedness. O

rankSabin2017
4.4. A final word on complex 1nterpolat10n Frank and Sabin H: Proposition 1] no-

ticed that once one proves the LP(R%) — LP (RY) boundedness of some operator 7' on R?
via complex interpolation, one not only obtains that W;TW, is L?(R?) bounded for arbitrary
Wi, Wy € L?/C=P)(R?) (by Hblder’s inequality). In fact, W, TW5 also belongs to some trace
ideal SP(L2?(R%)). We quote

kSabin2017
terpolationschatten| Proposition 4.13 (Frank—Sabin 7r9af1 F’?O]lpré)sﬁlon 1]). Let T, be an analytic family of operators

in R in the sense of Stein defined on the strip —\g < Rez < 0 for some \g > 1. Assume that
the bounds

[ Tiyll22 < Mo, | T_x,4iyll0 < Mietl | vy e R (4.22)

hold for some a,b > 0 and for some My, My > 0. Then, for all Wi, Wy € L**(R9 : C), it holds
that WiT_1Ws € S2>‘0 (L2(Rd)) with

WA T2 Wl 230 2y € Mo~/ My W 230 gty [ Wall 2ro g - (4.23)

imon2005
The basic idea is to use complex interpolation between Schatten spaces (cf. Simon [I38] T

Theorem 2.9]) applied to the holomorphic family Wi *T, W5 * for Re(z) € [—Ao,0]. One then
interpolates between the L? — L? bound and the Hilberthchmidt estimate

WO T n gy W5 152 = /}R da /R dy W (@) Wa (@)X | Toxg ey (2. 9)
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Sometimes, there are better estimates for |T_ iy (2, y)| available than a simple uniform bound.
This may, e.g., be the case when T, is a differential operator such as (—A — {)*. Then one may
use tools like the Hardy—Littlewood—Sobolev inequality and so on.

Proof. For W; = |W;|e"¥i we have
WA T Walls230 < [le"" |2 p2 [ Wil Ty [Wallls2xo [l ([ L2 2 < W] Ty [Walllg2xo -

Thus, we can reduce to the case where Wy, Wy are non-negative. Moreover, by a density argu-
ment, we may suppose Wi, Ws to be simple functions. For simple Wy, Wy > 0 we now define the
family of operators

S, =W T Wy

which is still analytic in the sense of Stein in the strip —Ao < Re(z) < 0 and satisfies S_; =
W1T_1Ws5. On the right border of the strip, i.e., Re(z) = 0, we have

I1Sisl L2 < W1 oo [Ws ™ llool| Tisll L2 12 < Moe®™l, s € R.

On the left border, we prove that S_,1s is Hilbert-Schmidt. Indeed, we obtain

ISsgsicle = [ dody Wi@ P Wl 1T sl ) < M W33 1721
R

imon2005
Thus, by complex interpolation for Schatten ideals (cf. Simon l%gr,l Theorem 2.9]), it follows

that S_; € S?*(L23(RY)) with
1-1/A 1/A
IS-1lls250 2y < My~ /2O My > [ W2, [ Wall2, -
This concludes the proof. O

If, in addition, the operator T_; can be factorized in A*A, we have the following duality
principle which is interesting in the context of many-fermion systems, where a one-particle density
matrix of orthonormal wave functions has the form

v = ZVj|fj><fj\

for some v; > 0 satisfying >, v; = 1 and orthonormal f; € L2(RY).

. rankSabin2017 .
Lemma 4.14 (Frank—Sabin [(9, Lemma 3]). Let H be a separable Hilbert space. Assume that

AdsaH — LV (R?) bounded operator for some 1 < p <2 and let « > 1. Then the following are
equivalent.

(i) There is a constant C > 0 such that
IWAAT sy < CIW 2oy s YW € LP/CPRIC). (424)

(i1) There is a constant C' > 0 such that for any orthonormal system (fj)jes € H and any
sequence (vj)jes € C,

1/a’
> vilAf < > Iyl . (4.25)
jeJ Lo/ /2 (Rd) jeJ
Moreover, the values of the optimal constants C' and C' coincide.
Applications of these principles include
FrankSabin2017

e Tomas—Stein restriction estimates in Schatten s acq{ss}'?g orems 2 (and 4) and 3 (and
. R K . “FrankSabih
5)] (the optimality of these results is shown in [79, Theorem 6)),
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e Strichartz gstimates for the paraboloid S = {(w,§) € R x R w = —[¢]?} (Schrédinger
with —A) f’?g heorems 7,8, and 9] _the cone & = {(w,§) € R x R? w? = [£]2} (wave,
respectively Schrodlnger Wlth V=A) 9T Eeorem 10], and the two—sheeted hyperboloid
S = {(w %si%n)fm@?’ = 1+ [£]?} (Klein-Gordon, respectively Schrodinger with
v1—A) [F Theorem 11], and enl eta11987 rankSabin2017

e uniform Sobolev inequaliti ésl% It(teerlllinguiz S 200 or —A (see [9; Theorems 12
and 13] and Subsection ater) and Cuenin [5]] %? Tor im —A)¥? —m with 0 < s < d

d ) .
and 375, a;j(=iVy) + fm with m > 0. gnksabin2017

e Figenvalue estimates for Schrodinger op rators ;7{5 Ry a%%]oailggr 1mon£§1
See also al,gk ngpc:unon gpr %%%, 7§, Fran Frankfslmon I)apfevf
Safronov [TT1], Safronov

For the sake of completeness we state the Tomas—Stein estimate for trace ideals here.

traceclassrestr\ Theorem 4.15. Let d > 2, S C R? be a smooth, compact surface with non-zero Gaussian

curvature. Then

d+1
+ < —
”WIISFSWzHS(ddil;q (L2RY) N ||W1||L2q(Rd)||W2||L2q(Rd), qc [1 5 ] (426)
interpolationschatt 1
Sketch of the proof. By Proposition ﬁ%d and the °p1?0(1)§ngic Thcorem ﬁnﬂ% obtains the bound
2(d+1)
W- W. < 1, ——=].
Wi F5Fs 2”sﬁ<L2<Rd)) WAl *(Rd)” Wall, r gy P =53

The assertion in the theorem follows by interpolating this (with p = 2(d + 1)/(d + 3)) with the
trace bound

W1 F5FsWallst2mayy < IWiFslls2(n2(s),L2@anlIWaF§lls2(r2(s),02 (raY)

where

”W]:g'||§2(L2(S,da),L2(Rd)) = |W(17)|2 do(§) = U(S)”WH%Z(W) :
Rd s
Here we used that the integral kernel of WF} is given by W (z)e?™. O

1 t
The “trace class restriction theore W@ % Qa(%bse}ré@fion of Birman, Koplienko,
Krein, Kurda, and Yafaev (see albo 110, IL1] for asymptotic_results on the eigenvalues of the

scattering matrix, in particular of FsV F§ in L?(S) and [ISI] Proposition 8.1.3] for a textbook
reference) in the context of scattering amplitudes. The proof uses the same strategy above by
interpolating in Schatten ideals between a bounded operator (when the potential decays like

|#|~17¢) and a trace class operator (when the potential decays like |z|~9~¢).
faev201
Theorem 4.16 (Yafaev fS‘afevF’roposmlon 8.1.3]). Suppose |V (x)| < (14 |z])~° for some p > 1

and let
To(N) : S(RY) — &'(s471)

f — 271/2)\(({72 /4f()\1/2)

afaev2010
be the rescaled restriction operator on VIS (see 181, Formula (1.2.5)]) with adjoint T (ex-

tension operator) given by

(L3g)(a) =27 V2AED/ [ iRy (g) ase)

ggaév2010
where dY. is the Lebesque measure on S¥~1 (see [I81] Formula (1.2.7)]). Then for all A > 0 and

p>(d—1)/(p—1) and p > 1, one has
||F0VF3||517(L2(S(1_1)) 5 /\71+(d*1)/(2p) .



2restriction
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4.5. A simpler L?-based restriction theorem. Notice that the L? estimate in Tomas’ argu-
ments was based only on dimensionality considerations. This suggests that there should be an

L? bound for fdo (similar to the classical trace lemma ||gl[z2(s) < |92 ®e) for all o > 1/2)
valid under very general conditions.

Theorem 4.17. Let v be a positive finite measure satisfying the dimensional conditiorﬂ
v(B,(r)) < Cr*. (4.27)
Then there is a bound
T d—a
[fdv|zz(o(ry) < CR 2 | fllr2(an) - (4.28)
The proof relies on the following well known

Lemma 4.18 (Schur’s test). Let (X, u) and (Y,v) be measure spaces and K(x,y) a measurable
function on X XY satisfying

[ K@ldu@) <A poratyey,
b
/|K($7y)\dy(y)§B forallz e X.
%

Let Tk : S(X) — S'(Y) defined by Tk f(x) = [y K(x,y)f(y) dv(y). Then, for f € L*(dv), the
integral defining Tk f converges du-a.e. and we have

| T fllz2(ap) < VABI fllz2(av) -

2restriction
Proof of Theorem E'?] Let p € S(RY) such that ¢(x) > 1 on By(1) and that ¢ € C°(R?).
Denote the scaled version by ¢r(z) = ¢(z/R). Then,

lfavllL2(o(ry) < llr(@) fdv(=2)|L240) = 1@R * (fdV)| L2 (Ra) -

We will now use Schur’s test to estimate the operator norm of the convolution operator ¢r * (-).
On the one hand, we have

[ R =) g = [y < o0
and on the other hand,
[ 1Rtetr(e ] vl < e

since ¢ was assumed to be compactly supported and the dimensional condition on dv. Thus, by
Schur’s test,
I fdvlirzcmo(ry) S B2 fllL2(aw) -

thereby establishing the claim. a

2We only require one half of the Ahlfors—David regularity condition which would involve also a matching lower
bound.

eq:dimmeasure

’ eq:easyl2restrictior
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4.6. Trace theor n gév%fiaorecall some classical trace theorems from PDE or scattering theory
and follow Yafaev ?ITgTTSWlon 1.1]. Throughout, we assume that S C R? is a hypersurface, i.e.,
a codimension one manifold. We start with the case where S can be parameterized by, say, a
continuous function F':  — R where Q C R?~! is an open set, i.e., & = F(¢').

Proposition 4.19. Let o > 1/2 then

o 1
[l PP s o [ 0rad @b e < ol 429)
where ”uHLi(R") = ||UHL2(R"’,<96>2” dz)-
Proof. Let
ﬂ(f/,iﬁd) ::/ e—QTrix’.f/u(x/7xd) d(E/
Rd—1
and

’LAL(f/,F(fI)) _ /d e—2m’(w/{/-‘,—w.iF(fl))u(x/’xd) dr — / e—ZﬂizdF(ﬁl)ﬂ(g/’xd) dzy .
R

R
Then, by Schwarz

1
200 — 1

(', P < / < 24 > [i(¢', 24)|? daa

and therefore
1

/ 200 |~ (¢! 2
20[_1/Qd§ /Rdxd < g > |a(E, xq)l
1

= / < g > |u(2)|? d
Rd

; de' lu(¢', F(E))I* <

200 — 1

where we used Plancherel in the prime variables in the final step. This concludes the proof. [

Remark 4.20. The proof also goes through when R? in position space is replaced by Z?¢ and
correspondingly R? by T¢ = [~1/2,1/2]¢ the d-dimensional torus in Fourier space. Of course
one needs that S is actually contained in T%.

-tracethmi
Next we recall that the left side of ﬁ??i 1s actually Holder continuous with respect to a
variation of the function F, i.e., with respect to perturbation of the surface in question.

Proposition 4.21. Let o > 1/2 and

a—1/2 for a < 3/2
f=<1-¢ for anye € (0,1) fora=3/2.
1 fora>3/2
Then

[ 1€’ P e PP S sup 1PE) = FEOP [ (1) lutw)P e, (230)
Proof. We use the same representation as before, i.e.,
fb(f/,l’d) — / e—QWix’.f/u(x/7xd) d(E/
Rd-1
which allows us to write for £4,&4 € R,

A, 60) = (€)= [ (o7Eminsts — Bl (' ) day

eq:tracethml

eq:tracethml
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and estimate

(€ €0) — (e &) < ( / sin® (n(&y — £4)ra) < 14 > dxd)

X (/]R < g >2 |ﬂ(§/,xd)|2 dl‘d) .

using Schwarz. The first integral on the right side is bounded by a constant times |5 — fd
Thus, setting £ = F(£') and £ = F(&') yields

(¢, &) — (€ &) S IF(E) - Z:ﬂ(fi')lr‘"’/ﬂx < aq >* [a(¢',xq)|* dzq .

. . . . " thml
Integrating this over £ and using Plancherel as in the proof of Proposition ﬁli§ concludes the
proof. O

|29.

-tracethml
The integral in Wmally taken over the hypersurface S given by the equation £; =
F(¢'). Clearly, the Lebesgue measure d¢’ can be replaced by any scaled version C(¢')d¢’ for any
C(¢) > 0. If, eg., F € CL(Q) (i-e., F is continuously differentiable with bounded derivative),
then one can integrate over the Euclidean measure

dXs() = (1+[VF(E))
thm1
on S. Thus, Proposition ﬁeﬁm—pﬁes that

”ﬂH%?(S) Sa ||u||%i(Rd)7 a > 1/2.

V2 e (4.31)

This inequality shows that sufficiently fast decaying functions have Fourier transforms that can
be meaningfully restricted to hypersurfaces; more precisely, this shows

L3 )y . (RY) = L*(S).

Moreover, for the existence of a trace of a function, it suffices to have decay only in some directions

transversal to S. Moreover, the relation L? Jote (R%) — L2(S) can be generalized as follows.

Proposition 4.22. Suppose a hypersurface can be covered by a finite number of hypersurfaces
S; given in their own coordinate systems by functions &g = F;(§') where £ belong to open sets
Q; CRIL Assume further that F; € C}(Q;) for all j. Then, one has

N 1
||“H%2(s) S 2047—1‘@”%3(]1@)’ o > 1/2

and hence L?

2 ie(RY) < L2(S).

5. RANDOMIZED RESTRICTION IN Z2

in2003
We follow Bourgain TIQ‘SI et 1 C II? be a smooth, compact hypersurface with nowhere

vanishing Gaussian curvature. We could in principle work in any dimension if " satisfied these
assumptions, however in the model case where I' is the level set

Ty = {m(&) := 2(cos(2m&1) + cos(2m&s)) = A}, |[MNe(nd—7), 0<7<1,

this is only satisfied in d = 2. We denote by X the arclength-measure of I"y. Thus, by stationary
phase,

[dSA(n)| S (1+n))~Y2, nez?

and so by Stein’s proof (using complex interpolation), we have
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Lemma 5.1. Let ju be a measure supported on T'x such that u < Xy and dp/d%y € L*(T,dY).
Then

N du
1 itll g6 (z2) S ||EHL2(F,dEA)-

Now suppose
Vo (n) := wp|n|~%v(n)
where {w,, : n € Z*} are independent Bernoulli or normalized Gaussian random variables, and

v € (P(Z?) and some p > 1. By Hélder and the above Tomas—Stein estimate, we obtain the
deterministic estimate

1Fs., 0Fs, lL2(re, d50,),02(C0y dsiey) S N0llesr2z2y -

(As usual Fg, and Fg, denote the Fourier restriction and extension operators with respect to
(T'y,d%:).) However, the randomness of V,, allows us to relax the decay condition on v(n)
substantially.

Theorem 5.2. Let V,(n) := waln|~v(n) = 3,50 Ve with v € £3(Z%), Vo(n) = V1g(n) and
Vi(n) = V1geicjpi<ae(n). Then
Eo [[IFsVeF§l L2r,as). 2rasy] S vlle@z) 27, some0<c<e. (5.1)

If Vy(n) := wpw(n) with w € 37¢(Z?), then
E, [HFst2 ViFs, ||L2(I‘t1,dEtl),LQ(th,dZtQ)} S lwllg—ezz) - 2%, somec=c(e) >0. (5.2)

To prepare the proof we collect some classic results in geometry of Banach Spaces and prob-
] E:% are f
ind

ability theory. The crucial %%giia(i%“uls going into the proof of Theorem 1 Elﬁﬁe“dual to
Sudakov bound” (Theorem [.6] and D udley’s LY2 estimateﬂ’ (Corollary . The proof will

be concluded in Subsection m'

5.1. Facts in geometry (ﬁfaﬁ%gggkgg%%gﬁaﬁqg%entropy bo.unds. yVe grllr%gxtl‘_li%g%gow Pajor
and Tomczak—Jaegermann [I26] and Bourgain—Lindenstrauss-Milman Tﬂ .

The main question we pursue here is the following: suppose we are given two subsets D and
B of a linear space. What is the minimal number of dilated translates of B needed to cover D?

Le., for given t > 0 we want to find good upper bounds on

k
N(D, B,t) := min{k € N: 3(x;)¥_, s.t. D C U x; +tB}. (5.3)
i=1
Sometimes we will use a slightly different terminology, e.g., in the following more concrete situ-
ation. Suppose that (7, d) is a compact metric space, then

N(T,d, €) := smallest number of e-balls needed to cover T'. (5.4)
Example 5.3. If T is the unit ball in an n-dimensional Banach space, such as /5 = (R%, || - [|,,),
then
N(T,d,e) < (1+2/e)". (5.5)
See, e.g., Fi}gielfLindenstraussfMilman f%ﬁ%éﬂ or Bourgain—Lindenstrauss—Milman fﬁw
Lemma 2.4].

31/)2 stands for the Orlicz function e¥” .
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omczak

Tomczak—Jaegermann T30, Wo will tec T thg}ulr1 Sstipggde in a different form that will be useful
in our context and follow Bourgain et al [22

Let |[|-]|| := [-,]'/? denote the euclidean norm and scalar product on R™ with B™ its unit ball
and S"7! its boundary, the euclidean sphere. Suppose || - || is another norm on R™ and denote
by X = (R"™, ]| -]|) and X* = (R™, ] - ||«) the corresponding Banach space and its dual. Here,

191l == sup{|[4), ¢l| - ¢ € X with [lp]x <1}.

Since all norms on R™ are equivalent to each other there exist a,b > 0 such that

The main estimate we e are. 1ntere§tede lllere is tgne “dual to Sudakov estimate” due to Pajor and

o™ [[[| < o[l < biff[]]. (5.6)
If, ez, Il -l = || - lzand || - || = || - |l1, then @ = 1 and b = n'/2. By interpolation, we obtain
a=1land b=n"P"Y2if | .|| =], and 1 < p < 2. By duality, we have a = n'/27/P and

b=1 for p € [2,00].
Next, define the median M,. of () := ||z|| on S*~! by

p({x e S":r(z) > M,}) > % and p({zx € S" 7' r(z) < M,}) > (5.7)

DO =

where p is the associated normalized, rotation invariant Haar measure on S”~!'. Moreover, the
average A, of r(x) = ||z|| on S"~! is given by

A= [ laldnto). 6:5)

We record the following lemma on the comparability of A, and M,..

-equivalentnormsrn
Lemma 5.4, Ifb < «/n in , then there 1s C' > 0 such that |A, — M,| < C. If additionally
ab < +\/n in 1E§ Shen I;Z_Z A /M, <C.
MilmanSchechtman1986
Proof. See Milman—Schechtman [I22[ Lemma 5.1]. O

Next, we rewrite A, using homogeneity and polar coordinates as

2
an T _
A= [ elen-155 o, a, a2, (59)

A probabilistic way to write this is to consider n ind Qendent ailfiggbormahzed Gaussian variables
{g;(w)}7—, on some probability space (£, p). Thenf

/ Zgj w)ej || dp(w) an ~n~? (5.10)

where {e;}7_, denotes an orthonormal basis in R".

We are now in position to state two answers to the question posed at the beginning of this
section. The first gives an upper bound on the minimal number of euclidean t-balls needed to
cover Bx, the unit ball in X = (R", || - |).

uda ov1971
Proposition 5.5 (Sudakov [I55) f X =[R"™ | -|) and ||| - ||| be the euclidean norm on R™.
Let Bx and B™ denote the unit balls in R™ with respect to the norms || - ||, respectively ||| - |||
Then
A\
log N(Bx, ||| - |||,t) = log N(Bx, B",t) gc-n-( t > , (5.11)

where Ape := [go_1 ||z «dp(z).

The following estimate is dual to that one.

’ eq:equivalentnormsrr

’ eq:averageprobabilis
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ajorTomczakJae erma 1986 ,Bourgainetal 1989 .
dualsudakov| Theorem 5.6 (Dual to Sudakov [126] 22 € = ) and [T 11 be the euclidean norm

on R™. Let Bx and B™ denote the unit balls in R™ with respect to the norms || - ||, respectively
Il [l Then

A\
log N(B™, || - ||,t) =log N(B",Bx,t) < C-n- ( ; ) . (5.12) |eq:dualsudak

udakovinterpretation‘ Remark 5.7. It is useful to have another interpretation of N(B™,||-||,¢) in mind. It is precisely
the minimal size of a finite subset £ C B™ that satisfies

max min ||z — 2| < t.
zeB™ x’€&

tal1989
Proof. We follow E; 5 i:’al%g?f)oasﬁlon 4.2]. Let o be the probability measure on R™ defined by
do(x) = 1 exp(—m) dx .
(2m)n/2 2
Then by

o Ly g,
A= i [ leles(-tg e = [ falaute)

and Chebyshev’s inequality

o({z €R™: |f(z)| > a}) <o / (@) Pdo(x),

|f @)z
we have, for f(z) = ||z||, p =1, and a = 24, /a,, that
24, a 1
n. < n —
o({r eR": | )< ga, [, Ieldo(@) =3
and so
24, 1
o{z eR": |z]| < ) > 5 (5.13) |eq:dualsudak

Next, suppose {z;}}_, is a maximal subset of B" relative to the requirement that ||z; — x| >t
for all j # ¢. This ensures that the sets {z; + %Bx}j-vzl have disjoint interior. Since o is a
probability measure, this disjointness implies

4A,

—;. (5.14) |eq:dualsudak
ant

By convexity of e™ and sy metry of of B By with respect to the origin (for the first estimate in the
%for th

24,
Zu {y; + 7BX}) Np({y; + =——Bx}) <1, where y; =
j=1 "

following formula) and (- e second estimate), we have for fixed j =1,..., N,
24, 2 — w;ll1?
Hlus + 0 BY) = o /m dr exp(— 12 WL

1 2 = g5l + Ml + w1112

27r)”/2 /2ATB dx exp(— 1 )
1 / =l + |||yj\H2)

(277)"/2 24n g 2

1 I j|||2 1 447

Z Ay > 2 — .

2 exp(=—") 2 5 exp( (tan)Q)
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.. . . -dualsudakovaux2 |
Combining this with en hnally gives

442 1 (A
NSQexp((mr)2)¢logN§n.<) )

t
This concludes the proof. O

In the following we are interested in finding large euclidean sections in a finite-dimensional
normed space.

Definition 5.8. Let X,Y be two n-dimensional normed spaces. The Banach—Mazur distance
betweeen them is defined as

d(X,Y) :=inf{||T|-|T"Y: T:X — Y isomorphism} . (5.15)
If d(X,Y) < A, we say that X and Y are A-isomorphic.

Obviously, d(X.Y H?V;lg&(émcll g( “ 11manl.~,f 1 onl g'ng and Y are isometric. Thus, by the
discussion after , we see that (ct. [122[ p

A2, Py <plt/2=rl 1 < p <o

ilmanSchechtman19

Theorem 5.9 (F. John [122] Theorem 3.3[). Let X = (R™, || - ||) be an n-dimensional normed
space. Let D be the ellipsoid of mazimal volume inscribed in Bx and |||-||| be the euclidean norm
induced by D, i.e., D ={x € Bx : |||z|| <1}. Then

n 2 el < Yl < |||
and consequently d(¢2, X) < \/n (where (2 is equipped with |||(x1, ..., xn)|||* = Z?’Zl lz;]2.)

5.2. Connection betweﬁnllprgb)lq_l Q_-.érinté}ﬁg?aeory and geometry of Banach spaces. We fol-
low Milman—Schechtman [[T22].

Definition 5.10. Let X be a normed space and {¢;};en be Rademacher signs. For 1 < p <
g < oo, and n € N we define the type p (resp. cotype q) constants T,(X,n) (resp. Cy(X,n
X as the smallest T (resp. C') such that

2<
) of

)

o\ 1/2 p
n n
E|) ez <T [ flayl?
i=1 i=1

resp.
1/q o\ 1/2
dollaslt | <CLE[D eay
j=1 j=1
for all 1, ...,z, € X. If T,,(X) = sup,, T,(X,n) < 0o (resp. Cy(X) :=sup, Cy(X,n) < c0) we
say that X has type p resp. cotype ¢ with type p constant T,,(X) and cotype constant Cy(X).

Theorem 5.11 (Kahane’s inequality). Let X be a normed space and p € [1,00). Then there is
a constant K, > 0 such that

Bl ezl < B giasIP)VP < K E| D eja| (5.16)

j=1 j=1 j=1

where x1,...,x, € X and {e;}jen are Rademacher distributed.

ilmanSchechtman1986
Proof. See, e.g., [122 Theorem 9.2][. O
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Example 5.12. LP has type alnangohé/c'[ﬁ% 2 gg 61 < p < 2. Respectively, L? has type 2 and
cotype ¢ for 2 < g < 0. Seez%4 , Example 9. I; .) This follows from Kahane’s inequality and

Khinchine’s inequality (for 0 < p < oo)
I 232 ~ [ BUS ol do. (5.17)
J J

Definition 5.13. A L?-normalized, random Gaussian variable is a random variable g(w) whose
distribution is given by

Plg(w) < 1) = W / =12 g

Let {g, }3";1 be a sequence of independent gaussian variables normalized in L?. For a normed
space X, 1 <p <2< gq<oo,and n € N we define the gaussian type p (resp. cotype q) constants
ap(X,n) (resp. B4(X,n)) of X as the smallest T' (resp. C) such that

o\ 1/2 1/p
E|> giw)z; <T [ flay
j=1 j=1

resp.

1/q 9\ 1/2
>l <C|E|D gj(w)
j=1 j=1

for all x1,...,z, € X.

The following two statements assert that “Rademacher” (co)type and gaussian (co)type are
somewhat comparable with each other.

Lemma 5.14. If1 <p <2 < g < oo, then
) < V7 20p(X,n) < /72K, T,(X,n) and
,Bq (X,n) < /m/2C,(X,n)
ilmanSchechtman1986
Proof. See qu, p- b3-b4]. O

The following gives the missing bound for the cotypes when X = L9.

Proposition 5.15. For all C < oo and q € [2,00) there is a constant K = K(C,q) such that if
B4(X) < C (the gaussian cotype q constant) then for all n and x4, ...,z, € X, one has

| ZQ;%HM(X) < K] ng% |za(x)

j=1

where g; are independent, symmetric, LQ-normalzzed, random Gaussians, and €; Rademacher
signs. In particular, Cy(X) < KB4(X).
ilmanSchechtman1986

Proof. See [122] Appendix II, Theorem 1]. O
Definition 5.16. Let 1 < n <m, X be a normed space, and

Rad, X := {Z rit)z; : z; € X, j=1,...,n}
j=1
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denote the subspace of L?(X,{—1,1}™) that is spanned by the first n Rademacher functions.
Iff=34acn, mtWa Ta € L?(X,{—1,1}™) (where {wq}aeca is any orthonormal basis in
L?({—1,1}™) equipped with counting measure and {x,}aca € X are coefficients), then

Rad, f := er T4y -
j=1

Lemma 5.17. Let X be a normed space, n € N, and 1 <p < 2. Then
Cp (X, n) < Tp(X™,n) < [[Rad,[|Cp (X, n).
In particular, if X* has type p then X has cotype p'. Conversely, if |Rady,| < oo and X has

cotype p’, then X* has type p.
ilmanSchechtman1986

Proof. See H«TZZ, Lemma 9.10 and Corollary 9.11]. g
We now state a theorem estimating ||[Rad, || for a general finite-dimensional space.

Theorem 5.18. Let X be a finite-dimensional normed space of dimension k. Then, for all n,m,
one has

[Rad 22 1.1y, < (e + 1) log(1 + d(X, ££)). (5.18)
In particular, there exists a universal constant K > 0 such that
[Radn | z2({~1,13m x) < K -logk. (5.19)
Moreover, if X C L'(0,1), then
IRady, || z2({—1,13m,x) < K - (logk)*/2. (5.20)

ilmanSchechtman1986 ourgainetall989
Proof. See [[122] Theorem 14.5] and |22 p. 94]. O

5.3. Tails of sub-gaussian distributed random variables.

Definition 5.19 (Orlicz functiorﬁ). An Orlicz function is a convex increasing function ¢ : Ry —
R4 with 4(0) € [0,1). For a random variable X we define its Orlicz norm by

[ X1y :=inf{c > 0: Pp(|X][/c)] <1}

with the understanding that || X ||, = oo if the infimum runs over an empty set. The Orlicz space
LY = L¥(Q, %, P) consists of all random variables X on the probability space (€2, 2, P) with finite
Orlicz norm, i.e., LY = {X : || Xy < oo}.

Example 5.20.

e For ¢ > 1, the function ¢, (x) = exp(z?) — 1 is an Orlicz function with || X |4 < oo if and
only if there is K; > 0 such that X — PX satisfies P{|X| > t} < 2exp(—t?/KY) for all
t > 0. (If g =2, we will say that X is sub-gaussian.)

e For p € [1,00]) the function ¢ (x) = 2P is Orlicz.

e We have the hierarchy L> C L%z C LP for all p € [1,00). (The first inclusion is a
consequence of (2) in Proposition an e second inclusion follows from the obvious
bound [ X, S Xl

Remark 5.21. The bound || X||, < ¢ immediately gives the tail bound
PU(X|/0) _ 1

ojoy S ogey 70

P(X| > 1) <

4 Vershynin2018
See [I73] Section 2.7].
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subgaussianprops‘ Proposition 5.22 (Sub-gaussian properties). Let X be a random variable. Then the following
are equivalent.

(1) The tails of X satisfy P{|X| >t} < 2exp(—t?/K}) for all t > 0.

(2) X |10 = (E|X[?)/7 < Koy for all p > 1.

(3) Eexp(A\?X?) < exp(K2)\?) for all A € R such that |\| < 1/K3.

(4) There is Ky > 0 such that E(exp(X?/K3)) < 2. (This is called the 1o condition.)
Moreover, if EX = 0 then (1)-(4) are also equivalent to

(5) Eexp(AX) < exp(K2\?) for all X € R.

The parameters K; appearing in the statements differ from each other by at most an absolute

factor.
hynin2018
Proof. See Vershynin R,lg%, Pnirl(l)posmion 2.5.2]. O

Deﬁn't'onugéi‘).a%. ré gandom variable X that satisfies one of the equivalent properties in Propo-
sition E%é 1s called a sub-gaussian random variable. The sub-gaussian norm o Xﬁs(slgzarllno‘%%dsby
| X, is defined to be the smallest K4 in the fourth property in Proposition le.,
X ||y = inf{t > 0: E(exp(X?/t?)) < 2}. (5.21)
Thus, if X is sub-gaussian, then, e.g.,
P{IX| >t} < 2exp(—ct?/||X|},) .

Moreover it is clear that when X ig sub-gaussian, then so is X —EX with [| X —EX|[y, < [|X ||y,
(by Jensen, but see also %%, Lomma 2.6.8]).

Example 5.24.

e Random gaussians X ~ N(0,0?) with variance o2 are sub-gaussian with || X|y, < 0.
e Rademacher signs are sub-gaussian with || Xy, = 1/v/1og2 since | X| = 1.

hynin2018
See also Vershynin ﬁ’erhsi En);%mp e 2.5.8].
tsz2
The following lemma is crucial for the proof of Theorem Eif —

2

maximumsubgaussians | Lemma 5.25 (Maximum of sub-gaussians). Let (X;) en be a sequence of sub-gaussian random

variables which are not necessarily independent. Then we have for any N > 2 that
| < .
E max X5 ax, [ X[z v/1og V-

Remarks 5.26. (1) In some sense this lemma can be seen as a substitute for the dual of the
missing p = co-Kintchine inequality

LB ci@lrde~ IS 15521 6:22)

(2) This estimate is sharp as can be seen by taking X1, ..., Xy ) be N independent N(0,1)
normal distributed variables. Then Emaxi<;<ny X; 2 v1og N (cf. [I73] Exercise 2.5.11]).

hynin2018
Proof. See Vershynin ﬁ’f%, Excrcise 2.5.10] or Theorem 1.14 in MIT notes https://ocw.mit.

edu/courses/mathematics/18-s997-high-dimensional-statistics-spring-2015/lecture-notes/
MIT18_8997S15_Chapterl.pdf. O

We will now state some tail bounds.


https://ocw.mit.edu/courses/mathematics/18-s997-high-dimensional-statistics-spring-2015/lecture-notes/MIT18_S997S15_Chapter1.pdf
https://ocw.mit.edu/courses/mathematics/18-s997-high-dimensional-statistics-spring-2015/lecture-notes/MIT18_S997S15_Chapter1.pdf
https://ocw.mit.edu/courses/mathematics/18-s997-high-dimensional-statistics-spring-2015/lecture-notes/MIT18_S997S15_Chapter1.pdf
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ndepgaussian| Lemma 5.27 (Sums of independent sub-gaussians). Let X, ..., Xy be independent, mean-zero,
sub-gaussian random variables. Then Zi:;l X, is sub-gaussian as well with

N N
1Y XnllZ, S0 I1X0ll3, -
n=1 n=1
hynin2018
Proof. See R,ers Pni"r(;pObltIOIl 2.6.1]. O

This and Lem jak '5!151 allow s to obtaj the f })(8 ing corolleroy that 35;(;%1 be crucial for the

ompare also with 20! 4.14)] and
to as “Dudley’s L¥2-estimate”.

urgaindudley | Corollary 5.28. Let {wy, nen be independent sub-gaussian random wvariables and € be a sepa-
rable, (possibly infinite-dimensional) vector space over C with cardinality |E|. Then

E( (sup |an§n|> SVlogl€l - sup Z|§| )2

§=(fn)nen€E T §=(&n)nen€s

SZ our,
proof of Theorem [5.7] where it is referred

Proof. Identify X; with > wng(” where_ _|| a .‘, the elements of the vector £€U) € &

that we use to 1dent1fy X;. By Lemmas b b.25 and .21

E (216113 | anm) < Vlog|€[sup| > wnballws < \/loglfl?elg[z | Pllwn 13,112

n

This concludes the proof. 0
The following is a simple tail bound that is useful for measuring exceptional sets.

Proposition 5.29 (Hoeflding inequality). Let X1, ..., Xy be independent, mean-zero, sub-gaussian
random variables and a = (ay, ...,ay) € RN. Then for every t > 0 we have

N 2
ct
(Y a;X;] > ) < 2exp(— )
JZ_:I Y sup; || X; 17, llall3
hynin2018
Proof. See R,ers nlllineorenr1263 O

Definition 5.30. A random variable X that satisfies || X||,, where 91(x) = ¢* — 1 is called a
sub-exponential random variable.

Proposition 5.31. Let X be a random variable. Then the following are equivalent.

(1) The tails of X satisfy P{|X| >t} < 2exp(—t/K;) for allt > 0.

(2) X |10 = (BIXP)P < Fop for allp > 1.

(3) Eexp(A|X]) < exp(K3A) for all A € R such that |A\| < 1/K3.

(4) There is K4 > 0 such that E(exp(|X|/K4)) < 2. (This is called the vy condition.)
Moreover, if EX = 0 then (1)-(4) are also equivalent to

(5) Eexp(AX) < exp(K2\?) for all X\ € R such that |\ < 1/Ks5.

The parameters K; appearing in the statements differ from each other by at most an absolute
factor.

hynin2018
Proof. See ﬁ’ers Pn%gposmon 2.7.1]. |

Lemma 5.32. (1) Any sub-gaussian random variable is also sub-exponential.
(2) A random variable X is sub-exponential if and only if X? is sub-gaussian and in this case
12 e, = X115, -
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(3) Let X and Y be sub-gaussian random variables. Then | XY ||y, < | X ||y Y [ -
(4) If X is sub-exponential, then || X —EX|y, S || Xy, -

Theorem 5.33 (Bernstein). Let X, ..., Xy be independent, mean-zero, sub-exponential random
variables, and a = (ay,...,an) € RY. Then for every t > 0 we have

al £2 t
P |Zanj|2t < 2exp [ —cmin{ -

max; [| X513, [lall3” max; [1X]ly, |aflo

j=1
hynin2018

Proof. See %@%, TTeorem 2.8.2]. O

5.4. Sub-gaussians, Sudakov, Dudley, and entropy once %in. The followi s%dg%l‘lrnds

once more refer to geometry of Banach spaces (Proposition and Theorem now in a

concrete probabilistic setting.

Theorem 5.34 (Sudakov’s minorization). Let (Xi)ier be a Gaussian process indezed by a set
T equipped with the pseudo-metri(ﬂ dx induced by X defined asﬂ
dx(s,t) = | Xo — Xi[l 2 = (B(X, — X)%)?, steT.
Then for each € > 0, we have
) X 2
log N (T dx 2) 5 et XL

edouxTalagrand1991
Proof. See [113] Theorem 3.18]. O

Example 5.35. Consider Brownian motion where X; — X, ~ N(0,t — s), i.e., the incre-

ments are independent and are distributed according to the Gaussian law du;—s(x) = (t —

s)~ /2 exp(—|z|?/(t — 5)) dz. Then

) e—lz?/(t—s)
Vt—s

Definition 5.36 (Sub-gaussian increments). Consider a random process (X)ter on a metric

space (T,d). We say that this process has sub-gaussian increments if there exists K > 0 such
that

dr ~t—s.

dx(t,s)* = /:172 dpi—s(x) = [ x

1X: — Xsllo, < Kd(t,s), t,seT. (5.23)
Example 5.37. Let (X;)ier be a Gaussian process on an abstract set T'. Define a metric on T
by

d(t,s) := || X — Xs||g2, t,seT.
Then (X¢)ier is a process with sub-gaussian increments and K above is an absolute constant.

We now state Dudley’s inequality which gives a bound on a general sub-gaussian random pro-

cess (X¢)rer in terms of the metric entropy log(N (7', d, €)) of T'. Note that it almost complements
Sudakov’s bound in Theorem Egﬁf

Theorem 5.38 (Dudley). Let (Xi)igr. be a mean-zero random process on a metric space (T, d)
with sub-gaussian increments as in E??i Then

Esup X, §K/ Vieg(N(T,d,¢))de
0

teT

5That is, d(t,s) = 0 does not necessarily imply ¢ = s.
6The pseudo-metric dx (s, t) is also called “increments of the random process (Xt)ier”.

eq:subgaussi
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and
Esup X, S K'Y 27 log(N(T.d,27))
teT keZ
douxTal 41991 hynin2018
Proof. See deﬁ?xlaﬁgorrg& [1.17] or f%s&', Theorems 8.1.3 and 8.1.4]. O

Theorem 5.39 (Fernique).

edouxTalagrand1991 A
Proof. See h’f& Theorem I1.18] and Theorem 6.6 in https://www.math.ucla.edu/~biskup/
PIMS/PDFs/lecture6.pdfl ]

the main tools will be the dual to Sudakov bound (Theorem

A
log N(B™ || - lx,t) S - (=7)

andomtszZrandomts
5.5. Proof of Theorems E: and 7 7. As mentioned in the b gligll(ior‘l’g of this section, one of
, L.e.,
r\2

where B™ = {z € R": |z||]2 < 1} is the euclidean unit ball in R™, || - ||x denotes another norm
on R", and

AT:/S ||x||xdu(x)Nn—l/z/QHzgj(w)ejnxdp(w)
n—1 J:1

denotes the average of ||z|| x on the euclidean unit sphere which can be expressed probabilisticall

verazeprobabilistic

using n independent random gaussians and any orthonormal basis {e; }?:1 of R™, cf. (6.10)).

omtsz2 .
Proof of Theorem E% We only focus on I'y;, =TI';, =I'. The general case is proven analogously.
Our task is to compute

IFsViF3|lay,coy = sup | Y Va(n)ia(n)jia(n)| =27 sup | Y wyvnfia(n)fiz(n)

K1, p2 | ~2¢ K1, p2 n|~2

(5.24)

where the supremum is taken over all u; € L?(I',do) with ||du/do||2 <1 for j = 1,2. The main
idea is to find a (finite) covering & of the distorted euclidean ball {/i(n)|njv2e : 1l 2y < 1}

with €3¢ _,,-balls of radius ¢t and to expand fi(n)|jmee = 32, €7 (n) for some 7 € F, C

|n|~2¢
Ey-r1 — E-r. The main task is to understand [|¢(], for p € {6,00} and the cardinality
|| S [Ea=r=1] - [E2-r[. Of course, the latter quantity will be estimated by means of the dual to
Sudakov estimate (Theorem .

To apply the dual to Sudakov bound, we construct the norm || ||x on R¢ as follows. Consider
a linear operator

S = (81, Sn) 1 02— 12

where each S; has d columns for any j = 1,...,m) and define
J
9]l x = 1S]less - (5.25)

Now change the perspective and observe that not only does N(B?, || - |x,t) equal the minimal
number of ¢-balls in ||S - ||z norm needed to cover {¢) € B?} but also the minimal number of
t-balls in || - ||¢c norm needed to cover the deformed euclidean unit ball {Sv : ¢ € B} C £52.

’ eq:opnormrandomts
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X . aindudle
We will now compute the average. Using Corollary Biﬁgﬁ we obtain

d
A d P2 [ d o 13 Sineasn(@)
Q _

1<j<m

< d Y2 (logm)'/? max Z\S]nen\ /2

1<j <m
=d™'/?(log m)l/QHS”Zflaeggf
Thus, the entropy number for {S% : ¢ € B%} is bounded by
log N(B%, || - Ix,t) S (logm)t™2||S72_, pec -

which — and this is important — does not depend on the dimension d that we started with. But
that means that we may cover any infinite-dimensional euclidean ball, such as L%, with balls in
a suitable L> metric. In fact, we will now replace ¢2 by our space of interest, namely L?(T",dY).
The role of S will be played by the localized Fourier extension operator

S : LA(T,dY) — (>°(Z?)
B ﬂ‘\n|~2€

for some £ € N. (Recall that 2¢ was the localization in physical space where we splitted V = > Ve
with Vy = V1ge-1<jp)<9¢.) Indeed, by its very definition (or Riemann-Lebesgue), we have

”S”LQ(F,dE)—woc (22) <C
and, by Tomas—Stein,
HSHLz(F,dE)aZG(Zf") <(C.

Thus, by the penultimate estimate and the above discussion, we can cover the set {Sv : ¢ €
L3(T,dY), ||v|| < 1} with N(t) many t-balls in the £2°-norm where now m ~ 2¢. Put differently,
there exists a set & C [rfl’lNQe of cardinality |&| that satisﬁesﬂ

log |&| < Cet™2
t
peL2(T), Hd,u/dEH2<1 énélsn i = §||e‘ n|~2t < (5.26)
<C
max [[€le
We now take t of the form 27" for r € N. Thus, there exists a subset
.Fr g 5277‘71 - 52—7‘ = {57’4_1 - ST‘ : 57"—0—1 € 5277‘71, Sqﬂ € 5277‘} (5.27)
with the propertiedy
€l <277 and ||¢|ls < C, €E€F, (5.28)

and for each p € L*(T) with ||du/do|2 < 1 there is a representation
Sp = p(n ‘|n\~2€ = Zﬁ(r) for some ") € F, . (5.29)

T

arksudakovinterpretation

"Recall Remark
80ne may think of F, being the set of differences & — &’ where £ and £’ belong to the same or “parental” 27"

or 2r—"~1! cube in Eile o0 metric. This is a consequence of the geometrical fact that dyadic cubes either contain

each other or are disjoint.

eq:construct

eq:propertie
eq:decompext
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Plugging this decomposition into , we obtaln

| FsVeFE| 2y L2y < 275 max wnvnEVED (5.30)
SR LATD) n%:eNg(Deﬂl,s(%eﬁg ,%e

Now fix r1,7ry and take the w-expectation. On the one hand, we have the simple deterministic
bound

N wnvnVER| 277 N fwnlloa| S 27 2B o5, (5.31)

max
Wer, t@eF,
SR e In|~2¢

which already behaves quite well in 71,72 but terribly in £. We now derive a second bound.

Since the { are ciigglle endent sub-gaussian random variables, we may apply Dudley’s estimate
(Corollary and obtain

> wnvngNeR

max
¢WEF,, EDEF,

2 ||n|~2¢
1/2 (5.32)
< (log | F, log | F.. /2 21¢(1)121¢£(2))2
S loglZ | +logl 7)™ | | max |7 (oI
|n|~2¢
-constructedcovering

To estimate log ||, recall that (5.26]) said log|Ey—-| < £4". Combining this with the trivial
estimate |F,| < |Eg-r-1] - |Ea—r| gives

log | Fr| S log|Ea—r—1| + log|Ea-r| < €47 . (5.33)

’ eq:estimaterandomvs

’ eq:trivialdeterminis

’ eq:expectationdecomy

’ eq:cardinalityfr

pectationdecomposedvs :propertiesdifferencesetsudakov

Next, we bound [...] on the right side of (@( Using Holder and (b.23)), the sum over |n| ~ 2°
is bounded by

1/2

Y lnlPIEDPIERP | < ollsllé™ - €PNl S flofls min{27", 2772 (5.34)

|n|~2¢

Combining 1i

(1) (2) < \/z 27‘1 _|_ 27”2 : 2—7“1 2—7‘2 < \/Z
max WnUnSp "Sp, N min 5 (% =~ [ .
EWeF D EF,, n|2~:2@ &8 ( ) { Hivlls [olls

This estimate alone would not be, Iig_o%)d enough to survive the e summation.  However,
. X . :trivialdeterministic i -estimatefrandomvs
combining it with , we see that the w-expectation of 1s bounded from above by

E|FsViFsllsaypem S 27 Y min{ve, 272243 Jully S 6227 olls < 27l

r1,72EN

’ eq:estimatensum

522
for some 0 < &’ < e. This proves Theorem Eli o P (n) = w(n)|n|~*v(n) andp € L3(7Z2). . . .

If V,,(n) = w(n)w(n) with w € £375(Z?), then the deterministic bound in (5.31)) becomes

(2—¢)
w3

Z wnwnfv(zl)gr(f) ST Z |wn||w,| 277772 -2

max
MeF,, , @cF,
R RN (MY In|~2t
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. . . . mivialdetierministic
which is — as ex%egtggit;lgughght improvement over (b.31]) since (2 —¢)/(3 — ¢€) < 2/3. On the

other hand, which came from the probabilistic estimate using Dudley’s LY? inequality)
is improved to

1/2

Y lwaPlED PR < Jlwlls—cll€™ - €@ lag-a < fwlls—e275+72) - min{27", 2772}

|n|~2¢

for é=(p—6)/p >0 with p=2(3 —¢)/(1 —¢) > 6 which follows from Hdlder’s inequality

p=6 ..
Tj

. - . p=6 B
1€P0 < €PN 1ED NS < 275

Combining these estimates as before then gives
Eu[[FsVeFs|lr2ry, L2y S Z min{2 (1 +72)\/g 9729

r1,m2€EN

. omtsz2
This concludes the proof of Theorem Eiﬁf O
6. LOCAL RESTRICTION ESTIMATES

follaw Lecture 1 in Hickman-Vitturi I3 and stromgly advise to consider Tao Vargas-Vi
2owve follow Lec ure 1 in Hickman-Vitturi and strongly advise to consider Tao-Vargas-Vega
HFTGT where the techniques that we are about to describe were first developed and systematically
applied.

2(2—¢) _
= Hwllz—e S 27 Jeoll— -

We now discuss the first tool which is used to prove the above restriction theorems. The key
idea is to reduce the study of global restriction theorems (where the “physical” space variable is
allowed to range over all RY) to local restriction theorems (where the physical space variable is
constrained to lie in a ball). Our aim is then to prove estimates of the form

1f1sllLa(s,d0) < Apg.5.a R f o (Bwo,R)) (6.1)

for any exponents p,q, a > 0, and any radius R > 1 of any ball B(xg, R) = {z € R% : |2 — x| <
R}. We will denote the statement such that the above estimate holds for any test function f by
Rs(p — g; ). Note that the center z of the ball is irrelevant since one can translate f by an
arbitrary amount without affecting the magnitude of f .

Obviously, we have Rg(p — ¢;a1) = Rs(p — ¢;a2) if @1 < as and Rg(p — ¢;0) is equivalent
to the global restriction estimate by letting R — oo and applying a limiting argument. Observe
also that the statement for exponents oo > n/p’ is trivial because of Holder’s inequality, namely

FE < Nfl < AR fll Lo (Baor) -

Thus, the aim is to lower the value of « from the trivial value n/p’ toward the ultimate aim
a = 0 for p and ¢ belonging to the conjectured range of the restriction conjecture.

By duality, local restriction estimates are equivalent to local extension estimates, more pre-
cisely Rg(p — ¢;a) & R5(¢" — p';a) where RE(¢' — p’;a) denotes the statement that the
estimate

1(Fdo)" | 1o (B(ao.r)) < Apa. 5.0 BENEF N Lot (5,009 (6.2)

holds for all smooth functions F' on S, all R > 1, and all balls B(zg, R).

In the following we will focus on proving localized extension estimates, taking advantage of
many phenomena not arising in the global setting. First, we observe that localizing to scale R in
the spatial variable leads to a localization in frequency space on the scale R~! by the uncertainty
principle. More precisely, we expect F' to be “blurred out” on this scale which should allow us
to safely fatten up the set S to Nz-1(S), the R~! neighborhood of S. This is going to be made
precise in the following

eq:locres
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Lemma 6.1. The localized extension estimate R5(q' — p'; a) follows from

1Gllr (a0, < Apa.s. oG L sy (6.3)

whenever G is a smooth function with supp G C Ny/g(S).

Remark 6.2. In the following we will make use of the following two facts.
(1) For every f € L' + L? with supp fc lé’ﬂglﬁ there is a ¢ € S(R?) such that f = @p * f

where or = R%p(Rx) (cf. Lemma @7
(2) There are functions 0 < ¢ € C®(R?) with ¢ > 0. To see this, take, e.g., ¥ € C(R?)
with supp ¢ C By(C); then 9 1) is sup orted in. Bo (2C) and F[¢ = o] = |¢|2 Thus,
= 1) *x 9 does the job. (See also Lemmal:ﬁﬁi

t
Proof of Lemma i% lZ:.ocl:el};( R >1 and ¢ € C®(R?) with supp ¢ C B(0,1) and |(z)| = 1 for all
x € B(xp,1). Let further G := ¥ g-1 * Fdo where ¥g-1(§) = Rdzggﬁg Note that this definition
implies that supp G C Ng-1(S). Therefore, we may apply ch
1(Fdo) || 1o (Bao.ry) S N(Fd0) D1l o (o m)) = IG 1o (B, R))
< Ap,q,S,ozRail/q||G||L‘1/(/\/R_1(S)) :

Thus, it suffices to show

lR-1 * (FdU)HLq (R4) ~ Rl/qHFHLq (S,do) *

For ¢’ = 1, the above estimate follows immediately from Young’s inequality, so by interpolation
it suffices to prove the estimate for ¢’ = oo, i.e., we are left to show

[¥R-1 % (Fdo)|leo S R F|[Lo(s) -
By Holder’s inequality, it suffices to show

[ Wors(e = mldot < R (6.4

uniformly in & € RY. Heuristically, it is clear why @ml_u?ltlr%e because the support of the
integrand intersects S on at most a R4~ cap but ¢z-1 is an L'-scaling invariant function, i.e.,
the integral should be of order R. To make this argument rigorous, we will in fact prove the
more general statement that whenever ¢ € S(R?) and S C R? is any compact hypersurface (no
curvature assumption is needed!), one has

do(n)

1) = Rn/s A+ Rle )i ~ 1

uniformly in £ for R > 1 (where we used the rapid decay of the integrand). Decomposing
S = UpZ_1 Sk(&) with Si(&) = Ar(€) NS where

A 1(6):={neR*:RI¢—n| <1} and Ak(€):={ncR?:2F < Rj¢ —n| <281},

one leW]iteS

F="ls, <5>
Now, due to the dimensionality of S, one has for any r > 0,

o(B(,r)NS) < rd=1,

Indeed, this estimate is obvious for large r, whereas for 0 < r < 1, the surface is essentially flat,
ie., B(,r) N S resembles a disk of radius r, thereby also leading to the above estimate. Thus,

o(S_1) SRV and o(Sk) < (2FR7H4
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and so

(oo}
I(f) S Rd Z (QkR_l)d_l . 2—kd S R,
k=—1
thereby concluding the proof. O

3 <locext -fatlocext | . . . .
In fact, the estimates (6.2 and (6.3)) are equivalent, although the converse implication will

not be used in the present section but will be referred to later.

-fatlocext
Lemma 6.3. The local extension estimate R5(q — p'; ) implies 15?3%%0?&7 smooth functions
G supported in Ny/r(S).

Proof. Without loss of generality (by the translation and rotation invariance of the problem
togehter with the triangle inequality), we may assume supp G C Ny-1(P41) N By(1/2). In
particular, supp G is contained in the disjoint union of vertical translates ngl =P 4+ (0,¢)
of the paraboloid where ¢ ranges over (—R~!, R~1) C R. By Fubini’s theorem and a change of
variables, we have

Glw) = / dc dg’ G(&,€?)ermiv (€€ = / d¢ (Glpa-rdog)(a).,
[CI<R—! gel-1,1]4-1 [CI<R—! ¢

where do¢ denotes the euclidean surface measure on P?il.
Now, assuming that the local extension estimate R%(¢" — p’; ) holds, then it follows from
translational invariance that

||(GdUC)v||Lp’(BO(R)) Sa Ra”G”Lq’(]pg*l) for all €.

Combining this estimate with Minkowski’s inequality, we infer

G|y g/ d¢ |[(Gdoe)Y ||, gRa/
| ||L (Bo(R)) Cl<r I C) ||L (Bo(R)) ~a

<R dC ||G|pg—1 ”Lq’ (pg—l)

and Holder’s inequality bounds the latter by

1/q
R </<|<R_1 a IIGIPgllliqf<u»zl>> = BTG s -y

which concludes the proof. O

Obviously, the corresponding statements also hold for the restriction problem by duality, i.e.,

1 FlLa, () < Apgs.aR* 9 fll o (B, my) (6.5)

for all test functions f on B(xp, R). In fact, this formulation reveals the restriction estimate
Rs(2 — 2;1/2) for smooth compact hypersurfaces S by Plancherel’s theorem. (This estimate can
also be obtained from the Agmon-Hérmander theorem or from the frequency localized Sobolev
trace lemma.)

The obvious question now is of course how to convert local restriction estimates to global
estimates. The key tool to do so is exploiting the decay of the Fourier transform (do)¥. Indeed,
suppose we have a decay estimate of the form

[(do)* ()] S (1 + |=) 7"

for some p > 0. t%rml}gé%ersurfaces with everywhere non-vanishing Gaussian curvature, p =
(d—1)/2, see e.g. 139, Chapter VIII, §3.1, Theorem 1]). Then, the contributions to the global
restriction estimate coming irom widely separated portions of physical space will be almost
orthogonal (in Fourier space). To make this intuition precise, suppose R > 1 and B(xo, R) and

eq:fatlocres
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B(xz1, R) are two balls which are separated by at least a distance of R. If f; is supported on
B(z,R) ( =0,1), then fols and fi|s will be almost orthogonal, namely

| < fols, fils >r2(5,d0) | = | < fodo, f1 >rawey | =| < fox (do)Y, fr >r2ma) |

) (6.6)
S R follo(B@o,.r) I f1ll L1 (B21,R))

where we used the decay assumption on (do)¥(x) appearing in the convolution and the fact that
the supports of fy and f; are separated by at least R. Put differently, the almost orthogonality
in Fourier space means that distant balls in physical space do not interact much with each other.

The Tomas—Stein argument (for Rg(2(p + 1)/(p + 2) — 2)) uses orthogonality on L?(S,do),
and at first glance it seems tha it can only Applied. ta obtain restriction theorems Rs(p — q)
when ¢ = 2. However, Bourgain [[13]25] observed that the same type of orthogonality arguments,
exploiting the decay of (do)¥, can also be used to obtain restriction estimates which are not L?
based, albeit with some inefficiencies due to the use of non-L? orthogonality estimates.

Theorem 6.4. Let p be as above. If Rs(p — q;«) holds for some p+ 1 > agq, then we have
Rs(p — §) whenever

i q p q
>24 o and <l
! ptl-a p(p+1—aq)

The ideas of the above, theorem were extended by Tao R.mﬁTheorem 1.2]. The proof will be
given in Appendix l@; l heorem

Theorem 6.5. Let p be as above. If Rg(p — p; ) holds for some p < 2 and 0 < o < 1, then
one has Rg(q — q) whenever

1 > 1 + P,

g p log(l/a)’

Although Bourgain’s theorem is more efficient for most values of «, the latter theorem is
superior because it does not lose any exponents in the limit &« — 0. In particular, we have the
following consequence. If Rg(p — p;e) holds for all € > 0, then Rg(p—e — p—¢) is also true for
every € > 0. (The converse statement follows easily from interpolation). Thus, one can convert a
local restriction estimate with € losses to a global estimate, where the ¢ loss has been transferred
to the exponents. This is a prime example of an e-removal lemma which is a common in this
theory. These arguments show that the restriction conjecture for the paraboloid in fact states
that for all € > 0, the inequality

I(Fdo) (| 2ar@0(B(wo,r)) < Ade B F |l p2a/a1 pa-1)

holds for a suitable class of functions F' on P4~1. (Note that it makes sense to consider restriction
estimates at the endpoint p’ = ¢’ = 2d/(d — 1) in the local setting. This is another advantage of
the localized setup).

7. MULTILINEAR RESTRICTION ESTIMATES

The following ideas will be of interest of their own but also very useful to understand Bourgain
and Demeter’s proof of decoupling estimates. The central theme of the analysis will be the multi-
%&g%ae taeggf%&p, in particular the multi-linear restriction theorem of Bennett, Carbery, and Tao

We start with a motivation for bilinear restriction estimates and show in particular how
curvature in the linear world is translated to transversality in the multilinear world. As a striking
example of the power of bilinear techniques is the complete proof. Qy C,Zogdoba and Fefferman of
the restriction conjecture in two dimensions, see Subsection mally, we generalize these
ideas to higher dimensions where the bilinear analysis will be replaced by a multilinear one.

’eq:quasiorthogonal
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20034
The bj ine Og?striction estimate was first p aggdaﬂség a0 E‘fgﬁ building on earlier arguments
of Wollff [T78]. e work of Tao—Vargas—Vega [167] is perhaps the first systematic treatment of

the bilinear phenomenon and its impact on the linear problem.

7.1. Introduction. The original motivation was the “L*” or “bi-orthogonality” theory by what
we mean that expressions like || f]|;,» can be calculated explicitly if p’ is an even integer, and
especially when p’ = 4. Indeed, in this case, we have, using Plancherel,

[(Fdo)" |5 = | (Fdo) * (Fdo)ll2.

That means that we reduced the restriction estimate R (¢" — 4) (which usually crucially depends
on oscillations and cancellations) to the pure size estimate

I(Fdo) * (Fdo)|l2 Sq 1F 130 (5,401

which can be proven or disproven using more direct methods.

As an example, consider d = 2 and S = S!, the circle. In this case, there is a logarithmic
divergence in the above estimate because do * do blows up like |x|~'/2 on the circle {z € R? :
|z| = 2} of radius 2. Localizing in physical space to a disk of radius R shows that one can easily
prove the modified estimate

|G * G| L2(r2) Sq (log R)1/2R_3/2||G||2L4(N1/R(S))

for all R > 1 and all G av&‘g@e}s{yppG C Ni/gr(S). Comparing this with the general localized
restriction estimate shows that this is just the re triction estimate R5(4 — 4;¢) for any
onremov ao
é!g;’ we obt

a.
¢ > 0. Thus, using the e-removal lemma (Theorem aln the optimal restriction
. . . vemurid .
estimate for the circle. Note that this was already proven by Zygmund [I84] using more direct
methods.

7.2. The importance of transversality. At first glance, this approach seems to be restricted
to L* because of Plancherel’s theorem. However, one can partially extend those ideas to other
exponents p’. The main point is that the linear estimate

||(Fd0)v||LP/(1Rd) Spa.S ||F||L4’(S,da)
is equivalent (by squaring) to the quadratic estimate
|(Fdo) (Fdo) |2 sy S I1F 1 (5.0
which one can depolarize as the bilinear estimate
||(F1dU)V(F2dU)V||Lp’/2(]R<d) Spa.s ||F1||Lq’(s,da)||F2||Lq’(s,da) :
same small cap on S. This is just the situation in Knapp’s example (Subsection ;

We saw that the basic idea is to rewrite the desired linear restriction estimate as a bilinear
restriction estimate which in turn is a special case of the more general estimate

In such an estimate the worst case typically occurs if both F} and F5 are conceintr?]}aed on the

[(F1do2)” (Fado2)" || o r2ray Spasinse [F1l Lo (s, do0) 1F2 |l o (8,d0s) - (7.1)

Here, S; and S5 is a pair of smooth hypersurfaces, equipped with surface measures do; and dos,
respectively. Moreover, F} and Fy are smooth and s qﬁt‘ierlceiagpes 1, respectively Ss. We will
denote by R, ¢,(¢" x ¢' — p'/2) the statement that %Lh_oﬁs.i

By the above discussion, R g(¢" x ¢ — p’/2) is of course equivalent to R5(¢" — p'). That
means that bilinear restriction estimates are more general than linear ones, i.e., there are bilinear
estimates that cannot be inferred from linear ones. Consider the following

eq:bilinearr
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Example 7.1. Let S; = {(£,0) € R? : & € R} and Sy = {(0,&) € R? : & € R}, ie., the
coordinate axis in R?. Then (Fidoy)Y(z,y) = Fi(z) and (Fados)Y (z,y) = Fb(y) which means
that there are in general no global linear restriction estimates ngj(q’ — ) (j = 1,2), unless
p’ = o0, since the Fourier transforms do not decay at infinity. On the other hand, Plancherel
yields

|(Frdes)” (Fadoa)” |72 2y = /RZ |F1(@) P[P ()| d dy = || P12 gy | P11 ey »

i.e., the bilinear restriction RS s, (2 x 2 — 2) holds, although the symmetrized estimates
R 5, (2x2—2)and R, q,(2 x 2 — 2) are false.

The above example clearly indicates that transversality plays a major role in deriving bilinear

restriction estimates (ynli ¢ .dn, the linear situation where oscillations and cancellations were
wedrestriction
I?? we will d

crucial). In Subsection iscuss bilinear estimates in R? in much more detail.

Let us instead now discuss a higher-dimensional analog of the above theme. We say that two
smooth hypersurfaces S7 and Ss are transversal to each other, if the set of unit normals of S is
separated by some non-zero distance from the set of unit normals of Ss.

Proposition 7.2. Let S; and Sy be two smooth hypersurfaces which are transversal to each
other. Then, the restriction estimate R g, (2 % 2 — 2) holds.

Proof. By Plancherel, it suffices to prove the convolution estimate
[(Fidot) * (Fado)|| L2 ray Ssi,s, 1F1ll22(50,d0) 1 P2l 22 (55,d0) -
By Cauchy—Schwarz,
[(Fido) * (Fados) || L2rey S || F1[doy + | Fo|*dosl| 1 raylldoy * dosl| Lo
and the second factor on the right side is bounded because of the transversality assumption. O

Generaligations of bilinear. 2 estimat Iready in works by Bourgain [o “Klainer
enera Wa%gggmgnp}glc]ﬁgggglg% estimates arose already in works by Bourgain [16], Klamerman -
Machedon [[I08], and many other authors in the context of nonlinear evolution equations. These
estimates turned out to be especially useful for handling non-linearities which contain certain

derivatives which create a “full norm”.

7.3. Necessary conditions for bilinear restriction estimates. In this subsection, we will
discuss necessary conditions for bilinear restriction estimates for the sphere and the paraboloid.
Let S; and Ss be two compact transverse subsets of S¥~! or P4~1. We already saw that bilinear
estimates can be derived from linear ones, i.e., RE(q¢" — p') yields by polarization the bilinear
estimate RS, g, (¢' X ¢' — p'/2), whereas the converse statement is in general false. For instance,
although the bilinear estimate Rg, g,(2x2 — 2) holds, the corresponding linear estimate Rg(2 —
4) is only true in three or higher dimensions. One reason for this is that there is no exact
“transverse, bilinear” analog of the Knapp example. Indeed, the best known necessary conditions

oschiKlainerman2000

were derived by considﬁxin atli}yégar analogs of Knapp examples, see Foschi and Klainerman [75]

and Tao—Vargas—Vega 6. amely, for RS, q,(¢" X ¢ — p'/2) to hold, one must have

2n n+2 n n+ n—2
T A
This is somewhat less stringent than the condition

2n n+1 n-—1
n+ 1’ p/ q/
for the linear estimate R%(q" — . ’i)l.irll\gg}lgggheles& the bilinear version of the restriction conjecture
asserts that the conditions @%mufﬁcient. Apart from the case d = 2, this conjecture

p>

/

qg -

<n-1

p >

<n-1. (7.2) ’ eq:bilinearnec
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is still open. It is remarkable that it has been recently shown that the bilinear conjecture is
(neglecting the endpoint) equivalent to the linear restriction conjecture for S¥~! and P4-1.

7.4. Proof of the two-dimensional restriction conjecture. Before we give a systematic

description of multilinear restriction estimates, we present a proof of the full restriction conje?tuli(gggNo tes

in two dimensions involving bilinear restriction estimates. The presentation follows closely
R[_l ture 5 Z)[‘he original proof goes back to Cérdoba and Fefferman. Compare also to Fefferman

erman ﬁ

Recall that the desired estimate reads

lgdollq S HQHLP(Sl)

for ¢ > 4 and ¢ > 3p’ in d = 2. One of the fundamental reasons that the two-dimensional
restriction conjecture is proved comparably easily is the involved exponent ¢ = 4. One may be
tempted to repeat the same argument in higher dimensions; however, it turns out that the results
obtained do not improve upon Tomas—Stein and can even be worse.

As a first step, we note that it suffices to consider the quarter circle, thereby avoiding nui-
sances involving antipodal points. The conjecture for S! then follows by the triangle inequality.
Moreover, it suffices to consider the end-point ¢ = 3p’ as the conjecture follows for higher ¢ by
interpolation involving Hoélder’s inequality. 2019990t es

By the enhan ra ] Os%l&ewmz interpolatio thz%%ﬁlr% (ssee e.g., Tao [I59] Lecture 2, Lemma
2.3] or Grafakos |85, Theorem 1.4.19] and Tao?[r gc yre 1, Lemma 8.5]), it would suffice to
prove the restricted weak-type ebtlmate (recall

ITado]| Lo = sup A{|Tada| > A}Y4 < [V
A>0

where () is an arbitrary subset of the circle S'. Actually, we don’t have to go quite this weak
and will prove instead

ITodall, S Q7.
Now, the fundamental idea in the proof of the two-dimensional restriction estimate is to square
it, i.e.,
ITado Tado|l,s < 19477 (7.3)

and invoke Plancherel’s theorem. Since ¢ > 4, we have 2 < ¢/2 < oo, i.e., we are suddenly
interested in estimating bilinear quantities such as

| fdo gdo]|2
and
Hfdagda”u

where f and g are some functions on S!. The latter quantity is easy to estimate, thanks to the
trivial estimate || fdo|loo < || f]l1. Thus,

[ fdo gdollee < IIf[l1llgllx (7.4)

and we are left with L? estimates. In general, it is hard to obtain good estimates for general f
and g. However, if f and g are supported on disjoint arcs, i.e., they are somewhat transversal to
each other, one obtains significant cancellations. This is summarized in the following

Lemma 7.3. Suppose f and g are supported in distinct O-arcs of S', whose separation is also
comparable 6. Then

| fdo gdollz < 62| fllzllg]l2 - (7.5)

eq:bilineari

eq:bilineari
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We give two proofs of this fact below due to Tao an Hicm]oqqanituri. Another exposition of
. . . an otes
Tao’s proof is contained in the lecture notes of Zhang [I83] Lecture 6).

Remark 7.4. One can make the definition of #-separation more precise, especially for more
general compact hypersurfaces. Namely, suppose (5;);=1,... » is a family of compact hypersurfaces
and denote by v; : S; — S9=1 the associated Gauss map|’t Then the S; are said to be 0-separated,
if

|det(vi(z1),...,vn(2n))| > 6 whenever z; € S; for j=1,...,n. (7.6)

. . sversal , 201999Notes
We will give two proofs of Lemma e first one follows [ap's notes I150] Lecture 5,

Lemma 1.2] and the second one the notes of Hickman and Vitturi [94] Lecture 3, Lemma 2].
1
Proof of Lemmai?%% sfglelrosﬁmg Tao. By Plancherel, the assertion is equivalent to
|(Fdo) « (gdo)ll2 < 0772 Fll2llgll2

We verify this estimate by bilinear interpolation between

[(fdo) = (gdo)[lx < ([ fll1llgllx
and

I(fdo) * (9do) o < 07" fllollglloc -

The first estimate is clear by Young’s inequality (or Fubini’s theorem).

To prove the second estimate, we assume that f and g are supported on f-arcs I and J. We
denote by do; and do; the restrictions of the surface measure to these arcs. By the pointwise
estimates

fdo < |fledo; and  gdo < |lgllacdos

it suffices to prove
lldor * doslee <671

where
doy * dog(A) 1= / / La(m + n2) do1(m) doz(n2)
st Jst

for any ij{,%lci%{l Le}/iigla%&%Sl, and, if do; *dos is absolutely continuous with respect to Lebesgue,
then (cf. [74

doy x dos (&) := / 0(& —m1 —m2)doy(m) doa(ne) .
st Jst
To do so, we approximate do; by (2¢)~'1;. where ¢ > 0 is a small number and I. is the
neighborhood of I, i.e.,
I.:={r(cosf,sinf): 0cl,1—e<r<1+¢e}.

By the definition of induced Lebesgue measure, doy is the weak limit of such measures. Thus, it
suffices to prove

1
||2f€115*d0"]“00§071 (77)

for all sufficiently small §, uniformly in €. Clearly, the integral

1 1 1
/J%mg —n)dosn) = 5 1{n€ T €—ne Lt = |+ )N L]

9That is, vj continuously maps a point z; € S; to a choice of unit normal vector v;(z;) to S; at ;.

’ eq:convolutionarcs
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only contributes whenever £ € n + I. and n € J. Thus, the convolution is supported on the
set-theoretic sum of the arc J and the thickened arc I.. But since any translate of J intersects
I. in an arc of length at most €#~!, the assertion follows. 0

. . . :convolutionarcs
Remark 7.5. To avoid the convolution between measures in , one could also fatten doy
there and show instead

[1r %1 |l peerey S 21|71,

which may be easier to verify. (Recall that the s aration of I apd J was_supposed .to be
. sectionrectangles - rsectionrectangles2
comparable, i.e., § ~ |I| ~ |J|). See also Remark [I4.18| (especially Formula ;Il%?%i; later Tor a

similar computation, where the fattened arcs are, however, simple rectangles.

emeter2020
Related to convolution of measures is the following special instance, see Demeter [57, Lemma

1.20].

Lemma 7.6. Let do be the surface measure on S*=t. Then for each d > 2 the measure do * do
is absolutely continuous with respect to Lebesque measure on R?, i.e., do * do = F d€ for some
integrable F'. Moreover suppF C By(2) and satisfies for a.e. &

1=, 0<f¢<1

IF(&)| < {(2 —lENE2 1< e < 2.

Recall that, like convolution of functions, convolutions of measures are supported on the
Minkowski sum of their supports, i.e.,

supp(cga—1 * 0ga—1) C supp(oga—1) + supp(oga—1) = {z +y: z,y € ST} CRY.
L. . Lo . oschiOliyeira2017
For an explicit formula, see also the survey by Foschi and Oliveira e Silva fﬂﬁ?ﬁ,na—mefy

sy = B2 (1P
(Usd—l Sd—l)(g) = |£‘ <1 4 >+ . (78)

d—3
2

This shows that the |¢|~! singularity in the lemma is in fact necessary, and hence the Radon—
Nikodym derivative do * do with respect to Lebesgue exists, but is not bounded. Essentially this
is due to the large symmetry of S?~! which leads to the fact that the origin can be represented
in multiple ways by & +n where £, 1 € S¥~!. Heuristically, this is another reason why we split S*
into multiple chunks so that “most of the time different arcs cannot too badly with each other”.

Proof. Let S?~! be the e-neighborhood of S?~! and let 0. := 5_113?1. Then o.d¢ — do as
e — 0. Note that

oexoe(€) =€ /R Lga-1(§ = m)Lga—r (n) dyp = e[S N (€ + SE71)].

The right side is zero for |¢| > 2. Since S~1 N (¢ + S971) is a body of revolution, its volume is
at most a constant multiple of the area of the cross section S N ((r,0) + S!) with » = [¢].
Now suppose r < 1. Then note that any y = (y1,y2) € S2 N ((r,0) + S1) satisfies

1 -2 <yl+ys<1+3e, sinceyeS!andye ((r,0)+S))
1-2e<(y1 —r)*+ys <143, since (y; —r,y02) € S2
and thus also (combining the first lower bound y$ + y3 > 1 — 2¢ with the second upper bound
—2yr+ri+yf+y3 <1+ 3e),

5
|2y17r\§—5.
r
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This means that the horizontal projection of S! N ((r,0) + S2) sits inside an interval of length
5¢/r. Since r < 1 the vertical slices of S N ((r,0) + S!) have length < e. Using Fubini, we find
that |S: N ((r,0) + S| < e?/r. Thus, if [£] < 1, then
sup 0. xoe(6) S €7
e€(0,1)
Finally a similar computation shows that if 1 < |¢| < 2, then

d—3

sup 0:(§) x0=(§) S 2 [&]) = -

e€(0,1)
Since o, * 0. d§{ — do * do, the proof is concluded. O
sversal
Proof of Lemma ﬁ%ﬁﬂmng Hickman~Vitturi. For £ € S! we can approximate the circle locally
by a parabola which can be parameterized by (t,t?) for t € R. Now, since we are assuming that
the two arcs of length 6 are only #-separated and 6 is supposed to be very tiny, we can assume that
these arcs are actually f-transverse caps on the one-dimensional parabola P!. So, let I, I, C [0,1]

be the two intervals parameterizing these caps. By the transversality condition, I; and I are
O(0)-separated. Denoting g1 = f and g2 = g, we observe

2 2
[[gido(z) = / [ 052, 2)e2milertrttartmaltin s gy, ay,
j=1 I /I

_ g1 //D TT 93030, 0Pl (0) = o] 2o

where we have applied the change of variables u; = t1 +t2 and ug = t% + t%. E| The latter is the
Fourier transform of a bivariate function and so, by Plancherel, we have

2 2
| TT gsdoll3 =272 |95 (t () £ (u)) P|t2 (w) — ta(u)| 7% du
j];[lg //Djl:[l g

= 2—1/ / lg;(t5,5) [t — ta| =" dty dis
I JI,

The result now follows from |t —t2| = € which is a consequence of the separation hypothesis. [

Remark 7.7. Note that this argument can be generalized to prove n-linear restriction estimates
for f-separated pieces of the moment curve t — (t,t2,...,t"). Here, the Jacobian arising from
the above indicated change of variables is a (scalar multiple of a) Vandermonde determinant and
one can use the same argument as of the footnote to prove the injectivity of the mapping, now
invoking the Newton—Girard formulae.

To pro oS Ye.b9 gli,gzéze all this together.. I'-Iowe.ver, we ca nots%rglsgly interpolaﬁce
bet'ween uﬂp b?graluy;,re of the support restrl'ct NS y}ixli’eegpi%]t% erefore, we will
split the left side of ([7-3]j info pieces in order to exploit .

To this end, we will use the Whitney decomposition. For every n > 0, we divide S' into 27
equal arcs, so that each arc at stage n has exactly two children at stage n + 1. We denote the

10T see that this change of variables is valid on I1 X I, note that if s;,t; € I; (for j = 1,2) satisfy
s1+so=1t1+to and s3+s3=1t3+1t3.
Then it follows from the formula 2ab = (a + b)? — (a? + b?) that s1s2 = t1t2. Consequently, by comparing
coefficients, we see that H?Zl (z —t;) and H?Zl(z — s;) define the same polynomial (here, z is a single complex

variable) and hence the t; equal the s;, up to permutation. The separation of the intervals now implies t; = s;
for 5 =1,2.
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set of all arcs at stage n by A,,. We say that two arcs I,J € A, from the same stage n > 1 are
close, if they are not adjacent, but their parents are adjacent. In this case, we write I ~ J. Note
that for each I there are only O(1) arcs J which are close to J.

Remark 7.8. Here we see that the non-vanishing curvature condition is crucial in the linear
problem as it allows us to find sufficiently many transverse pairs of arcs in the bilinear problem.

For every = # y on S!, there is exactly one pairs of arcs I, .J containing x and y respectively
such that I ~ J. This implies (by imagining the following formula in Fourier space)

Todo Tado = 3 Todor Tndos =SS Tador Todoy.
I~J n>11,J€A,:I~J

Remark 7.9. This decomposition is somewhat special to the bilinear perspective and so far,
there seems to be no known satisfactory way to duplicate this in a linear setting.

-bilinear
We are now ready to plug this decomposition into @%T(ﬁ%iﬂ with the n summation, we
simply use the triangle inequality to obtain

||1Qd0 1Qd0’Hq/2 5 Z || Z lodo; ]—QdUJ”q/Q .
n>1 I,JeA,:I~JT

We will estimate the L9/2 norm by interpolating between estim te%ﬁ?ntelégi{{sf and the L? norm
and we begin with the former. By the triangle inequality and {ﬁ;i, we obfain

I Y. ladorledoslee S Y. lQNIQNJ].
I,JEA:I~T I,JEAn:I~T

Although there are no Fourier transforms appearing on the right side anymore, a more tractable
dependence on €2 or factors of 27" would be desirable. Fortunately, similar crude estimates will
do the trick. Clearly, we may estimate |2 N J| < 27" at stage n. But since there are only O(1)
arcs J for each I, we obtain on the one hand

I Y. ladorladosle $ Y 1QNI[-27" =270
1,JEA,:I~JT IeA,

Alternatively, we may simply lift the restriction I ~ J on the summation and obtain

| Y st (X enn) (3 ena) - e

IJ€A,: I~ I€A, JEA,

Combining the last two estimates therefore shows

I Y 1odoslados|s < |92min{|Q],27"}. (7.9)
I,JEA :I~JT

Thus, we are left with the L? estimate. This time the triangle inequality is a bad idea as there
are lots of oscillations and orthogonality present that should be exploited more effectively. The
following observation of Fefferman is fundamental for what comes next.

As I ~ J vary, the functions I/Q\wt] % have Fourier transform supports which are essen-
tially disjoint which means that the functions themselves are essentially orthogonal. This is just
done by computing the set theoretic sums of I and J and computing. Because of this (almost)

eq:bilineari
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orthogonality EL we thus have

|| Z ]_QdO'I ]_QdO'JHQ

1,JEA,:I~J
1/2
—_— —_—
S > llado; Todoy|l3
I, JeAy:I~J
1/2

< on/? Y olen1enJ| :
ILJEA I~
1
where we used Lemmal?fg With 0 = 2~ in the final inequality. By the same arguments as before,
we estimate the sum over the close arcs and obtain
I Y TadorTodoylls S 27/2(192) min{|Q), 27" })"2.
I,JEA, I~

.. . . :bilinearintinew .
Combining this with @_Wﬂﬁmnequahty, we thus have

I > Tador Tadoyllys < 22799 min{|Qf, 27"} 2/
1,J€AL:I~T
Finally, summing over n, we obtain
|Tado Tada,/2 £ 7 22"/(|9) min{|), 27"} 27,
n>1
where the right side can be computed (by considering 2=" > |Q] and 27" > || separately) to
be |Q|'~2/9 = |Q|?/P, which was desired.

Remark 7.10. A quite similar argument can be used to prove the Bochner—Riesz conjecture in
d=2.

One of the key innovations here was the bilinear approach. Unfortunately, one cannot apply
the above argument directly to higher dimensions unless ¢/2 > 2. (As one can check, these cases
are already taken care of by the Tomas—Stein estimate.) Nevertheless, the bilinear approach was
quite useful in higher dimensions, and in fact all the best results on the restriction conjecture
and related problems has come from precisely such an approach.

Remark 7.11. The original proof of Cérdoba and Fefferman did not take such an explicitly
bilinear approach, and was more elegant; however, it was less obvious whether any of the ideas
could be extended to other dimensions and exponents.

7.5. From bilinear to linear. The most valuable feature of the bilinear restriction conjecture
is the fact that it implies the linear restriction conjecture. For technical reasons, consider only
compact subsets of the paraboloid.

aoetall998
Proposition 7.12 (E‘Tﬁ? J. Let S C P4~ be compact and Sy and Sy transversal subsets of S. If
g>2d/(d—1) and ¢ > p'(d+1)/(d — 1), and the conjectured bilinear inequality

| f1do f2dollparzmay S | fillocsyll follas.)

holds for all (p,q) in a neighborhood of (p,q), then the conjectured linear inequality

If do|lLaray S IfllLe(do)

1 One can obtain perfect orthogonality by only considering, say, every tenth pair (I,J) and then add up the
ten smaller sums by the triangle inequality.
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holds.

££201 11998
We first follow Bennett ‘g,nn S 7-51. See Tao—Vargas—Vega Efg’? *for the original argument
(Theo em %gnéggh‘%?lglobal and Theorem 4.1 for the local restriction estim ggé t%%%ourgainf
Guth [P For a simpler argument. For a textbook treatment see Demeter [57, Chapter 7]. In
the second sub section, we present an argument relying on parabolic rescaling which is borrowed
from Demeter ES?, Chapter 4].

7.5.1. Bourgain—Guth method. We present the argument in a such a way that it may be adapted
to a more general multilinear setting.

ilineartolinear —
Sketch of proof of Proposition @._Wﬁho_wthe extension estimate || f do||peray < Ifllzr(do)
in the range p = ¢ > 2d/(d — 1). This special case is readily seen to imply the linear restriction
conjecture on the interior of the full conjectured range of Lebesgue exponents.
Let {S,} be a partition of S by patches of diameter approximately 1/K and write

f:Zfou fa::fXSa'

]Cfi;ytl}i:%fmgrit y n@;?ﬁ 12 o m. The key observation is the following inequality, see BourgairE
u .

Proposition 7.13. We have
[Fdo(@)|” S K>V 37 oy do(@)a, do(@)|”? + 3 [fudol, (7.10)  [eq:bourgaing
SaqsSag et
where the sum in Sy, and Sa, is restricted to 1/ K -transversal pairs Sq, and S, i.e., |v1 Ava| >

1/K for all choices of unit normal vectors vi,ve to Sa,, Sa,, Tespectively.

Proof. This essentially amounts to an application of the elementary abstract inequality
2
lallts ey S N S lagarl®? + flall, g,
7k
for finite sequences of real numbers a. O

. . o ilineartolinear L. ainguth
Continuation of sketch of proof of Proposztwni?? 12'5 Assuming the truth of Proposmlonﬁf i 3 and

integrating in z, we obtain [where does the K214 come from?]

|fdollg S X0 37 | fay dofan dolfys + Y I fudolly (7.11) [eq:bilineart

Say+Say

which, because of the terms Hm”g appearing on the right side, strongly suggests the viability
of a bootstrapping argument. To this end, let C = C(R) denote the smallest constant in the
inequality ||f/d\a||Lq(BO(R)) < C|fllq over all R > 1 and f € LP(do). The only role of the
parameter R here is to ensure that C is a-priori finite. Our goal is to show C < oo, uniformly in
R. Because of the Fourier cut-off on S, (which has diameter 1/K), the hypothesis gives [where
does the K2¢/a=(d=1) come from?]

[ fadolly S CR2/a=ta=0),
lineartolinearaux

Since 2d/q—(d—1) < 0 and K >> 1, this represents a gain! Using l?lli along with the property
Yoo lfalld = [If]l¢ (by Fourier disjointness), we obtain

|fdollg < K> 4% 37 |[fa, dofa, dollf); + CK*/ 7= D] £l (7.12)
Say,Say
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for some constant ¢ independent of K. Taking K so large that cK2¢/a—(d=1) < 1/2 (say), we see
that it suffices to show

_ —_— 2 . . .
K401 N fo, dofa, do|| 95 < ACK)||f]2- (7.13) [eq:bilineartolinears
Sal 7Sa2
Believing this estimate for a moment, then by definition of C1 we hgve. C < cAZ+ C/2, from which
N ) ineartolinearaux
we may deduce that C < oo uniformly in R. However, @ 1S a straightforward consequence of
the conjectured bilinear inequality. O
emark 7 Ad. The above argument would have been equally effective if the factor, K2(4—1 in
:bourgain -hourgainguth
were replaced by any fixed power of K. As we have seen, the key feature of 1S the

absence of a power of K in the second “bootstrapping” term on the right side.

7.5.2. Parabolic rescaling and bilinear to linear reduction. Parabolic rescaling means that the
affine functions
_ —2&n - 2
RO X R S (£,60) - € €O,fd o - €+ 160l
) 62
map the (infinite) paraboloid into intself.
Next recall that any nonsingular affine map 7'(n) = An+wv (for some d x d matrix A) interacts
with the Fourier transform via

G:=FoT = G(x)

), §>0, & e R4E

1
~ det(A)
Our goal is to use change of variables to convert inequalities involving functions whose Fourier
support lives on or near a small cap on P?~! into similar inequalities involving functions whose
Fourier support is then spread over neighborhoods of the whole P~!. To make this precise, we
will need to measure the constants appearing in such inequalities precisely. In the context of
bilinear restriction, we make the following

F((Afl)tl,)ef27ri(v,(A_1)ta:) )

Definition 7.15 (Bilinear restriction constants). Let 1 < p,g < oo and 0 < D < 1. We denote
by BR*(q x ¢~ p, D) the smallest constant C' such that for each set of cubes Q;,Qy C [~1,1]¢7}
with dist(Q1,Q2) > D and each f: 2 UQs — C, we have

| Eq, f Eq, fllLer2may < Cllfllzan I fllaga,) -

We will now parabolically rescale the known bilinear restriction estimates and afterwards
combine these with a Whitney decomposition to derive new linear restriction estimates.

Proposition 7.16. Let Q1,Qy be two cubes in [—1,1]971 with side length 6 and assume that
the distance D between their centers satisfies D > 46. Then for each 1 < p,q < oo and each
f:QUQy = C, we have

2(d—1) _ 2(d+1) 1

||EQ1fEQQf||LP/2(Rd) <D 7 P BR*(q X q = p, §)||fHLq(Q1)Hf||L‘I(Q2) .

Note that the exponent of D is non-negative when p,q are in the linear restriction range.
Thus, we have extra gain as D gets smaller.

Proof. Let & be the midpoint of the line segment joining the centers of 2; and {25. Define an
affine transformation on R%~! by

L(€) = Ley.(€) = 22

Then a simple computation shows that
|Eq, f(2',2a)| = DV Epq,) fr.(D(2' + 224&0), D*xq)|, fr:=foL *.
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Note that L(€;) and L(€2) are now cubes in [—1, 1] that are separated by at least 1/2 (instead
of 2§. Changing variables on the spatial side then gives

| Eq, fEq, fllr/2@ey = DA=D=2ED/P | By o) fr Er,) frllezme
o N 1
< DHA=D=2AHD/P BR* (¢ x g p, §)HfLHLq(L(S21))||fL||L<1(L(Q2))

2(d—1) _ 2(d+1)
7

. 1
=D » BR (qxqHpa§)Hf||Lq(Q1)||fHL‘7(Qz)a

which concludes the proof. O

We recall the dyadic Whitney decomposition. A dyadic interval is an interval of the form
[02F, (£ +1)2%] with £,k € Z. A dyadic cube is the Cartesian product of dyadic intervals of equal
length. If two dyadic cubes intersect, then one must be the subset of the other.

Proposition 7.17 (Dyadic Whitney decomposition). Let S C R™ be a closed set. Then there
is a collection C of closed dyadic cubes ) with pairwise disjoint interiors such that

R™\S= ]9

Qec

and whose sidelength £(2) grows with the distance to S by

40(Q) < dist(€,5) < 504(Q) . (7.14)
emeter2020 202006Notes
Proof. See Demeter [57] Proposition 4.3] or Tao HFTGS, Lecture 3, Proposition 4.6]. U

We need this in the following particular case.

Corollary 7.18. Let d > 2, then there is a collection C of closed cubes Q@ = Q1 x Qy C
[1,1]97 x [~1,1]97 with pairwise disjoint interiors such that

LI\ {(£,9): e[~ = @

Qec

and

40(9) < dist(Q1, Q) < 100£(2) . (7.15)

. -dyadicwhitneycor X
Observe that the lower bound in 1'?.lb; reilects the fact that the cubes Q do not intersect

the diagonal. However, the bounds say that their side length is still comparable to the distance

eq:dyadicwhi

eq:dyadicwhi
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between the underlying €, and Q5. In d = 2 this is illustrated in the following figure.

Figure 1. Dyadic Whitney decomposition of [~1,1]? in the lower triangle

Proof. Tt suffices to achieve a similar decomposition with [—1,1] replaced with [0, 2] and then
translate the cubes by (=1, —1, ..., —1). The advantage of working with [0, 2] is that it is already
a dyadic interval. i cwhitne
Use the family of Proposition @Wt‘h_m}[: 2d — 2 and S = {(£,€) : € € R} and only
Zeep the cubes that are insid iql,e%P ~2. They obviously cover [0,2]?¢=2. Likewise, the bounds
.19]) Tollow trom (|/.14]). O

The following lemma says that when we have a sequence of functions with disjoint Fourier
support, we can easily decouple their contributions to an L® norm.

Lemma 7.19. Let R be a finite collection of rectangular bozes in R with 2RN2R' = () whenever
R # Bj’ €R. For R€ R let Fr : RY — C be an L* function for some 1 < s < oo with
supp(Fr) C R. Then

1/s
uzFRuLss(zuFRz) Cleso
R R

and

1/s’
s S (Z |FR||§/> , 8>2

R

HZFR|
R

where the implicit constants do not depend on R.

fig:dyadicwhitney
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Proof. Let pr € S(R?) with 1z < $pr < 1ag and ||¢gr|| = 1. Note that Fr = Fr * ¢r. Consider
the operator T acting on an arbitrary family Gr = (Gr)rer of functions G via

GR) = Z GR * QR -
R
By orthogonality, 7' : L?(R? : (2(R)) — L*(R%), i.e

IT(GR)I5 = Grrpr(@)?dr= [ Y Grér(©) = |GréR(€)
R /Z R*Pr(T /ER: R¥PR ER:/ R¥PR
=Y [16r < on@P <3 [Grl?
R R

and by Young’s inequality, T : L'(R? : ¢1(R)) — L*(R%), i.e
IT(GR) s f/|ZGRwR o <3 [Gn enli) < 3 1Gal

Vector-valued interpolation thus gives the first assertion. Since T : L“(Rd, H(R)) = L™, ie.,

IT(GR) oo = 1Y Gr*@rlloe <Y 1Grlls
R R

vector-valued interpolation also gives the second assertion. O

We are now ready to assemble all the previous ingredients and prove that bilinear restriction
estimates give linear ones.

Theorem 7.20. Assume that
1
BR*(c0 x 00 — p, 5)
for some 2d(d — 1) < p < 4 when d > 3 or for some p > 4 when d = 2. Then the linear estimate
R*(co — p) holds.

Cw}%t C;b(% a collection of closed cubes Q = Q; x Qy C [~1,1]7! x [~1,1]?"! as in Corollary
—1,1]9! — C. Then we may write (neglecting the dlagonal which has Lebesgue
measure zero)

Ef(z)? = / f(fl)f(§ )e 2miz’-(§1+€2)+2miza (6] +€3) dé; dé;
[—1,1)4—1x[~1,1]4

< 0

_ / 51 ) 27ix’ - (E1+€2)+2miz g (€7 +€3) dé, dés
Q= lemec Q1€

:ZEQ1 z)Eq, f(x).
QeC

Now for k& > 1 define C;, to consist of these cubes in C whose side length is 27%. We separate
these scales using the triangle inequality and obtain

IEFI; = 1B lp2 <D 1Y BaifEaufllpe- (7.16)
k>1 QeCy
Now note that as  ranges through Cj, the collection of cubes 4(Q; + Q5) overlap at most C
times for some C independent of k. This follows from the following two observations.
adicwhitneycor
(1) The upper bound dist(£2;,2) < 100£(€2) = 100£(€2; x Qg2) in l? T5) Torces 07+ Qs C
Q7 + 100082 .

eq:trivialse
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(2) Each Q; appears at most O(1) times as the first component of some Q € C. (This
observation will allows us to exploit orthogonality within each family Cy.)

We would now like to appply Lemma %ith s = p/2 and Fr = Eq, fEq,f. The Fourier
transform of Fq, fEq, f is supported inside a rectangular box Rg C R4~ x R whose projection
to R4™1L lies inside 2(€2; + 22). But by the finite overlaps of 4(Q; + €5) (discussed above) it
follows that we can split Cj, into C = O(1) EaEilges such that the boxes 2Rq are pairwise disjoint
for 2 in each family. By applying Lemma with s = p/2 to each family, we obtain

2/p
2
|| Z EQ1fEf22pr/2 ~ <Z ||EQ1fEQQf||§§2> , d>3

QeCy QeCy

respectively

p—2/p
|| Z EQ1fE92pr/2 ~ <Z ||EQ1fEQ2f||£§2p 2)> , d=2

QeCy, QeCy
where the implicit constant n%t dg}ge&c}llcon k.
Now the lower bound in 1[? I5) (1-e., dist({? ngr)e > %E SQ ) allows us to apply the parabolically
rescaled bilinear estimate of Proposmon i?lgé to eacﬁ term in the sum and obtain

_1_d+1
1B, fEo, fll)5 S 27F 50| fll oo roa,1y0-1) -

Note that there are O(2%(@=1)) cubes in Cy, so
1) o—kp(d—1—4E1)
{(Qk(d 1) g—kp(d=1-5 )p”f”Lm[ L1Jd-1) 5 d=3
k2P (1-3
(2 27 k572 (1=3)) 5 ||f||Lw([_171}d71) , d=2

In both cases the upper bound is O(27%» || f[|7 | | 1u-1,) for some g, > 0 (since p > 2d/(d—1)).
ivialgeparation’ 'L ([=1.1] )

Combining this with ([7-T6]] finishes the proof. O

|| Z EQ1fEsz||p/2 S

QeCy

a01999Notes
7.6. Two-dimensional Kakeya theorems. We follow Tao [[I59] Lecture 6].

nettetal2006
7.7. Multiljnear restriction. We follow Bennett—Carbery—Tao [6 E, and the notes of Hickman
and Vitturi |94, Lecture 3, Sections 2-5].

Recall that we have seen in the beginning of this section that the presence of curvature of a
single (sub)manifold was crucial in the linear restriction problem, whereas transversality between
two submanifolds became important in the bilinear world. One of the puzzling features of bilinear
problems is, however, that they seem to confuse the role played by curvature in higher dimensions.
For instance, it is known that the bilinear restriction theories for the cone and the paraboloid are
almost identical, whereas the linear theory for these surfaces is certainly not. Moreover, simple
heuristics suggest that the optimal k-linear restriction theory requires at least d—k non-vanishing
curvatures, but that further curvature assumptions have no further effect. For this reason, it
seems natural to consider a d-linear setup in d dimensions since then one does not expect to
require any curvature hypotheses. We are therefore seeking inequalities of the form

d d
H g;do;)” ST gllees,) forall g >2d/(d—1) and p’ < g(d—1)/d
i=1 Laa(ey 9L

for hypersurfaces {.5; }?:1 endowed with associated smooth Imeasures {o; }?:1, respectively, when-
ever the S; are “sufficiently separated” in the sense of i%g i In fact, by multilinear interpolation
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. . erghlofstromi976 A X .
(see, e.g., Bergh-Lofstrom FF? ), and Holder’s inequality, it would suffice to prove the endpoint
case p =2 and ¢ = 2d/(d — 1), i.e.,

), i
d d
H gjdoj)” S H 9l z2(s;) -
Jj=1 L2/(d=1)(Rd) Jj=1
ennettetal2006
Remarkably, this conjecture was almost completely resolved by Bennett—Carbery—Tao fb’]ni
where they proved the above estimate with a subpolynomial loss in the constants.
In the following we adapt the notation that has been used so far to their work. To this end,
for j =1,...,d, let
o U; C R?~! be compact neighborhoods of the origin,
e 3, : U; — R? be smooth parameterizations of the (d — 1)-dimensional manifolds S; of
R?, and
o (&9)(x) = [y, e2mi25(8) g(€) de for € R? be the associated extension operators.
The analog of the bilinear transversality condition will essentially amount to requiring that
the normals to the submanifolds parameterized by the 3;’s span all points of the parameter
space. In order to express this in an appropriately uniform manner, we make the following

Definition 7.21. For each 1 < j < d let Y; be the (d — 1)-form

A0
) :/}@zj(fm (e,

By duality, the Y; can be viewed as vector fields on U;. We will not impose any curvature
conditions (in partlcular we permit the vector fields Y; to be constant), but we will impose the
following

Assumption 7.22. Let A,v > 0 be given. Then the following assertions hold.
(1) The manifolds S; obey the “transversality” (or “spanning”) condition

det(Yl(f(l)), ...,Yd(f(d))) >v  for all f(l) e Uy, ...,f(d) elU;. (7.17) |eq:transcond

(2) The maps (parameterizations) 3; obey the smoothness condition

HEjHCQ(Uj) <A forallj=1,..,d. (7.18) |eq:smoothcon

Remarks 7.23. (1) If U; is sufficiently small, then £;g; = G/chj where G; : ¥;(U;) — Cis
the “normalized lift” of g;, i.e., Gj(2;(€)) = |Y;(€)|71g; (&) for £ € U;, and do; is the induced
Lebesgue measure on X;(Uj).

(2) Using a partition of unity and an appropriate affine transformation, we can assume v ~ 1
and that for each j = 1, ...,d, the manifold 3;(U;) is contained in a sufficiently small neighbor-
hood of the j-th standard basis vector e; € R,

Observe that, whenever the ¥; are linear, then, by an application of Plancherel’ theo‘ﬁ?{rtlﬁ ethl% 29
conjectured multilinear estimate is equivalent to the Loomis—Whitney inequality [118]." Namely,

let ; : R? — R?~! denote the projection onto the hyperplane e+ (where z; = 0), e, mj(z) =

j
(@1, ey ©j—1, Tj41, ..., Td), then

/Rd fi(m(@) - fa(ra(@) dz < [[filla=r - [ fallamr - for all f; € L7HR) (7.19) | eq:loomiswhi

which is sometimes also written as

d d
ITT o mill @ < I I1fillEr ety -

j=1 j=1
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For now, let us merely observe that in view of this inequality, we can view multilinear restric-
tion as a certain (rather oscillatory) generalization of the Loomis—Whitney inequality. We will
reencounter this inequality in some moments when we will be discussing the multilinear analog
of the Kakeya conjecture where the nature of this generalization will become clearer. Let us for
now close this subsection with the main result.

ennettetal2006

ultilinrestr| Theorem 7,24 (Near-optimal multilinear restriction (Bennett-Carbery-Tao [0, Theorem I1.16])). Let
Assumption old. en for each e >0, ¢ > 2d/(d—1) and p’ < q(d —1)/d, there exists a
constant C = C(A,v,e,d,p,q) > 0 such that
d d
119 < R [T lgsllrwy (7.20) [eq:multilinrestr
j=1 j=1

La/4(Bo(R))
holds for all g; € LP(U;), j =1,...,d, and all R > 1.

Naturally, the question arises whether this theorem has any consequences for the linear prob-
lem. Unfortunately, the transversality hypotheses make it difficult to apply multilinear restriction

estimates directly to obtagrllngggzyﬂlarﬂear estimates in dimensions d > 2. After some years however,

O
rg%ilgegyrd Guth [29] infroduced the so-called ¢£2-decoupling which allows one to use Theorem
0 obfain improved partial results on the restriction conjecture i elg%,%hﬂndimensions. This
technique and its applications will be discussed in detail in Section iigli
) pltilinearrestre eya . A .
In Subsection i? E% we will see that this theorem is equivalent to the so-called multilinear

Kakeya conjecture that we will discuss (and prove!) in the next subsections.

ttetal2006
78 M lltcﬂéglnqggtggkeya.‘ We follow Bennett—Ca: A %uﬁig ;g@eﬁae notes of Hickman and
Vitturi [94] Lecture 3, Sections 2-5]. See also Guth [89;190] (in particular the short proof of the

non-optimal result.)

linearkakeya

-restrimplieskakeya L .
4.T]) that the Iinear restriction conjec-

It is well known (and it will be discussed in Subsectio
ture implies the linear Kakeya conjecture (Conjecture a%f;o state it precisely, let us introduce
the following notation that will also be used in Section ater. Let 0 < 6 < 1, w € S¥71, and
a € R%. Then we define a §-tube to be any rectangular (or cylindrical) box T?(a), or short, T,
in R? with d — 1 side lengths § (or diameter 26) and one side length 1 which is oriented in the
direction w. By T we denote an arbitrary collection of such d-tubes whose orientations form a
maximal d-separated subset of S?~1. The cardinality of T is denoted by #T. Then the maximal
Kakeya conjecture says that for any e > 0 and d/(d — 1) < ¢ < oo, there exists a constant C
independent of § such that

< ¢§l@=D/a(T)t-1/(ald=1)
La(R4)

S

TEeT

We emphasize that the “separation condition” on each of the d-tubes is crucial in this linear
problem. . . . . . :restrimplieskakeya
By a straightforward adaptions of the arguments given in Subsection one sees that the
multilinear restriction conjecture implies the corresponding multilinear Kakeya-type conjecture
that we will describe now. Suppose T4, ..., T4 are families of 5-tubes in R? where we now allow (!)
the tubes within the same family T; to be parallel (in contrast to the linear problem). However,
we assume that, for each j = 1,...,d, the tubes in T; must point in directions belonging to a
fixed spherical cap, say S; = {w € ST : |1 —w-e;| < C71} for some large C' > 0, centered at
e;. In this case, we say that the family T, is transversal. (The vectors e; may be replaced by any
fixed linearly independent set of vectors in R here, as affine invariance considerations reveal.)
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ennettetal2006

Theorem 7.25 (Near-optimal multilinear Kakeya (Bennett—Carbery—Tao [0, Theorem 1.15])). If

d/(d—1) < q¢ < 00, then there exists a constant C' > 0 which is independent of § and the transver-
sal families of tubes T1,...Tq, such that

d

d
It > 1 H (0 9#T;) . (7.21)

Jj=1 T;€T; LQ/d(Rd)
Furthermore, for each ¢ > 0 there is a similarly uniform constant C > 0 for which

d d
I > 1 5= [J0* 1 #T5) (7.22)
J=1 \T;€T; L1/(d=1)(By(1)) J=1

ltilinearkakeyaorg

Remarks 7.26. (1) Since the case ¢ = oo is trivially true, @l 1s equivalent, via Holder to the
endpoint case ¢ = d/(d—1). In contrast to the linear setting, there is no obvious counterexample
prohibiting this claim holding at the endpoint ¢ = d/(d — 1), and indeed in 2 case it is
easy to verify this endpoint estimate. In fact, as we will present next, Guth %189%1*3 eventually
obtain the endpoint result.

(2) By contrast with similar statements at lower levels of multilinearity, each family T; is
permitted to contain parallel tube :’;uldl %nlg%g‘gk exen ¢ arbltrary repetitions of tubes.

(3) The decision to formulate W -0 x 1 tubes is largely for historical

reasons. However, just by scaling, it is easily seen that the above estimate is equivalent to

d

d
H Z 15, SOH(#T)

J=1 \1yeT; La/d(Rd)
where the collections T[‘j consist of tubes of width 1 and arbitrary (possibly infinite) length where,
of course, still the appropriate transversalit 1 tcl(ir{%iég&%g iargl .osed on the families Ty, ..., Ty4.
(4) Note that the extreme case of when the collections of rectangles are 1-transverse

corresponds (by Hadamard’s inequality) precisely to the situation when pll the recta ges in

ilinear
T; are oriented in the same directio p%der these hypothesis, @‘ 1S a consequence of
the Loomis-Whitney inequality Wm‘enﬂy, the multilinear Kakeya estimate is a

generalization of the Loomis—Whitney inequality. The geometric nature of this generalization is
of course much more transparent than in the multilinear restriction problem.

(4) As opposed to the linear case, the multilinear Kakeya theorem does not imply something
on the dimension of B%seigﬁ)vitc@ L 5555 although there is a connection to the joints problem, see
Bennett—Carbery—Tao [[6l ennettetal2006

(5) Bennett—Carbery—Tao BWIVQd a natural variable coefficient extension of their
results.

(6) Although, we will not review their proof here, let us summarize their strategy. First, one

bserves that if each 7 € T; is centered at the origin (for all j =1,...,d), then, the two sides of
@‘Wmﬂ?&)—m&pamble This observation leads to the Jigge: E&é‘%&ﬁ%@t&“h configurations
of tubes might actually be extremal for the left side of . For analytic reasons, in pursuing
this idea it seemed natural to replace the rough indicator functlons by Gaussians of the form
e~ (@1, A@=v)) for an appropriate positive definite d x d matrix A and vectors v € R?. Using
these Gaussians as “smoothed cutoff functions”, they give a novel proof of the Loomis—Whitney
inequality in §3. Afterwards, they perturb the inequality in §4; as a corollary of this perturbed
inequality, they obtain the multilinear Kakeya conjecture up to the endpoint (and a “weak” form
of the multilinear restriction conjecture). 0

eq:multiline

eq:multiline
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linearkakeyaorg

edmultkakeya| Theorem 7.27 (Weighted multilinear Kakeya). Assume that the assumptions of Theoreml%.zg
hold. For each T; € T; let wr; > 0 be a weight and define the simple functions

gj = Z ’LU'I}. 1/1'3..

T;€T;

Then, one has the similar estimate

d d
H gj <C6 ¢ H(5d71 Z wry ) . (7.23) ’ eq:weightedmultkakey
j=1 L1/(d=1)(By(1)) j j

Proof. If wr, € N or_aul]l tl;iige&hl;ceh%%rthe result is a consequence of the original multilinear
Kakeya inequality y including repeats of the tubes in the collections. The estimate for

rational weights follows by rescaling and for reals by continuity. O
. . uth2010 -mnltilinearkakeyaorgendpoint
arkakeyafull | Theorem 7.28 (Endpoint multilinear Kakeya (Guth fgg J). Formula olds without the
subpolynomial loss 0~ ¢. Moreover, the dependence of the transversality constant v is given by
—1/(d—1)
v .

kakeyasimple | Theorem 7.29 (Simple multilinear Kakeya (Guth }ﬁ%ﬁ%%uppose that ¢ o are lines in R? where
j=1,..,danda=1,..,N;. Let Tj,a be the 1-neighborhood of £; .. Suppose that S; C S is a
spherical cap and that the lines {;, lie in S;. Suppose that for any vectors v; € S;, we have the
transversality condition vy A -+ ANvg| > v.
Let Qg denote any cube of side length S. Then for any e > 0 and any S > 1, one has

1
d—1 d

d Ny .
/Q H Z 1r,, < Co 9Wge H dej , (7.24) ’ eq:multilinearkakeye

5 j=1 \a=1 j=1

-0()

where v means that the dependence on the transversality constant v is polynomial.

. . L ightedmultkakeya
Moreover, we have the following weighted analog similar to Theoremllz'f?ﬁ. For each ijya €T
let wjq > 0 be a weight and define the simple functions

gj = Z Wjalry, -

T, €T,
Then, with the above notation,
1
a d 1
/ [ <cor®®s ] (Z wj,a> , (7.25)
Qs j=1 j=1 \ a

holds.

Remarkably, we will find next that the multilinear restriction and Kakeya theorems are essen-
tially equivalent. Thi.s e givalggféagliollows from multiline izl %%98’861.1 known indu.ction—on—.s.cales
argument of Bourgain [I3] (see also Tao—Vargas—Vega [[I67] for this argument in the bilinear
setting). Before we u(}yng;lriﬁ aﬁg}g;}%&g{lece in detail, we proceed with a review of Guth’s simple

proof of Theorem [7.29
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orem 17.29|

7.9. Guth’s simple proof of em |7.290 Then
the following theorem. Theorem [7.29]will Tollow from 1t and the ensuing observation.

Theorem 7.30. Suppose that {; . are lines in R where j = 1,...,d and a = 1, ., N;. Let Tjﬂ
be the 1-neighborhood of £; . Suppose that the lines {;, makes an angle of at most (10d)™" with
the e;-axis.

Let Qg denote any cube of side length S. Then for any € > 0 and any S > 1, one has

d N T d
/ H Z 1r,, < C.5° H defl , (7.26) |eq:multiline
Q

5 j=1 \a=1 j=1

The proof is split into three steps.

(1) Reduction to almost axis-parallel tubes
(2) Ane zing the case of exactly axis-parallel tubes using the Loomis—Whitney inequality

(3) Perturbation of the Loomis—Whitney inequality and multiscale analysis

. . . . nettetal2006
7.9.1. Reduction to nearly axis parallel tubes. The first observation in Bennett et al HBG is tha

it suffices t C‘ililﬁaie(al% aﬁglgescl‘gnio&sz T; of tubes which are almost parallel to each other. In fact,
Theorem ﬂ%il will follow from

Proposition 7.31. For every e > 0, there is some § > 0 such that the following holds. Suppose
that £; , are lines in R, and that each line {;, makes an angle of at most § with the e;-azis.
Then for any S > 1 and any cube Qg of side length S, we have
1
1

d N; d .
/ H Z 1r,, < C.S° H dej . (7.27) |eq:multiline
Q

S j=1 \a=1 j=1

mult il ineimkakieliassiankiaate

We will use this to prove Theorems [7.30]and [7.2Y]

ilinearkakeyasimple2 ilinearkakeyasi. eaux A
Proof of Theorem %m%’ﬁppoﬁhon - Let 5 i1ineRSk 3;9%29%93% cap around
e; of radius, say (10d)~!. By the hypothesis of Theorem [7.30] every In ('1‘ing§rsk§ké1yi§§1cu% Do
belonging to S;. Now, for a given € > 0, we pick a J as in Propositionl@ﬁ‘/ We subdivide S;
now into smaller caps S; s of radius §/10, i.e., S; can be covered by roughly 6! <. 1 caps S; 3.
Let us abuse notation and write “¢, ; € S;3”, whenever the direction of ¢, ; belongs to 5; 3.
Since the number of caps is <. 1, we have

d N = d
LX) = X [ X .
Q Brenfa” @

S j=1 a=1 s g=1 ej‘aESj,B

. . . . . ilinearkakeyasimpleaux
We claim that each S-summand on the right side is controlled by Propo&hoW

is the case when (3; is such that S; s, contains e;. Otherwise, we perform a linear change of
variables such that the center of S; 5 is mapped to e;. Since the angle between the ¢; , and ¢;

is at most (10d) !, the involved Jacobian is at mos coPstd. In any case. the integral in the new
. R . . O inearkakeyasimpléaux
coordinates is again controlled using Proposition O

ilinearkakeyasimple ilinearkakeyasimpleaux
Proof of Theorem %m%ﬁp%tion%m by caps S; s of a small
radius p. As long as p < v/(100d), we can guarantee that vy A --- Avg| > v/2 for all v; € S; 5.
We pick a sequence of caps S1,, ..., 94,3, and change coordinates so that the center of the cap
Sj,6; is mapped to the coordinate vector e;. The distortion of lengths and volumes caused by

i . . 1 L eyasimpleaux
this coordinate change is O(r~1). So, we may apply Proposition [/.3I[1n these new coordinates.

d—

d—1
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If p = p(e) is spall enough, the image of Sj 3 is contained in a cap of radius § = d(e) as in

Proposition [7.31[— and this gives the desired estimate with error of order C.O(r~1)S¢. Finally,
we sum over C.O(v~!) with different choices of Sy g,, ..., Sa,g,- O

. . . ilinearkakeyaorg
7.9.2. The azis parallel case (Loomis—Whitney). As we have remarked after Theorem [7.25] % € niswhitne
case where all ¢; , are parallel to the e;j-axis follows from the Loomis-Whitney inequality

in the form
d . d L
[ T tman ™ < TL1 s
R j=1 j=1

In fact, if the line ¢; , is parallel to the e;-axis, then it can be defined by the point 7;(z) =y, €
R4~ where it intersects the plane x; = 0, see the figure below.

> N
/

r B, () ¥
,\.)'a l :
/ L | /

Figure 2 fig:loomiswhitney

Then

Do ln.(2) =) 1p, oy(m(z).
a a
Applying the Loomis—Whitney inequality with

fi= Z 1p,, (1)(m(z))

with Hfj||L1(Rd—1) = |Sd71|N]‘, we obtain

da [N T J 1 ] .
LX) = [ I 6™ < Tl ~ 7
R 5210 \a=1 Re = 1

7. 31.The rglyltz’scalel argument. In the previous subsubsection we saw how to prove Proposition
inearkakeyasimplea X

in the case where all tubes are parallel to each other. We will now have to understand and

control the impact of slightly tilting them with tilting angle at most 6 = 0(g) for a given fixed

€. The main idea is the following. Instead of trying to prove the desired estimate immediately
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on the scale S, we will first study a smaller scale, say 6~ '. Then, we will jump to the larger
scale 2 using the Loomis-Whitney inequality and continue this procedure until we arrive at
the desired scale S.

To set up the argument (and also generalize the lemma a bit), we introduce the one-parameter
family of tubes of variable thickness T} o w which are W-neighborhoods (cylindrical or rectan-
gular) of the line ¢; 4.

The following lemma is crucial to get the inductive step from scale 6! to scale 62 running.

multiscalekakeya‘ Lemma 7.32. Suppose the lines {; , make an angle of at most 6 from the ej-axis. Let T o w be

as before and introduce

Nj
W= E 17, w -
a=1

If S > W/ and Qs is any cube of sidelength S, then

/ FID d;z:<C’d5d/ H ”JV%”d
Q

S ] 1 S ] 1
Proof. Since S > W/4, we may divide Qg into subcubes ) whose side length belongs to

[M M] Thus, it suffices to prove for each such cube

20d ’ 10d
d d
LI do < coot [ TL005" o
Q=1 Qj=1

Since the side length of @ is < VlvT/j, one can find an axis-parallel tube Tj,a,vi/ of twice the

thickness, i.e., W = 2W, see also the figure below.
$

2. A —
/ N

W)
7§ ﬁl) i/ s, auu,r— 74
[y T; 3/ % 4/

~ 1,

‘TV'&,S'+ L/ -ces§ ~ 2w

Figure 3 fig:tiltedvs

Therefore, we have 17, ; . (z) < 15 o (z) for all z € @ and may estimate

a,j,

d

/H i /H( mw>dilsr_{( Wm)zwdﬁNj(Q)m

Here, we used Loomis—Whitney in the second inequality (like in the previous step) and denoted
the number of tubes T}, w that intersect @ by N;(Q).
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Now, since the side length of @ is < %/d, fg\//‘% < ”{7(/]5, Thus, if T} w

intersects @, then certainly 17, , . ,(z) =1 for all z € Q and hence N;(Q) < Zivil 17, . w5 (7)
for all z € Q. Using this bound and that |Q| ~ (W/§)¢, we obtain

4 L
WdHNj( <6d|Q\H 21 Ty vwys () ~5d/H 21 ;05 (T) ,
j=1

thereby establishing the claim. (]

its diameter is <

We are now ready to give the

linearkakeyasim leaux_jw iscalekakeya
Proof of Theorem i%é? Suppose %Jrsf DS 0 Using Lemma l?%’i repeatedly, we get
[ S| / [ <cio [ [
Q

5 j=1 \a=1 Qs j=1 Qs j=1
with Cy from the assertion of that lemma. Since f; 5~ (z) < Nj for all z, we can further estimate

_1_
d—1

d 1 d
/Q 11 Zle gcyad‘MHij/ e v
=1

s j=1 \a=1 @s j=1
: -M log S M oz CFq .
Since S = 6=, we have M = log(%*l) and therefore Cj" = S1e=¢~H . Now, for given €, we chose
0 = 0(g) so small that licg)%acj) < e. Thus, for S = 6~M the above estimate reads

1
d—1

d 1
[(En) s
Q j=1

S j=1 \a=1

when S = 6~ . Now, for an arbitrary S > 1, we can find M € Ny so that Qg can be covered by
Cjs(e) cubes of side length 5~M . But then we can use the above estimate for each such subcube

and obtain
1
o d 4
[T(Sum.) =esTIvT
@s j=1 \a=1 j=1
. ilinearkakeyasimpleaux
This concludes the proof of Theorem I}“% Ef O

estregkakeya

o1s o« g o1s ennettetal2006
7.10. Multilinear restriction < multilinear Kakeya. We follow Bennett—Carbery—Tao Ha

§2].
Notation. Recall that we introduced for o > 0, ¢ > 2d/(d — 1), and p’ < ¢(d — 1)/d the notation
R*(pX...xp—q;a)

to denote the multilinear restriction estimate
d d
| H gjngL‘Z/d(BR(O)) <CR* H ||gj||LP(U]-) )
j=1 j=1
for some C = C(A,v,a,d,p,q), for all g; € LP(U;), j = 1,...,d, and all R > 1. Similarly, for
d/(d—1) < g < oo, we use
K(1x..x1—=ge)
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to denote the multilinear Kakeya estimate

q d
” H( Z 1Tj)||q/d <06 * H(5d/q#Tj) (7.28) eq:notationk
j=1

Jj=1 TjET]‘

for some C = C(e,d,q), for all transEer_sal CQHeﬁ&LOHS of families of d-tubes in R?, and all
tation. eya

0 < § < 1. Recall once more, that 1s equivalent (by standard density arguments in
suitable weak topologies), to the superficially stronger inequality

d d
ITTCSS 1oy )l paraqeny < Co~= TT647 S far, ) (7.20) [eqrkakeyanea
j=1

J=1 T;€T;

for all finite measures pur, (with T € T, and 7 = 1....,d) on R
With this notation, Theorem l?%g 1s equivalent to the statement K*(1 x ... x 1 — ¢;0) f all ectr
d/(d—1) < g<oo,and K*(1 X ... x 1 = d/(d — 1);¢) for all € > 0. Similarly, Theorem I?E% 1S

equivalent to R*(2 x ... x 2 = 2d(d — 1);¢) for all € > 0.

7.10.1. Multilin afc,g“{aggg%ioan = multilinear Kakeya. As we have already outlined (see also
Proposition ii%%i, a standard randomization argument allows one to deduce the multilinear

Kakeya conjecture from the multilinear restriction conjecture. In the localized setting, this of
course continues to be true, i.e., for any o > 0, we have

T;€T;

R*(2x%x.x2—

7.10.2. Multilinear Kakeya multilligzgear restriction. Multilin rizmﬁ&a well known bootstrap-
X . o in 1 aoeta 8 . .

ping argument of Bourgam?ﬂ? iagam, see Tao—Vargas—Vega ?3167 in the bilinear setting), we

shall obtain the following reverse mechanism.

Proposition 7.33. For all a,e >0 and 2d/(d — 1) < ¢ < oo, we have

R*(2X..x2—=qa) andlC*(l><...><1—>g;a):>72*(2><...><2—>q;%+2).

Remark 7.3 . nlr}g%% tg]“ll%oghere are n.linor flaws 'englégt%&ofs of this proposition in .B mett 9006
Carbery—Tao [0, Proposition 2.1] and in Bennett [bl Proposition 4.8]. (Formula (14) in [6] can

only hold, when the L?(Af) norm on the right side of the estimate is replaced by the L2(A}/E)
L. . ennett2014 . VE .
norm. A similar flaw occurs in %5 i This Haw is however not grave, as AY™ can still be covered
by R™Y% x ... x R™Y/2 x R~! discs (there are now O(R'/?) more discs in the argument as in
these works) as they are merely used to perform a partition of unity of f; * %4 .02[ Ay case,
a correct version of the proof appears Lecture 1 (Proposition 36) in Tao’s notes %66 .
Using elementary estimate, one easily verifies R*(2 x ... X 2 = 2d/(d — 1); ) for very large a.
For instance, noting that |By(R)| = c4R?, one has
d

d d
ITTEigsllzr -0 (Bocry) < caR™ V2T €595 ll00 < caR™ D72 T Nlgsllrw,) »

j=1 j=1 j=1
which, by Cauchy—Schwarz, yields R*(2 x ... x 2 — 2d/(d — 1);d(d — 1)/2). In the presence
of appropriately favorable Kakeya estimates this large value of a may then be tr:i.%(lillxj"ecseg‘ Dy a
re eatld ap li%atio .oﬁ{tﬁle above proposition. In particular, Proposition ogether wi
@J %111 estrimplieskakeya

multilinear restriction = multilinear Kakeya) shows the equivalence

2d d
R*(2%x..x2— ﬁ;a) SK1x.x1—= ﬁ;s) for alle > 0.

9 ) d _
m,a) =K (1x..x1— ﬁ,2a). (7.30) |eq:multilinr
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. ilinearkakeyaor
Therefore, the multjlin linear restrllc(a:ftlon theorem (Theorem ollows from lhneall(r %{(a eya
I inearkakeyasimple
l?[%; 1S sulhicient to

theorem (Theore 3 7. 20]]. a ready Guth’s simpler version (Theorem

prove Theorem I.25 L tionrestrkakeya aoetall998
The proof of Proposition l;:gg 1s very similar to that of Tao—Vargas—Vega [167, Lemma 4.4],

and on a technical level Slri&}fjébi more stgalghtforward We begin Stat]‘Pt% a 1l'emma which, given
SSumps! ilnearr

(1) in Remark l??? and the control of Y;T implici 1&1 %umptlon 15 a standard, manifestation

of the uncert inty pripciple. (See Cérdoba ni e origin of this (see also [49] ; and Tao—

Vargas—Vega ?TG’?, Proposition 4.3] for a proof in the bilinear case which immediately generalizes

to the multilinear c selz) 111 effect, this is gimilar caliggd linear restriction theory that we
. . . «10cal | ocex. ocex
discussed in Section EP especially Lemmas an

rrestriction| Lemma 7.35. The multilinear restriction estimate R*(2 X ... X 2 — ¢; a) is true if and only if

d d
I H fjHLq/d(BO(R)) < CRY/? H 1512 (7.31) ’ eq:localizedmultilir
j=1 j=1
for all R > 1 and functions f; € S(R) with supp f; C AR = Ny p(%5(U;)) = %5(U;) + O(R™)
(an R~t-neighborhood or R™1-annulus) for all j = 1,...,d.

. i tionrestrkakeya = | . .
We now turn to the proof of Proposition i?:ggﬁ where the mmplicit constants in the < notation
will at most depend on A,v,d, p,a, and €.

- i tionrestrkakeya L. iscalekakeya
Proof of Proposition [ e proof 1s somewhat similar to the one of Lemma and uses

induction on scales.
Because of the above lemma on the equivalence between global and localized restriction esti-
mates, it suffices to show

| H FillLaracpocmy S RO/2He/4—4/2 H 1£illL2cam)
Jj=1 j=1
for all f; with supp f; C Af with j = 1,...,d. To this end, let ¢ € @(Rd) be a bump
function adapted to By(C) such that ¢(x) > 0 for x € By(1). For R > 1 and = € R?, define the
modulated (L'-normalized) dilate ©%, () := e~ 2miwE RA/25( R1/2¢) which is a bump adapted to
By (C/R?) in Fourier space, respectively a Schwartz function in physical space which is centered
at x, bounded from below on B,(C~'R!/?), and rapidly decaying away from B, (C!

1/2
. . . i Ldmui’tlllnearrestrlctlon
the assumption R*(2 X ... X 2 = ¢; «) and the above localization lemma (Lemma %ﬂm—

replaced by V'R and replacing f; by the modulate f-ezm(x">) we infer

d

[ 1_[1 <pR1/z fJHL‘I/d(B (R1/2)) S Re/2md/ 1_[1 ||@Rl/2 * fg||L2 Af)
J J

for all z € R?. Thus, “L%/%averaging” this inequality over 2 € By(R) (i.e., taking both sides
to the power ¢/d, integrating over x € By(R), and taking everything to the power d/q) yields

(U.Sil’lg LI\SR 1\w—y|§\/ﬁ d.’L‘ Z Rd/Ql‘mSR)
q/(2d) Y4

[ H fa||Lq/d(Bo (R)) ~ < RO/ R_d/Z/B H [ f5 = ¢R1/2||L2 AYR) dx
=1 o(R) j=1

In what follows, we shall show that the [..]%%term is bounded by R®/* . R=%/* where the

4 - - . . . keyameasure
Re/* is just the square root of the constant in the multilinear Kakeya estimate Wi



68 K. MERZ

8 = R~'/2. Now, for each j = 1,...,d, we cover A}/E (the R~1/2-neighborhood around 2,U;))
by a boundedly overlapping family of R71/2 x ... x R%/2 x R~!-discs {D,} and introduce
fi.p; == 1p, fj. Since for each j, the supports of the functions f; p; * ¢%.,. are only finitely
overlapping, we further obtain

a/(2d) /q

d
ITT Filloracsocmy S RO R_d/z/ H > p; * Fharellie@a dx

j=1 j=1 D;
Applying Plancherel to the right side and using that (gof%l ,2)" is rapidly decreasing away from

BI(\/T%), we estimate the right side further from above by a constant times

q/(2d) d/a

d
Re/2-d/4 R—d/2/ TS 1050 12, oy da , (7.32)

Bo(R) \ j=1 D;

For each Dj, let ¢p, € S(RY) with ¥p,;(§) ~ 1 for £ € D; and whose Fourier transform satisfies
((¥p,) (@ +y)| S BTV 21, (@), wy € R with [y] < RY2,

where T; denotes the R'/2 x . x RY? x R-tube (which is dual to the disc D;) centered at

the origin and oriented along the normal ofu thlge sclclsc D;. (Note that we are here using the full

C2( ;) control given by Assumption efining f; p, := fj,p,/¥p,, we see that f; p. and
f] p, are pointwise comparable. Now, by Cauchy-Schwarz (write the following convolution like

|(F5,0,)Y () [(¥,)" (z = w)['/? - |(¢¥,)" (2 = w)|'/?), we may estimate
|(f5.0)Y (@ + )P = |(f.0,)" * (p,) Y (z + 9> S R I2|(f50,)V % 11, (2)
for all 2,y € R? with |y| < R'/2. Integrating this in y over |y| < R'/? yields
105,000 ooy S B2 00" 5 1, (1)

cal1zedmult1l:mearrestr:,g;tlonsmoothened

Plugging this estimate in 1!? dz; and applymg the R~ "7*-resca e ‘

; ; q/(2d) Y9
X a_d _d _ rs
ITT Fillzaracmocmy S R? ™% |R™2 / 11D R '2I(fi0,) P * 1x, (2) dx
=1 Bo(R) \ j=1 D,
1/2

< Ra/2 d/2+e/a H Z Hf] D; ||L2 A‘/i
Jj=1 \ Dj

SRV d”*”‘*H 1ill o aymy = B2 W?*E/‘*H £l 22 ary -
j=1 j=1

In the penultimate inequality we used Kakeya and then Plancherel, and in the final inequality,
the pointwise comparability | fj p,| ~ |fj,p;| and then the almost disjointness of the f; p, to take

lnrd‘m‘tlonrestrkakeva
L]

the D;-sum into the L? (A}F)—norm. This concludes the proof of Prop051t10n[ 33}

eq:localized
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8. RESTRICTION ESTIMATES VIA REVERSE LITTLEWOOD—PALEY INEQUALITIES AND THE
KAKEYA CONJECTURE

Before we introduce the third tool commonly used to prove restriction estimates, let us discuss
another possible approach to prove localized inequalities of the form (for P?~! for the sake of
concreteness)

[(Fdo)¥ || L2as a1 (B(zo,r)) S BN Fl p2as@-1) pa-1 g0y
for R > 1 and any xo € R?. As we saw earlier, the above estimate can actually be reduced to

||GI|L2d/<d*1)(B(zo,R)) S Rs_(d+1)/(2d)”G”L2d/(d*1>(N1/R(]P’d*1))

~ . A A 3 ocext
for any G with smooth Fourier support contained in N; / r(P471) (see Lemma @._T(? make

things simpler, let us only consider smooth functions f = G with f = @ belonging to the unit
ball in L (N7, (P?71)), i.e., we are aiming to prove

£l 2as@-1 Ry S R

Of course, this is a weaker statement (by Holder’s inequality), but by symmetry considerations
one can actually show these statements are equivalent to each other.

We are now going to decompose Nl/R(IP’d*I) into a collection of “slabs”  C RY, i.e., essentially
disjoint curved regions with dimension R=1/2 x R=1/2 x ... x R~1. An explicit way to do this is
to cover [—1,1]97! with 2R™1/2 x R™1/2 x ... x R™'/2 cubes {Q} whose centers lie in the lattice
R~1/274-1 and define each 6 by

0={En+1P) ¢ €Qn| SR}

for some choice of Qy € {Q}. We emphasize once more that it is important that the slabs are
only essentially disjoint, i.e., they have some finite overlap which will also become manifest in
a moment. In fact, the finite overlap allows us to construct a partition of unity of N, r(P471)
which is adapted to the family of slabs. Another consequence of this construction (and the
curvature of P471) is the following observation concerning the set Q of normals of these slabs.

1/2

Lemma 8.1. The normals of the above slabs are R™"/*-separated.

Proof. For j = 1,2, assume ( },|§’|2) € P and let v; = VIE|?/|VIE]?| (with V|§§|2 =
(2¢},—1)) denote the unit normal of P4~ at (¢}, [¢/[?). Then, by Cauchy-Schwarz and |¢] — &5
R—1/2
461 - € + 1 ( 4le — g )”2 iy
V- Uy = <(1- <(1-AR /2
S e oeagr e <\ age s g ) = :

Thus, we obtain

i

|I/1 — I/2|2 = 2(1 — UV 1/2) z R71

by the mean value theorem. If v - v < 0, the above difference is even O(1). O

We will now decompose f using the partition of unity that is given by the slabs 6, i.e.,

f= Z fo where fo = f1p.

0:R—1/2—slab

Our goal is then to prove

Z f0 5 Re—l )

0:R—1/2_glab L2d/(d=1)(B(zo,R))
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In fact, we will show the ostensibly stronger estimate

Z f6’ 5 Rs—l )

0:R—1/2—slab 2d/(d—1)

The main difficulty is to understand the cancellation properties between the individual fy. There-

fore, our first goal is to replace the ¢! quantity Y, | fs| by the £? quantity (Ze \f9|2) /2 yhich has
the effect of separating the contributions from individual fy whilst accounting for any destructive
interference. Unfortunately, such a strong relationship has not been obtained yet, which is why
we only have the following

Conjecture 8.2 (Reverse Littlewood—Paley inequality for slabs). Suppose f has frequency sup-
port in Ny/r(P4). Then
1/2

2d
2
Il SE( S 10l for2<p< . CRY

0:R—1/2—slab
Lr(R4)

For even Holder exponents, the reverse square function estimate can be proved under the

condition that Minkowski sums of sets have only bounded overlap.

Definition 8.3. Let (£2;)7_, be a sequence of sets in R?. We say that “¢ lies in at most Ay € N
of the ©;” whenever the maximal number of €}; which contain £ is given by A,, i.e.,

Aj := sup {number of s containing £} .
£ER

Then we have the following

Proposition 8.4 (Reverse L? and L* square function estimates). Let fi,..., fn € S(R?) have
Fourier support in sets Q, ..., Q, C R, respectively. Then we have the following assertions.

(1) (Almost orthogonality) If the sets Qq, ..., S, have overlap at most As, (i.e., every & lies
in at most Ay € N of the Q) for some Az > 0, then

1/2
1" filleeay < AN 1Y 22y -
j=1 j=1

(2) (Almost bi-orthogonality) If the (n?) sum sets Q; + Q; :={+ & : £€Q,& € '} with
i,j € {1,...,n} have overlap at most Ay for some Ay > 0, then

1/4
1" fillagay < AN £ Y2 paay -
j=1 j=1

Remarks 8.5. (1) Clearly, the above theme can be generalized for L? with p € N, if one

assumes that the sum sets Z’Ll 2; have overlap at most Ay, see, e.g., Gressman—Guo—Pierce-
ressmanetal202f—J=

Roos—Yung [[87].

eq:reverselp

_ 1pl214
(2) By using f;f; in place of f;f;, one can also establish a variant of (2) in Proposition E% ==s

where the sum set Q; + € is replaced by the difference set Q; —Q; :={{-¢&: £ € Q,¢ € U}

Proof. (1) For p = 2 this is an immediate consequence of Plancherel’s theorem, pointwise Cauchy—
Schwarz

OC IO < Ax(X 15O
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(since the sets are only finitely overlapping) and Fubini. More precisely,

[ ng”z =| ng||2 < A”2||<Z 15202 = A2 1Y)
j=1
(2) Writing

IIZfJIM = Z fifill2

1,5=1

and

Z |fifil3) 21l = H(Z\fjl )13

4,5=1
it becomes obvious that this assertion follows from What we have just shown. More precisely,
using the fact that f;f; has Fourier support in the Minkowski sum €; + €2; (by the convolution
theorem, i.e., supp fl * fg C supp fl +supp fz) and the fact that these sums only overlap finitely,
we can apply Cauchy—Schwarz in the 4, j-summation, i.e.,

(3" Fifi€)? < A0 S° RS9

i,5=1 i,j=1

and conclude as before using Plancherel. a

. ; CordobaFeff erman . . .
In Appendix lE we apply the above observation to review a classical argument due to
Cérdoba which proves the reverse Littlewood—Paley inequality (and thereby t?e rggtrl@ct tion con-

jecture) in d = 2 when p = 4. (Recall that we already presented in Subsection an alternative
proof of two-dimensional restriction relying on bilinear techniques )

Remark 8.6. e%relrfsaeqt an. argument of Carbery %6' sﬁo WS that the hypothesized square function
(E ; implies “th

estimate e Kakeya conjecture and, consequently, the restriction conjecture. At-
tempting to rovgv‘gyseefvhole restriction conjecture from this direction seems a quite optimistic
strategy as @W&_fz_@l be very powerful and in all likelihood considerably more difficult
than the restriction conjecture.

From now on, we will assume that the reversed Littlewood—Paley inequality holds. The
frequency localization onto the slabs leads (by the uncertainty principle) to a localization to dual
tubes which is called wave packet decomposition and which will be discusse inet}algkggxt section.
Let us anyway anticipate already the main result of that section, Lemma Eii]; which says that
there exist constants fr and a collection T(f) of tubes dual to the slab 6 (which is centered at
&9 € R?) which cover R? such that

Z Jror(x

TET(6)

where () = |T|~te™ 2% (1) is a so-called wave packet associated to T. Here, pr = poary'

where ¢ is a Schwartzian bump function centered at the origin with supp ¢ C [~1/2,1/2]¢ and
ar is an affine transformation whose linear part has determinant |T| and maps [—1/4,1/4]¢
bijectively to T. (Recall that for an invertible linear map S : RY — R%, one has

FoSr=|det(Sy)| " foS™"

where S—t denotes the inverse transpose of S.)
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Now, applying the Littlewood—Paley conjecture together with the wave packet decomposition
implies that it suffices to bound (noting |T| ~ R(*+1)/2)

o\ 1/2

Rl ST S el

0:R—1/2—slab | T€T(0)
L2d/(d—1) (Rd)

We will do so by replacing the “smooth indicator function” @7 (which decays r icyy away
from T') by a sharp cut-off 17 and afterwards applying the Kakeya conjecture %Lln this
context (using |T| ~ R@*t1/2 and that the number of R~'/?-separated slabs covering P4~ is
O(R@=1/2)) the conjecture says

> 1z, SR
0:R—1/2—slab Ld/(d=1) (Rd)

We begin with the replacement of o7 by 17. For this, let ¢ € Z% and 17, denote the
characteristic function of the rectangle ar ([—1/4,1/4]* +¢/2). Thus, the 17, yield a rough
partition of unity of R

Lemma 8.7. With the above notation, the estimate
o\ 1/2

Z Z | frller|

09:R—1/2—slab | TE€T(0)
L2d/(d=1) (Rd)

_ o\ 1/2
S Z(1+|€|)_(d+1) Z Z |fr|1re
Lezd 0:R—1/2—slab | T€T(0)
B L2d/(d—1) (Rd)
holds.
Proof. This follows from the rapid decay of ¢, i.e.,
]—TZ 17 (x
‘SOT |_ZQDT ].T[ <Z d_;’_lr\zz 1+|€| d+1
tezd teze (1 +lag tezd

and a two-fold application of Minkowski’s inequality (ﬁrst in the £2-norm and afterwards in the
L24/(d=1) _norm). O

Since the supports of the 17 ¢ are essentially disjoint as T varies over T(0) (i.e., 11, ¢(x)17p, () =
0 for almost all 71,75 € T(#)), one has

Yoolfrlre| S el

TET(0) TEeT(0)

That means that the L2%/ (=1 _norm (of the right side appearing in the inequality of the above
lemma) for a fixed £ € Z? can be bounded by

> > el

0:R—1/2 _slab TET(0) La/(a-1)(Rd)
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This means that it suffices to show that this expression is O(R(?~1)/2). Using the information

on y | fr|? from the wave packet decomposition and our initial hypothesis that f belongs to
the unit ball of L> (N7, (P?~1)), we have

Z |fT|2 5 17
TEeT(0)
i.e., there exists a sequence (cr)rer(p) of non-negative real numbers such that
>
TET(6)

and that

Z Z |fr[* L7 S Z Z crlry

9:R—1/2—slab TET(9) La/(a-1) (Ra) 9:R—1/2—slab TET(9) La/(d=1) (Ra)

Lemma 8.8. With the above notation, we have

Z Z crlry SE Z 17,

9:R—1/2—slab TE€T(0) Ld/(d=1)(Rd) 6:R—1/2—slab L4/(d=1)(Rd)

for any ¢ € Z* and choice (Ty) € T[], T(0) E|

Believing this lemma for the moment, the argument is concluded by applying the hypothesized
Kakeya estimate

d—1
D U < R (8.2)
0:R—1/2—slab Ld/(d=1) (Rd)

which is valid for every choice ¢ € Z and (Ty) € [], T(6). We conclude the section with the

Proof of Lemma @?ﬁﬁ}ra%%sider randomly selecting a sequence of rectangles, one for each
direction 8. Each T is chosen from T(#) with a probability cr El This means that we constructed
a probability space [[, T() where a sequence of rectangles (i.e., a singleton {(7p)}) is picked
with the probability [], cz,.

(2) For a fixed z € R?, consider the random variable Y, 17, ¢(z) which counts the number of
rectangles of the above randomly picked sequence (Tp) for which « € supp 17, . The expectation
value (with respect to the “probability space” T(#)) that = € supp 17, ¢ holds for a given 6 is
given by

E1T97g(x) = Z CT1T974(I) .
TET(0)
Thus, by the linearity of the expectation, one has

E Z ]-Tg,é(l') = Z Z CT]-TQ,Z(x)

0:R—1/2—slab 0:R—1/2—slab TET(H)

12Here, (Ty) is understood as a randomly picked sequence of rectangles, one for each direction 8. The space
1o T(0) is thus endowed with a probability measure which assigns the probability [], cr, to each singleton {(7p)}.

L3More precisely, consider a sequence of slabs (6;);jen. Then for each slab 85, there is a sequence of rectangles
(Tgnj)neN € T(;) (which covers R?) and the above cr actually means CTB"]'

’ eq:kakeyasquarefct
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Taking the L% (4= _norm of these expressions, we infer from Minkowski’s inequality

YooY el <SE| D In(@)

9:R—1/2_gslab T€T(0) Ld/(d=1)(Rd) 9:R—1/2—glab Ld/(d—1) (Rd)

for any ¢ € Z% and choice (Ty) € [], T(6). O

9. THE WAVE PACKET DECOMPOSITION

We will now present the third method which has been used over the last say ten years to
obtain restriction estimates.

For the sake of illustration, assume that we wish to prove restriction estimates for the parab-
oloid P4~! using restriction estimates via reverse LittlewoodPaley inequalities.

Recall that we covered N, p(P4~1) with R~1/2 x ... x R71/2 x R~1-slabs  whose normal
directions were R~1/2-separated. This lead us to the decomposition f = > ¢ fo in Fourier space
where fg = f1y. By the uncertainty principle, localizing to a slab 6 which is oriented in direction
w is equivalent to localizing to a dual tube T' (or rather to a collection of such tubes covering
R%) of dimensions R'/2? x --- x R'/? x R in physical space which is oriented along w as well. The
functions which are going to localize to these tubes are called wave packets and can be thought
of as smoothed out copies of Knapp examples. The goal of this section is to make the above
intuition more precise.

Let T be some rectangle and ar be an affine transformation whose linear part has determinant
|T| and which maps [—1/4,1/4]¢ bijectively to T.

Let further ¢ be a Schwartzian bump function at the origin such that supp ¢ C [-1/2,1/2]¢
and Q[[_y/4,1/49¢ = 1. Define then pr :=po a;l as the bump function on the tube T. (Recall
that for an invertible linear map S : R* — R¢, one has

FoS=|det(s)| 1 fos

where S™! denotes the inverse transpose of S.)

Finally, for a given slab 6, we denote by T(6) the finitely overlapping collection of tubes which
are dual to 6, oriented along the direction of 6.

With the above notation, we are finally in position to define wave packets.

Definition 9.1 (Wave packets). Let 6 be an R~1/2.slab centered at & € R Let T, ap, @r
and T(0) as above. Then a wave packet associated to T' € T(6) is defined as

dr(z) = [T ™S op(z).

Before we make the heuristics of the beginning of the section precise, the following crucial
observations are in order.

(1) If a% denotes the adjoint of the linear part of the affine transformation ar, then |¢p(€)| ~
|@(a% (€ — €)) and ¥y is supported on a dilute of 6 with [¢r|e| = 1.

(2) We have the support property {& € R? : [¢or(€)| = 1} C (a3) ™' ([~1/4, 1/4]%) + & where
(a%)~* ([~1/4,1/4]%) is a rectangle dual to 7.

Lemma 9.2 (Wave packet decomposition). Let f € C°°(R?) with Fourier support in Ny ,p(P?~1).
Then for any R=/%-slab 6 there exists a decomposition

= Y frir(

TET(6)
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where the constants fr satisfy

1/2
Yool S el
TET(6)
Here, the averaged LP norm || - [[zp, (q) for some subset 2 C R of finite Lebesgue measure is
defined as
1 fllze, o) = 19177 £l Lo - (9.1)

Proof. Denote by Ty the RY? x --- x RY? x R-rectangle oriented along 6 and centered at 0.
Then
90(€) := fo((ag,) ™€ + &)

is supported on [~1/2,1/2]¢ and can be thought of as a function on the torus T¢ = [~1/2,1/2]%.
That means, that it can be expanded in a Fourier series whose Fourier coeflicients uy, satisfy

7 ukl® = llgoll 3121 20) S 1761122, o)
kezd

Therefore,

fo(€) = golar, (€ — &) = Y upe >™F 0" for & € (af) 7 ([~1/2,1/2)%) + &

keza

On the other hand, we saw in our earlier considerations that the function ¢(a7, (£ — &p)) equals

one on supp fp and is itself supported on (a”‘TO)*1 ([71/2, 1/2]d) + &». But that means that the
last equality can also be written as

f (5) _ g@(aTO E 59 Z u ef2wzk GTO(E €o) ( (5 59)) for 5 c Rd.

kezd

Performing an inverse Fourier transform on the last expression then leads to

x) = Z ug| det a;ﬂl |e?™ 80 o (2 — aq, k) = const Z UL VT, +argy k(T) -
k k

The proof is concluded by noting that T(6) is just the collection of all rectangles of the form
{TO + a’Tok}kEZd' O

10. INDUCTION ON SCALES
11. ADAPTING WOLFF’S ARGUMENT TO THE PARABOLOID

12. CONNECTION TO PDESs

trichartz1977
12.1. Original Strichartz estimates. Strichartz f , §3] observed that restriction theorems

immediately yield estimates on the LP norms of solutions to certain dispersive PDEs, in particular
the free Schrodinger equation, the Klein—-Gordon equation, and the acoustic wave equation. We
begin this section by giving classic bounds on ||ul| » for the free Schrédinger equation. We will
then generalize these estimates to mixed norm estimates which are invaluable to prove global
well-posedness of nonlinear dispersive equations such as the cu jcc n(ﬁnlitn%;_(Schrédinger equation.

The main theorem of this section is the following L w%my 1]. The full range
of Strichartz estimates were p%:oveglre elKl%%]Q r;?da ;Tag I(TS ereas non-endpoint results were
obtained by Ginibre and Velo [¥4] and Yajima [I82
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Theorem 12.1 (Strichartz estimate for the free Schrodinger equation). Let u(x,t) be the solu-
tion of the inhomogeneous, free Schrodinger equation
.Ou
i

r (x,t) + AAu(z, t) = g(z,t)

(12.1) |eq:freeschro
u(x,0) = f(z)

forx € RY t € R, and A € R\{0}. Assume f € L*(R%) and g € LP(R*Y) forp = 2(d+2)/(d+4).
Then u € LI(R™Y) for g =2(d+2)/d and ||ully < a([|fll2 + llgll»)-

. -freeschroedinger . ) .
Proof. Tt is well known that (TZ.T)) has a unique solution which can be written as

t
u(et) = [Ny sy ds b [ e 20 gg
0 Rd
by performing a Fourier transform and applying Duhamel’s formula. The estimate for the second
term is then an immediate consequence of the restriction theorem
[(Fdo)"|lLa@arry S [I1Fllz2(s)
where the manifold S is the paraboloid starting at the origin, i.e.,
S ={(z,t) e R : R(z,t) :=t — Az|> = 0}.

To estimate the first term we use [|€**2||a_o = 1 (by unitarity) and [|e”?||; 00 < |t|~%2 (by the
fundamental solution of the free Schrodinger equation). Thus, by interpolation,

. _ 1_1 _
e g S 174G 2) = Jg =/ (@+2)

Thus, with r = d/(d+2) (i.e.,, 1/p—1/q¢ =1—r = 2/(d+2)), and the Hardy—Littlewood—Sobolev
inequality,

t
/ ei)\(tfs)Ag(" S) ds
0

which was asserted. O

. . . . . [ChristKiselev2001
Remark 12.2. One should compare the last inequality with the Christ-Kiselev lemma [[45]

which says the following.
Let X,Y be Banach spaces, I be a time interval, and K € C°(I x I — B(X — Y)) be a
kernel taking values in the space of bounded operators from X to Y. Suppose 1 < p < g < oo is

such that
‘/K(t,s)f(s)ds
I

for all f € LP(I — X). Then, for any s < ¢, one also has

t
s/u—wwmwhmmwﬂmmwm,
Lq(Rd) 0

S I llzp-x)

LI(I=Y)

K(t,7)f(r)dr S llerr—x)
el:s<t Lf([—>Y)

The principle that motivates this lemma is that if an operator is known to be bounded from
one space to another, then any “reasonable localization” (in this case to the causal region s < t
of time interactions) of that operator should be bounded as well. Unfortunately, the condition
p < q is necessary.

mithSogge2000
Tﬁgogiﬁ)f of this lemma as it was formulated here can be found in Smith and Sogge T
ao 161"

140] or
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For Strichartz estimate for egSS&%b'lginger equation with scalar potentials, we refer to the
recent paper by Seo and Seok

) ol [T and the vast list of references thevgin, Leto b i DACAR, rectarooos
emphasize the groundbreaking works by Bouclet and Mizutani [IZ] and Burq et al [30; B1] for
Schrodinger operators with critical singularities and critical decay (in particular of Hardy’s type).

12.2. Global well-posedness of the cubic NLS in d = 2.

12.2.1. Non-linear dispersive equations. Let us discuss some immediate consequences of the re-
striction conjecture regarding evolution equations. Examples for such equations are the heat
equation

Ou—Au =0,
the wave equation

OPu—Au=0,
and Schrodinger’s equation

10— Au=0.

There are many other important evolution equations such as the Euler or the Navier—Stokes
equation which describe the motion of fluids.

For evolution equations, the natural problem to study is the Cauchy problem (as opposed to,
say, the Dirichlet problem). We specify initial data w(0) = f (and, for the wave equation also
the initial velocity d;u(0) = g) and ask for the solution u at a later time ¢. There are three
fundamental questions that one can ask about such equations.

e Existence: does a solution u(t) exist at all? In what sense (weak, strong, classical) is it
a solution? Does it exist for all times, or just for a finite time interval?

e Uniqueness: can there be more than one solution with the same initial data? Are there
some extra conditions (e.g., regularity conditions) one needs to impose to force unique-
ness? If there are still several solutions, is there a “good”, or “physically relevant”
solution that is somehow “better” than the others?

e Stability: suppose we perturb the initial data slightly. How does this affect the solution?
More precisely, does the solution depend continuously on the data (as measured in some
Banach space norm, for instance)?

An equation is said to be well-posed if it satisfies all of the above three properties. (Clearly,
one can qualify well-posedness as being local or global in time, or being subject to some regularity
condition, etc.)

For linear equations these questions are fairly simple to answer, but they become more subtle
for non-linear equations. In the following we shall focus on the nonlinear Schrédinger equation
(NLS), a prime example for a dispersive equation, i.e., irregularities of solutions do not go away at
all, but instead they propagate around in space. In particular, different frequency irregularities
move in different directions or at different speeds. As such, solutions do not get smoother as
time goes by, but they do tend to spread out and decay.

For this discussion, we shall just focus on variants of the Cauchy problem for the free linear
Schrédinger equation

10iu—Au=0
u(0) = f

in two spatial dimensions, i.e., u(t,z) is a function on R x R?. For this equation, we have the

exact solution
1

ut,z) =e A f(z) = It /Rz e_m_ylz/(u)f(y) dy
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which is valid for all ¢ # 0 (and pointwise for f € L* N L?). For fixed f € L', the solution decays
in time, namely
, 1
—itA < - .
e flloe < =N
On the other hand,

le™* 2 fll2 = 1I£l2

by Plancherel. (In fact, all Sobolev norms are conserved in time.) So, even though the solution
decays pointwise, the L?-norm is not altered, i.e., nothing gets “annihilated” (or created). This
is reflecting the dispersive rather than dissipative (meaning that singularities attenuate and
disappear as time goes by) nature of the equation. Very poetically speaking, it is the A term
in the Schrédinger equation that causes the dispersion; without this term, the equation becomes
Oyu = 0 which obviously has no dispersion.

Now let us perturb the free Schrédinger equation. Popular examples of perturbations include

restricting the equation on a manifold on R,

adding an obstacle (and providing some sort of boundary condition),
adding a potential,

coupling it with another equation, or

adding a non-linearity.

Let us consider the last option and restrict ourselves to the so-called meson equation or cubic
non-linear Schridinger equation in d = 2 dimensions, i.e.,

i0pu — Au = Aul*u
u(0) = f
where A € C is a constant. One could of course consider other non-linearities as well but the
cubic non-linearity is just L?-critical, i.e., if |Jul|2 is kept constant (as it physically is), it is not
possible to scale A away (which is possible for other powers of the non-linearity).

To get some idea of what thi el(guation is doing, let us pretend that the dispersive term, i.e.,
Awu, was not present. Then %&m be integrated and the solution reads

(12.2)

) = (u(O)|? - 2a0) "% 20

where —iA = a+ib. Obviously, if a = Im(\) > 0, the equation will blow up in finite time, namely
at t = (2aju(0)[?)~1. Tt is basically the non-linearity which causes a positive feedback loop and
leads to the rapid increase of the solution.

However, we expect that the dispersive Au term tries to stop this blow-up from happening
by spreading the singularities of u around as soon as they get too large. Of course, for this to
happen, the solution at ¢ = 0 or the coupling constant A of the non-linearity must not be too
big. In fact, we have the following

Theorem 12.3. Supnose || f||2 = 1. Then, if A is sufficiently small, there there exists a global
solution u to ﬁ%uch that ||ulle < 1 for all t. Furthermore, the space-time estimate
lullga, < 1 holds. This solution is unique subject to the above condition, and the solution
depends continuously in the norms just mentioned on the initial data f in L?. Finally, we
have scattering in the following sense. There exists some initial data fy such that

[u(t) —e ™2 f ]l =0 ast— oco.

In the PDE jargon, we just claimed thai th? meeq_%}]]lbgaquation is globally well-posed with

scattering in L? for small A\. In Subsection we shall discuss the case of large coupling
constants A.
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Note that this theorem does not care about the sign of A. (Intuitively, A\ > 0 should act
as an “attractor”.) The theorem says that the decay inherent in the Schrédinger equation has
tamed the effect of the non-linearity. In fact, as time goes to infinity, the non-linearity becomes
increasingly irrelevant.

The techniques used to prove this result are by no means restricted to this one particular
equation; they can be extended to all kinds of non-linear dispersive equations which are in
some sense a small perturbation of a well-understood linear equation. Unfortunately, we still do
not really understand how to push the well-pos dféess theory beyond perturbation theory into
equations that are far more non-linear than @7

The treatment of these equations is connected, spiritually at least, with restriction theory. An
informal link is as follows. Suppose that u is a global solution to the free Schrédinger equation

10iu—Au=0.
Assuming that u has a space-time Fourier transform, we get (formally at least),
—277a(T, &) 4 4n&2a(T, &) = 0,
where
u(r,§) = //e_2ﬂi(t7+£'m)u(t, x)dtdr.
If a(r, &) # 0, this implies 7 = 27[¢|?, i.e., @ is supported on the paraboloid
S={(r,€): 7 =2n[¢|*}.

Thus, we may write

u=gdo
for some g, where do is some surface measure on S. It turns out that the best choice of do is the
spatial Lebesgue measure d¢, or more precisely the pullback of this measure under the projection
map (7,§) — &.

If we require that the initial data of u is in L?, it turns out to imply a L? estimate on g by
Plancherel’s theorem. In other words, we have a representation of v as u = gdo where we have
L? control on g.

We would like to say that u decays at infinity, so that the non-linear effects will also die away.
It turns out that the right estimate to use is

lgdollzs, < lgllz-

(In d spatial dimensions, this is ||g/C-l;'HL2(d+2)/d < lglle.) If we take the adjoint of this, this
x,t
becomes
125,00y S N fllays

which is just the Tomas—Stein restriction estimate Rg(4/3 — 2) in d = 3 dimensions.

In what follows we will however not invoke the Tomas—Stein estimate since u is supposed
to solve the mon-linear, rather than the free Schrédinger equation. However, the Tomas—Stein
philosophy, particularly squaring an estimate and interpolating between an L' — L° and an
L? — L? estimate, will be very present.

12.2.2. Proof of well-posedness in d = 2. Let us start with the proof of the main theorem. We
want to solve the equation

iug — Au = Mul*u
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with initial data «(0) = f. Without loss of generality, let ||f|l2 = 1. In a first step, we shall
rewrite this equation as an integral formulation via Duhamel’s principle, namely
¢

u(t) = e_itAf + i)\/ e_i(t_s)A(|U|2u)(S) ds. (12.3) |eq:nlsduhame
0

(One should think of the first term as the influence of the initial data, whereas the second term
corresponds to the cumulative influence of the forcing term |u|?u.) Although this equation is
equivalent to the differential form, it is much easier to handle when it comes to proving existence
and uniqueness.

To find a solution, we shall use an iterative method. We first approximate u by the linear
solution

up(t) = e "2 f

and then make the better approximation

t
up(t) = e UAF 1N / e~ 9B (Jug|Pug) ds
0
and so forth, by defining w1 = Nuy where

(N(u)(t) = e A f +iX / e I8 (|u?u) ds .
0

We hope that this sequence of approximations converges to a limit as k — oo so that N(u) = w.
Put differently, our goal is to show that the operator N has a fixed point, that this point is
unique, and that it depends continuously on the data. This would be an immediate consequence
of the contraction mapping theorem, provided we know that IV is a contraction on some metric
space X which contains ug. This sounds easy enough — and a very large number of existence
results in PDE are ultimately derived from this very simple idea. The catch is that we have to
pick the right metric space to get the contraction working.

After a lot of experimentation and looking at the behavior of the first few iterates ug,uq, etc.,
we ultimately decide that the correct space to use is

X = {u: |lulls, <O},

where C' is some universal constant and the metric is induced by the L* norm. Thus, we would

like to show
luollzs, S1 (12.4)

and

IN(u) = N()lrs, <

w—vl|pa forallu,veL?,. 12.5 eq:contracti
L, x,t

This will be accomplished by the following three esti ates ;gélzich go under the name Strichartz
estimates and were already discgsos&q In Subsectionii % ;E We shall use the homogeneous Strichartz

estimate (yields estimate (Il%%i on ug = e "4 f)
e Flls, S 151l (12.6) [eq:honstrich

X ichartzfreeschroedinger . . . A
(compare this to Theorem [I2.1]), the dual homogeneous Strichartz estimate (yields scattering

and that u(t) still belongs to L?)

I / AF(t) dt|s < ]| ass s (12.7) |eq:dualhomst
0 x,t

DN | =
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and the retarded Strichartz estimate (yields the contraction property)

t
I [ e 2 ) sl S I (128)

We shall prove these estimates in the next subsubsection. For now, let us see how these estimates
give what we want. <zerothit
First th?1 e%timate on the zeroth iteration uy = e "2 f ie,. , follows trivially from
-homstrichartz K :contractio R :
Il ?% i Next, we shall prove the contraction property . We hirst note that one can simplify
N(u) — N(v) as
t
N(u) — N(v) = i)\/ e =8 (|uf?u — |v]?v) ds .
0

:retardedstrichartz

Thus, by (T2, we have

IN(u) = N(0)ls, < Ml — fof?ol] s
Now, we use the pointwise estimate
llul*u — [v]*0] = |[uf*(u = v) = [v[*(v = u) + [u*v — |v[*yl
< [l (u — v) = o] (v = )| + v — v

= [Jul*(u = v) = Jo*(v — w)| + [uv(@ - )|

IN

[ul?[u = vl + [o*|o = ul + Julv|Ju - v|

IN

5 ul?lu = o]+ vllu = v[] = O(jul*lu = v]) + O(|v*|u - v])

and Holder’s inequality to obtain

IN() = N@)llzs, S I (lullflle = vlls + [oli3u = vlls) -

ot

. 4 :contraction . . .
But since u,v € L, 4, clearly holds, if A is chosen sufficiently small.
Thus, we have proven existence, uniqueness, and continuous dependence of v on the initial

data. As a bonus, we get that the limit u € th. However, we are not done yet; we still
need to show that u(t) still belongs to L? and that scattering occurs. Let us investigate the
square-integrability. From Duhamel’s version of the NLS, we obtain

t
lu(®)llz < lle™*2 fll2 + He”m/ "2 (|ul*u) ds|| .
0

’ eq:retardedstrichart

. . 9 . -dnalhomstrichartz
Clearly, the first term is bounded since f € L. To estimate the second one, we use W

obtain
t
II/0 2 (Julu) dslla < Nulullas = ullf $1

as desired. Finally, we show scattering. Define f, by

fv=[f+iA /000 ™A (|u*u)(s) ds,

:dpalhomstrichartz

i.e., fi is equal f modified by the backdated effect of the non-linearity. From (IZ.7]) and the
argument just given, we see that f, € L?. We wish to show

|u(t) —e @2 f ] =0 ast—oo.



82 K. MERZ

From Duhamel’s version of the NLS, we have

u(t) —e HAf, = <e“A f+iX / te*i@*S)A(\uFu)(s) ds)
0

e A (Ju|2u) (s) ds>

I
~
>
)

L
>
8
@
&
>
fan
£
n
£
—
N
QU
V)

. -dpnalhomstrichartz
Using (i ?”, we obtain
lu(®) = e Fill2 S M1 p,00) [ul*ulla/a

which yields the claim by monotone convergence.

12.2.3. Proof of the pirighgrtz estimates. [Check whether the following arguments were generalized
by Keel--Tao h105 Theorem 1.2] to obtain sharp Strichartz estimates from L! — L
bounds on e ]

- re _r dotzsn- etz ch -retardedstrichartz
Let us first see the implications (TZ. ( ) nally prove s

the homogeneous Strichartz estimate follows from the dual homogeneous estimate by Cauchyf

Schwarz, namely
/ </ eAF(t, x) dt)f(x) dx
0

Rearranging the left side, this becomes
[ [P waras] 1)1
. X -homstrichartz
Taking SUP e /3, We obtain ||e” ”Af||L4 < |1 fll2, i-e. 1!@%) by duality of the LP spaces.

Next, let us see how the dual homogeneous estimate follows from the retarded estimate. First,
we square the dual homogeneous estimate as

0o Sl
</ eztAF(t) dt7/ ezsAF(S) ds) < ||F||i4/3
; 0 .t

SIFl sl 2.

and rewrite it as
oo o0 . i
| e r e pe) dsi < P
0 0 x,t
By symmetry, it suffices to consider the portion of the double integral where s <, i.e.,
oo t ) )
| [ s @@ E ) < 1P
0 0 z,t

and rewrite this once more as

o] t
/ / F(t, x) (/ e IR R (s, 1) ds> dtdx .
r2 Jo 0

Now, by Holder’s inequality, the left side is bounded by

t
|1 F| Lass / e UIAR (s, x) ds
z,t 0

4
L3,

. -retardedstrichartz . . .
Now, we may apply the retarded estimate (IZ-8]] which yields the claimed inequality.
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Finally, let 1y prove the retarded estimate. We right out the L ; norm of the left side of
S

strichartz
2.3)) a
o 4 1/4
[l
0 L4

and apply Minkowski’s inequality to obtain

o > t i !
H/ e IAE )| 0 < / dt (/ ds e"‘t‘s)AFlle)
0 ' 0 0 4

By interpolating between [[e=#2 f|la < || fll2 and [le™"2 f|loo < [t| 7Y f]l1, we can estimate the
L% norm appearing in the integrand and thus obtain

t 00 t 4
[ e rastuy, < ([T ( [ astess2EG )

<2 IFO N asllze S IFN s

t
/ e_i(t_S)AF(s) ds
0

1/4

1/4

where we used the HardnyittlewoodeEb_oleéf a}gg&l%%yc‘rﬁl al(%g the time-dimension!) in the final

inequality. This concludes the proof of ;

12.2.4. Large values of A. The proof of the contraction property @%ﬁz relied on the
smallness of A. Therefore, it is not expected to obtain global existence for large A\ since the
non-linear term can make the the wave function extremely large for certain frequencies before
dispersive effect of A can repair the damage. However, one can at least get a local solution.

Theorem 12.4. Suppose, E];”Q = 1 and X\ is arbitrary. Then there exits a time Ty > 0 and
a local solution u to such that ||[u(t)|ls < 1 for all 0 < ¢t < Ty. Moreover, u satisfies

~

lullps 2 xjo,m)) S 1- This solution u is unique subject to the above conditions and the solution
depends continuously in the norms just mentioned on the initial data f € L?.

The proof of this theorem is virtually identical to that of the main theorem. There are,
however, two main differences.

(1) All our norms are restricted to the space-time interval R3 x [0, Tp].
(2) We iterate on a much smaller ball, namely

X =A{u:ullzs,mexom) <€}

where £(\) is a tiny number. One can check that the Duhamel map N is still a contraction
if this number is small enough.

(3) We must guarantee that the zeroth iterate ug = e "2 f is in X. But this follows from
the homogeneous Strichartz estimate ||e’“AfHL§ , S Ifll2s te., Jluollzs, < 1 globally.

Thus, if Tj is chosen small enough, monotone convergence shows [|ug|| 4 L(R2x[0,Ty]) < €

12.3. Strichartz estimates for the chﬁé’) ixtlgrer equation on the to uskvié\),.gecoupling
N L. . : ichartztérus . . HickmanVitturi
inequalities. See Subsubsection an e notes of Hickman—Vitturi [94] p. 22, Lecture 2,

Section 2.2].
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13. POINTWISE CONVERGENCE OF THE SCHRODINGER EVOLUTION

s:maxschroedinger

We consider the nonlinear Schrédinger equation (NLS)

iOwu(z,t) = —Au(z, t) + N(u),
’U,(.%‘,O) = f(l'),

where T? = R/27Z and N is a power-type nonlinearity. The basic question is the following: Let
s>0and f € H*(R?). For which s > 0 does the solution u(z,t) converge pointwise (Lebesgue)

grﬁce)ss‘% vl where to f(z) as t — 07 For A" = 0 in R! this question was first posed by Carleson
%T,*.Zﬂf?ywho E%%(%nglllatlgaslﬁnost everywhere convergence holds, whenever f € HY4(R).
Dahlberg—Kenig %5 showe af this one-dimensional result is sharp; in fact, they proved that
F > 121#2@ @ necessary condition for a.e. convergence in R? for all d > 1. Recently, Bourgain

21] showed that s > d/(2(d + 1)) is a necessary condition for a.e. converge?ceetgﬁ(ﬂ]; initial

data. This 1z alglegglg)roved to be sharp, up to the endpoint, by Du-Guth-Li 00 in d = 2 and
Du—Zhang [[62] in i

igher dimensions,  seacioiiniosr egaioss ourgai i
> K . rgainl992,Bourgain2(etal2017
See works' by Ken ;Eali% ESIW ,S ul T‘&:% 9 Vega Wl (1], ourgain Lo, 217, |)U*(;uf%*|;l 60],
Du-Guth-Li—Zhang [[61], Du—Zhang [62], an e references t%h%g]l%.

e , " ICompaaneta . .
For N'(z) = |2|P~!2, see Compaan-Lucé-Staffilani [46] who proved pointwise a.e. convergence

in Q¢ € {R4, T?} for p > 3 and
S L d 2
max - - —
s ax (8", 5 P

and s > 1/4 for d =1 and p < 9. Here,

x € R? or T¢

s* = inf{s : tlirr(l)eimf(x) = f(z) for ae. z € Q% f € HS(Qd)}
-

is the exponent for which pointwise a.e. convergence in the linear setting, '6% \4\9,/‘ Folk holds,
Le, s =d/(2(d+ 1 28{19]Rd and s* = d/(d +2) on T (see Moyua-Vega ﬁ)
Wang—Zhang [T74] for

123[in d = 1 and

1}1%u§£edie%%q ion.).
See Dimou—Seeger [H9] for convergence of evolution gene %ESQQ(?% fbr(gcteig&%l Laplace in one
f%me?ﬂ(a% Bounds on eigenfunctions of —A| see, e.g., Sogge %TZ[Z:FH . See also Stovall’s review

oV
152[ Tor more references.
14. CONNECTION TO THE KAKEYA CONJECTURE

In this section, we first show that the so-called Kakeya maximal conjecture is a consequence of
the restriction conjecture. Afterwards, we discuss the connection between the so-called Kakeya
set conjecture and the Kakeya maximal conjecture. In particular, we review the proof of the
two-dimensional Kakeya maximal conjecture. Finally, we discuss how Kakeya can be used to
%ﬁly the restriction conjecture without the help of the square function conjecture (see Section

s:restrimplieskakeya ‘

in the notes of Hickman and Vitturj [[94 an olif |[I79, Proposition 10.5].

The Knapp example (Subsection @Tlmf)he introduction is central to the following discussion.
Recall that the restriction estimate Rj,_,(¢" — p') “just barely fails” for p’ = ¢’ = 2d/(d — 1).
By that we mean that for all € > 0 the estimate

14.1. Restriction conjecture = Flclzc]er&%ll %%(li é)llff;z%ggecture. Here, we follow Lecture 1

||(Fd0)v”L?d/(d*l)(B(O,R)) S REHF”L?d/(d*l)(Pd*l,do)
holds for all R > 1.
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We are now going to consider the case where F is the superposition of many disjoint Knapp
examples, i.e.,
F= Z 1,
K

where k isa R™Y2 x ... x R™1/2 cap on P41, If Q C S% ! denotes the set of normal directions
to these caps, we have

(d-1)/(2d)
1| s oy ity S (R*HW X \Q|> .

141
On the other hand, the uncertainty principle tells us that (1,do)" is essentially constant on a

tube dual to & (with unit normal w), i.e., on a tube T,, with dimensions R*/? x --- x R"/2 x R

which is oriented in the direction w. Away from T, the function (1,do)Y decays rapidly. Thus,

heuristically,

(Fdo)Y(x) ~ R™D/2N " e2mivteqy (a) (14.2)

weN

where £, denotes the center of the caE Qgieq‘&ec igl direction w € 2. By modulating the bumzﬁa% ds 1

of F', one may replace each T, in with any translate of itself while maintaining
Here, we will however agree that the tubes are contained in a ball B(0, AR) for some A > 1 but
otherwise arrange them in an arbitrary fashion. Our goal now is to show that these tubes are
“essentially disjoint” even if their overlap is “maximal” (which it is if we translate them in the
above fashion). - dualkna

Due to the summation over exponentials in Wpect considerable cancellations. If no
cancellation was present, |(Fdo)Y| would roughly equal R~(4=1/2 times the ¢! sum of the 17,.
Because of the cancellations, we expect that the £! sum should be replaced by a smaller £? sum.
In fact, randomizing this s ggﬁpi%%lets us exploit these cancellations effectively via Khintchine’s
inequality (see, e.g., Stein %H?,Tjﬁapter IV, §5, Equation (44) and Appendix D]), i.e

ISyt~ [ B cvartor

where () is a Rademacher distributed sequence, i.e., a sequence of statistically independent
and identically distributed random variables with P(e;, = £1) = 1/2 for all k.
Thus, instead of considering a mere sum of Knapp examples, we define the modulated and

randomized sum
F(€) = ene™ " ¥1,(¢)

for some choice of z,, € R?. Note that

2d
E|(Fdo)| T8 S REIFITL
Ld-1 (R Ld-1(pd—1
0 ( : (14.3) ’eq:randomizedlp

- / B{| Y ene®™ ™ 1,(§)| 7} ~ RV Q)
pd—1 P

by the restriction conjecture and since the value of |F| is independent of the outcome of the .
Moreover,

FdO' Z&‘K 1'_37&)-
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:dpalkn
Applying Khintchine’s inequality and the uncertainty principle Wtain
_2d_ _2d_ 2d_
E||(Fdo)"[|", ~ IO (kdo)Y (- = )2 % Z IIRTEDEQ 1) 2 %)
L P d=1 w

_2d_ 2d
d—l(]Rd) a—1
d _d_
=R 1|7
d—1
w

.. .. ~randomizedl . d—1 (d+1)(d—1) (d—1)2
Combining this with 1' %3;, we obtain (noting |T,,|"@ ~ R~ 24 — = R@-D="53)

(d—1)2 d—1
d

D" 1nll e, S RIS X QI = B (1T - [9)

We may thus summarize our above findings in the following conjecture which would follow
from the restriction conjecture.

Conjecture 14.1 (Kakaya maximal conjecture). Let Q C S% ! be a mazimal set of R~/?-
separated directions and (T,,)ueq a collection of RY2 x ... x RY/2 x R-rectangles where T,
1s oriented in the direction of w. Then, for any e > 0, the inequality

D 1z,

weR

d—1

—a
< (xm) 149
Ld/(d—1) (Rd)

weN

holds.

The reason why the above conjecture is called a maximal conjecture is that it can be reg(iﬁ—ake a
mulated in t ms of one, as we sha see ;n a moment, but se in particular Conjecture an
Lemmaﬁﬁ’ﬁ short, Lemma Ili% says that Conjecture implies Conjecture
the maximal Kakeya conjecture stated in the usual form, a

Let us continue with the d%ﬂ(_%ryl_a of Conjecture ii%s E If the rectangles T,, were mutually

disjoint, the above inequality ) would of course be an equality, i.e.,
o
> 1, = R° <ZTw|> :
weN Ld/(d=1)(Rd) we

. = eya . . . .
This means that (@k_cya_n be interpreted as the statement that the rectangles pointing in
different directions must have small intersection, i.e., they must be “essentially disjoint”. This
heuristic can in fact be made more precise. Let us define the overlap of the tubes T,, by «, i.e.,

|UTw|:aZ]_Tw.

weN
Clearly, 0 < a < 1. From Hélder’s inequality, we have

STl =11l < 1D 1 laya-vl | Tl

weN weR weN weR
< eya
Combining this with dﬁv}% obtain
R <a,

i.e., a is essentially 1 up to extremely small powers of §.

Let us now finally explain, why the name “maximal conjecture” is appropriate. In the fol-
lowing, we assume 0 < 6 < 1 and f be a compactly supported function and define the Kakeya
maximal function by

1
f5(w) = sup—/ | (14.5) |eq:defmaxima
Tw |Tw‘ T.,
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where the supremum is taken over all 1 X § X --- x ¢ tubes T,, which are oriented in the direction
of w € S, Let K(p,e) denote the estimate

||f§||Lp(Sd—1) < 6_d/p+1_6Hf||Lp(Rd) . (14.6) ’ eq:maximalkakeya

aximalkakeya| Conjecture 14.2 (Kakaya maximal conjecture — equivalent formulation). Let 0 < § < 1, f,
and f¥ be as above. Then K(p,e) holds for all1 <p <d and e > 0.

ourgainl1991

Bourgain HB'_B, TSecﬁon 2] proved this conjecture, provided 1 < p < p(d) where
p(d—1)(d+2)—d

p(d) = pd—1) -1
i.e., in particular (d +1)/2 < p(d) < (d +2)/2. Below, we shall focus on the case p = d which
corresponds to a “6~°-estimate” in the above conjecture. Some remarks on Conjecture @ are
in order.
@ Remarks 14.3. (1) It is clear from the definition that
15 lloo < |1f oo (14.7) ’ eq:maxkakeyatriviall
1 f5 oo < 6@ 171l - (14.8) ‘ eq:maxkakeyatrivialZ
(2) If d > 2 and p < oo, then there can be no bounds of the form
1£51lg < Clifllp (14.9) | eq:maxkakeyanec

where C' is independent of §. (The role of ¢ is not important here.) To see this, consider a zero
measure Kakeya set Elﬂ let Es be the d-neighborhood of E, and f := 1g,. Then f§(w) =1 for
all w € S%! and hence [|f]l; ~ 1. But on the other hand, lims_o |||} = lims_o |Es| = 0 for

any p < 00.
(3) Let f = 1p,(s). Then for all w € S*! the tube T(0) contains By(4) so that
| Bo(9)]
f5(w) = 29
’ 73(0)]

Hence, ||f#|, ~ 6. But on the other hand, we have | f||, ~ 6%/? which ultimately shows that a
“0~%-estimate” of the form

Ve >03C: >0: ||f5llorsa—1y < Ced™ || fllLo(ra

. . . -maxkakeyatriviall
can never hold for any p < d. Thus, by interpolation with Il% ? ;, the kakeya problem therefore
consists in establishing

Ve AC, : ||f§HLd(§d—1) < CE(S_EHfHLd(Rd) . (14.10) ’eq:ka.keyaproblem

ordobal977
In fact, this was proved, for d = 2 by Cérdoba f@]d—momewhat different formulation and
by Bourgain \%T? as we stated it here. These results are somewhat easy in d = 2 since the
L2-formalism (with all its measures of orthogonality and oscillations through Plancherel) can be
exploited heavily. e
(4) Interpolating (T4.10)
ities

and gives a family of conjectured inequal-

Hfg”Lq(Sd—l) < 6_d/p+1_6Hf||Lp(Rd) , 1<p<d and q=(d—-1)p. (14.11) ’eq:kakeyaproblemQ

. : eyaproblem2 3 . .
Ngte hat 1fk@mmTSome Do > 1, .the1.1 it a'Llso holds for all 1 < p < o@QeQBy 1nterpolat10n
with 1!]%% - The current best results in thi direction are that @%@?ﬁﬁ\ p = min{(d+
2)/2,(4d +3)/7} and a suitable ¢, see Wolff?[’m and Katz-Tao [[I04]. In fact, Wolff established
the p(d) = (d 4+ 2)/2 endpoint in Bourgain’s result with ¢ = (d — 1)p’. As we shall see soon

14 . . . BesicovitdRd8P8n1928 [Kahanel969
Such sets can be constructed explicitly, see, e.g., Besicovitch I[8], Perron [127], Kahane [I02].
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8

. impliesset . . .
(Proposition snbRl5 Jmplies that Kakeva sets have Haus@orff dimension > (d + 2)/2 (see
also Remark - In Theorem Il%l@ we shall prove Bourgain’s result. O

Let us now give another proof of the fact that the restriction conjecture implies the Kakeya
maximal conjecture.

Proposition 14.4 (Fefferman, Bourgain). Assume that the restriction estimate

2d

Ifdolly, Sp 1fllzee-vy, p> -1 (14.12)

i . - imalkakeya
holds. Then, the Kakeya mazimal estimate 1!]%%), i.e.,

5 a1y Se 01 fllLacray
holds true.

: trictionkakeyal . - trictionkakeya2
Remark 14.5. Note that Il%i? 1s only osfensibly stronger than 1II%§§F below which states
||fd.cr||p <p ||f||La<>(Sd—.l) or p > 2d4/(d —1). In fact, these estimates are (formally at least)
equivalent, see Bourgain [I13].

i ctionkak
The proof of Propositioni %i TeTios on the following Lemma, whic o\{y})]bg%]}).? in handy later
in the proof of the two-dimensional Kakeya conjecture (by Cérdoba [49]). In what follows, we
denote by

To(a)={zecR%: |(x—a)-e|]< =, |(z—a)t| <8}, zt=z—(z-e)e

N |

the d-neighborhood of a unit line segment in the e direction, centered at a.

Lemma 14.6. Let 0 < § < 1 and 1 < p < oo and suppose p has the following property: if
{ex} €St is a maximal §-separated set, and if 471", y¥ < 1, then for any choice of points
ar € R?, we have

l Zk: Yklrs (@l <A

Then, there is a bound
/5 [[psi-1) S Al fll e ra) -

Remark 14.7. Observe that the maximal J-separated subset {ex} of S?~! has cardinality ~
(5_(d_1).

Proof. Let {e;}r be a maximal §-separated subset of S¥~1. Observe that if |w — w’| < J, then
fi(w) < Cff(w') since any T (a) can be covered by a bounded number of tubes 7%, (a’). There-
fore,

1/p

1/p
i (X f, imera) <o (s er) - or Suli
& 7 Be(9) k K

for some sequence y, with >, yﬁl(sd*l = 1, where we used the duality between P and o’

(i, Ifler = (g.f) for some (g)ren € € with |lgllpr = 1; here, fi = 6D/?|f¥(er)| and
gr = yr6@=D/P)) in the last line. Therefore, by the definition of the maximal function,

. _ 1
1551y S 04> gy £
k

T8, (@)l Jr3 (i)

eq:restricti
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for a certain choice of {ax}. But since |T? (ax)| ~ 6971, we obtain (using Hélder and the
hypothesis),

1750 < / (Zylegk(ak>> <Y wdas @ llrllfllp < Allfl,
k k

thereby proving the lemma. a

. ictionkakeya X
Proof of Propositzonﬁ?f%. [n view of the above lemma, we chose a maximal J-separated subset
{ex} of S4=1 whose cardinality is roughly §= (1) as observed before. Now, for each j, pick a
tube ng (aj) = T; and denote by 7; the §~2 rescaled version of 7}, i.e., the tube of length §—2

and thickness § !, oriented along the e; direction. Furthermore, let
S;={wesS: 1 —w-e| <O716%}

be a spherical cap of radius ~ C~1§, centered at e;. Here, C is chosen so large that the S; are
pairwise disjoint. (Note that the S; are just dual to the 7;.) Now, let f; be the associated Knapp
examples, i.e., f; are supported on .S; and satisfy

I fill oo g1y = 1
Fdo| > 6% on 7.
|fido| 2 j

Now, let
e = Zgjyjfj )
J

where the y; are non-negative weights and the sequence {¢;}; is a Rademacher sequence. Since
the f; have disjoint supports, we have on the one hand

1fell T (sd-1) Zy?||fj||%q(sd-1) ~ Zy?(;d_l
J J

since |[S?~1 N S| ~ 34~ for all j. On the other hand, we have by Khintchine’s inequality

ISyt~ [ BUE cvartor

that

BT foqua) = | B(Fdr @) do~ [ S|

Z(gq(d—l)/ |2921n |q/2dx

. L. trictionkakeyal .
Now, assuming that the restriction estimate ll%i% holds true, we can combine the last two
inequalities and obtain for any ¢ > 2d/(d — 1),

el MDY BTLTIED ST
R ; -
J J

eya
This is almost the estimate that we need to apply Lemma @gﬁ%ﬁoducing zj = y]2 and p’ = q/2,
the above inequality is equivalent to the statement

if 941 sz/ < 1,then || szlrj I < 620d=1)
J J
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for any p’ > d/(d — 1). Now, rescaling by 62, the above is equivalent to

it 61y 2 <1 then | 21y ||y S 6% D),
J J
Observe that d/p’ — (d—1) /0 as p’ \ d/(d —1). Thus, for any € > 0, we have

if g4-1 sz/ < 1,then || szlT]. lpy S6°°
J J
k
if p is close enough to d/(d —1). So, by Lemma ﬁ;ﬁ{ﬁ implies for any € > 0

I1£5 M or a1y Se 0 M1 fllLe(ray 5
provided p < d is close enough to d. Interpolating this with the trivial L* bound yields the
claimed estimate. O

14.2. Relation to the Kakeya set conjecture. One consequence of the Kakeya maximal
conjecture is the following statement concerning Besicovitch sets. Recall that such sets settle the
d-dimensional Kakeya needle problem, i.e., they contain a unit line segment in every direction.
Besicovitch’s construction shows that such sets can have measure zero. However, it is not clear
what their dimension is.

Conjecture 14.8 (Kakeya set conjecture). All Besicovitch sets have Hausdorff dimension and
Minkowski dimension equal to d.

Let us very briefly recall the definition of Hausdorff dimen ighnauggg}igp is a bit tricky) and
Minkowski dimension, at least for compact sets. See Appendix iEf for more details.

Definition 14.9 (Minkowski dimension). Let E be a compact subset of R?. The set E is said
to have Minkowski dimension n if

lim logs |Es| =d —n
6—0
where Ejs is the §-neighborhood of E.
There are in fact two refined definitions.

Definition 14.£(Upper Minkowski dimension). The upper Minkowski dimension (or box pack-
ing dimension) dim(FE) of a set £ C R? is defined as the infimum over all exponents n such that
for any 0 < § < 1, the set E can be covered by O(d~") balls of radius J.

Definition 14.11 (Lower Minkowski dimension). The lower Minkowski dimension dim(FE) is
the infimum of all exponents n such that there exists arbitrarily small 0 < § < 1 for which the
set F can be covered by O(6~™) balls of radius .

Definition 14.12 (Hausdorff dimension). The Hausdor[f dimension dimy(E) is defined as the
infimum of all exponents n such that for any 0 < § < 1, the set E can be covered by a countable
collection of balls B(x;,r;) of radius r; < ¢ such that ) r* < 1.

Clearly, dimpy (E) < dim(E) < dim(E), i.e., the Minkowski forms of the Kakeya conjecture
are easier. For an introduction to Hausdorff measures, we refer to Appendixiéz and the references
contained therein.

Proposition 14.13. (1) The Kakeya mazimal function conjecture implies the Kakeya set con-
jecture. More precisely, if (for 0 < 6 < 1) it holds that

Ve >0 3C: ¢ [|f5llzrsa-1)y < Ced™ % fll o (ra) (14.13)

for some p < oo, then Besicovitch sets in R have Hausdorff dimension d.

eq:maximalka
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(2) More generally, if
Hw e 8971 (1g); (w) > a}| Se 6P ~=aP|B| (14.14)

holds for all e > 0 and 0 < 6 < 1, and E C R? is a Borel set having the property that for each
w € S there is a unit segment ,, in direction w for which |y, N E|g > 0, then dimg E > p.

Remark 14.14. (1) The inequality
|Es| > Ct6° (14.15)

:mayimalkak
for any Kakeya set E (and its §-neighborhpod %gxf;?a]%{gvés im egé%‘gglmofgg%@i%me
argument that was used in (2) in Remark ﬁgiﬁf Formula 1!1% i%; says that Besicovitch sets in RY
have lower Minkowski d}g&(igg'kon d.

ak : blem2
(2) Note that i % % 15 & woaker version of il%i i ;ewal%rﬁoq 2]9 and f being of the form 1g.

- impliesset 01££2003 L. 0gge2017
Proof of Proposition wmolﬁ’ 179, Proposition 10.2] for the first and Sogge [143] Propo-

sition 9.1.5] for the second part.

kshausdorff
(1) Let E be a Besicovitch set. Fom Rerﬁa%ﬁ:fz ié:ejustr( E) = 0 for any o > d) and the

definition of the Hausdorff measure (Lemma , 1t suilices to show that for a given covering of
E by balls B; := B, (r;) with, say, r; < 1/100, we have » 7§ 2 1 for any o < d. For this let
Jp={j: 27k < r; < 2_(k_1)}

and denote by I, any unit line segment oriented in the direction w € S™! which is contained in
our Kakeya set E. Let further

1

.f d—1 . .
Sp=qwestt: |I,Nn U B;| > T

J€Jk
Since
D (100Kt <1 and > [I,0 | Byl = || =1,
k k J€Jk
we see |, Sr = S?~1. (If not, we could find some wy ¢ Sy, for every k = 1,2, ... meaning that |1, N
Ujes, Bil < (100&*)71. But since I, C J; Bj we must have 1 = |I,,| < 37, [lu, U; Bj| <
> k>1(100k*)~" < 1.) In particular, it is clear that ¢(Sk) 2 1, where o denotes the euclidean
surface measure on S?~1.
Now, let

f=1p,, where F} := U By, (107;) .
JE€EJk
Then, for w € Sy we have (for a tube T2(a) of length 1 and thickness § oriented along w, and
centered at a € R?),
T2~ (a)
100k2

where a,, denotes the midpoint of I,,. Hence, after a short computation (see also the ensuing
remark), we see

—k
T2 (aw) N Fi| 2

’ eq:maximalkakeyaweak

’ eq:boundbesicovitch

| fo-rllp 2 k_QO'(Sk)l/p . (14.16) ’ eq:lowerbdmaxkakeya‘

imalkakeya
On the other hand, 1“%‘23 mmplies that

£2 il < C2%| £, < C282(|Jp |2~ k- Ddy/p (14.17)  [eq:upperbdnaxkakeya

. - erbdma; rbdmaxkakeya
Comparlng . arn . ererore SNOwWsS

O’(Sk) 5 Qkpe—kdelekl 5 2—k(d—2ps)|Jk| )
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Therefore,
DD SERICE SIFAED SECAES
J k k

which was asserted at the beginning of the proof (for 0 < a = pe < d with p < oo and ¢
sufficiently small).

2017
(2) See Sogge fﬁ%? Proposition 9.1.5]. We proceed similarly as in (1). One of our hypotheses
is slightly weaker since we are not assuming that for each w € S¢~! we can find a unit segment
7w in this direction contained in E. However, since

gd-1 _ U {we 841 Iy, with |y, N E|g > a},
0<a<l

it follows that we can find ag € (0,1) and U C S9! so that |U|ge—1 > 0 and that for each w € U
there is a unit line segment in the direction of w so that

meE|]R>a0-

To use this, suppose that £ C B, (r;) is a covering by balls of radius r; € (0,1/2) and let, as
before, Jy, = {j: 27F <r; <2 k+1} being the index set of those r; satisfying r; € [27%,27F+1).

Then if now
ag

AT+

Up={weU: [yn | B (rj)lr >
JE€Jk

by the earlier argument where we showed S9! = Uk21 S,ﬂ we must have U = |Jo—, Uy. If
Dy := Uje, Ba,(2r;), then we also get

(1p,)5-# (w) > W—T—kz)’

imalkake aweak
Consequently, by i % % iwfﬁﬁ I Dy, 6 = 27% S971 replaced by Uy, and a replaced by
ag/[r(1+ k?)]), we have
Uslsi— Seao (L+K3P2EOPHDDy | <, ) 27K 7)) gy

w e Uyg.

where |Ji| denotes the cardinality of J; and we used |Dj| < |Jk|r§-i ~ |Jg27F as well as
(1 + k2)P < 2%¢/2. Therefore, if 0 < £ < 1, then summing this estimate over all j, we obtain

er E>ZZQ (p— E)|Jk|NsaoZ|Uk|Sd71 Zsao |U|Sd—1 >0.

k=1j€J;

inkowskidimold ausdorffO ausdorff
Hence, by D nlt see also Definition and Lemma we must have dimg F > p as

claimed (cf. T4'3 l] emma 9.1.3])
bdmaxkak -
Remark 14.15. Let us quickly justify Wﬂ and |T2 (a)NFy| 2 k2|12 k(a)|,

whenever w € S, we have

1 72" (a
fio(w) = sup 1o () 2 sup Lo (@

L 1 (w).
acrd |T27"(0)] J12* (a) acrd | T2 " (a)] *

Therefore,
I f5-kllLr(sa-1y 2 B2 I1s, lLr(sa-1y = k20 (Sk) /7,
where o denotes the euclidean surface measure on S1.

15 Sogee2017
See also the proof of [[I43] Theorem 9.1.4].
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Although appearing quite elementary, the Kakeya conjecture is a major open problem in geo-
metric measure theory which is closely connected to many classical problems in Fourier analysis

regording etimation of ggllatepyytcsrals. Thi s oppegguanpp of Foflerman s il o] s nsoos sousgainios
disk multiplier problem [ﬁ%’ and work of Cérdoba (e.g.,% and Bourgain (e.g., [I3 117, 125]). So

far, the conjecture was gllz ﬁhog%w d = 2 by an elegant argument of Cérdoba and Fefferman.
A - sfiro otes A . A

(See also Subsectlon‘/.él and | I1bY; Lecture 5] for a proof using bilinear estimates.) Of course, the
conjecture is also an immedi te consequence of the two-dimensional restriction estimate (that
we outline n rsflg.pgl_egttégpm an| e square function estimate by Cérdoba and Fefferman, see
Appendix

For fu o}il? 1i§]3f§)rmation on thi aglz a%i&?&problem, we refer the reader Fo the excellent reviews
by Wolff [T77] and Katz and Tao [[I03]. Here, we shall content o s ggg%xy_}th the treatment of the
problem in d = 2 and review thgig(liggqct!) proofs by Cérdoba Eﬁ? which is based on geometric, -
arguments) and Bourgain [I3] {which uses Fourier analysis). Here, we follow again Wolff i
Theorem 10.3].

Theorem 14.16. If d = 2, then we have the bound

I1£5 221y < Clog(1/6)) 2| fll p2(re) -

2d
Proof of Theorem ue to Bourgain. Without loss of generality, we can assume f > 0. In-

troducing

W . 1
ps (x) = 25 172(0) -

we see that the maximal function can be written as

fi(w) = sup (f *p§)(a).

a€R?

Now let us find a pointwise upper bound on this function. To this end, we introduce 0 < ¢ € S(R)
such that ¢ is compactly supported and ¢(z1) > 1 for |z;| < 1. Let us further define

¥ :R2 SR
1
C— 0
@ > p(a1) - gap(2/0),
i.e., a smoothed out characteristic function of a § x 1 tube oriented along the e;-axis. Note
that ¢ (x) > p§'(z) and therefore f5(e1) < sup,epz(f * ¢)(a). Thus, if we similarly define

Y, =Y op, for some rotation p,, € SO(2), we obtain similarly ¢, (x) > p§(x). Using this bound
and Cauchy—Schwarz, we can therefore estimate

5P <] sup(Fev)@ < I Gl < ([ ©PIT©) < € de) - (/ Mdf) .

a€R? 2 < &>

Now, since z//J; = 1[) 0 pw, we know that 171; is supported on the dual rectangle R, (oriented along
w) with dimensions |£;] ~ 1 and |&] ~ d~ 1. Combining this with || < 1, we obtain

|9 ()] M
/R dfg/R /1 t~dt =log(1/9).

2 < &> L <E>
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(If we considered the d-dimensional problem, we would get a factor & —(d=2) instead.) Now putting
all estimates together, we obtain

" 1 — .
163 Ve S 10w s [ o [ TL@IF@F <€ > e

1 R g
—tog3 [ 1HOF <> ([ [Tn©la) de
Stog [ 1f(©) s = 10g 1115.

To get from the second to the last line, we used that, for fixed ¢ € R?, the set of w € S¢!

where 1/1/:(5) # 0 holds, has measure << £ >~1, see also the ensuing remark. This concludes the
proof. O

Remarks 14.17. (1) As we remarked after the estimate of [, ng)‘ d¢, the above arguments
show

1551 2 @e-1) S 69D fll L2 ray (14.18) | eq:kakeyal2g

in d > 3 dimensions, which is the best possible L? bound.
(2) Let us elaborate a bit more on the estimate

{w e si-1 . |1/)Aw(f)| >0} << ¢ >~1 (14.19) |eq:anglemeas

for given (fixed) ¢ € R? Recall that 171; was a smoothed out (and compactly supported!)
indicator function of a §~! x -~-‘5_11e>§1eallsgggtangle, orientefci in the direction w and centered
at the origin. Thus, to prove we can pretend that 1, is actually a smoothed indicator
function of a thickened hyperplane with thickness O(1), say, e.g., 10. Moreover, by an elementary
geometrical observation, it suffices to consider only the case d = 2. Next, by the underlying
rotational symmetry, it suffices to consider only R2 > T e(ééﬁloe) Now suppose first that

|€] = O(1), say |¢] < 10000. Then, the left side of is trivially bounded by |S?~! and e

so we are done in this case. In conclusion, we are left with estimating the left side of

in d = 2 when & = |{|é; with |] > 1 (say |£| > 10000), and 1//):,(5) is replaced by the indicator
function of an infinitely elongated tube of thickness 10, oriented along w and centered at the
origin. Let us for simplicity also assume that the tube is shifted in negative es-direction such
that the upper border coincides with the e;-axis. Then, as we start rotating the tube in positive
direction with the rotation center being (0, —1/2), there will be a rotation angle ¢ where the
lower border of the tube touches &; that’s precisely the angle, we are interested in since

— P
St |, < ~ do' = .
wes': L@> 0 [ 1@~ [ =
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But by elementary trigonometry, this angle is given by sin(¢/2) = 1/(2|¢|). Since |£] > 1, we
may approximate sin ¢ ~ ¢ which shows the claim, see also the following figure.

Figure 4 fig:kakeya2d

As opposed to Bourgain’s proof, Cérdoba elegantly exploited a simple geometric fact. Apart
from a technical issue involving small angles, the main point is that two lines intersect in at most
a point, whereas every two thin rectangles intersect in a small parallelogram.

2d
Proof of Theorem wﬂue to Cordoba. In view of the auxiliary Lemma%%ys_aufﬁces to prove
that for any subsequence {y;} with 6 >_y? = 1 and any maximal J-separated subset {ey} of S!,
we have

< (log(1/5))1/2 . (14.20) ’eq:claimcordoba
2

Z Yrlrs (an)
ke

The relevant geometric fact is
52
ST
|ek — 6e| +4
. X . X . . . . imcordoba
which is proven in the remark below. Using this, we can estimate the left side of (ll%?%)‘

> Uklrs ()
k

|T66k (a)N Tpi (b) (14.21) ’ eq:intersectionrectse

52

2
= g a ﬂT§ ag)| S I
> ykyel T2, (ax) N T (a0)| S ) L e b

5 kU kL

6
= . — < 2 K 2 .
kZ;\/gyk oy e 10 S IVoyxlle2 sz: kel

lex

Here we abbreviated

)
Kppi= ———
k.t lex — ee| + 0

and denoted by éi the usual £? space where the summation is with respect to k. Now recall that
the set of {e;} is maximal é-separated. Thus, for fixed k, there are at most 6! summands in
the -summation. Moreover, since the angle between ey and ey is given by |k — £|, we have

lex — er] = V2+/1 — cos(d]k — £]) > \/%J\kfﬂ for |k —¢] < %

Therefore, we can estimate

5 5 1
sup — < —— ~log—.
p ;|6k764|+5 2521/55€+5 5
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Thus,' we can apply Schu.r’s test (Lemm.a ﬁ to the kernel K (which is symmetric in k£ and
£) which allows us to estimate the left side of

Z YrlTs (ar)
k

In view of the hypothesis 0 Zy,% =1 (recall Lemma Wﬁ%s concludes the proof. O

Remark 14.18. Let us s@or‘rﬂz elaborate on the measure of the intersection of two thin rectan-
. - ersectionrectan| S
gles in which can be reformulated as

. 52
|Tfk(a) mTfe(b)| < min {(5 } )

b
lex — e

2
1 1
< Z 2 < -
2 ~10g5 Ek (\/Syk) Nlogé.

Clearly, it suffices to consider a = b, ¢, = e; = (1,0), and that the angle 6 between e, =
(cosf,sinf) and e; is at most /2. Since [T (a)| < &, the first bound is trivial. Now suppose
lex —e1| = v/2y/1 — cos@ > 4, which is (since cos < 1 — 6%/4) satisfied if 6 > +/25. In this case,
sinf > /2 > §/2 and we have §/(2sinf) < 1. Using cosf > 1 — 6% and the formula for the
surface area of a parallelogram, we finally obtain

0 0 262 21/262 21/262
|Te‘s N Tf |=4-  —— < — < V2 = V2 (14.22) |eq:intersect
1 k 2 2sind 0 V2V1 —cosf  |ex — el

what had to be proven.

2017
14.3. Universal bounds for the Kakeya maximal operator. We follow Sogge IQZ%%? Section

9.2]. The reason why these bou ds, are called “universal” is that they are indeed optimal in
curved spaces. Recall that Wolff ﬁ{}m fou

nd improved bounds in the euclidean setting He got @ oo
the following theorem for p < (d + 2)/2 instead of p < (d + 1)/2.) See also Subsection

The main goal of this subsection is to prove non-trivial bounds for the Kakeya maximal
functi 01' ) 'gher di O%Iégg%l}§ using Bourgain’s bush method. An improved bound is due to
Wolff% see also [143, Theorem 9.4.1]) who could at least treat p = (d + 2)/2 giving the
critical exponent in d = 2 in the following theorem.

Theorem 14.19. Let d > 3. Given e >0 and 0 < 0 < 1/2, we have

. _diq_ - .
Il f5 ||Lq(sd—1) <0 p Tl E”fHLp(Rd) (14.23) |eq:universal

whenever 1 <p < (d+1)/2 and ¢ =(d—1)p’.
Observe (or recall) that the trivial case p =1, i.e.,
1 £5 1l Lo (g-1) < 57d+1||f||L1(Rd)
If p=(d+1)/2, then ¢ = d+ 1. To prove the other estimates, recall

Theorem 14.20 (General Marcinkiewicz interpolation). Suppose T' is a subadditive operator of
restricted weak types (pj, q;) with po < p1 and qo # q1, t.e.,

1T 15 Lo S el ~ B
Then one has the estimate
1T fllzaor S A flILooer
forall1 <r <oo, 6 € (0,1) with g9 > 1. If additionally g9 > pg and r = qqg, then

1T fllLae S (1f1Lve -
teinWeiss1971

Proof. See Stein—-Weiss [151, Chapter V, Theorem 3.15] or Theorem 1.3.4 in harmonic analysis
notes of summer term 2020. O
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i salboundkakeya . -unjversalboundkakeya
Proof of Theorem . Since the case p = 1 in 1s trivial, 1t suffices, by the above

Marcinkiewicz interpolation, to show the corresponding restricted weak-type ((d + 1)/2,1) —
(d+ 1,00) bound
{we s (1p); (@) > a}|77 Satom s |B|wi
that is
{we S (1g); (W) > a}| S a” @5 d=Dp2, (14.24)
For a constant A > 1 to be fixed later, we set
Qo i={we ST (1p); (w) > Aa}.
-unjversalboundkakeyaauxl
Then we would have 1! %?%i ONce we prove
Qo lga—1 Sa @~ E-DIp2 a>0, 0<d§<1/2. (14.25)
At the end of the proof we shall see that the case where o < § is trivial. Thus, let us, for the
moment at least, also assume that o > AJ.
Now choose a maximal (Ad/a)-separated subset {w; }]Ail =7 in Q,. Then it follows that
Q0| ga-1 Sq (Ad/a)4"1M . (14.26)
Thus, to get the desired bound on ||, we need good bounds on the number M.
If w; € Z, then, by definition of €2, we have
|ENT,,| > Aa|T,,| (14.27)
and so, by summing over j (and recalling |T,,| = §%1), we have

M
Z |[ENT,,| > co(A,d)Mas®™?

Jj=1

for some ¢y = ¢o(A4,d). Thus,

M
1 / co(A, d)Masd—1
— 1, > 2
|E] EE ) B

Since there must be a point a € E where the non-negative function Z;Vil 1ij equals or exceeds
its average over HY i.c.,

1 M M
I DTS SEENTE
Ej=1 j=1

we obtain

M
A, d)yM a1
Zlij(a)>co(7|)Ea, some a € E.
j=1

Put differently, by the pigeonhole principle, this point @ € E must belong to at least N> N < M
tubes {T,,, }}Z, such that

co(A, d)Madyd1

N >
||

(14.28)

16 his point @ € R% is a point where a preferably large number of tubes T.; intersect themselves as well as

the set E. The latter property is not that important for the moment; the fc@geﬁ)g]ﬁggf&gﬁ@ﬁ that there is a

subcollection of the intersecting Tw,; that form a “Bourgain bush”, see Figure

’ eq:universalboundkak

’ eq:universalboundkak

’ eq:universalboundkak

’ eq:universalboundkak

’ eq:universalboundkak
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Let us Eoll_ebct these tubes from the original collection into the “bush” centered at a € R? (see
Figure .bourgainobus

{jlqk}g;l-

Now, since the points w; € S?1 are (A§/a)-separated and since, for the moment, we are
assuming o > AJ, we conclude that if A is large enough, we must havd"|

(T, Ny, )\ Bale) =0, if k£ 0.
Therefore, the “tips” of the branches of the bush about a € R¢, denoted by
Tjw = Tw;, \ Bala), 1<k<N,

J
. . . A ig:bourgainbush
are disjoint as depicted in Figure

Figure 5. A Bourgain bush fig:bourgain

IT,,, N Ba()| < Coa|T,,|

Since

for a uniform constant Cy, we conclude that if A > 2C) as well,

75, N E| > Ad|T, | - CoalT., | > AT, /2, 1<k<N

-universalboundkakeyaaux4 = . | . -universalboundkakeyaauxb
by . If we use this, the disjointness of the tips of the branches, and , we conclude

N
Bl > > |7, N E| > caAad’ N > ¢;Ma?62*~V /||,
k=1

or equivalently,

M < 0072572(d71)|E‘2 . (14.29) |eq:universal
L. -unjversalboundkakeyaaux3
If we plug this into 1‘]%?%])7 we obtain the desired bound
|Qa|ga-1 < a_(d+l)5_(d_1)|E|2, a>0, 0<d<1/2 (14.30) |eq:universal

. . . -unjiversalboundkakeyaaux2
stated ad the beginning of the proof in d@—y_

1"This is a simple consequence of the geometrical fact, that if £; and ¢ are two lines crossing each other at
the origin with angle 6 € (0, 7/2], then dist(¢; N rS?=1 o NrS¥=1) ~ rf. In our case, r = o and 8 = Ad/a, so
the distance on the sphere is roughly A§ > 0.
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We are left with the case o < A which is a lot easier. For assuming that Q. # (), we just use
the fact that we can find a single tube T, so that

bt ~alT,| < |ENT,| <|E|.
Thus, there must be ¢y > 0 such that
co < a—25—2(d—1)|E|2 .

. . . . . . . leq:unjversalboundkakeyaaux?7 cunjversalboundkakeyaaux7
But since the right side is dominated by the right 1713 ] 1o < A0, we conclude

must be valid in this case as the left side of (I2.30] Siain O

:wolffkakeya
14.4. Wolff’s bounds for ‘g]ilte 1£§§keya maximal operator in higher dimensions. We
present the proof (gg}z?\e]%q_,’s Pf’TYB ound for the Kakeya maximal function in higher dimensions
and follow Sogge [I43] Section 9.4]. When d = 2, the following theorem is optimal as we have
seen earlier.

. . . -defmaximalkakeya
Theorem 14.21. Letd > 3 and f; denote the Kakeya mazimal function defined in Il%% i Then
given e >0 and 0 < § < 1/2, we have

1£5 | zagsa-1y Se 0P| £l oo may (14.31)

impliesset
whenever 1 < p < (d+2)/2 and ¢ = (d — 1)p’. In particular (by Proposition %(we
that dimpg E > (d + 2)/2 for Besicovitch sets E C RY.

14.5. How can Kakeya help in proving the restriction conjecture? In the first subsec jon_ . 1991
we saw that the restriction conjecture implies the Kakeya maximal conjecture. Bourgain [13]

Section 6] partially reversed this and obtained a restriction theorem beyond T oﬂsﬁ%%e&in by
using a Kakeya set estimate that is stronger than the L? bound stated in Wolff [179, Formula
(151)], i.e.,

1 1
1Y weles @alls S log = D (Voyr)® Slog 5
k

- eyal2gen keya
used in the proof of the L? bound dﬁ%ﬁgﬁemma %ﬁ is not known whether (either
version of) the Kakeya conjecture implies the full restriction conjecture. Anyway, we have

ourgaini991
arestriction| Theorem 14.22 (Bourgain TB . 1Snuppose that we have an estimate

I Z 17s ||y < 055_(%_1""5) (14.32) ’eq:strongkakeya
- i
J

for any given € > 0 and for some fired q > 2. Then

||ffc-l;'||p <p ||f||Loo(Sd—1) (14.33) ‘eq:restrictionkakeya

for some p < 2(d+1)/(d —1).

. ongkakeya
strongkakeya| Remarks 14.23. (1) The geometrical statement corresponding to d@_ﬁé—t‘lﬁh{ keya sets
iesset
i il g and

in R? have Hausdorff dimension at least ¢, recall the second assertion in Proposition

the ensuing remark. o
. trictionkakeyal —

(2) Note that s which stated |\fdoll, <p |fllee-1) for p > 2d/(d —1). is only
ostensibly tronger B}fan 1! %g?i In fact, these estimates are (formally at least) equivalent, see
ourga®ni9
Bourgain [13].

1££2003
We shall sketch the proof only for d = 3 and follow Wolff 1979, Theorem 10.6]. Recall that in

this case, we already know the bounds

Il fdollLamsy S |1 fllz2(s2)
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from the Tomas—Stein theorem, and

| fdollz2(Bo(r)) S R /2||fHL2(S2
2restriction . .
from Theorem ﬁil% with @ = d — 1 = 2. Interpolating between these two estimates yields a
family of estimates

e 2_1
||fd0'||Lp(BO(R)) S R»™2 ||f||L2(S2) , for2<p<4. (1434)

In the following argument we show that the exponent of R can be lowered by an ¢ if the L? norm
on the right side is replaced by the L* norm.

- ongkakeya
Proposition 14.24. Letd =2, 2 < p < 4, and assume @_ﬁ%ms_}ﬁr some q > 2. Then, for
all e > 0, we have

Hde”LP(Bo(R)) < ROP)||fllpoogary, a(p) < L (14.35)

(p) <0, i.e., in particular, there are p < 4 for

Heuristic proof of the proposition. By homogeneity, we can assume || f| foo(s2) = 1. Let § = R™*
and cover S? by the spherical caps

S;={wes*: [1-w- ¢ <6},

where {e;} now forms a maximal §'/2-separated subset of S?. Then we decompose
=Y 1,
J

where each f; is a Knapp example supported on S;. Abbreviate G = ﬁd?f and G; = E(Ef so that
G = Z G;. By the uncertainty principle, the G; are roughly constant on 5712 % 5712 x 51
tubes 7; orlented along e; and decaying rapidly away from them. For simplicity, let us assume
in the following that G; are in fact supported only on the 7; El

Next, let us cover BO(R) with disjoint cubes Q of sidelength v/R. For each fixed cube Q let
N(Q) denote the number of tubes 7; that intersect Q. Note that G|g = >_, Gj|g, where we sum

nly. over those. 7's for which 7; intersects Q. Using this and the known restriction estimates
a@ W6 can estimate GllLr(q) for 2 <p <4 by
— 1(2_1 1(2_1 1/2
|fdolliri) = I1Cl@ S REGH | S g SrRAG-D @Iy

j""ij750 L2 (SZ)

~8ITEN(Q)
where we used that the f; are essentially disjointly supported and | f;llr2s2) ~ |S;]Y/2 ~
§@=1/4 = §1/2 Summing over all Q then yields

i_ 3p 4 1
||fd‘7||Lp(BD(R)) <(5 IZN(Q)I}/Q N64+2||ZlTJHZg (14.36)
Q J

where we used

1141175 = S N@QP2IQ = 672 N(Q)P2.
J Q Q

181t is precisely because of this assumption that our proof is merely heuristic. Clearly, the Fourier transform
of a compactly supported measure cannot be compactly supported; the rigorous proof uses Schwartz decay of the
G instead

eq:interpola

eq:boundG
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Now let p = 2¢’, where ¢’ is the i E"!
4 (and interpolate between (I4.32] I8, ve., 11522y S log(1/0)Y2| |z if necessary).
For any ¢ > 0, we have from the hypothesized, strengthened Kakeya set estimate )
_1(3_
I3 1l < Cobm2G149)
. J
J

Rescaling this inequality by -1 yields
15" 10l < Coo=(m1+2) L5374 = g=1-3/n—c

J
: ae
Plugging this into (@n_sﬁows
||J%HLP(BO(R)) <oiTFT = RyTitE

and thereby the assertion since 1/p —1/4 < 2/p —1/2 for p < 4. O

In the next subsection, we will review Tao’s surprising finding Efgéfgtghat the Bochner—Riesz
conjecture actually implies the restriction conjecture, thereby implying of course the Kakeya
conjecture. In that context, we shall also review older work by Bourgain who directly proved the
implication Bochner-Riesz = Kakeya. The latter is frequently used to construct counterexamples
to LP-boundedness of certain multipliers. The most promi en exar%)?lgf being the failure of LP-

erman

boundedness of the disk multiplier when p # 2 (Fefferman [[66]).

15. CONNECTION TO THE BOCHNER—RIESZ CONJECTURE

Historically, the first connection between — apparently purely geometrically involving consid-
erations — the Kakeya conjecture and (Fourier) analysis arose in the 1970s. Considering the
classical Fourier transform of a test function f in R¢, one may ask whether the truncation

(Sufw)i= [ Feemeae (15.1)

[§I<R
converges as R — 0o to f in a certain sense, e.g., in LP, or even pointwise almost everywhere.
The above operator is usually referred to as the ball multiplier (disk multiplier in d = 2). Proofs

of such assertions typically lie in proving the assumptions of ?gn {%Illggging two classical functional
analytic results. Their proofs can be found, e.g., in Krantz [110; p. 27].

Lemma 15.1 (Functional analysis principle 1). Let X be a Banach space and S a dense subset.
Let Tr : X — X be a sequence of linear operators (bounded on X ) such that Trf — Tf in X
norm as R — oo for test functions f € S and some linear operator T that is also bounded on
X. Then, in order to have Tpf — Tf in X norm for all functions in X (and not only test
functions), it is a necessary and a sufficient condition to have the estimate

ITrfllx S Ifllx  for all sufficiently large R and f € X .

Lemma 15.2 (Functional analysis principle 2). Let 1 < p < 0o, Tr : LP — LP be a sequence of
linear (LP bounded) operators, and denote by

(T f)(@) = sup |(Trf) ()|

the maximal function associated to Tr. Let S C LP be a dense subset. Assume that

(1) For each s € S, the limit imp_,o0 (Trs)(z) = (T's)(x) exists in C for almost all x € R?
and another LP bounded operator T'.
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(2) The associated mazimal operator T* has weak type (p,p), i.e. for each o> 0,
o e RY: (T*f)(2) > o} Sa"IIfll, forall f € L.
Then, for each f € LP, imp_ o0 (Trf)(z) exists for almost all x € R,

Remark 15.3. The above two lemmas are by now standard tools to establish norm or pointwise
almost everywhere convergence theorems. It is therefore natural to ask whether they are also
strictly necessary. In particular, is it possible to have a convergence result limg_, o Trf = Tf
without being able to obtain uniform operator norm bound or a weak-type maximal inequality
of the above forms?

In case of norm convergence, the answer is “no”, thanks to the uniform boundedness principle,
which among other things shows that norm convergence is only possible if one has the uniform
bound

ITrfllx S Wfllx forall feX,

see the proof of Lemma
Returning to the pointwise almost everywhere convergence, the answer is in general “yes”.
Consider for instance the rank one operators

(Tuf)(@) = / L) (@ — ) () dy

from L1(R) to L1(R). It is clear that lim, (7, f)(z) = 0 almost everywhere for f € L*(R) and
that the operators T}, are uniformly bounded in L!. However, the maximal function 7% f does
not belong to L*°(R). One can modify this example in a number of ways to defeat almost any
reasonable conjecture that something like the maximal weak-type estimate should be necessary
%{g %lgfiwme almost everywhere convergence. In spite of this, a remarkable observation of Stein
[144], now known as Stein’s mazimal principle, asserts that the maximal weak-type inequality
s necessary to prove pointwise almost everywhere convergence, if one is working on a compact
group, the operators 7;, are translation invariant, and the exponent p is at most 2.

Theorem 15.4 (Stein maximal principle). Let G be a compact group, X be a homogeneous
space of G with finite Haar measure pu, 1 <p <2, and T,, : LP(X) — LP(X) be a sequence of
bounded linear operators commuting with translations such that T, f converges pointwise almost
everywhere for each f € LP(X). Then T* has weak type (p,p).

On the other hand, the theorem does fail for p > 2, and almost everywhere convergence results
in LP for p > 2 can be proven by other methods than weak (p,p) estimates. For instance, the
convergence of Bochner-Riesz multipliers in LP(R?) for any d and for p in the range pre 1gtegtal 1988
by the B al%,ggfgégsz conjecture was verified by Carbery, Rubio de Francia, and Vega [37] % (see
Carbery [33] for 2 where, however, he proves a maximal weak-type inequality) despite
the fact that the weak-type (p,p) estimate of even a single Bochner—Riesz multiplier, let alone
the maximal functi le still not been ¢ lefely verified in this range, especially for 1 <
p < 2, but see Tao?fﬂﬂif)' and Li and Wu T% maximal weak-type estimates in this range.
(Carbery et al use weighted L? estimates for the maximal Bochner—Riesz operator, rather than
L? type estimates.) For p < 2 though, Stein’s principle (after localizing to a torus) does apply,
and pointwise almost everywhere convergence of the Bochner—Riesz means is equivalent to the
maximal weak-type (p,p) estimate.

Stein’s principle is restricted to compact groups (such as the torus (R/Z)¢ or the rotation group
S0(d)) and their homogeneous spaces (such as the torus (R/Z)? again, or the sphere S4~1), i.e.,
the principle fails in the non-compact setting (as in R, as we have seen it before when dealing with
Tof := f * 1}y nq1); the T, f converge pointwise almost everywhere to zero for every f € L'(R),
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but the maximal function does not obey the weak-type (1, 1) estimate). However, in many appli-
cations on non-compact domains, the 7}, are somewhat “localized” enough that one can transfer
from a non-compact setting tOF cpmpac gettmg and thfﬂf El%l%%tﬁin’s maximal principle. (For
insta O g%%ﬁgg’s theorem see also Fefferman [67] for an alternative proof, Grafakos’
book [85] Section 3.6.5] and https://en.wikipedia.org/wiki/Carleson,27s_theoren for ref-
erences of expositions of Carleson’s paper) on pointwise almost everywhere convergence of the
partial Fourier series ZnN:_ N f(n)eX™ne for f e L2(R) is equivalent to Carleson’s theorem on
the circle R/Z (due to the localization of the Dirichlet kernels) which is, due to Stein’s principle,
equivalent to a maximal weak-type (2,2) estimate on the circle R\ Z. By a scaling argument in
turn, this is equivalept to the analogous weak-type (2,2) estimate on R.)
See also Guzman ﬁ)ﬁmsystematic discussion of this and other maximal principles as well
as www.terrytao.wordpress.com/2011/05/12/steins-maximal-principle/| for more details.
|

At this stage, it is also reasonable to remm% the rgéx%er (%f %Q&fellowmg sledge hammer whose

proof can be found in Dunford and Schwartz [63] (Sec fon X : Lemma 7 (p. 676), Theorem

8 (p. 678); Section XIIL.8: Lemma 6 (p. 690) Theorem 7 ( tegg?gioﬁection XIIL.9: Exercise 3
(p- 717)). The form which we shall use the theorem is as in [[I48] p. 48

Lemma 15.5 (Hopf-Dunford-Schwartz ergodic theorem). Let {T"};>0 be (measurable) semi-
group of operators on LP(R?). Suppose that | T f|l, < ||fll, for any p € [1,00]. Then the mazimal

function
ty
(M f)(z —ililg< / (T f |dt>

satisfies the inequalities

(1) | M fllp Sp 1 fllp for all p € (1,00];
(2) [{z e R : (M f)(z) > a}| < a Y f|li for each a >0 and f € L*.

Proof of Lemma @ Let f € X and suppose € > 0. Then there exists an s € S such that
I|f — sl < e. Now select J so large that if j,k > J, then ||T;s — Tys|| < e. For such j, k, we
calculate

IT5f = Thfll < N Tjf — Tysl| + | Tjs — Tis|| + [|Ths — T f||
<|T5l N F = sl 4+ e+ 1Tkl s = fII < 3e(1 +§1>11EJ>||T€||) —0 ase—0,

i.e., T} f is Cauchy. Since X was supposed to be a Banach space, this establj Illlgisnw&result. The

converse llégzvoss sfg&lj'lil the uniform boundedness principle, see, e.g., Rudin [I30] p ] or Lieb
and Loss [[L16] Theorem 2.12]. O

Proof of Lemma % The proof parallels that of Lemma % but is a bit more technical.
Let f € LP and suppose that ¢ > 0 is given. Then there is an s € S such that [|f — s|[} < J.
For simplicity, we assume that both f and T;f are real-valued (the complex-valued case then


https://en.wikipedia.org/wiki/Carleson%27s_theorem
www.terrytao.wordpress.com/2011/05/12/steins-maximal-principle/
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follows from linearity). Fix e > 0, independent of §. Then

{o & [limsup(T; ) (x) — lim inf(T; ) (z)| > 3}

J—00

< o [l snp(Ty(f ~ 9)(@)| > €|+ {2 - lmsup(Tys) () ~ lim i (7;9)(2)] > <]

+ Ha : [limsup(Tj (s — f))(z)| > e}

< Ha: Sl-J}pl(Tj(f —s))(@)| > e[+ 0+ [{z: Sl;p|(Tj(3_f))($)| > e}|
=z : (T°(f —9)(@) > e}l + [z (T7(s — f))(z) > e}

S2e7P||f —s|h <2776
Since this estimate holds no matter how small §, we conclude

Hz : | limsup(T; f)(x) — iminf(T; f)(x)| > 3e}| =0.

j—o0 J—0
This concludes the proof of L 1 g&lﬁﬁince it shows that the desired limit exists almost
everywhere (see also Grafakos [[85) Theorem 1.1.11] for the fact that convergence in measure
(what we just showed) implies convergence almost everywhere up to a subsequence). O

In the context of these notes, we shall be concerned with the LP conver n¢ eeg)f 11§§)§hner7Riesz
Fg ns. ggi)lrgg)soin‘.cwise almost everywhere convergence, see, e.g., Carbery (33 a?a(ﬁ ‘61£bery et al

]%Tﬁ}ngmammal weak type (p,p) inequality is proven for p > 2, see Tao [163] and Li and
Wu H-TFI or 1 < p < 2;it is easy to see that S};f converges to f uniformly if f is a test function.)
By scaling invariance, it suffices to prove the uniform LP boundedness for R =1. In d = 1, it
follows from the weak L!-boundedness of the Hilbert (Riesz) transform and interpolation with
the obvious L? estimate that Sg is LP-bounded for all p € (1,00). For d > 2, one has an explicit
kernel representation, namely

Lemma 15.6. Let § > 0 and f € S(R?). Then

P ) J, 2 —
si) = [ -l e cfigae = THD [ e BTE D g,

™
Zi e:|:27ri|x—y\ 4 0(1)
o T+ o @z |

(15.2)

(y)dy as|z| — co.

For a generalization of the |z| — oo asymptotics for energl #(&) (homogeneous of degree one,
C*, and non-negative in R?\ {0}) instead of &2, see [143, Lemma 2.3.3]. Note also that this
formula is very similar to the one for (do)Y; morally speaking the kernel of (do)V is comparable
to the one of S; . This is akin to the heuristic that the delta function is “of the same strength
as” the distribution 1/z. Note that every time as 0 is lowered by 1, @p_red'lcts that the
kernel S is multiplied by roughly |x|. This is consistent with the heuristic observation that the
derivative of the symbol ms = (1 — |§|2)i is roughly comparable to ms_1.

teinWeiss1971 201999Notes
Proof. See Stein and Weiss [I51 Chapter IV, Theorem 4.15], and Tao’s notes [I59] Lecture 3].

Since the symbol (1 — [¢[?)%. is radially symmetric, we only need to compute (with r = |z)

the right side of

oo

/ (1—¢H)%e*™eed¢ = 2r / (1 — k%)% (k)= “=D/2 g jo(2mkr) K4 dk
Rd 0

eq:brkernel
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. . . teinWeiss1971 .
by the Fourier—Bessel transform, see, e.g., Stein and Weiss [I51] Chapter IV, Theorem 3.3]. Using

the identity
v+1

1
r
= — I, (kr)ERTL (1 — B2 dk
2”F(u+1)/0 n(kr)RT (1 = K7)
teinWeiss1971
for p > —1/2, v > —1, and t > 0 (see, e.g., Stein—-Weiss [IoI Chapter IV, Lemma 4.13]), we
have (with v = ¢ and u = (d — 2)/2)),

Jlt+v+1(7')

/d(l — )P dg = (2m) 0 20T (1 4 8)r P T o n s (20r)
R

_ I+ 6)T7d/27

- 0

T
which yields the first assertion. The asymptotic behavior as |2| — oo follows from
(d+1+25)m

4
teinWeiss1971 1lver1968
see, e.g., [I5I; Chapter IV, Lemma 3.11] or Olver H]TZB, Formu gégi]glssNOte also that the kernel

is finite as |z| — 0 since |J, (z)| < |z|” for v > —1/2, see, e.g., [1Z5] Formula 9.1.62]. (In fact the
kernel is complex analytic since the symbol is compactly supported.)

Although the above proof yields the exact formula for the integral kernel, its method is not
very robust. Let us therefore now sketch an alternative, somewhat fuzzier, but more robust
proof. Since mg is radial, we let £ = ey without loss of generality and evaluate in the following

* Ja-2)/2+541(27T)

1,,—1/2

Jia—2)j24541(2mr) =T cos (27Tr - ) + (9(7"_3/2) , T — 00,

(1 _ 52)5632“)‘5‘1 dé- i
l€1<1

We decompose this smoothly into three pieces, i.e., the north pole |£ — e,| < 1, the south pole
|€ + en| > 1, and the rest where |£,| <1 — ¢ for some ¢ > 0.

Let’s deal with the rest first. By stationary phase, the core part || < 1 is rapidly decaying in
A and so it suffices to consider the surface part |{] ~ 1. In this case, we can use polar coordinates

and reduce to
/ (1 _ TQ)iT,d—l / eQﬂ'i)\rwd dw .
re1 St 1i|wq|<l—¢

But the inner integral is O,.(A~") for any N € N by stationary phase, and so is the total integral.
Thus, we are left to study the north pole (as the south pole is treated analogously). Let us
decompose further
(1 —¢*°% = fdw * du + error,

where f € C2°(R?) is supported on a cap of the north pole, and
dp(€',6a) = 8(&"m(€a) (—€a)S

is a measure supported on the &, axis. Here, n € C°(R) is a bump function which equals 1 at
the origin. Indeed, one can easily work out that

(o dp)(€'60) = [ 105020300 = 0203 = 0)n(6 — )~ ~ €0}

:Aﬂ&WWLf%wwmrwm4W—mﬁwd
= P BN (Ea — BE)TENDB(E) — ),

where J is some Jacobian factor. By choosing f properly, one can make this a good approximation
to the kernel of ms near the north pole. The error vanishes to order § + 1 or more at the sphere.
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One can then do a similar decomposition of this error, with a new error term which vanishes to
order 6 4 2. Continuing this procedure shows that ope can make the error term as smooth as we
like and absorb it into the error term of (@h

Let us now consider the contribution of main term, i.e.,

(fdw - dpr)(Nea) -

By the computation of the Fourier transform of surface measures of curved surfaces, the first
factor is Ce?™AN~(4=1)/2 4 o(X\=(4=1)/2) We claim that the second factor is (C + o(1))A~'72.
Since the &’ variable is pretty much irrelevant here, this claim is equivalent to

dp(Nen) ~ Fln(€a)(—Ea) 5] (N) = (C +o(1))A7170
|GelfandShilov1964

Recalling that F[(£4)%](A) = CA~17? (in the distributional sense, see, e.g., Gelfand-Shilov [83]
Chapter II, Section 2.4 or p. 360]) by homogeneity, the claim follows, since the convolution with
the Schwartz function 7 does not perturb the decay and merely smoothens out F[(£4)5](A). O

The above representation leads to a necessary condition for the LP-boundedness of S%.

1954
Theorem 15.7 (Herz H{E% . In order for |SSfll, S IIfllp to hold, one must have
20 —I— 1

I* - *\ : (15.3)

In particular, we see that the larger § gets, the larger the interval on which one has a shot at
convergence.

Proof. This is shown by convolving the Bochner—Riesz kernel with a test function of the form

{1 izl <1/10
fw) = {0 if 2] >1/10

1
In this case, (Sf)(z) ~ |z|~(¢+1429/2 a5 |2| — oo by Lemma *Nloreover, a moment’s

thought will convince the reader that the oscillating factor in the Bochner—Riesz kernel produces
no significant cancellation in S? f. Thus, S¢f does not belong to any L? if

d d+1
d_d+1
p 2

cbr

which is a rearrangement of i 0
We see that the Bochner—Riesz kernel is in LP for § = 0 only if p > 2d/(d + 1). By duality, it

is therefore natural to conjecture that Sgrf converges if p € (2d/(d + 1),2d/(d —1)). Let us see
whether S; is bounded in d = 1. In this case

Sy f = ]—“1(1[,1’1]];) = %}'_1 ((Sgn(x +1) —sgn(x — 1))f) .

By the invariance of multipliers under affine transformations, it thus suffices to prove the LP-
boundedness of f — F~!(sgn(x)f). But this operator is just the Hilbert transform multiplied

by i/m, i.e,
LHD —pv/fx— &

which well-known to be Lp—bounded. of formani9Tl

Now what about d > 2?7 Surprisingly, Fefferman [66] disproved this conjecture, i.e., the ball
multiplier is in fact LP-bounded only for p = 2! What is the reason for this dramatic failure of
LP-boundedness?
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The previous discussion indicates that Fourier analysis, orthogonality, cancellations and so on
should be involved in the analysis of Si. Fefferman’s proof, which was of course via contradic-
tion, involved pure size estimates (he refers to them as Meyer’s lemma) and a clever geometric
construction. And here is where the Kakeya conjecture comes into the play.

Before we review Fefferman’s disproof, let us discuss whether certain regularizations of Sg
have a chance of convergence. And indeed, it is conjectured (and in certain cases, such as in
d = 2, already proven) that the so-called Bochner—Riesz means

Fy imf P
()= [ (- 6PIRY) e fe)dg
do converge for all § > 0 if p lies in the conjectured range. This the content of

-necbr
Conjecture 15.8 (Bochner—Riesz conjecture). Let 6 > 0 and 1 < p < oo be such that @_
holds. Then S}S%f converges to f in LP norm as R — oo for all f € LP.

If p lies outside of the above range, one may still get convergence if § is chosen to be p-
dependent in the right way. As is the case for the restriction conjecture, the Bochner—Riesz
conjecture is fully resolved in d = 2. (The reason will become clear in a moment.) Observe that
for & — 0, one recovers the ball multiplier. For higher 4, S}; can indeed be seen as a mollification
of the ball multiplier.

Before we continue, let us dispose some easy cases first. Clearly, the conjecture is true when

= 2 because of Plancherel’s theorem. On the other hand, if § > (d—1)/2, then, the asymptotics
@_oﬂ?h’e Bochner—Riesz kernel imply that the convolution kernel Sj; is integrable. (Note that
there is no singularity near zero in a-space; in fact, F[(1 — fQ)i](x) must be complex analytic
since the multiplier is compactly supported.) So the claim follows by Young’s inequality in this
case.

Now, what is the connection between the restriction and the Bochner—Riesz conjecture? On
the one %%r de,r t{]ge%implication Restriction ﬁfléio el%lr&%fgz)esz was shown for tl-le -paraboloid by
Carbery [[34]. For general surfaces, Fefferman [65] proved that if the (p, p) restriction hypothesis
is strengthened to a (p,2) estimate, then the Bochner—Riesz conjecture holds. 201999

On the other hand, the reverse direction Bochner—Riesz = Restriction was shown by Tao [160
for the sphere.

In the following subsections we shall fill in the details in the above discussion. We start
by showij tllllgle—boundedness of S9 using solely the knowledge of the Bochner-Riesz kernel,
Lemma %jfterwards, we review Fefferman’s disproof of the LP-boundedness of the ball
multiplier. We will then review the equivalence Restriction < Bochne feﬁ'}%%mlﬁc‘ggally, we shall
see the implicakj ;%e]ég)a%l}g%fl%iesz = Kakeya. We will mainly follow [I59] Lecture 3], but see

10
also Fefferman (?7 .

15.1. ’;Ebe(&g{],dedness of S? via Carleson-Sjolin oscillatory integral estimates. See also

Sogge TZ[Z%, Section 2.3] for a generalization of the to general ¢(&) (h%{}%f% eneaus of de LI Bourgain19910

e ] pon-negative ir&__ ]1§d }{80137iglstead of ¢2. See also Bourgain [13; 14} 24] and his review
o ainl9 efferman
gsfgs—r 167f7

ee also Feffe man
From Lemma [I5. 'h)te that the integral kernel of S? is complex analytic since the symbol is
compactly supported) and Young’s inequality it follows immediately that Sf is LP bounded for
all 6 > (d—1)/2. The problem gets significantly more difficult in the case § < (d—1)/2 since the
kernel is not integrable any more and we need to exploit its oscillatory behavior. Let us recall
the necessary condition (Theorem %

_2d 2
d—1-20 P~ ai1+v2
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and the known positive result. When d = 2, matters are completely settled: We shall see below
that when § > 0, Sf is LP(RQ) bounded for 4/3 < p < 4. There is also the companion result that
it actually holds in the range 4/(3 + 2d) < p < 4/(1 — 26), whenever 0 < 6 < 1/2. Our goal in
this section is to prove

Proposition 15.9. The operator S, initially defined for f € S, extends to a LP(R?) bounded
operator whenever

2d e 2d
d+1+26 p d—1-26
and
2(d+1) 2(d + 1)
1<p< =~—~ et oo
>P > d13 or i1 <p<oo
Note that the first restriction is equivalent to
1 1 1
0> d(p) where 6(p) :n‘§_§|_§

which is the only known necessary condition for the boundedness of S¢. As mentioned above,
when d = 2 this condition is in fact sufficient, i.e., we may drop the second assumption on p. We
will prove this fact shortly afterwards.

Let usng;clgggewith an LP — LP estimate for a certain oscillatory integrals (compare with Theo-
rem @._JEWEE C°(R%) be a smooth cutoff function such that v vanishes in a neighborhood
of the origin, and set

(Gaf)(a) = / NeVlap(z — ) f(y) dy (15.4)

R4
Invoking the LP — L9 Carleso gsscjl'(lilin estimat S, ;fggs(%%giglatory integrals related to the restric-
tion conjecture (see Theorem @%o_rﬂ”heoremn%reezing one variable, we obtain
Lemma 15.10. We have that
IGAFll Lo @ay S AP F 1l oo gy (15.5)
whenever 1 <p <2(d+1)/(d+3).

Proof. Let us first modify G by setting
GaNa) = [ i) r) dy

where now 1) € C®°(R? x R%) is a smooth cutoff function for (x,y) € R* x R% whose support
does not intersect the diagonal {(z,y) : z = y}.
For x = (2, z4), we keep x4 fixed and write

(Grf) (@ ma) = (T f)(2)
where
TN = [P IT ) fw)dy.
Rd

-carl
(i.e., the restriction operator, recall also Theorem @%&Appendix @%ef'l%}s leads us to the
phase function ¢(2/,y) on R4~! x R? given by

e, y) = —(j2' =y + |za — ya|*)/?,
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with x4 fixed and Y (ﬂ;/ ,¥a). It is not difficult to verify directly that ¢ satisfies the conditions
estnste - . . . Curvu

of Theorem ndeed, the vector w arising in the curvature e}ggglteeslllsl .@_may be taken

to be uw = (z — y)/|x — y|- We can therefore invoke Theorem and obtain

. 1/q ,
([, 1@n@anira) X o

Next observe that ¢ > p and that the integration in z’ above is only over a compact set. Thus,

/ G wa) P da’ S A F
Rd—
and a final integration in z4 (again over a compact set) gives

1GAfll o (ray S Afd/pl”f”Lp(Rd) .

The passage from the inequality for G to that for G\ (i.e., to go back to a C°(R9) function 1
rom 1%99‘30(]1%‘1 x R?) function ) is then accomplished by a familiar argument, see, e.g., Stein
149, Chapter VI, Section §2.3]. Indeed, the last estimate implies

(G f) (@) die S A= P/’ / F@)P de
|z—a0]<1 |lz—a0|<e

for each 2%, where the constant ¢ is determined by the size of the support of ¢». An integration
in 2° € R? (which only yields a multiple of the volume of the unit ball) then proves the assertion
of the lemma. O

1
Proof of Proposition % Recall that S{f = K; * f with Ks as in Lemma ﬁn_vxefﬁere the
principal term is given by a constant multiple of
T f (o — y)ly| TP dy = (T f)(2).
ly|>1

Then there are finitely many terms of the same kind, but where the factor |y|~(¢+1)/2=9 ig
replaced by |y|~(@+1)/2=9=7 (and hence improved) with j > 0. Finally there is an error term
which corresponds to the convolution with an L' kernel. Thus, we only need to deal with the
principal term.

Let us now decompose

—(d+1)/2—-6
—(d+1)/2—6 _ —[(d+1)/2+5]k _ M Y
i D ( v(L4)

ok 2k
k>0

dyadically where (as before) ¥(z) = ¢(x) —¢(2z) is a smooth function supported in 1/2 < |z| < 2
(when ¢ is a bump function at the origin). Thus, we may write T' = Zkzo T} where

¥ (5)

1Tkl = 27D/ 2 G - 20 S 27D 250N gl gk

—(d+1)/2-45
(ka)(x) _ 27[(d+1)/2+6]k/ )

Rd

Wl f (2 — ) (';'

Now, scaling y ~— 2¥y shows that, whenever 1 < p < 2(d+1)/(d + 3),

with G as in the previous lemma where 1 (y) is replaced by |y|~(“+1/2=%y(y). If
d+1 d
o Ll +d0| —— +d<0,
2 P
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which is equivalent to p > 2d/(d + 1 + 2§) (i.e., the asserted range for p), then ||T|,, <
> k>0 ITk|lp,p converges which concludes the proof. O

arlesonSjolini972
We shall now review Carleson’s and Sjolin’s proof [42] of the 13 chnerRiesz conjecture in
lﬁ;fo the tul

d = 2. We emphasize that the following estimate extends Theorem efullrange 1 <p <4
(instead of 1 < p < 2).

X esonstein
Theorem 15.11. Under the assumptions of Theorem i% ﬂ; when d = 2, we have

IT3f Nl zogzy S A2 Fll Loy (15.6)
where ¢ = 3p’ and 1 < p < 4.
teinl1993
Proof. Seef . p. 412]. O

As a corollary, one obtains the full Boc ne rPﬁle%T%nd restriction conjectures in d = 2. The
latter is essentially contained in Fefferman

65] (joint with E. tenlln 19 é)r an alternative proof
of the Bochner—Riesz conjecture in d = 2, see also Fefferman [[67]

Corollary 15.12. Suppose S C R? is a curve whose curvature is nowhere zero and Sy is a
compact subset of S. Then

R 1/q
( [ If(é“)qdo(é“)) <o Il f €S

whenever 3g =p' and 1 < p < 4/3.
. . . -2drestriction a01999Notes
For an alternative proof of this, we refer to Subsection I?; (which Tollowed [I59] Lecture 5]).

Corollary 15.13. The operator S? extends to a LP(R?) bounded operator for 4/3 < p < 4
whenever § > 0 and more generally to the range

3+r2 “P<1"925

whenever 0 < § < 1/2.

15.2. The multiplier problem for the ball. We review Fefferman’ i e@roofg the bounded-
ness of the disk multiplier usine a variant of the Kakey cgrﬂecg&r&f Nice expositions can
also be found in Krantz FTIU Section 3.5] and Grafakos ? ec 1%1 l
arléesonSjolinl972

As we have already mentioned several times, Carleson and Sjolin [42] made hearfening progress
in 1972 when they proved that the disc multiplier is almost L? bounded in the sense that S?
is LP bounded for any 6 > 0 and 4/3 < p < 4 using the theory of oscillatory integrals. In this
section, we shall show that this is indeed the best that one can get. Writing S° = S?, we show

Theorem 15.14. S° is bounded only in L?(R?) for d > 2.

Indeed it suffices to disprove LP boundedness for p > 2 (by duality, we also obtain the case
p < 2) in two dimensions since LP boundedness in R? implies boundedness in R?~! by an
observation of de Leeuw.

Lemma 15.15 (de Leeuw). Suppose that m is a smooth Fourier multiplier on R? and that the
operator T defined by

TF(€) = m(©)](€)
is bounded on LP(R®). Then the operator Ty defined by
Tog(€') = m(&',0)§(¢")
for € € R4 s bounded on LP(R™1).
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Proof. From the invariance of LP multiplier bounds under affine transformations (to see this,
just scale), we see that we may replace m(&) by

mR(é-/v gd) = m(€l7€d/R)
in the definition of T without affecting the LP boundedness property. Letting R — oo and taking
limits, we may replace m by

mm(§/7 Sd) = m(£/7 O) 3
i.e., the operator
TOOf(glagd) = m(gl’ O)f(glagd)
is bounded on LP(R?). If we now apply this fact to a function of the form f(2', z4) = g(2")v(z4q)
and observe that f(&,&q) = §(£')¥ (&), we obtain the desired result. O

There are two key insights in the disproof of the disc conjecture. The first is that the disc
conjecture would imply a vastly improved Kakeya conjecture (Meyer’s lemma) where the “tubes”
will not have to be separated anymore. The second key is that such a strengthened Kakeya
estimate can indeed never hold. The proof of the latter is inspired by Besicovitch’s (or rather
Schonberg’s simplified) construction of Besicovitch sets (that contain a unit line segment in every
direction). Let us start with the first insight.

Lemma 15.16 (Y. Meyer). Let (vj)jen be a sequence of unit vectors in R? and let H; be the
half-plane {x € R? : z-v; > 0}. Defined the “half plane multipliers” (T});jen on LP(R?) by setting
1/37(5) = 1y, () f (). If the disc conjecture holds, then for any sequence (fj)jen, we have the
square function estimate

II(ZIijjIQ)”QIIp S H(Z 512 - (15.7)

Proof. The idea is to approximate the half-planes by gigantic discs and to use the standard
randomization argument to obtain the above square function estimate from the supposed LP

boundedness of the disc multiplier. More precisely, let TD]T be the operator defined by T/Dﬁ(f) =

1 D7 (&) where D7 is the disc of radius r centered at rv;. For f € Cg°, we have the uniform
convergence

(T3 f)(z) = lim (Tp; f)(x)
which is easy by going to Fourier space since
1L, = 1p7)fll < [(Lm; = 1pg) ol fllr = 0.

Thus, by Fatou’s lemma
(ST 52 < timint (3 1Ty £52) 21
J

J

By dilating R? it therefore suffices to set 7 = 1 and prove
IO 1o i 2 SN LA -
J J

Since translating in Fourier space corresponds to multiplying by phases in position space, we
have (recalling that S° was the disc multiplier)

(Tps f) () = 70 S0 2mi0 ¥ ()
and so it suffices to prove

IO 1S v P21, S UQC 1Y
J J

’ eq:1lphalfplane
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fakos2014C
But by the Marcinkiewicz—Zygmund theorem (see, e.g., Grafakos %gtaloﬁseorem 5.5.1]), this
estimate holds because of the assumed LP boundedness of S°. O

I ﬁlﬁpri)a\éee the disc conjecture, we shall find a counterexample to the square function estimate
or half planes. The example is based on a slight variant of (Schonberg’s improvement of)

Besicovitch’s construction for the Kakeya needle problem.
Lemma 15.17. Fiz a small number n > 0. Then there is a set E C R? and a collection
R ={R;}jen of pairwise disjoint rectangles with the properties that

(1) |[EN RJ| > |]:2j|/10, i.e., at least one-tenth of the area of each Ej lies in E and

(2) |E| <n) ;IR

where Rj is the shaded region in Figure

Eﬁg :counterexample

Figure 6

Let us now see how the half-plane multiplier acts on functions supported on rectangles whose
long side is oriented along the normal of the half plane.

Lemma 15.18. Let R be a a X b rectangle in the plane with arbitrary position and orientation
and let R be the rectangle of the same length which is shifted over by c-a for some constant ¢ > 1
in the direction of the long axis of R. Then there exists a function fr supported on R such that
|frl <1 on R and |(Tjfr)(&)| ~ 1 for any v; € S' and 7 € R.

. ig:counterexample .
Observe that for ¢ = 1, we recover the setup of Figure Ef T'he following arguments can easily
be generalized to treat also the case 0 < ¢ < 1, which is left as an exercise.

Proof. Let us assume v; = (—1,0), i.e., we consider the half-plane & <0, i.e., 7/“]7‘(5) = x(&)f(©)
where
1 1
X(©) =5 — 5 sen(&).
By the formula for the Fourier transform of the Hilbert transform, we have (in the sense of
distributions)
1 11

(53000 + 5mr-000) ) 10 = ).

@@ = [ (50+ 5

R2

fig:countere
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Now, let 0 < 9 € C°(R?) be supported on [0, 1]> with 1 > 0 on [1/3,2/3]? and symmetric with
respect to reflections with respect to the coordinate axes. Let furthermore R be the rectangle
centered at z € R? whose long side a lies in the z; direction and whose short side b lies along

the zo direction. If we define
T1 — 29 Xo— Z
fR(x) = w <1aQa 2b2> )

then the action of the half-plane multiplier on fgr evaluated at the center & = (21 + ca, z2) of the
translated R is given by

@@ =3 [ (004 St ) (- P - 22 ) 4y

1 LEQ—ZQ 1 dyl .’EQ—ZQ
2¢<C’ b >+2m'/ 1/)( b )

The first summand vanishes since ¢ > 1, whereas the second one, in absolute modulus at least, is
clearly bounded from below by some positive constant. The computation where Z is an arbitrary

point in R is completely analogous. |
With this thhlafnii we can disprove the disc conjecture by contradicting the square function
estimate a planes

ltiplier . . . ig:counterexample
Proof of Theorem %’gﬂ?: 1g; with R; as in Flgureg and v; being parallel to the longer
sides of R;. Direct computation shows that |(T}f;)(z)| > 1/2 for € R;, so that
1 ~ 1 ~ 1
[Simn@ba=Y [ 1@n@kd= Y IE0k > 53 1R = 5 S IR
J J J J J
(15.8) ’eq:lowerboundhalfpla

by the fact |E N Ryl h@f {10 for our constructed set E. On the other hand, if the square
. . ane - A X werboundhalfplane
function estimate were true, Holder’s inequality would show that the left side of 1!15%) 1S

bounded from above by

SN L@ do < B2 WS LR S 12 ISP
J

J

= |E|P=2)/p (Z |R;|)?P < n(p—2)/pz |R;|
J J

(15.9) ’ eq:upperboundlp ‘

where we first used the square function estimate, then the fact that the R; are pairwise dlSJOlnt
i.e., there are no mixed terms appearing in the summation over j, and ﬁnally the size :
|E | <n>_; |R;| on the constructed set E. For sufficiently small  the baunds in 15.3

contradict each other which disproves the square function estimate . H]l)ls_sﬁ S thg tflaillllgle
of the LP boundedness of the disc multiplier and concludes the proof of Theorem%_p_\j

We are thus left to give the

besicovitch unpinghami1971
Proof of Lemmaﬁg%ﬁ, We shall closely follow the excellent exposition of Cunningham HZBZI

(where the minimal area for a plane, simply connected, or star-shaped, set within which a unit

segment can be rotated continuously to return to its original position with its ends reversed, is

determined; in fact, it is shown that star-shaped Kakeya sets cannot have area less than 7/108,

although it was not %%Il(s)&/;l%n X%'hﬂ 9ﬁns is the best value), but see also the classic paper of

Busemann and Feller [32]. o sproutin
Consider the followmg process: we are given a triangle T as in the left drawing in Figure ﬁ}g—p—g

with horizontal base ab and height h. Extend the lines ac and be to points a’ and b’ of height
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. . . . . . ig:sproutin,
h' > h. Let d be the midpoint of ab, see the right drawing in Figure l?f

————

-

_“_.__._
2

a b

Figure 7

We say that the two triangles T’ = ada’ and T" = bdl’ arise as sprouts from height h to height
h.

Now we can construct the Besicovitch set E. Begin with an equilateral triangle 79 whose base
is the interval [0, 1] on the z-axis, and pick an increasing sequence of numbers hg, h1, ha, ..., b,
where hg = v/3/2 denotes the height of the initial triangle T°. Now sprout T° from height hq
to height h; to obtain two new triangles T and T"'. Now sprout both 77 and T” from height
hy to height ho to obtain four new triangles T, T2, 73, T4, all of height ho. Continue sprouting,
obtaining at stage n, 2" triangles of height h,, with base length 2~™. Finally, set F equal to the
union the final 2% triangles 7%, T2, ..., 72" which arose at stage k.

For the special case, where hg = v/3/2, we obtain the sequence of heights

usemannFeller193.

Buseman and Feller WWE | <17. (Actually, Busemann and Feller use a sprouting
procedure slightly different from this. However, since their sprouted triangles are strictly larger
than these, their estimates apply here, too.)

Having built F and computed its measure, we are left to construct the collection of disjoint
rectangles which satisfied |E N R;| > |R;|/10 and |E| < n>_;|R;| for any given (small) n > 0.
To do so note that each dyadic interval I C [0,1], of length 27%, is the base of ezactly one
E’i =: 1(I). Let us call its upper vertex P(I). We then construct the rectangle R(I) as in Figure

fig:sproutin
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P(I)
-

~log k

r-axis

B
N~

4 \/

Figure 8
It does not matter how R([I) is placed, as long as it stays inside the triangle P(I)BA. Now define

R = {R(I) : I is a dyadic subinterval of [0, 1] of length 2%} .

Now let us check the claimed properties. First, |EF N R;| > [R;|/10 is trivially satisfied by
construction since T'(I) C E. To check the upper bound |E| < 1", |R;|, we note that the area
of each R(I) is roughly 27%log k. Since there are altogether 2% of such rectangles, we have

> R ~ 2% 27 logk = logk.
I

Clearly, the left side is greater than |E|/n if we pick k = k(n) so large that logk > 17/n.
Finally, it remains to show that the rectangles are pairwise disjoint. But this just follows from
the elementary geometric observation that P(I’) lies to the left of P(I) whenever I’ lies to the

left of 1. 0

R . L. . . . efferman1970
15.3. Restriction = Bochner—Riesz, This is essentially contained in Fefferman ‘65]; ['heorem
3] but we will follow the exposition in i59]; Lecture 3], .

Let us fix § > 0 such that the necessary condition ﬁ%ld& Then, as in the proof of the
Tomas—Stein theorem, we will decompose the convolution kernel K5 = F[(1 — 52)55'_} dyadically
using the (1) := (2 %z) — ¢(27¥*12) where ¢ was a bump function supported around the
origin. Then, we break up

Ks=¢Ks+ > K.
k>0

As opposed to the proof of the Tomas—Stein theorem, we do not need to impose any fancy
moment conditions on ¢ or v since we inequality on p is strict, i.e., we do not need to care about
any subtleties concerning endpoints.

fig:constrrect
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First, since ¢ K is a bump function, the convolution is clearly an LP-bounded operator by
Young’s inequality. So, as before, we are left with showing that

1> F* @Kl S Nl
k

. . . o . = Cbr . . . .
Since we have a bit of room in the condition @ﬁ p, we may just use the triangle inequality.
In fact, we shall show

1 * (oK)l S 214272 =k 7)) (15.10)

:nech
which is just summable in k if “holds.

The first observation that we shall use to prove d@o_fs that the kernel ¢ K5 is compactly
supported on an annulus {z : |z| ~ 2¥}, i.e., the operator is somewhat localized. In fact, the
values of f at a point z only influence points which are in a 2* neighborhood. The following
useful lemma allows us to reduce our study of such “local” operators to a compact set.

Lemma 15.19. Let T be a linear operator taking functions on R?® to functions on R®. Suppose
T is local in the sense that the support of Tf always remains within R of the support of f for
some R > 0. Then, for any 1 < p < q < oo, the bound

ITfllg S W fllp  for all f € LP(RY) (15.11)
s equivalent to the bound

ITfllze(B.2r)) S fllp  for all f € LP(By(R)), (15.12)

holding uniformly in x.

In other words, to show @%&ces to test it for functions supported on an R-ball.
Intuitively, the idea is that functions on distinct R-balls basically do not interfere too much with
each other.

3 ostlo ostlocall

Proof. Clearly, we only need to show . = _I1)). For this purpose let f € LP(R%),
choose a finitely overlapping collection of balls { B} that cover R? and denote a partition of unity
1 =) ¥p subordinate to that cover. Then, we write

IT )8 = / TS Gl = / S T@s
B B

Since T is local in the above sense, the functions T'(¢5 f) are just supported on the double 2B
of B. These balls are still only finitely overlapping, so we have the pointwise estimate

1D TWsI* S Y IT@s)I
B B

Putting this back i%‘gglggbprevious estimate, simplifying, applying the assumed LP — L9%-
1II§I]ZJ;7 and th

boundedness ¢ elementary inequality

() ()

for a sequence {ap}p of non-negative numbers and (crucially) ¢ > p, we obtain

1/q 1/q 1/p
ITfllq < <Z IIT(¢Bf)IZ> S (Z%fllg) < (ZIwaI,ﬁ) :
B B B

Again, since the balls are only finitely overlapping, it is easy to see that the right side is essentially

£ 1lp- O

eq:almostloc
eq:almostloc
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The condition ¢ > p in the above lemma is absolutely necessary. This is an example of one of
Littlewood’s principles: “the higher exponents are always to the left”. More precisely, we have

Lemma 15.20. Let 1 < p,q < oo and T be a non-zero translation invariant operator on RZ.
Then, the estimate |Tf|lq S |1l s only possible, if ¢ > p.

Proof. Let ¢ be any bump function such that Ty is non-zero. Let N > 0 be a large number,
and let x1,...,xny be N very widely separated points. Define f by

N
fle) =3 ol — ).

If the above estimate held for f, we would have

N N
1Y Tl —zllg S ela =zl
i=1 i=1

since T is translation invariant. However, the right side is bounded from above by a constant
(|lllp) times N'/P_ whereas the left side can in fact be bounded from below (by forgetting about
the overlaps of Tp(z — x;)) by a constant (||T]||,) times N'/9. Letting N — oo, we have
necessarily 1/q < 1/p, i.e., ¢ > p. O

- ocC
Now, let us return to the proof of @,_1.6.7

1_1y_1_
1F * W Ks)llp S 292720 1),

From the above discussion, it suffices to prove

for all f supported on a ball B,(a2*~!). By translation invariance, we may take z = 0.

We are supposed to apply the Tomas-Stein theorem which is an LP — L? theorem. Indeed,
using Holder’s inequality (since we are on a finite domain) on the left side of the last formula
and using Plancherel, we have

1 % B o m,azry) S 2*G NS # WKs) 2 = 26D f - (W x ms)l2
where we have denoted mg(€) = (1 — £2).. Thus, we are left to show
1f - @rxmala < 275 11l
We will shortly prove the key estimate
|+ ms(€)] £ 27°%(1 + 2%d(¢, S))"N, NeN. (15.13)
Assuming this for a moment, we see that it suffices to prove

170+ 26, 5) B = [ o

to finish the proof. We distinguish between d(£,S) > 1/2 and d(&,S) < 1/2 and start with the
former case, which is an error term. In this case, we crudely estimate

LS 278 £l

by the definition of f , Holder’s inequality, and the fact that f is compactly supported. On the
other hand, the denominator in the integral is 2~V* for any N and rapidly decreasing as & — oo.

- de S 278 1|2
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This decay beats all other factors, and the bound is easy to prove. Thus, it suffices to prove

/() .
/ (1+2kd(€, S))2N S27FIf02.

1/2<]€1<3/2

Discarding the Jacobian arising from passing to polar coordinates, we rewrite this as

3/2 .
/ dr (14257 — 1))=2N / do f12 < 27 £2.
1/2 rSd-1

201999
15.4. Bochner—Riesz = Restriction. We review Tao’s proof R.TGU that the Bochner-Riesz
conjecture implies the restriction conjecture.

15.5. Bochper—Ries ﬁ;&%‘i‘s g We review the argumens Bochner-Riesz = Kakeya. We dis-
cuss Bourgain’s works [13]124] 15[ that pro espop Kakeya is connected to progress for Bochner—
Riesz (and thereby for Restriction by Tao TBU?f

15.6. How does Kakeya help in proving Bochner—Riesz? The key observation is that
every function can be decomposed into a linear combination of wave packets by applying stan-
dard cutoffs both in physical space (by pointwise multiplication) and in frequency space (using
the Fourier transform). After applying the Bochner-Riesz operator to these wave packets in-
dividually, one has to reassemble the wave packets and obtain estimates for the sum. Kakeya
estimates play an important role in this since the wave packets are essentially supported on
tubes; however, this is not the full story since these packets also carry some oscillation that can
be exploited. Thus, one must develop tools to deal with the possible cancellation between wave
packets. The known techniques to deal with this cancellation, mostly based on L? methods,
are imperfect, so that even if one had a complete solution to the Kakeya conjecture, one could
not then completely solve the Bochner—Riesz conjecture. Nevertheless, the best- nown re bl(]igs,TaoVar 4520004
on Bochner—Riesz (e.g., in d = 3 the conjecture is known, see Tao and Vargas [I57] | for
p > 26/7 and for p < 26/19 using also bilinear methods) have been obtained by utilizing the
best-known quantitative estimates of Kakeya type.

16. CONNECTION TO SPECTRAL MULTIPLIERS
16.1. Eigenfunction estimates for —A. We start with the basic observation
dE /=x(A) = A" ' Riga1 Ryga—1 dA
in the sense that for f € S(R?),

4 (N f(@) =3 [

Sd—l

e27riw-()\w)f(>\w) dO’((JJ) — / e27riz~£f(£) dO’ASdfl (f) .

)\Sd—l
Here dE4 () denotes the spectral projection associated to some self-adjoint operator A. This
follows immediately from

T POV, dE (V) = W PRy = [ dk Fo)- (K [ k)P do(w)
0 0 S

for appropriate measurable functions F : [0,00) — R. In particular, the (rescaled) Tomas—Stein
estimate

R [ ) P S R g2, = R, = R

:(}k(w)

d—1

= kR )2
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with p. = 2(d + 1)/(d + 3) immediately yields

H dE —x(\)

— <A d+2d/pe—1 _ ) d(5z—5r)-1 (16.1)

DPe—P,

By a change of variables and the rescaled Tomas—Stein estimate, i.e.,
.m0 = P = [Taepe) (10 [ it ao))
0 0 g1
= %/ dk F(k) - (kd/2_1/2‘1/2/ |¢(\/Ew)|2do—(w)>
0 §d—1

5/ dk F(k) - k2= dd/ee )2
0

(16.2)
for any F : [0,00) — [0,00) (such as a characteristic function), we obtain analogously
‘VE£§M s AfE) (16.3)
Pe—Dl
We remark that the above change of variables is just saying
dE_A(\) = an—lRde R /xga-1 dX.
-specprojbd2
One could have obtained 1!]%? also from Stone’s formula
1 — . 1 . .
SWEWN ) +(EMD)S, ) = lim — / ([ROA +1g) = R(A —ie)lf, f) dA,
2 e\0 211 A
or equivalently (in the weak sense)
dEAO\) 1 -\ —1 -\ —1 1 -\ —1
=— ((A- —(A-(\- =—Im ((A -
S = o (A= +i0) T = (A= (A= i0))7") = —Im (A= (A +i0) ") ,
(recall also that Im(F(E + ic)) dE — du(E) where F(z) = [(A — z)~ " du()) denotes the Borel
transformation of Sé%%‘ﬂ’é%]? measure ,u ) and the “uniform” (in Im(z)) resolvent bound of
KeninguiszOgge eorem 2.3],
sup M—A—zrnwwfﬂpvwwﬂﬁﬁwp—w|< #) (16.4)

Im(z)€(0,1)
for all 2d/(d+2) < p < 2(d+1)/(d+3) = p. which, in turn, is obtained via complex interpolation
between the L? boundedness of
CQ
Tr=—o
['(d/2+¢)
for Re(¢) = 0 and the L' — L boundedness for Re(¢) € [—(d +1)/2, —d/2]. In turn, the latter
follows from the explicit ixg ression ,%lfi}he Fourier transform of the symbol of 7.

We will now upgrade using the observation

(A - 2)

—2k
dEs(\) = 2% (1 + f) dEA(N)

19 PR .. . . ecprojbd2
This is no upgrade as the restriction estimate in already holds for all p € [1,pc].

’ eq:specprojbdil

’ eq:specprojbdaux ‘

’ eq:specprojbd2 ‘
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and the estimate

I — A/ ’“npﬂq:%n et < s [t G D
0
G-

'G\H ~—

- specprojbd2
for 2k > d(1/p — 1/q). Indeed, this estimate and 1' %?i ylea

M =92% (I—A/)\)*kdE_iA()‘)(l_A//\)fk
LN | PR dax .
- _ dE_A(N) 3
S 1= AN F 1 L = A/l H < A/t
pc*}pé
:specprojbd2
Thus, by interpolation, @mpgraded to
HdE_A()‘) < )\%(%—ﬁ)—l (16.5)
p—p’

forall 1 <p < p..

- = . +specprojbd2 ~specprojbd3 .
Let us finally mention that 1'[%35 respectively d@hﬁﬂ_have always be more precisely

written as

df1_11)_
sy (=A) oy S AEG77) 2 (16.6)

eq:specprojb

. . . . :specprojbdaux ecprojbd2 :specprojbd3
which just follows from setting F'(k) = 1y x41)(k) in Ilb&) Formulae 1ﬁb 3)) respectively Il%gi

correspond to the choice F (k) = d(k — \).

16.2. Restriction theorems and multiplier t}éggrems for Schrédinger operatora. B%ec roibd3

perturbation theory, the resolvent estimate and the spectral projection estimate

can be further nperaded to treat —A +V for 0 < V € L2 0 L2 for some ¢ > 0, see
Tonescu—Schlag [T0T] hP T unifory Irs%olvent estimates which imply spectral measure estimates by
Stone) or Huang et al 99 . (In fact, the non-negativity of V is only used to prove the bound on
(1 — A/X)7*||,—4 when one applies Trotter’s formula, i.e. ultimately to prove the L' — L
bound on dFEa()); neither the resolvent bound, nor the ch be bound.on dEA(A).
V is non-negative.) It is for this very reason thTft s estimates like mmp I16.1]

called Tomas—Stein estimates as well, see, e.g mf? 3073-3074].

[Guillarmouetal2013

For furthey, gencralizafiopsof el snz%gﬁsié’vehg%i%rafgo%e works by Guillarmou et al &,
136, 137, an en et all|43l 4

Sikora et al [[I36

16.3. Distorted Fourier transform. In the following we consider Schrodinger operators of the
form
H = Py(D) + V(z,D) in L*(R%)

ormander1983

where P, is real and simply characteristic (see Hormander [96, Definition 14.3.1]), opp(FPo) =
and V(z,D) is a symmetric short range perturbation of Py in the sense of Hérmander
Definition 14.4.1]. Recall the Agmon-Hoérmander spaces B and B* (see, e.g., Hormander
Section 14.1]) and let

9

Z(Py) :={N€R: Py(&) = X and dPy(¢) = 0 for some ¢ € R} and
Sy:={6 R Py(&) = \}.

-poiinander1983
Hormander1983
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Recall that
/ LoEL 1. f) = = lim % /]R To(\Tm(Ro(A + i), f) A

- / A 1a()) / F©))dos,(€). fel?.
R S

Recall the resolvent formula R(A £40)f = Ro(A £ 40)fatio where f, = (1 + VRo(2))"1f is a
continuous function of z € C* \ (0,,(H) U Z(P)) with values in B. Thus, we have

/ 1o (EMf, ) = /R A 1a(V) /S Fren(©P dos, (€), fe B,

whenever QN (o,,(H) U Z(Py)) = (0. This motivates
Definition 16.1. If f € B, then the L? functions defined by

(F£)(E) = FIL+ VRo(A£1i0)) ' fI(€), &€ Sh
= Fl(1 = VR +i0))f](£)

almost everywhere in S) are called distorted Fourier transforms of f.

(16.7)

We recall the following properties of solutions of scattering states. Let By = {u : Péo‘)u €

B* for every a}.
ormander1983

Lemma 16.2 (Hormander [96, Lemma 14.6.6]). Ifu € Bp , A ¢ Z(Fy), and (Po(D)+V —A)u =
0, then u is given by the solution of the Lippmann—Schwinger equation

u=usr — Rg(AFi0)Vu (16.8)
=1 -RMA\Fi0)V)uy, (16.9)
where
e = v10(Py — \) = vedos, (£), wvi € L*(Sy,dZs,)
and

[ sl = oy dorsy () =0 (16.10)

Sx
where dog, (€) = |V Py (€)|71dSs, (€) and dSs, (§) is the euclidean surface measure on Sx. More-
over, if A\ ¢ (Z(Py) U opp(Po +V)), then

(Fiefvis) = (F_,is) = (fw), i f€B. (16.11)

Let us also recall
ormander1983 —

Theorem 16.3 (Hérmander [96, Lemma 14.6.4 and Theorem 14.6.5]). Fy : E°L?(R?) — L2(R4)
is an isometric operator, which vanishes on EPPL?(R%), with

12115 = [ 17 r R de.
Moreover, the intertwining property
]:ieitH _ eitPo(&)fj:
holds for all t € R. In particular, the restriction of H to E€L? is absolutely continuous (since
Py has purely absolutely continuous spectrum,).
Moreover, Fy : ECL?(R?) — L2(R4) is actually unitary, i.e., the restriction of H to E°L? is
unitarily equivalent to Py, i.e., 0.(H) = 04.(H) = o(Py). In particular, for f € E¢(L*(R%)), we

have

(FLHF)(E) = Po()(FN)(©&),  ve, (Hf)(x) = (FLPo()Fxf)(x).

’ eq:defdistortedft
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In particular, it follows that
FiFe=FE° and FiFi=1.
. . -defdistortedft . 3 X
The distorted Fourier transform 1![%3} can be conveniently re reesented using the solutions

Ve ( 1)(e()folrgé)()\) € Sy glfa‘gl‘r}go%ppmannfSchwinger equation . In fact, we have (see also

Tkebe [I00] and Yafaev [IRI] Sections 6.6-6.8])
FiD© = e /), tc | 5 (16.12)

A€o qc(H)
(Fig)(x) =/ pe()g(8) d§ = d/\/ dos, (§) we(x)g(E) - (16.13)
. 7ecH) SA kebe1960
ebe
Moreover, we have the following expansion theorem (see also Tkebe [[L00, Theorem 5))
f= X W)+ [ leeie s (16.14)
A€oy (H) R
where {¢x}xeo,,(#) denote the L?-normalized eigenfunctions of H, i.e., Hiyy = Apx. Moreover,
Hi= Y0 Auond)+ [ Po(@lee)(ve f)de. (16.15)
A€opp(H) Re

The above results motivate in particular the following definition of the distorted Fourier re-
striction and extension operators

(Fs, [)(€) = (pe. [) = (FL)(E), €€ Sy (16.16)
(F5,9)(x) = /g dors, (€) e (@)g(€) (16.17)

which are defined with respect to the canonical measure dog,. In particular, we have for any
A Cou(H),

Bal)= [ | leedledds = [ ar [ dosi(€) loew)eonl = [ dh 3 Fs,
Py (M) A S A

in a suitable weak sense and in particular, for A € o,.(H),

dE (A *
1) — [ o, (€) lpeonHipeon | = Fi, s,
) s

16.4. Eigenfunction estimates for F(—A). The theme i the first subsection can clearly be
R o R | :dispersionsurfaces
generalized. We are picking up the discussion from Remark .
Suppose, we are given a continuous function a : R4 — [0, 00) with

Va(€) #0 for & €a '(A),A CR.

Then we can define the Fourier multiplier Hy = F*AF, where A is multiplication by the symbol
a(§) and X C R is some Borel set. It is well known that its spectral projection is given by

E(X) = .F*]_{afl(X)}f.
Now consider the “cospheres” associated to a,
Sy:={6cR:a(&) =N}

with the associated Lebesgue surface measure doy(£). We may then define the canonical measure
associated to a by
_dox(§)

G

d¥x (&)
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trlchart2197
which is, however, not intrinsic to Sy. (See also Strichartz T 705].) In particular, the
elementary volume d¢ in R? satisfies

d¢ = dAdS,(€) .

Thus, by the above discussion, we can write the spectral projection F as

w2008 = [ Leraoen @O = [ | @rde= [ o] |dz(A ))
16.18

Thus, a(D) has absolutely continuous spectrum and the spectral projection-valued measure is
given by dE(\) = F§ Fs,d\, where Fs, denotes the Fourier restriction operator associated to
the measure dX, (see below) and we have

Tl = [ emefe i),

In particular, for a given measurable function F : [0,00) — R, we have

(W, F(Ho)p) = [ dX F()) / [IGIRONGE

Ry S

- cmeasuresurf A . . . 3
It follows from d@mpace E(A)H, in which Hy becomes diagonal, is given by the
direct integral

52}
E(A)?—LH/ L%(Sy) d\,
A

where Sy is endowed with the measure d¥Xy. A vector f € E(A)H is mapped in this direct
integral into an element f (M) which, for every fixed A € A, is the restriction of f on S,.

Let us now denote the Fourier restriction and extension operators on Sy by Fs, and F§, and
abbreviate Flg, respectively F§ if A = 0. In particular,

F2, o(z) = /S PTITE () S (€)

Now, if Sy—¢ has non-vanishing curvature and a is sufficiently smooth, it follows again by the
Tomas—Stein theorem that the associated spectral projection

dE()\)

— (0= 0) = FiFs
satisfies
E
[o—0| <1,
Pe—>pl

where p. = 2(d + 1)/(d + 3). One may now ask how these estimates behave, when one varies A.
Clearly, the bounds depend heavily on the restriction estimates for Sy, and thus, it is inevitable
to control the behavior of the surface measure dX as A\ varies.
Since the spectral measure dF is absolutely continuous, we have
dE(N)
dA

i.e., it suffices to control ||c§3-5\A ||l for 1/r = 141/p’—1/p (and possibly p = p. = 2(d+1)/(d+3)).
For a given diffeomorphism ¥(A) : S — S), the Radon—Nikodym derivative is given by

d¥s, (¥ (N)Q)
d¥s(Q)

dE()) = d\ = F3, Fs, d\ = (dESA ) dx,

A
(A Q) = — exp ( / dps (div j)(¢(u)€)> . Ces,

’ eq:specmeasuresurf
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afaev2010
where j(£) = |[VP(£)| 2V P(€), see, e.g., Yafaev% Lemma 2.1.9]. Thus, we have

055, (z) = /S 2T g8 (6) = /ﬂ e NCr(A, ¢) dSs(0),

and therefore - o
[dEs, |- < EugT(/\,C)IIdES(%D(A)')Hr,
€

where $(\) : R? — R? is defined by
(BN, €)= (2,0 (N))

Example 16.4. (1) For P(&) = €2 (ie., P(D) = —A), we take S = S¥! and S\ =
{6 € R?: €2 = A} = VAS? L. We reparameterize A = 1+ p for p > 0, i.e., Sxp) =
{€ € RY . |€2 — 1| = p}. (For the “inner” surface, we restrict to p < 1 of course.)
Thus, for our “new symbol” P(£) = &2 — 1 defining S,(»), we have j(§) = £/(2/¢|?) and
div j(&) = (d — 2)/(2/¢|?). We will now construct a C'-diffeomorphism 1 : S — Sy with
¥(0)¢ = ¢ and ¥(p)¢ = /T £ p¢. For ¢t > 0, we define ¢(¢t)¢ = /1 £+ t¢. Thus,

r d—2
7(p,C) = exp (/ du) = (1 £ p)d=2)/2 = \(d-2)/2
(7 , WaiEm ) = 1EA)

and we obtain
|dZs, [l = A@=2/2 . =4/ g5 ||, < A4/2-1=d/2+d(/p=1/p)/2 — \d(1/p=1/p)/2=1

. ecprojbd2
thereby recovering

(2) For P(¢&) = [¢], ie.,, P(D) = v/=A, we take S = S% 1 and Sy = {¢ e R?: [¢] = \} =
AS?—1. The situation is pretty clear since

s, () = / o2miz-g d¥s, (&) = )\d-1 / e2miz-(AE) d¥g(€) = )\d_ld/z\s()\x).
Sx S

Thus, we immediately obtain

||®Hr — )\d-1. A_d/er/E\er < \d—1=d+d(1/p=1/p") _ )\d(l/p—l/p/)—17

: ibd1
thereby recovering (llgliec T principle, one could go through the above steps and ex-
plicitly construct a diffeomorphism (\) : S — S\ and compute the Radon-Nikdym

derivative; but since the situation here is so simple, we refrain from doing so.

rankSabin2017.
16.5. An application of the observation of Frank and Sabin. We follow H‘- Section 4].

Our goal is to prove uniform Sobolev estimates and limiting absorption prmmples (LAPs) for
Schrodinger operators in Schatten ideals. We begjn w1tg1 tpges_former which is an extension to the
uniform Sobolev estimate by KeninguiszOggegf S Theorem 2. 3.

ss:lapschatten

iformsobolevschatten‘ Theorem 16.5 (Uniform Sobolev estimate in Schatten spaces). Let d > 2 and assume that

{qe [4/3,3/2] ifd=2,

q€(d/2,(d+1)/2] ifd>3.
Then for all z € C\ [0,00), we have the estimates
W3 (= = 2)" Wall o sraa-maaaey) 1214 [Wal| | Wl o (16.19)
and, for v > 1/2, 6(z) := dist(z, [0,00)), and all z € C\ [0, 0),

A )L 5 1+ 2((d+1d),//22) — 30 +1d,/2)
le( Z) WQHS2(7+d/2)(L2(Rd)) N ( ) 7+ |Z| v ||W1||L2('v+d/2)||W2HL2('Y+d/2) .
(16.20)

eq:uniformso

eq:uniformso
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X . formsobolevschatten
Proof. We begin with the proof of ll§l§ By scaling 1t suifices to consider z € C\ {1} with

|z| = 1. For such z we will prove the bounds
Wy (=2 = ) Wy |22 < [[Willoc[Walloo, tER (16.21)
and
a—1 —a+1i a—1 a 2 a a
(lWy t(fA —2) + tW2 tHsz < Md,aeCd, t ||W1HLd741@f2a ”WQ”L% , teR (16.22)

where a is an arbitrary parameter satisfying 1 < a < 3/2if d =2 and d/2 <a < (d+1)/2if
d > 3. Obviously, these estimates imply

[Wi(=A = 2)"Wall 2 p2 < Wi loo | Walloo
[Wi(=A = 2) "W, || g2 < My e at? W1l

Wall| se,
2005
for all t € R. Thus, complex interpolation for Schatten 1dealﬂ cf. Simon f%%n [heorem 2.9))

applied to the famlly Wi(—A — 2)~SWs then gives
W1 (=4 = 2) " Wal|s2a S WA

Ld—1+2a 1+2a

Ld— 1+2 ” 2||Ld741af2a
Up to the change of variables a 5 gr(“clis o_bo]l) e/v (s%glgﬁegnxt}ns is just the clalmec.l estlmate'. In. fact,
ifd=2,3 and a = 1, then 1s already the desired bound and complex interpolation is not
necessary. cuniformso ifiathenboiévschattenaux2 | . .
So let us prove . an 27)). e former estimafe is an immediate consequence of

Plancherel. For the latter, we will estimate |(—A — 2) =" (z — y)| and apply either

e the Hardy-Littlewood—Sobolev inequality if it is bounded by a constant times |z — y|~¢
for some ¢ € (0,d) or

e Holder’s inequality if it is uniformly bounded in |« — y|. (This is the case when 4d/(d —
1+2a) =2, ie., a=[d+1)/2 Inthis case the Jf norms of |Wy|* and |W3|* are taken

~unj o olevsch tenaux
on the rlght Slde of (I16.22]), as expected. )

enl

tall
To that end recall FOBE Formtae (2.21), (2.23), (2.25)], i.e

d/24A

2)\+1 = 2
(8= -0 = g (ogr) | Kae (Vo= o)

and, with v € C,
e’ VK, (w)| < Clw|~Re®) for |w| < 1, Re(w) > 0,
| K, (w)] < CRQ(V)e_Re(w)|w|_1/2 for |lw| > 1, Re(w) > 0, Re(v) > 0.

Setting A = —a +it, v =d/2 + X = d/2 — a + it, we have Rev € [0,1/2] for a € [d/2,(d + 1)/2].
Thus, for w = v/z |z — y| with z # 1 but |z| = 1, i.e., [w| = |x — y|, we can estimate in this case

Ky (w)] Sad eCdat” |w| IR A | ~1/2 (1A Re(w)_N)} , Re(w)>0,NeN

Saa etz —y| 72, fw| = |& — yl, Re(v)] < 1/2.
Combining the previous estimates therefore gives
d/2—a
; gl-a |Z| 2 2
A — p)etit (g, < oCdat® g _ |~ 1/2
|( ) ( y)| ~a,d ( )d/2|F(a—2t)| <|l‘_y|2 | y‘
Saa et lp =yt

20 :uniformsobolevschattenaux2 L. . R .
Note that although eteriorates super-exponentially, it is still sub-double-exponential in ¢, so Stein

interpolation is indeed applicable.

’ eq:uniformsobolevsck

’ eq:uniformsobolevsck
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Thus, by the Hardy—Littlewood—Sobolev inequality, we obtain

By o _ d—1 d+1
lea zt(_A_Z) a+th2a ZtH?S‘2 SMd,aecdﬂtQHWlHZda}fo ”W?HQ:}ITQ 1fa€ I :|

2 72

f I ¢eR. Thisi sl Wobolevschattenaux2 fof ﬁ jformsobolevschatten
or a € K. 18 15 pre ;@ISQ i oq.%vsg}g)al%%le%ges the proot o ’ -unjformsobolevschatten

The second estimate ollows from complex interpolation between or 7 =
respectively ¢ = (d+1)/2, i.e.,
Wi (=A = 2) 7 Wl sasr S 2] W | s [|Wa | o (16.23)
and the trivial bound for v = o0, i.e.,
[W1(=A = 2) " Wa|| < 8(2) M Wi |oo|[Waloc - (16.24)
This concludes the proof. g
onescuSchlag2006 A
We will now use and upgrade arguments of Ionescu—Schlag [TOT H 0 obtain a LAP in Schatten

spaces ocg{ataru oosAS in their arguments, a crucial ingredient is a deep result of Koch and
Tataru [[I09; Theorem 3] about absence of embedded eigenvalues for such potentials.

Theorem 16.6 (LAP for V € L7 in Schatten spaces). Let d > 2 and assume that V € LI(R?
R) with
q € (1,3/2] ifd=2,
q€ld/2,(d+1)/2]  ifd=3.
Define ag : =2V (d—1)q/(d —q). Then
(1) VI2(=A+V — 2)" V|2 € S (L*(RY)) for every z € C\ [0, 00).
(2) the mapping C\ [0,00) 3 z + VV2(=A +V — 2)"Y V|2 € §% is analytic and extends
continuously to (0,00) (with possibly different boundary values from above and below).

(8) under the additional assumption q¢ > d/2, there is a constant Cq 4 (independent of V)
such that for |z| 74/ CD|V| 14 < Cy,, one has

IVY2(=A 4V = 2) V2500 < 2Cugle] OV 1o (16.25)

schatten
If g = d/2 and d > 3, the bound (@Wﬂs_‘vmmded |z| > C(V) for some constant
C(V) only depending on V.

The proof of this theorem relies on detailed information of the Birman—Schwinger operator
Vl/z(fA _ Z)fl‘v‘l/Z'

nanschwingerschatten‘ em{n& 16.7. Let d > 2 and assume V € LY(RY) where q satisfies the assumptions in Theorem
C (0,00) be a compact interval. Then

(1) the family

A(z) = VYA — 2) Y VM2 € §% (L3 (RY))
is analytic on the half strips S := {z € C: Re(z) € I, +Im(z) > 0} .
(2) On each S+, the family A(z) is continuous up to Sy and we denote by VV/?(—A — X\ +
i0) YV |Y/2 its extensions at X > 0.
(3) For all 2 € Si we have the estimate

1A(2) 520 < O]~ CO|V | a (16.26)

. . o . -unjformsobolevschatten .
where C zsLhe implicit constant in 1!1%1@5 whach 1s, wn particular, independent of I.
(4) for all z € Sy the operator 1+ A(z) is invertible and the map S+ > z — (14 A(2))7! is
an analytic family of bounded operators on L*(RY) which is continuous on Si.

eq:lapschatt

eq:complexbi



SOME NOTES ON RESTRICTION THEORY 127

. . . . . 3 ochTataru2006
It is precisely this lemm whﬁg@tg%hes on the absence of embedded eigenvalues [109, Theorem
EEE is th
en

3]. The proof of Theorem en a simple combination of the uniform Sobolev inequalities
rmsobolev t . R R
of Theorem and this lemma (together with the resolvent identity).

exbirmanschwingerschatten
Proof of Lemma %l'he family C \ [0,00) 3 2+ V/2(=A — 2)71V|*/? is indeed analytic
as can be seen by invoking the resolvent formula. We obtain for any z,zo € C\ [0, 00),

N
V1/2(_A _ Z)_1|V|1/2 _ Z(Z _ ZO)nV1/2(_A _ ZO)—n—1|V|1/2
n=0

— V1/2(—A o Z)_l(Z _ Zo)N+1(—A _ Zo)_N_l‘V|1/2 )

By the Seiler—Simon inequality and the constraint ¢ > d/2, the right side is bounded in §%
norm by

[VY2(=A = 2) 71 (=A = 20) "N V|2 g0
<VIV2(=A = 20) [ Zoag (=A = 20) N HI(=A = 2) 7Y < CN|Vl,

and hence vanishes as N — oo if |z — 29| is small enough (such that |z — 29| < C~! for instance).

This shows that the entire series converges in S* with a nonzero convergence radius and thereby

the asserted analyti'city of A(z) in §%a. loRescuSchlag2006
(2) Next, we notice tha.t one can rely on the arg n aenrﬁ‘rssaglr%gorefsults of ’Ionesc E%ecglcll?@cMgLio%ﬁ

V' is an admissible potential in their sense, see also [79] p. . In particular, [I0I} Lemma 4.

b)] yields that for each A > 0 there exists an operator (—A —\+i0)~! € B(L2a(a+1) — [2a(a—1))

ie.,

[(—A =X+ 7:0)71|‘L2q(q+1)_)L2q(q—1) < (7 forany \ € I
such that z — A(z) can be extended as a continuous family on the strips Si in weak operator
topology, i.e., there are sequences I > \,, — A and ¢, — 0 such that

lim ((—A — A £ign) " f,0) = (FA = A£i0) 7 f, ), fe L2t »e SRY).

n—oo

We will now show that this family is indeed continuous in S®. To that end let z € S1 and
(zn) C S4 such that z, — z. Since the Schatten spaces are Banach, so in particular complete,
it suffices to show that A(z,) is Cauchy in §** norm to show Schatten norm continuity of A(z)
up to the real axis. To that end, we decompose

\/VZW1+W1, ‘V|1/2:WI+W25
where Wy, W, are bounded, compactly supported functions and

[Wallgs2 + [Wallg/2 <.
. . . . -uniformsobolevschatten
Using the uniform Sobolev inequality , we then obtain

1A(zn) = A(zm)lls=a < [IWL((=A = 22) 7! = (<A = 2) ") Wils2a + Ce.

The first term is easily bounded using th acflggé% 1%AP in trace ideals for pote ggéllsevg]aix are
short-range in pointwise sense, cf. Yafaev [[ISI] Proposition VII.1.22]. (See also [I8I] Proposi-
tion VI.2.1] for Holder continuity of the Birman—Schwinger in operator norm.) Anyway, that
proposition asserts that the family z — Wi (—A — z)~'W; is analytic in S1 and continuous on
S+ in 8% topology. In particular, it implies for n,m large enough

IWA((=A = 20) ™" = (A = 2) ")W1

for any given €. Thus, (A(z,)), is Cauchy in S% and hence z — A(z) € §% is continuous
up to the real line, i.e., the boundary of Si. Let us repeat that this implies in particular that

s <€
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lexbirmanschwingerschatten

VY2(—A—=X£i0)"H V|2 € S% for all A > 0 and that the asserted estimate dﬁpcontmuous
carries over to the real axis. afaey1992

(3) We apply analytic Fredholm theory (cf. Yafaev [I80; Lemma I.8.1 and Theorems 1.8.2-3])
to the family (of compact operators) A(z) in the strips Sy and infer that z — (1 + A(z))~*
is a meromorphic family of operators on Sy with poles at those points z where —1 € o(A(2)).
Moreover, this family is continuous up to the real axis, except at those points A € I where
—1 € a(A(N)).

This almost ﬁnishes the proof, as we are left to show that no such points z € Sy exist such
that —1 € o(A . Recall that our potential V' is assumed to be real-valued.

Case Im(z Fnescuyﬁ foy(%xgb from a simple argument similar to the one at the beginning
of the proof of emma We present the argument for the sake of completeness. We
sandwich 1+ A(z) from the left w1th |V|Y/2f and from the right with V*/2f. Then, also the the
imaginary part of

LV + V(A =X£i0)71f) =0
vanishes. Since the first summand is zero for real-valued V', so must be the second one, i.e.,

-1

—Im 0 FI12(¢2 _ ie) L de = |2 -2 2 _y)\2
0=t [ [P~ Akie) g =c [ [P+ (€ =0

Since € > 0, the integral must vanish, so the integrand is zero almost everywhere, i.e., f = 0. So
1+ A(z) is invertible for all z with Im(z) > 0 if V is real-valued.

Case z > 0. This is where the result on absence of embedded eigenvalue of Koch and Tataru
comes in. So suppose there are A > 0, a sign £, and f € L?(R%) such that (for (—A—\4i0)"! =
Ro(A))

V2RIV f = —F.

We will now show f = 0. So let us define g := Ro(\)|V|['/2f. Since f eta91987€ L,
we have |V|V/2f ¢ L?9/(a+1) and by the classic uniform Sobolev inequality TUﬁ Theorem 2. 3
g € L?/(a=1(R?). Moreover, Vg € L?%/(@+1) and the above equation reads

Ro(M)Vg=—g.

By the integrability properties of g and Vg, we can rewrite the equation as the well-defined
Schrodinger equation (—A + V)g = zg in the sense of distributions on R¢. Since g € L?9/(a=1)
2 1

and Vg € L?9/(4+D) | we have g € H; q/ég;er;ta-n{i[é% Once we show that g € L? (or |z|~1/2%g ¢
L? for some ¢ > 0), we can apply [109: ﬁ{ Theorem 3] and conclude g = 0 and therefore also
f=-V2R,WIV'? = -VVg=0 and therefore —1 ¢ a(A(

So we are left to show g € L2, Since Vg € L2%/(@+D) we h ve Vg e X where X denotes
the Banach space defined in the mtroductl Ongg CIL%ng?auZo%%hlag TUT a p ays a similar role
than the Agmon-Hormander spaces). , Lemma 4. we n(gvxiﬂa X - X*

onescu

boundedly. Thus, g = —Ro(A\)Vg € X*. Usmg RO( Wg=—g and H emma 4.4], we obtain

I+ |2 Y gllx- <00, M >0.

Writing g =< 2 > 2M< g >2M a qmr]g%gyhngmerschat zg/(q D, we see g € L?. This finally
concludes the proof of Lemmal g %ﬁ O

hatten
We are now ready Eo %?ovg rmansc m‘ﬁﬁ_ﬁsmally uses the resolvent identity to upgrade
(]

hatt
the results of Lemma on VI7E—A—2) *T\/ ﬁ% to VI2(=A+V — 2)~ 1 V|2,
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hatt
Proof of Theorem Wewrite the operator of interest as
1
VY2(—A+V —2) V|2 = V(A -2 VY2 (16.27
exbirmanschwingerschatten
By Lemma [I6.7] we know that the maps

1
14+ V2(—A —2)~1V|/2
are analytic on C \ [0,00) and extend continuously to (0,00) with possibly different boundary

values from above and below. This settles (1) and (2). Lapschatten
Thus, we are left to prove the uniform Schatten bound (@—me_ec shor g > d/2 and

2z e BLARY), 2z VY2(—A—2)"YV|V/2 € 8% (L*(RY))

tten
z € C\ [0,00) such that C|z|~1+¥/ || V][, < 1{2 we obtain (by , the Schatten bound
K K i plexbirmanschwingersch i
for the Birman—Schwinger operator in , and the uniform resolvent estimate for Schatten
grmsobolevschatt

spaces in Theorem [I6.

VY2 (=A+V = 2) 7 V2|52

1
= H (L v a ) H V(= = )TV s
<D IVIREA =) VR | - Cla T CO V|
n>0
< 20|z\_1+d/(QQ)\|V||Lq , for C|z\_1+d/(2‘I)||V||q <1/2.

’eq:lapschattenaux

exbirmanschwingerschatten

Finally, let ¢ = d/2 and d > 3. Similarly as in the proof of Lemma [I6.7] we decompose

V1/2 = Wi, + W5 and ‘V‘l/Q = VNVl + VNVQ with W7, W1 € C. bounded and Wy, VNVQ S L2 Wi }}*msobolevschatten
L2 norm < e. Then, again by the uniform Sobolev estimate in Schatten spaces (Theorem )

IVI2(=A = 2) V2| < [Wi(=A = 2) 7' Wi + Ce, 2 € C\[0,00).
But since W71, W also belong to L/? for any q > d/2, we can apply our previous result and infer
|[Wi(=A —2)" Wi =0 as|z] = co.

: hatt
Thus, there is a C(V) such thaf for all |z] > C(V) we obtain the same bound W
concludes the proof of Theorem O

17. STATIONARY PHASE AND MICROLOCAL ANALYSIS

We start with a classic review of the technique of stationary phase and apply it to obtain
estimates on the Fourier transform of surface measur 1 glfn(‘i%ged, smooth surfaces. This material
is classic and is covered exhaustively, e.g., in Stein [149, Chapter VIII]. Here, we will actually
inspect the proofs a bit more closely and seek sufficient conditions on the smoothness of the
manifold in question. Afterwards we will connect the stationary phase techniques to analyze
certain distributions defined by oscillatory integrals and review the lattice counting problem.
Then, we review some facts from pseudodifferential operators and microlocal analysis on R¢
and transfer them to the setting of compact manifolds. Finally, we study the propagation of
singularities and prove Egorov’s theorem.

Concerning the first problem of obtaining bounds on do, let S € R% be a CN¢ manifold
of codimension one with non-vanishing Gaussian curvature and surface measure do(€). Let

(NS cMNv (R?) whose support intersects S in a compact subset of S. Denoting du = ¥do, we
wish to obtain the smallest N, Ny € N such that

(dp)Y (2)| S <@ >"17D/2
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alregularit

In Prgposjtion we show that N, > 4+ [d/2] and Ny > 2+ [d/2] are sufficient conditions.
Herz Wﬁlﬁwed that this regularlty condition can even be relaxed to N, > [(d —1)/2 + 2], if
one sets » =1 on S. (If N, > [(d — 1)/2 + 4], he obtained the leading term in the asymptotic
expansion for (do)V as |z| — 00.)

The decay estimate for (du)Y 'Eeg)rﬁg&proved using a stationary phase argument. Here, we
follow the presentation of Stein ﬁﬁgmﬁapter VIII] and start with a repetition on oscillatory
integrals of the first kind.

17.1. Oscillatory integrals of the first kind in one dimension. In this section we consider

integrals of the form
10)i= [ @) da ar.)
R

for A\>> 1,9 € C’év”’(R), ¢ € CN¢(R), and certain N,, N, € N.

localizationid| Proposition 17.1. Let N € N. If ¢ € CN(R) and ¢ € CNTYHR) with ' (z 0 on suppy
| p : v ¢ PPy,

then
TN S AN

Proof. We define the “covariant derivative” D and its adjoint by
1 d [ f(z)
D = ! d (‘D = — .
(PN = sl @) ad (DN = (1)

iAg' (z) ¢’ (z)
Since DN ¥ = ¢?*? integration by parts yields
[ e @ do| = | [ (D) p(a) daf S 27
R R
what was asserted. g

We will now consider the situation where ¢’ Vang}&gs somewhere on suppt. The case where
also higher derivatives vanish can be found in fmﬁapter VIII, Proposition 3]. In particular,
an asymptotic expansion i derl 9%@ whose coefficients can be computed explicitly for certain
phase functions ¢, see also HQTHapter VIII, Section 5.1].

Proposition 17.2. Assume 9 € Cévw(R), ¢ € CNe(R) with Ny > 3 and N, > 5. Let g €

suppy be such that o(xg) = ¢'(xg) = 0, but ¢"(x¢) # 0. Assume further that ¢ is supported in
a sufficiently small neighborhood around xqo. Then

[TV S A2,

Proof. We split the proof into four steps.
Step 1. We show that

/ eiA® ple=2 dp o \(EHD)/2 Z cgé))fj leNy. (17.2) |eq:quadratic
R

teinl1993 7=
The proof is contained in T 149, Chapter VIII, Formula (9)].

Step 2. Let n € C'CWH)/Q]H( R). We will then show

R

To prove this, let o € C*° with
1 f <1
(2) { or x| <1,

0 for x| > 2
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and decompose, for some € > 0 to be chosen in a moment,

iz? { _ ei)\mzxé oz T ei>m2$£ T — alr X
/Re xn(x)dw—/ n(z)a(z/c)d +/ n(@)(1 - a(z/e))d

R R
Clearly, the first summand is bounded by a constant timgs Ee';ét}:% 1ed9timate the second sum-
‘Hl which

mand, recall the covariant derivative D from Proposition , 1In this context, acts as
1 i d [ f(x)
D = ! d (*D =——|==].
(Df)@) = g @) and (D)= 5 (L

Thus, we have for N > (£ +1)/2,

/ Xl () (1 — a(x/e)) da
R

/R A (CD)N [afn(2)(1 — ax/e))] do

<AV / |2[*=2N da = const A\~ NgtF1=2N

x| >

. 1/2 -quadraticphase21d . L
Choosing ¢ = A\~/2 shows (I7.3). Similarly, one obtains for any g € S (R) vanishing near the

origin,
/ eMw2g(x) dx / eiAe’ (*D)Ng(x)dx
R R

Step 3. We will now prove the assertion for p(x) = 22 and ¥ € v (R) with Ny, > 3. Let
Y € CX(R?) with ¢(z) = 1 on suppy, write

/Rei/\xz)w(x) dx = /]R(ei)‘””2e*$2 (612¢(x)) U(z)de

and Taylor expand to zeroth order

= <A

, NeNp. (17.4)

e‘”21/)(z) =by+ ho(z) -z

where hg(z) = o(x) belongs to CV+~1(R). Plugging this this into the above integral gives three
terms, namely

bo/e“"”Ze_;82 dwaox\_l/QZcm)\_m (17.5a)
R m
42x0xe_2~x T S AT 17.5
e xh e de| <A1 7.5b
R
4206_2 b(x) —1 | S AT 17.5¢
ele b T w d <A N 7
R

leq-quadraticphaselid quadraticphase21d . No—1
where we used, (IT7 2] ltz)gtlogquggra%gg}gland, @_mm one (since hg € C"v~1(R) C
C?(R)), and (T7-4) for the third one.

Step 4. We finally consider general phase functions ¢ € CV¢(R) with N, > 5. We expand ¢
near zo, i.e., () = c(x—=x¢)?[1+e(z)] for some ¢ # 0 and ¢ € CV¢~2(R) with e(z) = O(|z—x0|),
ie., |e(z)] <1 for x sufficiently close to xo. For such x, one has in particular ¢’(z) # 0. Thus,
let us fix a neighborhood U around zy so small such that these conditions hold. Since we
assumed that the support of ¥ was small enough, we can in particular assume suppy C U.
Now, let y := (z — x9)[1 + &(2)], i.e., x — y(z) is a CV¢~2(R) diffeomorphism from U to some
neighborhood of the origin. Since ¢(z) = cy?, we have

[ v de = [ e ity dy
R

R

’ eq:localizationquadr
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for some ¢ € CNv(R) N CNe—2(R) whose support intersects any neighborhood of the origin.
Thus, we can apply the results of the third step and conclude the proof. O

17.2. Oscillator 1n¥ rals og' thfe first kind in higher dimensions. We will now generalize
Propositions and to R with d > 2. We will say that phase function ¢ defined in a
neighborhood of a point zg € R¢ has zg as a critical point if

(Vo) (o) =0.
Similarly as before, let

I(\) = /R ) M@y (2) da

Proposition 17.3. Let N € N. If ¢ € CN(RY) and ¢ € CN*Y(R?) has no critical points in
suppvy, then
TN s A
Proof. For each xg € suppty there is a ¢ € S¢~1 and a ball B, (§) for some § < 1 such that
&-(Vo)(x) >ec>0 forall z € By, (9).

Decompose ¢ = ), 1y, into a finite sum where each ¢y, € CN(R?) is supported in one of these
balls. Now choose a coordinate system x1, ..., z4 such that x; lies along £&. Then

/ eM‘F(m)wk(z) dz :/ dzs...dxg (/ PREACEIE “)wk(xl,...,xd) da:l)
Rd d—1 R
L. izationid
and we can apply Proposition “ H Efo the x7 integral to conclude the proof. 0

Next, suppose ¢ has a critical point at x¢ but is non-degenerate. By that we mean that the
d x d matrix

0%p
8:cj8:vk
is invertible. Using a Taylor expansion (e.g., for ¢ € CN¢(RY) with N, > 3), one sees that
non-degenerate critical points are in fact isolated.
Proposition 17.4. Suppose ¢ € CN¢(RY) with N, > 4+ [(d+1)/2], and zo € R? is a non-
degenerate, critical point of ¢ where additionally p(xg) = 0. If ¢ € o (RY) with Ny >
+ [(d+1)/2] is supported in a sufficiently small neighborhood of xq, then

[T(N)] < A2 (17.6) |eq:asymptoti
Moreover, for each j =1,2,3, ...
’33\- [efi)“p(yo)f()\)} ‘ S A2 , A>1 (17.7) |eq:asymptoti

|I(/\)| S Ailid/z oAzl qf ¢(y0) =0. (17.8) eq:asymptoti

toticsid
Proof. The proof follows closely the lines of that of Proposition Il (iif First, let Q(z) denote the
unit quadratic form given by

and additionally

m

Z 7 - Z 7
agratlc haselld
for some fixed m € {0,1,...,d}. The analogue of (Il %2; 1S
/ PR =12l 1 g~ \—d/2-101/2 Z c;j(m, OX T, (17.9) |eq:quadratic
Rd

Jj=0
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. te1n1993
whose proof can be found in_ 1A Dy ¢ % le21d
Next, the analogue of “Is the statement that
/ M@ 1l () da
Rd

toticsid
ifn € Ccr(Hd)/ZHi(Rd). (As in the proof of Proposition Il (!EE Wo Wi apply this estimate for
¢ =1 with ho(z)y € CNv~1(RY) in place of n, i.e., Ny > 2+ [(1+d)/2].) To prove it, we
consider the cones

< ATd/2-1e/2 (17.10)

;o= {z e RY: |22 > |2'[/(2d)}
and the smaller
09 = {z eR: |z, > |o/|/d},

where &’ = (21, ...,2j_1,2j41,...,2q4). Then, since

d
Urs-
j=1

we can find functions Qy, ..., g with suppf); C I'; which are homogeneous of degree zero and
smooth away from the origin such that

d
Zﬂj(x)zl for all z £ 0.

=1

Thus, we can write

iAQ(z) z)dx = o AQ(@) 4 En(x)Q,(x) de .
/]Rd z'n(z) de = Z/ (2)Q;(z) dz

adraticphase21d

Now, as in the proof of S let a € 4) be a radial function such that

C

1 f <1
a@):{ or o] <1,

0 for |z| > 2,

and decompose

[ 2@t @y do = [ N M@aty(o)0 (w)als/e) ds
R4 R4
+/ Q@) 5l (), (2)(1 — aw/e)) da .
Rd

As before, the first summand is bounded by a constant times ¢*%. To treat the second summand,
we integrate by parts in the cone I';, using the covariant derivative

; O(z . 1 af(x)
eIAQ(T) _ LIAQ(z)
Dje e with (D, f)(x) = i2z/\xj z;

This, together with the fact that |z;| > |2|/v/2d in T';j, and
(DN Qy(2)] Sv A N]a| 72V,

’ eq:quadraticphase2
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allows us to estimate

/]Rd @ gl (2)Q;(2) (1 — a(x/e)) da

O (@) @)1 = afe/2))] da

Sj )\—N / |$|€—2N dr S )\—NEZ—2N+d
|z|>e,|zal>|z"|/v2d

for N > (¢ + d)/2. Choosing ¢ = A~/2 as before shows
A similar argument shows that whenever g € S(R?) and g vanishes near the origin, then

: draticphase2

/ M@ () de| <AV, N e N, (17.11) |eq:localizat
Rd

. . :localizationquadraticid leq-qy i fenirapEs i
which is the analog of (I7.4)). Combinmg this with (I7.Y) (1710 e proof of Propo-

sition yields the assertion in the special case ¢(x) = Q(z).

To pass to the general case, one can appeal to the change of variables guaranteed by Morse’s
lemma. Since p(xg) = V(xg) = 0, and the critical point is assumed to be non-degenerate,
there exists a CVe~2(R?) diffeomorphism from a small neighborhood of x( in z-space to a small
neighborhood of the origin in y-space under which ¢ is transformed into

m d
dovi- X
j=1 j=m+1

for some m € {0,...,d}. The index m is the same as that of the quadratic form corresponding to

[82?% } (o).

tein1993
The proof of this can found in 17%1,1 p. 346-347]. Combining this with the findings in the special
case where p(z) = Q(z), concludes the proof. O

17.3. Fourier transforms of measures supported on surfaces. Let ¢ € cle (R™) with
N, > 44 [(n+1)/2], and ¢(0) = Vp(0) = 0. Let us further assume that the determinant of

the n X n matrix
0%p B
(565 ) €=0

never vanishes. Then ¢ describes a n-dimensional C™V¢ surface S, which is given by the graph
€nt1 = (&1, ..,&n) and has non-zero Gaussian curvature at every point. Let do denote the

measure on S induced by the Lebesgue measure on R™1, and fix a function v € Co* (R™+1)
with Ny > 2+ [(n+ 1)/2] whose support intersects S in a compact subset of S. Let us now
consider the finite Borel measure du (&) = (&)do(€) on R™HL, which is of course carried on S.
We wish to discuss the behavior of the Fourier transform

()" (@) = [ meen() doe)
for large |z|. For convenience, we relabel d = n + 1 in the following

Proposition 17.5. Suppose S is a CN¢ surface in R? of codimension one with N, > 4+ [d/2],
whose Gaussian curvature is non-zero everywhere. Let further dy = ¢do be as above. Then

|(dp)Y ()] S ||~ @707
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. . L totics | 3
Proof. For the purpose of the proof (in applying Proposition ll ;!% i, we will work with n =d —1
as in the beginning of this section and assume, by compactness, that S is given by the graph

£n+1 = @(517 "'7€d) ’

so do(&) = \/1+|Ve(€)[2d¢,...dE,. Thus, we can reduce matters to showing that, if ¢ €
el (R™) with Ny > 2+ [(n+1)/2] is supported in a small neighborhood of the origin,

/ ei/\<1>(£m)l[,(§) dg‘ < \—n/2 (17.12)

where A = |z| > 0, z = M, and n = (1, ..., p+1) 1S @ unit vector, and

(I)(fﬂ?) = 5 ‘= Zfﬂ?j + ()0(517 -~-7§n)77n+1 .

j=1
Also, we have that ¢(0) = V(0) = 0, and
0%
det —F— ] (0 0.
1< k<n (85]-8&) ©#
We divide the proof into three cases, depending on the position of n € S™, namely

(1) n is sufficiently close to the “north pole” ny = (0,0, ...,1),
(2) n is sufficiently close to the “south pole” ng = (0,0, ...,—1), and
(3) n lies in the complementary set on the unit sphere.

The first and second case are analogous. We have that V¢ ®(&,nn)|¢=0 = 0 and want to see that
for each n sufficiently close to 7y, there is a unique £ = £(n) so that

Ve®(&,n)|e=¢) = 0.

The latter is a series of n equations, and one can find the desired solution by the implicit function
theorem, which requires that we check that the Jacobian determinant

2

0%y

but this is of course our assumption of the non-vanishing curvature. In particular, if the 7-
neighborhood of 7y is sufficiently small, then also

2

0%p
det {agjagk] (&m),m) #0,

ti -
and we can invoke Proposition _&gcl::txo = &(n)) as long as the support of ¢ is small enough.
This shows that the left side of is bounded by a constant times A™"/2 and concludes the

discussion in the first two cases.
Thus, we are left with the third class of . By definition,

Ve®(&,m) = (01, ) + 101 V() -
> ¢ > 0 for n away from the poles, and
Ve(§) =0() as&—0.

Thus, |Ve®(€, 1) > ¢ > 0, if the su %gt%fni is a sufficiently small neighborhood of the origin.
We may now invoke Proposition %{jﬁﬂﬂ\] =2+ [(n+ 1)/2]) which shows that the left side
of @’I_SBOUHded by a constant times A2 (41721 < \—n/2 O

However, (7} + ... +n2)!/?

eq:oscint



136 K. MERZ

2014

17.4. Oscillatory integrals and wave front sets. Here, dg\éq‘gf&}low Sogge fﬁ%ﬁ Section 4.1.1]
but refer also to the classic exposition of Hérmander |98 Secfion 7.8 a%l(% Chapter VIII].

. o, . otics . . .

We now apply the “nonstationary phase lemma” (Proposmonﬁ /% to analyze certain distri-
butions defined by oscillatory integrals. Specifically, let us consider integrals of the form

Ip(z) = /R N @ Na(z,0)do = lim [ " *@Dq(z,0)p(c0) db (17.13)

e—0 RN

where in this definition p € C2°(RY) is a bump that equals one near the origin. In fact, for the
oscillatory integrals that we consider here, we will see that the definition does not depend on the
particular choice of p.

Here, we assume 2 € Q C R? where € is an open subset of R? with d possibly different from
N. Moreover, we assume ® € C>(2 x RV \ {0}) is real, homogeneous of degree one, i.e.,

O(z,\0) = AP(z,0), A>0 (17.14)
and, additionally, if d denotes the differential with respect to all variables, we assume

d® #0 on Q xRN\ {0}. (17.15)

As an example, one may think of ®(x,0) = 2’ - 0 + xx10? with z = (z/,zy4+1) € RV and
¢ € RV, Finally, we shall also assume that the amplitude a(x, ) is a standard symbol of order
m, i.e., for all multi-indices « and 7y, we have

DY DG a(x,6)| Say (14 6™, (17.16)
whenever x belongs to a fixed compact subset of Q and # € RY. In this case, we shall abbreviate
acS" & @E%d.

We will now give a sufficient condition when Ig in dﬁ%s&ismooth.

- defivhi
Theorem 17.6. If ® is as above and a € S™, then I € D'(Q2) and its definition ﬁ%ﬁles
not depend on the choice of p. Additionally, if xq € Q and

Vo®(x0,0) # 0 for all @ € RN\ {0},
then I is smooth in a neighborhood of x.
Before we turn th the proof, we restate the last part of the theorem. We recall

Definition 17.7. Let v € D/(Q). Then the singular support sing suppv of v is defined as the
complement of the set of points xg € 2 which have the property that v restricts as an element
of C*(N,,) for some neighborhood N, of xg.

s b
Using this notion, the last part of Theorem “ ?% Isng,;g

sing supp Iy C {z € Q: Vo®(z,0) = 0 for some § € RV \ {0}}. (17.17)

Proof. We first show I € D’'(2). To do so, we decompose Ig dyadically. So, let 3 € C°(RY)

be a bump function with

oo

B(O) =0if 0] ¢ [1/2,2], and Y B(/2)=1, 0#0.

j=—00

We then define for u € C°(Q),

L) = /Qd;v /]RN do @9 3(0/29)a(x, O)u(x)

eq:defiphi

eq:defsymbol.

eq:iphismoot.
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and
] = / do / o &) 1-5) 8(0/2) | a(z, O)u(z).

Clearly, each Ié is a distribution on Q for j = 0,1,2,... (which is just integration against a
smooth function on 2, depending on j). To prove that also I belongs to D’(2), we show, for a
given relatively compact subset K € 2 and a number M € N there is k(M) such that

1 [u)] <ar 27™7 sup  sup|D%|, we C®(K) forall j=1,2,.. (17.18)
lo| <k (M)

Setting A\ = 27, one obtains

] = AN / / o0 3(9 /2 a(, 0)u(z) dO dz

But since a € S™, we have

forx € K.
leq-iphiDist . . ization .
Consequently, (T7 Jollows from stationary phase (Pr 93111%1011“ ;3% and the assumption d® #
0. Moreover, (I7.I8) implies that the definition 15 indeed independent of p since we

assumed that p € C°(RY) equals one near the origin; consequently, if 5 were another function

with this property, then g — p € C2*(R™ \ {0}).
To prove @,—Eﬁo € Q have the property that Vg®(zo,0) # 0 for § € RV \ {0}. We

will now show that there is a § > 0 such that Is(z) is smooth on {x : |z — z¢| < é}. Since P is
homogeneous of degree one, we see that there is § > 0 and ¢ > 0 such that

|Vo®@(z,0)| >c if |x—mzo|<d.

Therefore, if
Vo®(z,0)
Li=——"—--V
iNVe®(z,0)] 7

we have that for every M and {z : |z — x| < §} that

Ii(x) =AY / M@ (LM (B(0)a(z, A0)) dI = ONNTm=M) |

RN
Thus, if M > N +m and x(0) = 3272, $(6/27), then

(o) = 14(a) = [ O (L) (x(O)ae.0)) do

is an absolutely convergent integral. But that shows that Ig — I3 is continuous on {z : |z — x| <

0} and, by simila arguments, that this difference is indeed smooth on this set. Since I € C>=(Q),
this shows (l ? 5 § g

While this theorem locates the possible locations of the singularities of Ig, it does not yet
assert anything about the “directions of propagation” of these singularities.

Example 17.8. Let 2’ = (21, ...,24_1) and do(xq) = dz’ be the induced Lebesgue measure on
the hyperplane z4 = 0. Then the distributions v = pdx’ with p € C>°(R?) satisfy sing suppv C
suppp N {z € R? : 24 = 0}. On the other hand, since §y(z4) is a distribution that does not
depend on the 2’ variables, the “directions of the singularities of v” is just those spanned by the
unit vectors (0, ...,0,£1). (We will make this saying precise below.) This fact is captures by the
Fourier transform, 9(§), which is rapidly decreasing in any closed cone through th gg%inré Q@/ng
does not contain (0, ...,0,+1). For a generalization of this example, see Hérmander [[98, Theorem
8.1.5).

eq:iphiDistro
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Let us now consider more general u € &£'(R?) (compactly supported distributions). By a
Paley— Wiener Schwartz theorem, we have u € C2°(R9) if and only if 4(¢) is rapidly decreasing,
ie., [0(€)] Sy< & >N &) for any ¢ € C? where %(9%) = SUP,csuppw (T; §) 18 the supporting

ogze2014 orman
functlon (see Sogge [[142] f ; 8A.2] or Hérmander [[98] 1 heorem 7.3. 1]). However, the above example

indicates that it is posmble that & € C'*° is rapidly decreasing in some directions but not in the
others, i.e., only some high-frequency components of & may contribute to the singularities of w.
The wave front set, which we are about to define unifies these along with the singular support.
Recall that a conic neighborhood of a set ¥ C R4\ {0} is an open set A containing 3. and having
the property that if £ € A/, then so is A¢ for every A > 0.

Definition 17.9. For u € & let I'(u) € R?\ {0} be the closed cone consisting of all n € R%\ {0}
such that 1 has no conic neighborhood in which

la(¢)| Sy< >N, NeN
holds.

Note that if u € &'(R9), then, by Paley-Wiener, we have v € C° if and only if I'(u) = 0.
We may therefore interpret sing suppu as measuring the location of the singularities of u and
I'(u) as measuring the the directions of the singularities of u. Keeping this in mind, we have the
following natural result.

Lemma 17.10. If p € C>®(RY) and u € &' (RY), then
L(pu) CT(u).
Proof. Our goal is to control
€)= [ e~ min) dn.
Since u € £'(R?), we know that @ is smooth and satisfies

[a(n)| s (L + )™

ormander1990

for some m (by integration by parts, see also [98, Theorem 7.3.1]). Next, we note that if £ is
outside of a fixed conic neighborhood of I'(u) and 7 is inside a slightly smaller conic neighborhood,
then € —n| > c¢(J€] + |n]) for some ¢ > 0. In this case, we obtain

p(€ = ma(m| Sy A+ gl + )™ 1+ )™ Sy L +[el+ )™V, NeN.
On the other hand, if n is outside of a fixed small conic neighborhood of I'(u), we obtain for any
£ R,
(& —mam)] Sx (L+[€=n)N 1+ )~
Combining these two observations gives
il s [ lel )™ dn s [ le =)@ ) dy
= O(|¢|=Vrmr 4 g7V,

thereby showing I'(pu) C T'(u). O

This lemma affords us a further localization.

Definition 17.11. Let @ C R? be open and u € D'(2). For x € Q, let
Ty(u) = ﬂ T'(pu).

{peC: p(x)#0}



phiwavefront
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One easily verifies I'(pju) o+ Dafu) if p; is a sequence of CZ°(€2) functions with p;(x) # 0
and supp p; — {z}, see also 08, pp. 253-254]. The set I';(u) C R?\ {0} essentially captures
the directions of the singularities of uw at x. This allows us to define a basic object in microlocal
analysis.

Definition 17.12 (Wave front set). For u € D’(€2), the wave front set of u is defined as
WF(u) = {(2,6) € A x R¥\ {0} : £ €T,(u)}.

Since u € D'(?) is smooth near z if and only if T';(u) = 0 (by Paley-Wiener), it follgws .
that the projection of WF(u) onto Q is exactly sing supp u. Similarly, one shows (see also %98,7
Proposition 8.1.2]) that the projection of W F'(u) onto the frequency component is precisely I'(u).
In particular, this shows that W F'(u) is conic in the sense that it is invariant under multiplication
by positive scalars in the second variable. It could therefore be considered as a subset of  x S~ 1.

Theorem 17.13. Let Q be a linear subspace of R and u = ug d¥ where ug € C*(Q) and dX is
the Euclidean surface measure. Then

WF(u) = suppu x (Q\ {0}).
As an example, think of u = ug d’, i.e., where dz’ = §(x4) dz and Q = {x € R?: x4 = 0}.
ormander1990
Proof. See Hérmander [[98, Theorem 8.1.5]. O
3 iphismooth . .
The following theorem naturally extends Theorem ﬁa_nd_glves a first localization of W F(Ig).

Theorem 17.14. Let I € D'(Q) be as in dﬁwﬁwn
WF(Ip) C {(2,V,®(x,0)) : (x,0) € Q xRY\ {0} and Vy®(z,0) = 0}. (17.19) ’eq:iphiwavefront

L th TR Front
Proof. The proof is very similar to the one of Theorem ﬁﬂf%t_u € C(9). To prove i ? gifwave =

it therefore suffices to show that
I1(¢) := // @O =iy (1) a(x, 0) d dx
is rapidly decreasing when £ is outside of an open cone I'y containing
{V,®(x,0): (x,0) € suppu x RV \ {0}, Vo®(z,0) =0} .
Repeating the previous arguments, this amounts to showing that for such £ we have
‘// e @O =18y (1) B(0)a(x, A) dx: db

whenever 3 € C°(RY \ {0}). Let us define

<m A+ |€|)_M7 MeN (17.20) ’eq:iphiwavefrontclai

AD(x,0) —x- &

U(x,0) = T e

Then we claim that

VoW (z,0)] ~
Va0 ¥(a, ) e

. ~iphiwavefrontclaimi
on the support of u(z)B(0)a(x, Ad),, T s would show (@m&utlon of the nonsta-

tionary phase lemma (Proposition

. . eq:-iphiwavefrontclaim2
To verify that claim, first note that @mnless

c< M| <C

for certain constants 0 < ¢ < C < oo, since d® # 0. So let us assume this in the following. Also,
if Vo® = 0, then AV, ®(z,0) — &| > I/ (|AV.P(x, 0)| + |€|) for some ¢’ > 0 if £ is outside of T'y.

>c>0, £¢Ty, (17.21) ’eq:iphiwavefrontclaj
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~iphiwavefrontclaim2
Thus, the claim holds when |Vg®(x,0)| is small and 5(0) # 0. Since ll ?21 also clearly holds

for such 6 when |V®(x,0)| is bounded from below, the proof is complete. O

We conclude this subsection by showing that W F'(u) is invariant under diffeomorphisms. Let
ki Q—Q

be a diffeomorphism between two open sets. Then if, say, u is a L} (Q) function, then it defines

loc

a distribution in D’(£2), defined via
u(®) = [ uln) W) dy, ¥ eCT(@).

Likewise, the pullback of u via &, i.e., (k*u)(z) = u(k(x)), defines an element of D’(2). In this
case, if ¢ € C°(92), we get

(k") () = /Q w(k(2)Y(x) de = /

-1

Q

w(y)b (s (w) \det dr

)| v, vecr@),

To be consistent, we must then define the pullback of a general u € D’ (Q) by the formula
-1

() = (), ) = v ) oot D) dy, veoE@).  ara)

. d d: . . 4 ullbackdistro .
Note that if k : R® — R® is a linear transformation, then immediately gives the change
of variables formula for wave front sets, i.e.,

WF(k*u) = s*WF(u), ueD(Q), (17.23)

whenever the pullback of a subset A C Q x R%\ {0} is defined via the pullback map for cotangent
bundles, i.e.,

KA = {(2,€) : (k(z), ('))71€) € A}. (17.24)

The following result says that this fact remains true for general diffeomorphisms.

h'eorle&g}la}jé%p Let k : Q — Q be a diffeomorphism between two open subsets of RY. Then
| ??g; is vand.

Remark 17.16. Note that the pullback formula dﬁ%ﬁ% the change of variables for
the cotangent bundle that one encounters in dealing with C'>° manifolds. Thus, if M is a smooth
d-dimensional manifold and u € D’(M), then its wave front set W F'(u) can be defined as a subset
of T*M \ {0} using local coordinates.

hangewf
Proof of Theorem I? fl Zg O

17.5. The lattice counting problem. The goal of this section is to prove a primitive result
concerning lattice counting in R?. Specifically, we show that

#{j € Z%: |j| < A} = |Bo()|A! + O\ ATy A > L (17.25)

inimalregularit
Using the decay of the Fourier transform of surface measures (Proposition which n

particular applies to the sphere, we obtain the following estimate on the Fourier transform of the
ball multiplier.

Corollary 17.17. Let x(z) denote the characteristic function of the unit ball in R?, i.e., x(x) =
1p,(1)(x). Then it satisfies

RE| S<€e>F . (17.26)

eq:defpullba

eq:coordchan

eq:defpullba

eq:latticewe

eq:ftballmul
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Proof. First, since x(z) is compactly supported, its Fourier transform is bounded (in fact even
real analytic), i.e., it suffices to consider |£| > 1, say. Next, we reduce the problem to that region
where x(x) lacks continuity, i.e., an annulus around the unit sphere. For that purpose, let

0 for r <1/4
1 forr >1

C=(R) 3 5(r) ;:{

and smooth in [1/4,1]. Then (1 — B(|z]))x(z) € C*(R?), i.e., it has rapidly decaying Fourier
transform. Thus, it suffices to prove

1
/ X(@)B(|x)e* S de = | dr ') / eI o (w) = O(Jg| D7)
R4 1/4 Sd—1

where do(w) denotes the usual Lebesgue measure on S?~1. We already saw tha the Faurier
transfor C());fgg%‘ixiures supported on curved surfaces is of the form (see, e.g., Stein [149] p. 360]

or Sogge (142, Theorem 4.1.10])
D eEmirkla (rle]),
+

where

i L
@ai(s):O(s*%ﬂ), j=0,1,2,..., s>1.

Plugging this in and integrating by part gives
| x@alahe ¢ e = 3 B (€] 22 = 0|5
Rd < +2milé| J1 /4 dr ’

where the main contribution in the last step comes from the boundary term of the integration
by parts. O

A . . 2 ticeweyl
The other ingredient in the proof of 1I| %igi 1S

Theorem 17.18 (Poisson summation). If ¢ € S(R?), then

> el =Y @3).

jezd jezd
rafakos2014C
Proof. See, e.g., Grafakos [85, Theorem 3.2.8]. ]
s ticeweyl s ticeweyl
Proof of d@_ﬁ_x{'_ﬁ) = 1p,(1)(z), then we can rewrite the assertion Il ?ig as
N\ = Z x(J/A) = |BO(1)|)\d + (9(/\d_2+d2?), A>1. (17.27) ’eq:latticeweylalt

jezad

To prove this, we replace x(z) by a smoother function that can be controlled using the Fourier
transform and Poisson summation. To do so, fix 8 € C°(RY) satisfying

80, /Rdﬂ(y)dyzl, and B(y) =0, fory > 1/2.

he qQr some & > 0, depending on A\ and to be specified later, we shall compare the sum in
0 the smoothened version

N(a, A) = Z xx(&,7), (17.28) ’ eq:latticeweylsmoott
JEZA
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where
Bl = (7I80/2) +x(/0) (@) = [ B (= )/ xto/N) dy.

Note that 0 < X, and, by the support properties of 8, we also have x(z/\) = X (e, z) whenever
|z| € [A — e, A + ¢]. Therefore,

5()\75(5737) < X(CC/)\) < >2>\+6(57 CL‘) )

ie.,

N(ge,A—e) < NA) < N(e, A +¢). (17.29)

Since x — X (€, ) is Schwartz with Fourier transform given by
MROE)B(EE)

Poisson summation gives (recalling [ x = |Bo(1)| and [ 3 =1)

1\7(5,)\) =\ Z )A(()\])B(a]) = |BO(1)|)\d + A4 Z X(A])B(&]) (17.30) |eq:smoothnpo

jezd {jend: j#0}
~ ] ltipli
Since |3($)] Sx (LJel)n™ (for any N € N) and [((§)] < (1+¢))~ 5" (by Corollary [[7A7), the”
second term in 1s bounded by
d Sy — 4+l CN—N d _d41 _N
AT @ NDTE A L)Y a4 e e
{jezd: j#0} |€]>1

for any N € N. But since for 0 < e <1 and N > d one has

/(1+|Af\>*%l+\ef\>“d5

|€1=1

< / (14 M) 5 de + / (L4 )~ (14 [e€]) N de

~

I<[¢]<et |§|>e—2
d+1 _d—1 d-1

SA Te o+ (A/E)_%e_d — AT )

one concludes
d—1

N(e,N) = [Bo()IA + O T e~ )
= hi
Combining this with dﬁggh%b yields
N() = [Bo(D)]A? + 0(exd ™) + 0N T e~ ),

since (A €)% = A + O(eA9"1) (coming from the |By(1)| term). Optimizing in € (i.e., choosing Lal
z :latti t
£ =A™ so that both remainders are of the same order), finally shows the asserted il ?% ? i.lcewe 2

17.6. Pseudodifferential operators.

17.6.1. Basics from the calculus of pseudodifferential operators.
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17.6.2. Microlocal properties. We shall now go over various microlocal properties of YDOs that
we shall need later on. Among others, we shall give an equivalent definition of wave front sets
that will be useful later on.

First, it will be useful to have microlocal versions of the existence of parametrices (i.e., ap-
proximate inverses) for elliptic pseudodifferential operators (satisfying |P(z,&)| > c|£|™ for some
¢ > 0, m > 0, and sufficiently large |¢]). Recall that a parametrix of an elliptic ¥DO of order m is
another UDO of order —m, say E(x, D) having the property that, modulo smoothing operators
in ST,

PoE=FEoP=1.
Any o ler gperator with this property differs from E only via a smoothing operator. (See, e.g.,
Sogge [142] Theorem 4.2.5].)

To state a microlocal version of this fact [T}, we need to denote the characteristic set of a WDO

P(x, D) of order m, which is a subset of R x R?\ {0} = T*R?\ {0}.

Definition 17.19. Let P(x, D) be an elliptic DO of order m. Then Char P, the characteristic
set of P(x, D), is that closed subset of T*R?\ {0} whose complement is all points (zg,&) €
T*R%\ {0} for which there is a conic neighborhood N, ¢, € T*R¢\ {0} of (xg,&) on which
lower bounds of the form

[Pz, &)] = clg|™
hold for large || with ¢ > 0 possibly depending on Ny, ¢, .
Remark 17.20. Alternatively (as is standard in the analysis of differential operators P(z, D) =
> la|<m Ga(z)D®), one could have simply defined

Char P := {(z,¢) € T*(Rd) \ {0} : Pp(z,&) =0},
where P,,(z,&) is the principal part defined by P,,(z,§) = Z|a\=m aq ()€,

The following is the microlocal version of the existence of parametrices for YDOs which are
elliptic only in certain directions. For a symbol a(z, ) and a conic neighborhood N, we write
a € ST°(N), whenever we have for any N, a, and /3 that

(2) (2) s

Theorem 17.21. Let P(z,D) be a VDO of order m and assume that (zq,&) € T*RE\ {0} is
noncharacteristic for P, i.e.,

Snas (LHIENTY, if (2,6) €N

(20,&) ¢ Char(P).
Then there is a WDO E(x, D) of order —m so that

(PoE)(x,8) =1, (EoP)(x,§) —1€ S *(N)
for some conic neighborhood N of (x¢,&).

Next, let us recall that ¥DOs are in general (as opposed to differential operators) non-local.
Nonetheless, there remain certain remnants of locality in the sense that YDOs leave the singular
support invariant. This fact is called pseudolocality. It means that if P € S™, then

sing supp P(z, D)u C sing suppu, u€ H . (17.31)

This just follows from the fact that the kernel of P(z, D) is smooth away from the diagonal.
Similar considerations lead to the stronger microlocal property of P(x, D), namely

WF(P(x,D)u) CWF(u), weH ™. (17.32)

2lthat distinguishes between directions where P(z, D) is elliptic and where not

eq:wfpdol
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Later on we shall show the almost inverse inclusion
WF(u) C WF(P(x, D)u) U Char(P),
. ormander1990 ogge2014
see, e.g., Hormander [[98] Theorem 8.3.1] or Sogge ETZIZ, Corollary 4.2.11].
Remark 17.22. A final side remark is that if P is an elliptic differential operator, i.e., Py, (x,§) #
0 in T*(R9) \ {0}, then we indeed have the reverse inclusion, i.e.,
WF(Pu) =WF(u), uecDR?
. ormander1990

and in particular sing supp Pu = sing supp u for u € D'(R?) (Hérmander [98, Corollary 8.3.2]).

Another fundamental object in microlocal analysis of ¥DOs is the notion of essential support.

Definition 17.23. Let P be a YDO. Then the essential support of P(z,§), denoted by esssup P
is that closed subset of 7%(R?) \ {0} whose complement consists of points (zg,&y) having the
property that P(z,£) € S™%(N,, ¢,) for some conic neighborhood Ny, ¢, of (z,&p) in T*(R?) \
{0}.
Thus, if u € H~>°(R?), we have
WF(P(z,D)u) Cesssup P.

Our next goal is to give an alternative characterization of W F(u) whenever v € H~>°. First,
we note also that, by the definition of WF(u), the statement (xg,&y) ¢ WF(u) means that
P(x,D)u € C* for certain YDOs P(z,&) € S° that are non-characteristic at (zg,&p). Specifi-
cally, let
1 for |z| < 1/2
0 for |z| > 1

CZ(RY) 3 p(z) = {

and smooth in between, and,

0 for €] <« 1
(joo E{d 35 — .
= (R?) 5 x(¢) {1 o 6] o 1
Let us furthermore set
QsteD)ote) = [ ds = <plla — anl/a)o (&~ 1) /0) w(©00(6).
Then (x0,&) ¢ WF(u) if and only if Qju € C* when ¢ > 0 is small. This is due to the fact
that the Fourier transform of Q5u equals

£ & A
P((E - @)/@X(f)[ﬂ((' —x0)/6)u]”(€) -

Based on this, one checks that (z,&) ¢ WF(u) if and only if Q%(z, D)u € S(R?) when § > 0 is
sufficiently small.
Moreover, since P(z, D) = Q5 (z, D) is also not characteristic at (z¢, &) and we let for m € R

Rm(u) :={P(z,§) € S : P(x,D)u e C*}, we H™ ™ (17.33)
denote the set of regularizing operators for a given u € H~>° EL then by the above arguments,
(WF@w)*< |J (CharP)°.

PERo(u)

The main result here is, however, that we actually have equality and not only fo =0, but
for all m € R. This provides a useful equivalent definition of W F(u) (Definition

224150 including operators that may be characteristic at (zo,£0) ¢ W F(u)
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Theorem 17.24. Let u e H™> and m € R. Then
WF(u)= (] CharP.
PER .y, (u)
In particular, we have for a given P € 8™,
WF(u) C Char P, if P(z,D)uec C™.

-wfpdol
The following corollary provides a nice complement of the microlocal property dﬁﬁf
UDOs.

Corollary 17.25. If P € S™ and u € H~°, then
WF(u) C WF(P(xz,D)u)U Char P. (17.34)
In particular, if u solves P(x, D)u =0, then WF (u) C Char P.
Proof. We prove the equivalent assertion
(WF(Pu))¢N (Char P)¢ C (WF(u))°.

1
If (z0, &) ¢ WF(Pu), then, by Theoremﬁghere must be a Q € S° with Q(z, D)oP(z, D)u €

ozoge%&(xo,fo) ¢ Char Q. If also (x,&p) ¢ Char P, then, by the Kohn—Nirenberg formula (cf.
1421 Theorem 4.2.2])

(PoQ@) ~ Y 30P6) (4] Qo).

1
we also have (xq,&y) ¢ Char(Q o P) and so (x0,&) ¢ WF(u) also by Theoremﬁ_t O

1t . . . . .
The proof of Theorem ﬁar_ehes on the following lemma, which is more or less equivalent to
the theorem.

Lemma 17.26. Let v € H=*°. Then (xo,&) ¢ WF(u) if and only if there is a conic neigh-
borhood N of (z9,&) in T*R4\ {0} so that P(x, D)u € C* whenever P(x, D) is a WDO with
symbol P(z,&) supported in N.

Let us first see how the Lemma implies the above theorem.

1t
Proof of Theorem %Let (20,&0) ¢ WF(u). Then by the lemma if Q(z,{) € S™ is supported
in a small conic neighborhood of (z¢,&y) and equals || for €] > 1 with |{/[€] — &o/|&ol| and
|z — x| small then Qu € C*°. Since Q(z,§) is non-characteristic at (zo, &), we conclude

(z0,&0) € U (Char P),
PeERm (u)
and thus

(] CharP CWF(u).
PeRm(R)

Conversely, suppose that P(z,§) € S™, P(z, D)u € (. and (r0,{) ¢ Char P. We then must
show that (z9,&y) ¢ WF(u). By Theorem we know that for such (x¢,&y) there exists a
microlocal parametrix Q € S~™ such that

(Q o P)(x,{) —le S_OO(NIofo)

for some conic neighborhood Ny, ¢, of (zo,&). But then if A € S* and A(x,§) = 0 for (z,§) ¢
Naio,eo we have that A(z, D)(Q o P — 1) is smoothing by the Kohn-Nirenberg theorem (i.e.,

eq:wfpdo2
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P(x, gg%gji,p) is a YDO of order m+ i whenever P and @ are ¥YDOs of order m, respectively
w, cf. [142] Theorem 4.2.2]). Since

w=Q(Pu)+(1-QoPu

and Q(Pu) € C* (since Pu € C*), we conclude A(x, D)u € C*™. Thus (z9,&) ¢ WF(u) by
the lemma which concludes the proof. 0

1t
Proof of Lemma %ﬂ O

17.6.3. Pseudodifferential operators on manifolds. Before we define WDOs on manifolds and dis-
cussing some of their properties, we prove a preliminary result showing how certain types of
UDOs on R? transform under changes of coordinates.

We consider operators of the form

(Pou) () = / 2T E) Pz y. €)uly) dE dy (17.35)

where the compound symbol P belongs to S™, i.e., satisfies

O\Y/ o B1 o B2

— — — | P
() () () reve
and ¢ € C°(R2? x R4\ {0}) is real-valued, homogeneous of degree one in &, and satisfies
o(z,z,§) =0 and Vzgo(x7y7§)|x=y =¢. (17.36)

In particular this means that ¥ behaves like a plane wave near the diagonal, i.e., one has

o(2,y,) = ((x —),€) + O(lz — y*||€]) .

Thus, if supp,, , P is contained in a sufficiently small neighborhood of the diagonal, we have that

Sap (1+ g™

1
Velp(z,y:€) = (@ =y, 8] < 5lo —y| onsupp P (17.37)
Under these hypotheses, we have the following

Proposition 17.27. Suppose P € S™ as gosasg$h Qge@ x or y is outside of a fixed
compact set in R? and that ¢ satisfies 3T en P, is a WDO of order m.
Moreover, if we set P(z,&) = P(x,x,€), then P, — P(x,D) is a YDO of order m — 1.

ogge2014
Proof. See Sogge fm, Proposition 4.2.12]. O

We will now apply this result to see how ¥DOs in R¢ behave under changes of variables. For
simplicity, we assume for the moment that the operators have symbols satisfying P(x,£) = 0 for
x outside of a compact set K. Recall that if x : R? — R? is a diffeomorphism, then the pullback
of a function v € C'*° via k is kK*u = uy, defined by

() = u(k(x)).

Proposition 17.28. Let k : R? — R? be a diffeomorphism and assume that P(y,£) € S™
vanishes when y is outside of a compact set K. Then there is a symbol P.(x,&) € S™ such that,
modulo smoothing operators,

(PK(JJ,D)UK)(.’L‘) = (P(y,D)U)(y), Y= K(l‘),
and

Py (z, 'K/ (2)€) — P(k(x),£) € S L. (17.38)

23 As we have seen above, the second condition is actually a consequence of the former, but we nevertheless
include it in the statement for the sake of clarity.

eq:condphase

eq:condphase

eq:pullbackp
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4 1backpd:
llbacksymbol | Remark 17.29. Note that dﬁﬁys‘%ﬁa‘c, modulo symbols of one order less, the symbols of

WDOs pull back according to the pullback map
(k(x),€) = (x5 (2)"€)
which is the change of variables formula for the cotangent bundle coming from changes of coor-

dinates in the base. This fact will momentarily tell us that the principal symbol of a YDO on a
manifold M is invariantly defined as a function on T*M \ 0.

iffeo
Proof of Proposition %._Choose p € CX(R?) satisfying p(y) = 1 near y = 0. Then if we set
y = k(x), z = k(w) and & = K'(x)n, we obtain, modulo a smoothing operator, that P(y, D) is
given by

[ Py otz — gu(e) dndz = [ O Q(, w0, u(w) dedu,
where
ol w, 1) = (w(x) — w(w), ('K (2)€)
and
Q. w,€) = p((w) — () P(w(a), (*#' (@) I (w) 'K ().
Since ¢ is as in (TT-30) and Since
Qo w, W (@), _, = P(r(x),m).

. L eralphase
the claim follows from PI‘OpOSlthni }érf O

We may now define YDOs on a smooth compact manifold M.

Definition 17.30. A map P : C®(M) — C*°(M) is called a YDO of order m if its kernel is
smooth away from the diagonal A = {(z,y) € M x M : x = y}, and, whenever Q, C M is a
coordinate patch with coordinates

y=ry(x) € Q, =k, () C RY, ze€Q,,

and 1,1, € C’go(fly), the operators

P,u(y) = iu(fﬁu(x))P (Wpu) ok () (), y=ro(x)€ kK, ()C RY, we Coo(Rd) (17.39) ’eq:defpdomanifold

are (usual) UDOs of order m.

In this formula (¢, u)ok, is understood to be the C*° (M) function which equals ¥, (k, (z))u(k, (z))
when &, (x) € supp ¥, and zero otherwise. If | J, 0, = M is a finite covering of M by coordinate
patches and {V,} is a smooth partition of unity subordinate to this covering, i.e., >. ¥, =1
and supp ¥, C Q,, and if U, € C*(M) equals one on supp ¥, and is supported in €, for
each v, the~n, modulo an operator with smooth kernel i'géh a%i%‘gr%gothing opga‘cor)7 we have
Pv =) ¥,P(¥,v). Consequently, we can use } %Wand 1, being the pushfor-
wards of U, and ¥, respectively, to write the symbol of P in local coordinates as a function
P(y,n) = P,(y,n) € S™

Definition 17.31. We say that P is a classical DO of order m and write P € ¥} (M) if in
every local coordinate system, we have

P(:U?n) ~ Z‘mej(y777)7
7=0

where P,,_; is homogeneous of degree m — j in 7.
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We shall restrict ourselves to such polyhomogeneous operators from now on since operators
such as \/—A, always have this form. As usual, A, denotes the Laplace-Beltrami operator on
M endowed with a Riemannian metric g ogge2014

If we use local coordinates (cf. Sogge fm,?&tion §2.3])

T*M 3 (2,€) — (k,,£") € REx RI\ {0}, z€Q,C M,
then we can define the principal part of a classical DO P by setting
p(x,§) = Pn(ru(2),£").

1lbacksymbol . . .
By Remark Il (Igét this gives a well-defined function on C°°(T*M \ 0) which is homogeneous of
degree m. Naturally, we say that P is elliptic if its principal symbol never vanishes on 7*M \ 0.
Moreover, we define the characteristic set of P as

Char P = {(x,€) e T*M \ 0: p(x,€) =0}.

Lo . lbackwfset 3
As we indicated in Remark Ii ?!lgt the wave front set of V € H~>°(R?) transforms according
to the change of variables formula (a.k.a. the pullback formula for the cotangent bundle)

(k(),€) = (, 1 (2)"€)

for the cotangent bundle. That means that we can use local coordinates to define the wave front

set of a given u € H=>°(M) = J, H*(M). For such u it is alsq clear that, if Ry, (u) denotes
those P € U7 (M) for which Pu € C°°(M), then, by Theorem or each m € R we have
WF(u)= (] CharP. (17.40)
PER , (u)

In particular, by using local coordinates, we see that the notion of essential support of P(x €
U7 (M) is a well-defined subset of T%M \ 0, and so, as in the euclidean case (Theorem we
have

WPF(P(z,D)u) CesssuppP, we H *(M).
If we are working on a Riemannian manifold (M, g), then P € U7} (M) is said to be self-adjoint
if
(Pu,v) = (u, Pv) := / uPvdVy, wu,veC™®(M).

M
Recall that P(x,&)—Re(P(z,£)) € S™~! for m-th order, self-adjoint ¥DOs P (cf. fﬁ%%ollary
4.2.8]). Thus, if P € ¥7(M) is self-adjoint and elliptic, then its principal symbol must be real
and either be always positive or always negative on T*M \ 0.
As usual, we can define Sobolev saces of order s on M by setting

||fHHS(M) :ZHfVHH“(Rd)a fl/(y):(\ljl/f)(x)a y:"{u(m)a x € supp ¥,

where, as before {¥,} is a smooth partition of unity coming from a finite covering of M by the
coordinate patches (€, k,). It is straightforward to check that different partitions of unity give
comparable Sobolev norms. Thus, there is no loss in just defining the Sobolev norms via one of
them. Moreover, in view of classical DO calculus, we have

P:HY(M)— H™(M), PeUm(M).
If m > 0and P € ¥ (M) is elliptic, then

[ullzrm S 1 Pull L2y + [[ullz2 ar) -
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If m =1 and Q € U} (M) is self-adjoint and elliptic, then, as noted above, after possibly
multiplying by —1, we may assume its principal symbol, ¢(z,&), to be positive. Then if A €

gl/? (M) has principal symbol /q(x, ), the previous inequality shows

cl
lull a2 ary S 1AUllZ2ar) + lullZzar) -
Since @ — A*A € VY, (M), Cauchy-Schwarz gives
|(u, Qu) = (u, A" Au)| < [lullZ2ar)
and therefore, by combining the last two inequalities and noting (u, A* Au) = || Aul|?,
Full2 a1 Q) + [l = (1, (@ + 1))

Thus, Q+c is a positive self-adjoint operator, and, by Rellich-Kondrachov, has compact resolvent,
so purely discrete spectrum consisting of eigenvalues 0 < p1 < pp < ...pt; possibly accumulating
at infinity. In particular, @) has also purely discrete spectrum, possibly accumulating at +oo
with only finitely many negative eigenvalues (if any).

We are now prepared to study /—A, and show that it belongs to \Ilil(M) with principal
symbol

P /==, (:€) (17.41)

whenever — Z;i w1 9% ()€€ is the principal symbol of the Laplace-Beltrami operator A, on
our Riemannian manifold (M, g).
Recall that if 0 = A3 < A2 < A3 < ... are the eigenvalues of —A, with corresponding eigen-
projections F;, then
—Agu= ZA?Eju, ue C®(M)
Jj=0

so naturally (by functional calculus), we define P = /—A, by

Pu = Z/\jEju’ u € C™®

Jj=0

which satisfies P2 = Po P = —A,.
Because of the zero-eigenvalue \o, the operator —A, is not invertible. However, by modifying
it by the rank-one projection Fj, i.e., setting
LU:EOU‘FZ)\?E]‘U, U€COO(M),

j=1
we see that L > 0 is invertible and that L only differs from —A, by Ej, i.e., a smoothing operator
with kernel (vol,(M))~! on M x M.

We now show that P € \Ilil(M) To do so, we first construct a positive first order self-adjoint,
elliptic operator @ € U}, (M) that satisfies

L-Q*=R (17.42)

for some smoothing operator R. Working in local coordinates, we first set
1/2

d
Qr(2,8) =x©) | D d*@)&8 ;

jik=1

’eq:hwprincsymbol
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where y € C™ vanishes near 0 but equals 1 when, say, |¢||geql. If we let Qi (x, D) = (Qy(x, D)+
~£gae:2£2)/2, then @ is self-adjoint, and in W), (M). Moreover (by the Kohn-Nirenberg theorem
142] Theorem 4.2.2]) (Q1)*—L € ¥},(M). We can now continue inductively choosing self-adjoint
Q; € V(M) (j =2,3.,,,) so that L — (Q3 + --- + Qn)? € U2V (M). As a result, if we let
Q € WL, (M) be a representative of the formal series Zj>1 Qj, we would get that L — Q? is
smoothing. Since each @ is self-adjoint, @ equals its adjoint by a smoothing error. Thus, after
possibly adding such a smoothing error operator, we may indeed assume @ to be self-adjoint.
By what we did before, @ then has discrete spectrum accumulating at +oo. Thus, after possibly
modifying it on a one- (or finite-) dimensional set, we may also assume that @ is positive and
that L — Q% = R indeed holds, as claimed.

Summarized, we found an approximation, i.e., Q?, of L = —A, + Ey. We now claim that also
VL — Q = Ry is smoothing. To see this let ¥ C C be a contour encircling all eigenvalues of L.
Then by Cauchy’s integral formula,

1
L7Y% = —ﬂ/z_l/Q(L—z)_ldz
0
.

and
1 1
Ql=—-—— / QP -2 de = = / VAL —R—2)""dz
211 5 211 5
and therefore,
1
LYV _Qt=—— / 12 [(L —2)'—(L-R- Z)_l] dz
2mi J,

1
o

Since R is smoothing, the whole integrand is smoothing and the integral in particular converges
and defines a smoothing operator. Thus

VL-Q=VL— =8, +-8,-Q=Q@Q ' - L)L = Ry

is then smoothing as well, we obtain the claim. Since v/L — /—A is a rank-one projection onto

constant functions, it follows from v/L — Q being smoothing that . /—A4 — @ is smoothing, too.
In summary, we have proven

/ V2 (L—2)'R(L-R—2)""] dz.

Theorem 17.32. Let Ay be the Laplace-Beltrami operator on a compact Riemannian manifold
(M,g). Then P := \/—A, € UL, (M) is a self-adjoint, first-order classical VDO with principal

symbol plz, €) = /Sy 67 (2)6x.
Similar arguments show that the operators defined by

(1= Ay 2f =Y (1+X)*2E;f, feC®(M), seR
j=0

belong to ¥} (M) with principal symbol

J 5/2
I+ Z 9" (@)&58n
Gok=1
Moreover, for each s € R we have
lall s ary ~ (1= Ag)*2ul| 2 ary

which just follows from (1 — A,)*/?: H® — L? and (1 — A,)™*/? : L? — H*® boundedly.
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2014
17.7. Propagation of singularities and Egorov’s theorem. We follow Sogge 192%5? Section

4.3].
Throughout this section we always take

P=\/A,

and are concerned with the associated Schrodinger (or in this case, the half-wave) equation
%@—iﬂaDDMt) F(a,t), 0<t<T
g =1
Clearly, its solution is given by the Duhamel formula
¢
u(z,t) = () f(z) +i/ t=IPp(s x)ds.
0

itP

(17.43)

Before we discuss the solution operator e in more detail, let us go over some basic properties
of the solution directly vi eneray estimates. The following lemma resembles that for the usual
wave equation, cf. Sogge [142] Formula (3.1.17)].

Lemma 17.33. Let s € R. If
uwe CH[0,T]: H*)NC([0,T] : H*Y),
then there is a constant Cs, independent of T such that

t€[0,T]

T
sup |[u(t, )|l zre(ary < Cs <u(o,-)||Hs(M)+/ (0 — iP)ult, )| zre(ary dt) . (17.44)
0

Proof. O

These energy esti fates allow one to prove an existence and uniqueness theorem for the half-
wave equation

Theorem 17.34. Let s € R. Then for every F € L(10 ?vl H?®) and f € H® there giselg unjque
solution u € C([0,T] : H®) of the Cauchy problem 2 must satisfy 1![ %%%i

Proof.
This result gives the following

fwavee

Corollary 17.35. Let F' =0 and suppose u satisfies @Wtﬁ € H? for every s € R. Then
if u e CY([0,T] : H*(M)) for some 5o € R, it follows that u € C*([0,T] : H*(M)) for every s
and the same is true for Ju for any j € N. Thus, u € C®(R x M).

T'h fhain interest of this section is the propagation of singularities for the half-wave equation
e analysis relies on the following

Proposition 17.36. Let Q € U7 (M). Then there exists a one-parameter family of WDOs
t— E(t) € U7 (M) depending smoothly on t and satisfying

0 —iP,E®)] =0, BE(0)=Q, (17.45)
and having for each t € R the principal symbol
Eo(t;2,8) = qo(®e(w,£)) (17.46)

with qo(x,&) being the principal symbol of Q and where ®; : T*M \ 0 — T*M \ 0 being the
Hamiltonian flow for to the Hamiltonian vector field

Hyi= 2 — — = — (17.47)

eq:halfwaveeq

’ eq:hwenergyest
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. . z rincsymbol
associated to the principal symbol p(x,&) of P (cf. Il %%i J.

Before turning to the proof, we state some immediate consequences thereof. ngf;lgst concerns
Hormander’s theorem about propagation of singularities of solutions to .

Theorem 17.37. Let f € H >°(M) and let uw € C([0,T] : H-°(M)) be the solution of the
homogeneous Cauchy problem

(0 —iPyu=0, ul,_,=f. (17.48)
Then for each fized t € R, we have ®,(WF (u(t,-))) = WF(f), i.e.,
WE(u(t,-)) = {(y;n) € T"M\0: ®4(y,n) = (z,&) for some (x,£) e WF(f)} . (17.49)

Besides the above propagation of singularities result, we have the following special case of
FEgorov’s theorem as a consequence of Proposition %

Theorem 17.38 (Egorov (special case)). If Q € W7 (M) with principal symbol qo(z,&) then
P Qe~iP (17.50)

is a one-parameter family of WDOs Eq(t) € VI (M) depending smoothly on t € R. Their
principal symbol is given by qo(P:(x,&)) where @, is the Hamiltonian flow associated to the

principal symbol of P = \/—A,.
Proof. O

Remark 17.39. One can easily prove that the principal symbol of
Q(t;x, D) = "7 Q(z, D)e™"*"

is qo(®¢(x, €)) if one just assumes that the evolved Q(t; z, D) is aglDQ) "The latter in turn can be
eri edlforb%qltall gt Jusing the Hadamard parametrix (cf. So%ggg 132 Theorem 2.4.1]), Theorem

on the fact that V/—A, € Ul (M)), and the proof of [I14Z] Lemma 5.2.2]. Once the small

t| result is established, the large result continues to hold for all ¢ € R by iteration using the
group property
pi(ti+ta) P _ (it1PitoP

Now we verify the initial claim assuming Q(t) = Q(t; x, D) is a ¥DO with principal symbol go(t).
First note

9 Q(t) = i[P, Q(t)]
and recall that the commutator of two WDOSs is of one order %gg/g%%cﬁan their sum and that its
symbol is given by the Poisson bracket of their symbols (cf. [142] Corollary 4.2.3]). Thus, the
principal symbol d;qo(t) of 0;Q(t) = i[P, Q(¢)] is given by

Ouan(t) = {pran(t)) = Hyao(t) = o - 20— 22 S0,

This equation has a unique solution which satisfies the initial condition
90(0; 2, &) = qo(,§) .
Since qo(P¢(x, §)) |t:0 = qo(z, &) and (by the classical Hamiltonian equations of motion ®;(z,§) =
(x(t),£(t)) with &(t) = Ogp and £(t) = —0ap)
0qo (D (z, dx(t 0qo (D (z, dg(t

oz dt Ox dt
Hao (D 0 Oqo (P 0
:Wafg_q(%wagz $00(®4(,€))

we indeed conclude qo(t; 2, &) = qo(Pi(x, £)).
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17.8. Friedrichs’ quantization and the sharp Garding inequality. A procedure that as-
signs to a function P(z,£) € S™ (a symbol) an operator on H~>°(R?) is called a quantization.
The Kohn—Nirenberg quantization

P(x,D)u = /eQm(”_y)'EP(x,g)u(y) dy d¢ = /e%i”fp(a:,g)a(g), ueSMRY  (17.51)

is simple and natural as it closely resembles Fourier multiplier operators.

In application to quantum mechanics one would like the quantization of P(x,&) to be self-
adjoint if the symbol is real. However, this is not the case for the Kohn—Nirenberg quantization
but at least for the Weyl quantization

Pyu(z) = /e%i(m*y)'ﬁp <x2+y )u(y) dy de . (17.52)
We will not make use of this quantization but excellent references describing it and the result-

ing calculus include Martinez [113J, Thegrem 2.7.1] (s wing how to change between different
quantizations), as well as Folland H"?I 7an uscalu—Schlag flSZCI , Iéufa Fia ormander E‘T)'? .an =

Another desirable feature — that is lacking in the Kohn—Nirenberg quantization too — is that the

ui‘ate%‘%ilzc%(; gpgrators are non-negative whenever their symbols are. The Friedrichs quantization

fr at we are about to discuss now %E%%%?i this failure. It is particularly useful in the study
of quantum ergodicity, see also Sogge %mﬁapter 6].

Example 17.40. The following example illustrates that the Kohn—Nirenberg quantization does
not preserve non-negativity. Consider, e.g., a(z,£) = a(z)&? with 0 < a(z) € C°(R). Then
the associated operator —a(x)d? is in general not non-negative. For instance, if u € C°(R) is
such that u(z) = v’ (z) for all z € supp(a(z)), then (u,a(x,D)u) = — [; |u(x)[?a(z) < 0. On
the other hand, the operator —d a(x)d, is indeed non-negative and it agrees with the Kohn—
Nirenberg quantizaed a(x, D) up to an operator of lower order.

We will now consider a similar construction for general ¥DOs. Specifically, we show that if
0 < a(x,&) € S™, then, up to an operator of one order less, a(z, D) is also nonnegative.

Theorem 17.41 (Friedrichs). Let a € S* and assume that a(x,&) > 0. Then one can write
a(z,&) = ap(x,&) + r(z,§) (17.53)
where r € S*~1 and
(u,ap(z,D)u) >0, weS. (17.54)

In particular, one choice for such an ap(x,€) is

ap(e,€) = / ¥ (& — v)a(n), (€ —n)/a(n)) aly, n) dy dn (17.55)

where q(n) = (1+|n|2)V/* and (z, €) € S(R??) is the integral kernel of 1 (x, D) = @(x, D)*p(z, D)
where p € C°(R?4) is even with ||p|l2 = 1.

ogge2014
Proof. See Sogge [142] Theorem 4.4.1]. O

Importantly, this result (and ||u||gm S ||Pull2+ ||ul|2 for any $DO P of order m) immediately
gives

Corollary 17.42 (Sharp Garding inequality). If a € S?™*! and Re(a(x,€)) > 0, then
Re(u,a(z, D)u) > —||[ul|}m, uwES. (17.56)

’eq:friedrichsquantiz

’eq:friedrichsquantiz

’ eq:friedrichsquantiz
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Proof. We write

a(z, D) + a(x, D)*
2

(Rea)(z,D) =

.\ ((Rea)(w) _a(z,D) +a(x,D)*>

2

and notice that the term in parantheses is a YDO of order 2m. Since ||ul|gm S ||Pull2 + |jul|2
for any ¥DO P of order m, it suffices to prove the assertion for a(z, D) instead of (Rea)(z, D).
Thus, we can without loss of generality assume a(z,&) > 0. But now we can apply Friedrichs’
theorem and are done since r € S, g

ichsquantization

The following generalizes Theorem “ (%1 to Riemannian manifolds.

Theorem 17.43. Let (M, g) be a Riemannian manifold of dimension d. Then there is a linear
map

a(x,g)k+ aF(xal))

sending each function a € C°(T*M \ 0) which is homogeneous of degree zero in & to a WDO
ap(x, D) such that the principal part of ap(x, D) equals a(x,&) and, moreover,

(h,ap(z,D)h) >0, heL*(M), ifa(z,&)>0. (17.57)

Moreover, if A(z, D) € ¥%(M) is a classical Y DO with principal symbol a(z, ), then ap(zx, D) —
A(z, D) is of order —1.

Proof. After a partition of unity involving non-negative functions, we may assume that a(z,§)
vanishes when z is outside of a compact subset of a coordinate patch. We may also supppose
that the support of a(z,£) is so small that coordinates can be chosen so that |h] = 1 in the
coordi ted}gatch. If we thegl work in local coordinates and let ap(x,&) denote the right side
:frijedrichsquantization3 _ . o . . .
of Il E%% , we obtam & YD ar(x, D) with principal symbol a(z, ) which is non-negative on
L2(RY) if a(z,£) > 0. If 0 < p € C°(R?) and o(x) = 1 on the z-support of a, then the same is
true for the operator par(x, D)p. If we assume as well that ¢ is supported in the image of our

coordinate patch, then the pullback, i.e., ap(z, D), of this operator to M will have the desired
properties. O

Let us finally denote by p(z, &) the principal symbol of /—A, and define its unit cotangent
bundle

S*M ={(x,8) e T*M : p(x,€) =1}.

Then to every ag € C°°(S*M) we can naturally associate a homogeneous of degree zero function
Cxeneien, 860 6. Genddy M \ 0) given by a(@,€) = aolg, Gip(g: fhsq Lt J15ins hcorem

[I'7.43[we can easily obtain the following result saying that assoclaftes to eac € L*(M)

a natural distribution on S*M.

Corollary 17.44. Let (M,g) be as above and fix h € L*(M). Also given ag € C*(S*M)

as above, let a € C®(T*M \ 0) denote its homogenepus 0&” degree zero, extension and ap its
) - . . ] ichsquantizationriemiann

corresponding Friedrichs quantization in Theorem [ Then the map

C>*(S*M) 3 ag — up(ag) = (h,ap(z,D)h)

defines a non-negative distribution u, € D'(S*M). Consequently, there is a non-negative Borel
measure pup on S*M such that

up(ag) = / ap dpp, ag € C°(S*™M).
S*M

eq:friedrich
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Proof. Since the map ag — up(ag) is a linear map from C*°(S*M) to C, we would conclude
that up € D'(S*M) if we could show that there is a constant C}, depending only on our fixed
h € L?*(M) such that whenever ag € C*oo(S*M) is real-valued, we had

lup(ag)| < Cp  sup  |ag(z,§)|. (17.58) ’eq:naturaldistrocosp
M

(z,£)eS*

To prove this we note that

0 (2,€) = sup|ao| + ao(x,€) > 0.

4 . + -friedrichsquantizationrieman:
If a® € C>°(T*M \ 0) denotes the homogeneous of degree zero extension of af, then, by 1'[ ?gri

(h,af(x, D)h) > 0. (17.59) ’eq:naturaldistrocosp

i ichsquantizationriemann

Let 1p(z, D) denote the ¥DO of order zero given by Theorem|I7.43[when the symbol 1s identically
one. Then

ay(x, D) = sup |ag|1r(z, D) + ap(z, D).

: uraldistrocosphereaux2
Therefore, by Il ?5?
sup |ag|(h, 1ph) £ up(ag) >0,

and so

|up(ao)| < (h,1p(z, D)h)sup |ag| . (17.60) ’ eq:naturaldistrocosy

Since zero-order ¥DOs are L? bounded, we obtain by Cauchy—Schwarz

|(h, 1 (2, DYR)] S AlIZ 2 ary

' uraldistrocosphereaux

which means that is. Indeed valid. Thus, u, € D'(S*M).
; ~frijedr iZationriemann ) .
Since i ?gr implies that u; 1s non-negative, the last part of the assertion follows from
Schwartz’ theorem saying that non-negative distributions coincide with Borel measures. (|

. . . . uraldistrocosphereaux3
Note that if up is the above Borel measure, associated to h, then, by with ag = I, we

have the following bound for its mass, namely

(S M) = [ don < 1o D)oo

18. INTRODUCTION TO #2 DECOUPLING AND SOME APPLICATIONS

. : LP . . . rselpconi
In Sect10n§ we already saw that the square function conjecture (Conjecture @;Ll
1/2
||fHL2d/(d—1)(]Rd) Se ’° Z | fol? (18.1) ’eq:reverselpconjnew

0:R—1/2—slab
L2d/(d—1) (R4)

for alll fes dg with Fourjer support in f/c\:/t.R—l(.]P)d-il), together with the Kake}-fa conjelcture
(Conjecture in the form mmplies the restriction conjecture. Although we did not discuss
this so far, an vaeli‘%lel{%gglr‘lo]. I(1)(;["wCambe1ry 36] 1 fact shows that the hypothesized square function
estimate 1Ilgl) implies the Kakeya conjecture and, consequently, the restriction conjecture.

Q'i‘é\;g?glﬁf%.%%nfo prove the whole restriction conjecture from this point seems a quite optimistic strategy as

appears to be very powerful and in all likelihood considerably more difficult than the restriction conjecture.
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. . . . reverselpconjnew
In this section, we will therefore consider a weaker “analog” of 1) which 1s known as
2 -decoupling inequality
1/2
2
[ fll e (ray Se RS Z 1follzera) . (18.2)
0:R—1/2—slab
. . . -reverselpconjnew .
where the order of the mixed-norms on the right sides of (I¥.I]) are now inferchanged. The idea

of this inequality is similar to the usual square function inequality, namely, it tries to separate or
decouple the different frequency portions fy (contributing to || f||,) from each other. This is done

in an efficient as oslsible way to take the cancellations between the fy into account. In this regard
2 cprellim : verselpconjnew . .
however, Ilggi 1s clearly weaker than :Il%l) Dy the triangle inequality for 2 < p(< 2d/(d — 1)),

since
IO 1) 2170 = 1D 1folPllo <D N foll7n -
0 0 0

. -decprelim . -reverselpconjnew L.
Moreover, we emphasize that dﬁgmot act as a substitute for 1!181) in the sense that it is

eq:decprelim

verselpconjnew

not clear that it would imply t eclgzé{{%/a or even the restriction conjecture. However, besides.the
fact that the right side of 1s much easier to compute than the right side of 1) (as only

size considerations will have to be made), decoupling theory does have a plethora of appﬁ(rjgr tions 15

in PDE, additive combinatorics and number theory, see, e.g, the discussion in Carbery [[36].
To simplify the upcoming notation, we make the following

Definition 18.1 (Decoupling norms). For 1 < p < oo and f € S‘(Rd), we denote the p-th
decoupling norm by
1/2

”f”Lp,R*l(]Rd) = Z HfOHQLP(JRd)

0:R~1/2—slab

For Q C R? with finite Lebesgue measure, we analogously define the local decoupling norms

1/2
11l o1 (@ay = > lfellise
0:R—1/2—slab
and
1/2
= 3 MollZgen
f:R—1/2_glab

where we recall || f|zz., ) = [l i01-1d) = U721 | Lr(o)-

. . :decprelim .
In this notation, d%gjﬁ_%ke_s the following form.

Theorem 18.2 (¢>-decoupling). With the above notation,
11l o ey Se RPN £l Lot gy (18.3)

holds for all f € S(RY) with Fourier support in Np—1(P?~1) and 2 < p < co where

o) = 0 if2<p<2d+1)/(d—1)
PPV @-0/a—@+0/@p)  ifp>2d+1)/(d—1)



SOME NOTES ON RESTRICTION THEORY 157

01££2000
This theorem was already somewhat anticipated h}g r\ﬁ%@i@f (P ﬁitzl?) {3 not necessarily

2) and proven for the first time by Garrigés—Seeger 321 Baurgain 120 obtained tlaa% ul}?gsﬂln efr%terzo 17
see also th

2 < p<2d/(d—1) and later, Bourgain and Demeter [27 eir study guide [28]) proved
the inequality for the total “super-critical regime” p > 2(d+1)/(d—1) (i.e., exponents above the
Tomas—Stein restriction end gig%ﬁﬂl 4Partial results in the super-critical regime were already
obtained earlier by Demeter [53].

Albeit the exponent 2d/(d — 1) plays a major role in the proof of the restriction conjecture,
it turned out that this exponent is no longer optimal when considering the weaker decoupling
inequalities; in fact, a more appropriate endpoint is the Tomas—Stein endpoint 2(d 4+ 1)/(d — 1).
For larger values of p, the obtained decoupling inequalities necessarily deteriorate when R — oo.
(In fact, the polynomial behayior in R is optimal!) In applications it is often necess: L Lo have
the full power of Theorem and, after discussing the preliminary estimate %‘)\Nﬁvﬂl
detail how the complete range of estimates roved later.

They key tool in the proof of Theorem is multiy%ien(;lae];c Lestriction theory, which s well

developed thanks to the work of Bennett—Carbery—Tao 6], see also Subsection l?/i Before we
discuss the proof in detail, let us have a brief look at some applications.

18.1. A first glimpse at applications.

18.1.1. The discrete restriction phenomenon. Recall the Tomas—Stein estimate for the paraboloid
R 2(d+1
i eoony S Wllsy, 15 p< 200D

which is, via localization theory, equivalent to

- ~ 2(d+1)
I oy S BTVE 2,y e@aiy s P2 a1

. 2
for any F with F' € C®(Np-1/2(P4™1)) (see Lemmagfg ;?CSelxrfce F is localized to a ball of radius

1/2

R'/2 it is natural to expect that I is constant on the scale R~'/2 and to approximate a by a

weighted sum of indicator functions of balls of radius R~1/2

F~ Z F(U)lB,,(R—W) )
nen

, 1.e.,

where A C P4~ is a maximal R~'/2-separated subset (think of a lattice as a first approximation).
Since we are only really interested in the values of F' at the vertices of A, we can push this further

and consider expressions of the form
> a(m)s,

neA
where a(n) € C are coefficients (weights) and d,, is a Dirac  mass concentrated at 7. The inverse
Fourier transform of such an expression therefore becomes a trigonometric polynomial, and so
we see, heuristically at least, that the original Tomas—Stein estimate has the following discrete
analog corresponding to an exponential sum estimate.

Corollary 18.3 (Discrete Tomas-Stein restriction theorem). For any mazimal §'/? := R™'/?
separated set A C P41 and any a : A — C, the extension estimate

v d _d—1
3 a(p)ermitm <$65 T alley, p>
neA

RS

d
Livg(B(R'/2))

25The subcritical estimates follow from the p = 2(d+1)/(d— 1) case together with the trivial p = 2 inequality.
The details of this argument will be discussed later.

eq:discts
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Remarks 18.4. (1) In fact, the discret restcricgt(ijgg estimate univalem to the classical
emeter

Tomas—Stein estimate, see, e.g., Demeter [57] Propositions 1.29 and 1.37] for the converse of what
we proved here. Thus, the Tomas—Stein estimate measures the LP-average of frequency-separated
exponential sums at a S;)attlal scale which is reciprocal to the separation of the frequencies.
Observe also that ?%es an improvement of §%(?P) gver the Cauchy-Schwarz inequality
(which corresponds to the situation when no oscillation/cancellation is present).

(2) In the early 90s, Vega already proved a discrete analog of the Stein—Tomas—Strichartz
restriction theorem. We recall

egal992
Theorem 18.5 (Vega [I72, Theorem 3]). Let N € N and m € Z%~!, d > 2. Then

de P 1/p 1/2
(/t<N 1 -/Td 1 Z Z it"mpeim.x dl’dt) < Cp,N (Zam2>

holds where
C,N7T 5% ifp> 2D

Op,N =qC pr = (jjll) )
1 1
CNTIEGET) facp < HHD,

and C,, are constants independent of N.

(3) This corollary and the e um ﬂ;}%megey& also hold when P41 is replaced by %71,
but see also Bourgain—Demeter ‘27 eorem

Proof of Corollary @_Wlthou‘c loss of generality, we assume that B(R'/?) is centered at the
origin. Let us now fix ¢ € CgO(IRd) with supp 1 C By(1) and |¢)(z)| > 1 for x € By(1). As usual,
let Yp-1/2(€) := RY?p(RY2¢). Abbreviating
= Z 27rz( )

neA

applying the localized Tomas-Stein estimate, and observing that the summands in
Fipp-1/2(€) = Y a(m)pp-12(6 = 1)
nen

have pairwise disjoint Fourier support (by the separation hypothesis on A and the definition of
1) contained in Np—1/2(P4~1), yields

Z a(n)e* i m SIFYg-172llposrizy) S BV Fp-1/2 L2, )n (pa-1))
neh L (B(R1/2)
1/2
=RV el [ s~ mlFds
neA
1/2

S ) [ e - e

neA
SRV al|2ay = 670D a2 -

(The scaling & — R~'/2 from the second to the third line yields a factor of R~%2. Moreover, the
support of ¥p_1/2, i.e., roughly Np—1/2(P471), is transformed into N (P9~1).) The claim follows

now from the deﬁnltlon of the L%, norm which yields the “missing” §4/(2p) factor. O
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Now, Bourgain and Demeter made the fundamental observation that, as soon as one averages
in physical space over much larger balls, one obtains improvements over the classical Tomas—
Stein inequality because of additional cancellations (through oscillations). These cancellations
are a consequence of the £2-decoupling as we will see now.

Theorem 18.6 (Discrete restriction phenomenon). Let A C P4~ be a mazimal 812 _separated
subset, a: A — C, and R > §~'. Then, for all € > 0, we have the extension estimate

2(d + 1)

> a(n)emm Se % DRl p > d—1

neEA

(18.5)
Livg(B(R))
Remark 18.7. Observe two things.

(1) R > 47! is now rather variable. But more importantly,

(2) we are now averaging over balls with the much larger radius R (instead of R'/?). This

averaging over larger balls is precisely the source of the §'/?P-improvement over the
classical Tomas—Stein inequality.

Proof. Let us prepare the proof with some preliminaries. Fix an R-ball Bg = B,,(R) and

let ¥ € 6’? (R%) be as in the previous proof with Fourier support contained in By(1) and
Yr(€) = R4H(RE). Let furthermore g : P4~! — R be a nice function and observe that (gdo) * g
has Fourier support contained in the R~!-neighborhood Nz-1(P4~1) C N;(P?~1). Clearly, the
left side of the classical, localized, Thomas—Stein estimate can be bounded by

[ Wiy @ s [ (o) wvm) @l de = [ ligin)* - in@p o

Br Br
:12d
Now, applying the ¢2-decoupling inequality @_% f = ((gdo) * ¥g)Y, we obtain (with the
previous estimate)
1/2
1 N e c—d/p 5oL _(d-1)/4 Vo2
5 l(gdo) " (x)[Pdz ) <e R $6 2 > l(gedo)” - vgll}
| R| Br 0:61/2—cap
(18.6)

where gy := g1y is the restriction of g onto the cap NP?~1. (Recall that for p > 2(d+1)/(d—1),
we had a(p) = (d—1)/4 — (d+1)/(2p) in the decoupling inequality, which is just the negative
exponent of 4 on the right side of this formula.)

For a given € > 0 and n € P41, let P(n,e) := P9~ N B, () be an arbitrary e-cap, centered
at 1 of the paraboloid and consider the function

1
9" =Y an) —5——1pme
2“5 2))

where we recall that o(P(n,¢)) was the euclidean surface measure of the set P(n,e) on P41,
Now, observe first that (g.do)V(z) converges pointwise to the function on the left side of our
assertion (e.g., by Lebesgue’s differentiation theorem), i.e.,

im(g°do)Y(x) = lim Y a - o2mie€ g ey — N g (n)e2 e
i (5°d0)" ()= g S ato) ey [ ¢S aote) = D ol

e—0 e—0
neA

Thus, by Fatou’s lemma, i.e.,

I3 alne ||, < liminf |(9°do)" |,
neA

’ eq:auxdiscrestr
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. . . . -anxdiscrestr . 1/9
it suffices to estimate further the right side of 1![%6; with gg replaced by gg. First, for e < § /
(think of e = R™1), we have the pointwise estimate

e \Y, _ a 1 e27ri:c‘§ o a
g5d0) @) = |t pps | ot ST jato)

neA neN ,P(n,e)N0#D
1/2

S > la(n)|?
neA ,P(n,e)N0#D

where we used Cauchy—Schwarz together with the fact that
#{neh:Plne)nd+#0}=0(1),

because A is a maximal §'/2-separated set, 6 is an 6*/2-cap, and P(n,¢) can intersect wi h.autmiscrestr
most one such slab as € < d. Plugging this estimate in the LP norm of the right side of

yields
1/2 1/2

Yo @i Urltemy | S| D > la(m) PRI » (gay

0:61/2 —cap 0:61/2—cap nEA, P(n,e)NO#D

< Y S lal)P

0:61/2—cap ne€A, P(n,e)NO#D
S Rl e2a)

where we used in the final inequality that the cardinality of the #-sum is of order O(1) for fixed
n because € < §'/2 and 6 is a 6'/2-cap. This concludes the proof of the theorem. O

1/2

sss:strichartztorus‘

18.1.2. Strichartz esti 1%311@%5@? Schréodinger equation on the torus. We follow the notes of
Hickman and Vitturi [94] p. 22, Lecture %z S%%El&%r 2.2].

As we have already seen in Subsection restriction estimates immediately imply estimates
for solutions of dispersive PDE posed in R?. It is natural to generalize these ideas to PDEs
posed on finite domains with certain boundary conditions. Here, we focus on the unit cube
with periodic boundary conditions, mor: A rea(%ig?g)ggpn t oScl&gQ%gger equation on the torus
T¢ = R?\ Z?. In the early 90’s Bourgain FIG ut see also [19] Tor irrational tori and a “survey”)
found that the solution of the Schrodinger equation includes waves which travel with different
directions around the torus. As one may imagine, it is very challenging to estimate how these
different waves interfere with each other and to find estimates on them. At that time Bourgain
could prove sharp estimates only in d = 2,3. Surprisingly, the analysis required many tools from
number theory. For instance, it uses unique factorization of integers in order to estimate the
number of solutions of some diophantine equations. For higher dimensions, the problem seemed
out of reach and it was supposed that the solution required both Fourier analysis and number
theory. Bourgain and Demeter found that decoupling inequalities were the crucial tool to obtain
dispersive estimates in higher dimensions.

Clearly, dispersive estimates for the solution

ule,t) i= TN (@) = T p(g)emir e
gezd

of the Schrédinger equation on T? x R are obtained using the previously discussed discrete
restriction estimates. Now, due to the above discussion, i.e., the fact that a general solution
consists of many waves traveling in different directions, we can certainly not expect the original
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N . . d . ourgainl993F .
Strichartz estimates for the equation on R* to hold. In fact, Bourgain FFTG proved the failure of

Strichartz estimates on T*. h(aOb erve glhat the exponent ¢ = 6 really is the Strichartz exponent
; rtzfreeschroedinger
ind=1, see Theoremii?fifi

Theorem 18.8 (Failure of Strichartz on T! x [0,1]). For every N € N there exists a smooth
function o on T with supp $n C [—N, N] such that

—i(2m) " ttA

e on|lLerxqo,i)) 2 (log N)YClon | r2cr) - (18.7)

In particular, we could take ¢ (£) = 140,1,...,83 () (i-e., @ is a trigonometric polynomial) so
that we are in the situation of discrete restriction phenomena, i.e.,

N
e—i(27r)*1tA(pN (z) = Z eQTrz'(xn+t7L2) )

n=0

’ eq:failurestrichartz

ourgain2016
This solution is known as a Weyl sum (or Gauss sum, see also Bourgain’s counterexample %‘I

for the a.e. convergence of solutions to the Schrodinger yfgcljgsr%)ri%ggirtizt is of considerable
interest in number theory. In fact, the lower bound in 7)) can be obtained by appealing to
number-theoretic techniques (such as the Hardy-Littlewood—Ramanujan circle method).

Now, the question is whether one can nevertheless establish Strichartz estimates with a sharp
dependence on the size of the frequency support of the initial data. For instance, in view of the
above counterexample, we may pose the

Question: “Can one prove an LZ(T) — LS (T x [0,1]) Strichartz estimate for initial data
©n with supp ¢ C [N, N] but with a sub-polynomial dependence on N?”

Fortunately, with the help of the discrete restriction estimates proved above, we have

ourgainDemeter2015 R
Theorem 18.9 (Strichartz on T¢ HSZ’? . Letp € 1?%? T?) with supp ¢ C [—-N, N]¢. Then for any
time interval I C R with |I| 2 1, we have for any € > 0,

d+2)/p+6|I|1/pH<PHL2(’]I‘d)7 p> Z(dfjm (18.8)
iodicstrichartz

Up to the subpolynomial loss, Theorem @%mwe have outlined in the beginning

of this subsubsection, the earlier partial results in higher dimensions were crucially based on

number theoretic arguments which will not be able in the following argument. In particular, it

—i(2m) " htA

e SOHLI’(’]I‘de) Se N/2=(

seems that the current techniques are more robust; in particular, one can apply the fouol‘é,oilrll;[%ainDemeteIQO is

argument also to the analogous problem posed on “irrational tori”, see Bourgain—Demeter [27].

iodicstrichartz i s2
Proof of Theorem ﬁmnotaﬁon and make the connection with Theorem clear,
we set n = d+ 1. For ¢ € Z" 1 with |¢'|oc < N, let n/ := N71¢ and 5, := |n/|? so that the
collection A of all n = (1’,71,) becomes a (maximal) N ~!-separated subset of P*~!. Defining
a(n) := ¢(Nn') and scaling (x +— x/N and t — t/N?), we obtain

P 1/p

1/p
(/ Ie‘i@’f)lt%(ﬂc)lpdmdt) = N~ (/P / > a(p)er | dy (18.9)
Tr—1xT D

nen
where the domain of integration D is given by
D:={yeR": |y;] <N/2for 1 <j<n-—1andy, € NI},
and we identified T with [—1/2,1/2] for convenience.

-periodicstrichartzaux
We will now estimate the é‘é«%@% side of from above by a localized LP norm on some ball of
radius ~ N? to apply . Since ' € N~1Z"~! for each n € A, the above integrand is periodic

with period N in the variables y'. Now, let R := N2|I| 2 N2 =: ! and Bg := Byz;;,  (R).
2 Cn

’ eq:periodicstrichart
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Note that Br can be covered by O((|I|N, "__Qiso ts of the form D + N(k',0) where k' € Y/

These observations allow us to estimate from ia%ove by
p 1/p
1 (g [ [ atmemo |y | TN O
Br |nea
where we used the discrete restriction phenomenon . .Sf;lsz § = N2 Since [|allea) =

1]l L2(z»~1) by the definition of a(n) and Plancherel, the theorem is proved.

18.2. Some preliminary observations.

Definition 18.10. Let p € [1,00] and U = {Uy,...,U,} be a finite collection of non-empty
subsets of R? for some n > 1. (We permit repetitions, so ¢/ is in fact 2/ may rather be a multi-set
than a set.) We define the decoupling constant Dec,(U) to be the smallest constant for which
there is an inequality

1> filloomay < Dec, @) N fillZn@ap'? (18.10)
i i

whenever f € S(R?) has Fourier support in Uj.
Remarks 18.11. (1) We have the trivial bounds
1 < Dec,(U) < n'/?. (18.11)

The upper bound follows from applying the triangle inequality and then Cauchy—-Schwarz whereas
the lower bound comes from taking just one f; to be non-zero. Clearly, it would be very desirable
to show Dec,(U) = O, 4(1), uniformly in n. However, the best, one can do at the moment is
(because all so-far known proofs use an induction of scales argument) a subpolynomial loss, i.e.,

for any € > 0, one has Dec, (i} <. n®.
(2) In Proposition we observed that the reverse square function estimate holds in L? and

L* when we assume that the U; (respectively the set-sums U, + U;) overlap only finitely. Thus,
by the triangle inequality, we obtain in these cases phat Deco(U) < Aé/ % and Decy(U) < A}l/ 4

where As, A4 are defined in Proposition Ei}

(3) In the literature, the U; are often assumed to be pairwise disjoint. However, here it is
convenient to allow them to be finitely overlapping to circumvent some minor technicalities.

Proposition 18.12 (Elementary properties of decoupling constants). Let 1 < p < oo and d > 1.
Then, the decoupling constant has the following properties.

(1) (Monotonicity) We have Dec,(U) < Dec,(U') whenever U" = {U;}7_, is a collection
whose elements contain Uy, i.e., Uy C U for all j =1,...,n.
(2) (Triangle inequality) We have

Dec, (U), Dec,(U') < Dec, (U UU') < (Dec,(U)?* + Dec,(U')?)*/?

for all non-empty collections U,U’' of open, non-empty subsets of RY.
(3) (Affine invariance) Let Uy, ...,U, be non-empty, open subsets of R* and L : R — R be

an invertible affine transformation. Then, we have Decy, (LU, ..., LU,) = Dec,(Ux, ..., Uy,,).

(4) (Interpolation) Let 1/p = (1 —0)/po + 0/p1 for 1 <po <p <p; < oo and 0 <6 <1.
Suppose that we have ford = {Un, ...,Uy,} (with U; C R non-empty, open) the projection
bounds

||PUijL:Di(Rd) Spid ||fHLpi(Rd) , 1=0,1, j=1,...n, f€ S(Rd),

eq:defdeccon

eq:trivialde
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where the Fourier multiplier Py, is defined by

Py, (&) =11, () f(€) -
Then we have

DeCp(Z/{) <P0¢P17d79 Decpo (u)179D60P1 (u)e .

(5) (Multiplicativity) Suppose thatU = {Uy, ...,Up} is a collection of non-empty open subsets
of R® where each U; is partinitioned (up to null-sets) into U; = |J,22, U, for some
disjoint non-empty open subsets of R:. If p > 2, then

Dec,({Uje: j=1,...,n,=1,..,m;}) < Dec,(UU) x sup Dec,({Uj1,;Ujm,})
j€{1,...,n}

(6) (Adding trivial dimensions) Suppose that {Uy,...,U,} is a collection of non-empty open
subsets of R and p > 2. Then, for any d’ > 1, we have

Dec, (U, ..., Uy) = Dec, (Uy x RY ..., U, x RY)
where the right side is the decoupling constant in R% x RY = R+

Proof. O

The following observation shows that there can be no ¢2 decoupling for an infinite partition
in Fourier space, i.e., when n — oc.
Proposition 18.13. LetU = {Uy,..,U,} be a collection of non-empty open subsets in R, Then,

we have Dec,(U) 2 nr3. Equivalently, there exist smooth f; with supp f; contained in compact
subsets of U; such that

n n
1Y fille@sy 2 ne =2 O 5l @ay)
j=1

j=1
for any 1 < p <2 and the implicit constant does not depend on U or n.

Proof. Set supp fj C By, (6) for some n; € Uj and 0 < § < 1 and LP-normalize the f;. Next, we
modulate the fj such that the f; are concentrated on balls B, (& ~1) and decay rapidly away from

these balls. That is, the fj are of the form fj(f) = (671(€ —n;))e?™ @i ¢ for some ¢ € C°(RY)
with supp ¢ C By(1). Moreover, we modulate the f; such that |z; — z;| ~ 6~ for any i # j.
Therefore, we can bound

n
1> filly 2 0t
j=1

But since (Z?Zl Hfj||2L,J(RG,,))1/2 < n'/2, this establishes the claim. O

Instead i)felgl{%&:(léﬂgting the f;, we could have also randomized them in the spirit of Subsection

Tg:i Strimpli y

Note that the the reverse triangle inequality in L?/? for p < 2 would have merely lead us to
EIY - esfill)2 P ~ Q121 = 1D 15l llore = Y FilP o2 = Y 1515
J J J

Remark 18.14. The above proof sheds also some light on why the Hausdorff—~Young inequality
I fllg S |Ifllp fails when p > 2, even when ¢ = p’ (which is easily seen to be necessary by
“dimensional analysis”). The idea is to have f “spread out” in physical space to keep the L? the
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norm low. However, we would also like to spread out f in Fourier space to prevent the L* norm
from dropping too much. To this end, let

flz) = Z%‘@(w — )

for random signs €1, ...,&, and a non-zero bump function ¢ € C°(R?) with supp ¢ C By(1).
Here, we merely need that the centers x; are sufficiently separated; |z; — ;| > 2 would do, for
example. Since the summands are disjointly supported, we have on the one hand

1fllp ~ nt/?.

Thus, if Hausdorff-Young were true for p > 2, we would have the (probabilistic) bound || f ly S
n'/P. But on the other hand, the Fourier transform is given by

F(©) =D e ep()
j=1
and so by Khintchine’s inequality EHng; ~ 132, |62”<””J'"><,5|2)1/2||§;, we have

n
1l ~ I 121 2l ~ 12

j=1

which clearly contradicts || f||,» < n'/? unless p < 2. The point of the randomization argument is
that it allows us to get rid of the phases e?™*®i*¢ in Fourier space which could lead to substantial
cancellations, thereby suppressing the L? norm of f.

Hence, we focus on £?-decoupling for p > 2 in what follows. We already saw that for p = 2, we
obtained decoupling when the sets overlap only finitely. For larger p this constraint is insufficient
as the next observation reveals. In particular, it tells us that we should require that the U; are
somewhat curved (in analogy to the restriction phenomenon).

Proposition 18.15. If U ={(j,j+1): 0<j <n}, and p € [2,0], then
Dec, (U) ~ ny=2
Proof. O

18.3. Uncertainty principles related to ¢?>-decoupling. Weighted estimates will be a com-
mon feature of our future analysis which motivates the following

Definition 18.16 (Smooth localization). We denote by wp_(ry > 0 rapidly decaying weights
concentrated on a ball B.(R), i.e., wp,_(r) satisfies wp, (gr)(z) ~ 1 for x € B.(R) and

|z — ¢l
R

The precise choice of wp_ (r) may vary from line to line or, indeed, within a single line. For
various technical reasons it is preferable to work with this fairly general class of weights rather
than with Schwartz functions. Let us also introduce the corresponding weighted norms.

-N
wp (r) () S (1 + ) for some large N = O(1).

Definition 18.17 (Smoothly localized norm). For p € [1, 0], let

|- 2 (ws, my) and
(et e (18.12)
| 22egwm, ) = I |LoBo(R) 1 wp, (ry) = Bl | Lr(ws, sy

denote the L? norms defined with respect to the measures wp_(g) () dz, respectively |Be(R)|~'wp,_ (r) (@) da.



llpbernstein

rthogonality
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stei
Let us state and prove the following local Bernstein inequality (cf. Proposition li?gimanam
orthogonality principles that will be invoked frequently later on.

Lemma 18.18 (Local Bernstein inequality). Let r > R > 0. If f satisfies supp f C B.(1/R),
then

1Al Lae By S PRSPV e, wp. o)
holds for all 1 < p < q < o0.

toi
Proof. For any such f we have the global Bernstein inequality (Proposition ﬁffg)rns =8

< RUPHD| £l 1o (ray -

£l Laqray <
The local version follows by replacing f by fip () where ¢p () is a modulated Schwartz

function adapted to B (r) such that supp wBC o € Be(1/7) Q «(1/R) and it holds that

supp [ *¥p_, () C Be(2/R). =
Proposition 18.19 (Local orthogonality). For r > R'/? we have
(1) Hf”LQVg(B ) ~ Hf||L2 R (wB(T)) and

(2) fllzz, (wpey) S ||f||L2 n-
whenever supp f C Np—1 (P4~ 1),

This means, we can both control smoothly %%as%%otglll_zslocalized L?-averages by smoothly
weighted decoupling norms (recall Definition .

Proof. (1) Let thy, € S(RY) such that s, (z) > 1 for 2 € B(2r) and supp s, € Bo(1/(2r)).
Therefore,

1Al By S r 2 fbarll ey = 72 Y fo x|l para) -
0:R—1/2—slab

(wB(r))!

This is already almost what we want. Now note that each fg * ¢2r is supported in
Ng-1/2(0). Moreover, since r~' < R™/2, we have that supp(fg * z/;zr) is contained in

1/2

the union of only O(1) many R~'/#-slabs. Thus, the supp( f9 % 19, ) overlap only finitely

and therefore, we have
1/2

1Az, 8oy S {774 Y. o xdarlleme
0:R—1/2—slab

Using Plancherel and taking wp(,) = |2, |? yields the desired estimate.
(2) We reduce to the first case by observing that

1£1Z2, (wiey) S <D (A+IE)T NHf”L’;’vg(B (r)+kr)
kezd

due to the rapid decay of wpg(,y. (Here N = Oq4(1) is a large integer.) This allows us to
apply part (1) of the proposition to each of the Hf||L3Wg(B(T)+kT) to deduce

£, wmy S D0 (L DTN 12 s

(wB(r +kr) ’
kezd o

Now, the right side is given by

> o / o@D (1t k)N wp iy () | da

9:R—1/2—glab R kezd
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But since the expression in parentheses is just another weight adapted to B,, the right
side equals

> @ Pesey @) e =17 R,
0:R—1/2—slab R e "

and we are done.

19. SUMMARY

[Proof of the restriction conjecture relies partly on understanding oscj L Latory
integrals and on set theoretic problems, e.g., of Kakeya’s type. See Tao [[162], p.
298ff]]

There are three “classic” (i.e., outdated) approaches to prove restriction estimates.

(1) Compute (do)¥ (x), perform a dyadic partition of unity of the kernel, and use interpola-
tion to bound || f * (do)V ||,y < ||f]lp- This is the classic Tomas—Stein approach.

(2) Follow Strichartz’ approach and compute the kernel of (Q(—iV) — 2)~¢ where @ is the
(quadratic?) form associated to S (e.g., Q(&) = &2 or Q(€¢) = —€£2 — ... — 5? +§]2+1 +..82
for wave- (or Klein-Gordon)-like problems) for Re(¢) > 1 (often Re( € [d/2, (d+1)/2]).

(3) Go through the theory of inhomogeneous oscillatory integrals (see Theorem where
the Carleson—Sjolin conditions may not be met (Stein’s and Bourgain’s approach) and
obtain the dual restriction (i.e., the extension) estimate as a corollary.

APPENDIX A. SELECTION OF OMITTED PROOFS
<
. lonremovalTao 201999
A.1. The e-removal lemma. We review the proof of Theorem which 1s due to Tao [[160]
Theorem 1.2].

’epsilonremoval‘ Theorem A.1. Assume |(do)¥(z)| < (1 + |z])~™° for some p > 0. If Rg(p — p;a) holds for
some p <2 and 0 < a < 1, then one has Rs(q — q) whenever

L1, 4
g p log(l/a)’
The first step is to bootstrap the localized restriction estimate so that it applies to functions

which are supported on a gparse union of balls of constant radius. The idea is to exploit the
squasiorthogona
gﬁi, 1€, that th

estimate e Fourier transforms of functions which are widely separated from

ach 19;5;11%1; %]& g}/ﬂcal space, are quasiorthogonal to each other. For completeness, recall estimate
EEF, namely

| < fols, fils >r2(s.d0) | S BN foll o2 (Bao,r) 11l L1 (B, R)) - (A.1) |eq:quasiorth

Let us make these considerations now more precise by defining what we mean by sparse
collections of balls.

Definition A.2. A collection {B(z;, R)}¥; of R-balls is sparse if the centers x; are RENY
separated.

. -quasiorthogonalagain . L. X .
The observation en leads to the following restriction estimate for functions supported

on a sparse collection of R-balls.

strictionsparseballs| Lemma A.3. Suppose Rs(p — p; ) holds for some o >0 and 1 < p < 2. Then

1F1s ]l 2o (5,00 S BIF oo (ray

whenever supp f C |J; B(x;, R) where {B(x;, R)} is a sparse collection of R-balls.
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The proof of this le ma gy}lgmlgga%iven at the end of this subsection. Let us now continue with
the proof of Theorem % lr Suppose that Rg(p — p; a) holds for some p < 2 and « > 0. By the

trivial (L, L2° restriction estimate, Holder’s inequality, and Marcinkiewicz interpolation (see
ntzinterpolation R
also Remark , 1t sulfices to prove the Lorentz space estimate

1£151o (.00 S 11 Fllao,1 » (A2) |eq:restLorentz

where
P

=4 P

I log(1/a) _ | |SteinWeiss1971
and LP-? are the Lorentz spaces (which are Banach spaces, see, e.g., Stein and Weiss [[IH 1}, Chapter
V, §3, Theorem 3.22]) which are equipped with the norm

1 1 A

gl oo .y 1=/ [tullgl > 13177 where 1 < p < 0o and 1< ¢ < oo.

L3(Ry,dt/t)
(Note that the LP-? spaces can also be defined for 0 < p < 1 an th <V S 1]9;7Powever, they are
not Banach spaces anymore, as they cannot be norme see. Satlﬁo

9/ g@’ﬂjha—pﬁ 5, §5.12]).

By averaging over translations, it suffices to show when j is a measure supported on
a discrete lattice Z¢ and the L%-! norm is replaced by the discrete norm ¢!, One may then
replace f by f*x (and come back to the continuous norm on L%-!) where y is the characteristic
function of the cube of size ¢, and ¢ ~ 1 is chosen such that x is ositive on 1:tzhe unit sphere.
Combining these two reductions we see that it suffices to verify @_wm is constant on
c-cubes.

Since we are working in L%, we may take f = 1 for some set E which we can assume to

be the union of c-cubes. Thus, we are left to prove

—~ A
1T8lsl sty < AallLellpas ~ Aol BJF+mect7a (A.3) [eqizestredLorents

This will be accomplished with the help of the following Calder6n—Zygmund type lemma which
covers such a set F by a reasonably small number of sparse collections of balls where one has
some modest control on the size of the balls.

Lemma A.4. Let E be a union of c-cubes and N > 1. Then there exist O(N|E|'/N) sparse
collections of balls which cover E such that the radius of the balls in each collection is of order

o(E[A™).

Deferring the proof of this lemma to the end of this subsection, we may ow gonclude the
proof of the e-removal lemma. If E is a union of c¢-cubes, then by Lemma %Tne can cover
E with O(N|E|/N) sets E; which are each the union of a sparse collection of balls of radius
(’)(|E|AN). By Vitali’s covering lemma, one may assume |E;| < |E|. Applying now Lemma [A.3]
to each such Ej, one obtains

rictionsparseballs

—_— N
e, |5l e (s.a0) S (1E[4) BV,
and therefore, by the triangle inequality,
— N
I1elsl|Le(sa0) S NIEIYN (B2 )| E[VP.

:restredlorentz .
Thus, 1!@? Tollows by taking N = A~!log(1/a) for a sufficiently large A.

rictionsparseballs

Proof of Lemma ﬁ Our first step is to modify the restriction hypothesis slightly, namely de-
note by R the restriction operator to the annulus Ag of thickness R~ around the sphere S¢ 1.
(Recall that we denoted the classical restriction operator by R). The restriction hypothesis
Rs(p — p; ) then implies

1Rl oy = | Flanllocen S BV floe) whenever supp f € Blao,B)  (A4)
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(for any zo by translational symmetry) by averaging the restriction hypothesis over all (1 4+
O(R™1))-dilations.

Now, take f =", fip; with supp fi C B(z;, R) (where {B(x;, R)}Y, is the sparse collection
of R-balls) and ¢ € S(R?) satisfies

o T —;
supp ¢ € B0,1),  lpon) > 0. soi<x>=so( )

R

Since the f; are disjointly supported, i.e., || f|[b = >, [ fillh, and Rf =3, Rfi @i‘sdﬂ (because
frequency is on the scale R~! and translations in physical space become merely phases in Fourier
space, i.c., fi(6 = m@i(0)|cega s = Fi(€ =M 4, #1(0)]¢gar), the assertion follows from

‘ZE—*@
i Lp(Sd—1,do)

~ :modrest
taking F; = Rf;, and using the modified restriction hypothesis @._rms estimate follows
immediately for p = 1, since

15" Fs galsas | < Z/S df/Rd dn [Fi(m)llgs(e —m| S RS IF -

By real interpolation, it therefore suffices to prove the estimate for p = 2. Renaming f,- =F
and applying Plancherel’s theorem, the estimate is equivalent to

1/p
SRYP (Z |E—||§> for all F; € LP(R?),

gd—1

1/2
| Zfz * Pilsa-1]l2 = || ZR(fi%)||2 < RY? (Z |fi||§> = R |{|| fill L2rey Yillee . (A5)

where we may interpret f = (f1,..., fn) and @ = (1, ...,on) as elements of (2. Introducing
T : 2(L2(RY)) — L2(RY), Tf = R(F, f)e (i.e., the left side of the last estimate equals ||T'f]]2
and the operator norm of 7" is bounded by a constant times R'/ 2) and applying the T*T-method,
the estimate is equivalent to

1/2

1/2
Slem RS ail)  <r(Tisg) (a9
j i i
This will follow from self-adjointness of T*T" and the Schur test (recall Lemma

sup > [l R*Reiflasa S R
Iy

which in turn will follow from the estimates
[piR* Repill2—2 S R (A.7a)
e R*Repillasa S (RN)™C for j # i (A.7b)
To prove the former estimate, it suffices to prove

[[i  (do (i = g))ll2 < Rllgll2
by Plancherel’s theorem. This estimate, however, follows from the corresponding L>* — L
estimate (which is trivial), duality (since the opera or is self—adE'oiptE and interpolation. Similarly,
it suffices to prove the L>° — L° analog of 0 prove itself. This estimate follows
from the rapid decay of ¢; and ¢; for |z; — x;| > R (which is the case due to the sparsity of the
collection) and the decay |c/15(x2 —2)| S A+ |z —z;)~@"D/2 < (RN)=C (for some other C)
again because of the sparsity of the collection. O
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Proof of Lemmaﬁ%ﬂf’or 0 < k < N, we define radii by Ry = 1 and Ry41 = |E|°RY, i.e
Ry = (9(|E|CK) for each k. (In particular, Ry = |E|°).
For k > 1, we recursively set

Ey:={z€E: x¢Ejforj<kand |ENB(z,Ry)| <|E*N}

and note that UkN:1 E,=F By construction and the hypothesis, we have for every 1 < k < N
and x € Ej,

|E N B(x, Ry)| > |E|F—V/N

Thus, for every 2 € Ej, the set Ej, N B(x, Ry) can be covered by O(|E|'/Y) Ry_;-balls which
implies that the entire set Ej, can be covered by O(|E|'/N) Ry_;-balls which are Ry-separated.
Since the cardinality of these collections can be at most O(|E|), the definition of Rj shows that
the collections are indeed sparse what had to be shown. O

Remark A.5. Let us shortly convince ourselves that it indeed suffices to prove the Lorentz
type estimate 1'@215 Le %SHL})(S’do—) S 11 fllgo,1 and the trivial estimate || fls|leo S I|fll1 to
deduce ||f|s||Lq(S7do-) S |Ifllzaray. Recall the numerology of the problem, ie., ¢ < go < p
where 1/qo = 1/p + A,/log(1l/a). We make use of the following result, which can, e.g., be
found in [Theorem 4.6 in https://www.guillermorey.me/documents/Lorentz.pdf] which
is in fact based on Tao’s notes [Course 245C, https://terrytao.wordpress.com/2009/03/
30/245c-notes-1-interpolation-of-1p-spaces/] on interpolation of LP spaces.

Theorem A.6 (Marcinkiewicz). Let T be a sublinear operator and suppose 0 < p;,q; < 00
(i=1,2) and q1 # q2. If T satisfies

ITfl Lo Si l[fllzin i=1,2

for all f in an appropriate dense function space, then for all 1 <r < oo and 0 < 0 < 1 such that
qo > 1, we have

HTfHL%W gpl,m,m,qmrﬁ Hf”L”e” .

In ou em J1T070 PL =1, ¢2 =, p2 = qo € (q,p), and pp = qo = 1 (since || f[rrr = || fll,,
see also 151 p. . As usual 1/po := (1 —0)/p1 + 6/p2 and ¢y is defined analogously.

The condition of the former theorem is obviously satisfied for ¢ = 1 (because of the trivial
restrlctlonefgvtllerlnsast% whereas the condition for ¢ = 2 follows from LP'™ C LP"2 for any 0 < 71 <

ro (see [I5I, Theorem 3.11]) and the assumed Lorentz type estimate ||f|5||Lp Ss,do) S 11 fllgos

Finally, 0 is determined by
1 A !
- <2 L )
p log(1l/a)

which is contained in (0, 1) if a satisfies o < exp(—A,p/(p — 1)). O

1993
A.2. Oscillatory integrals related to the Fourier transform. We follow HSFBJ Section IX.1].

Let us discuss the oscillatory integral (the extension operator)

BH@) = [ s ds, A0, (A9)

260ne might imagine that, for a connected, star-shaped set F/, E; is the union of very small sets sitting at the
boundary, E2 is the union of a bit bigger sets sitting at the inner boundary of E; and so on when finally only a
“bubble” Ep sitting at the center is going to be left.

eq:oscint


https://www.guillermorey.me/documents/Lorentz.pdf
https://terrytao.wordpress.com/2009/03/30/245c-notes-1-interpolation-of-lp-spaces/
https://terrytao.wordpress.com/2009/03/30/245c-notes-1-interpolation-of-lp-spaces/
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mapping functions on R?~! to functions on R%. We simultaneously consider the dual operator
(the restriction operator)

(T;f) (5) = /]Rd eii)\cp(g’m)@(& JU)f(f) dz . (A.9) eq:oscintdua

Stein1993
[Note that = and ¢ are interchanged in [[[149] which is somewhat abusing the standard

convention.] Here, v € C(R4™! x R?) is a fixed smooth function of compact support in x
and y. The phase function ¢ is real-valued and smooth. We assume that, on the support of
1, the phase function satisfies a non-degeneracy and a curvature condition (the Carleson—Sjolin
conditions).

Let us start with the non-degeneracy condition. We require that for each (¢, 2°) € suppy C
RI~1 x R, the bilinear form B(u,v) on R?~! x RY defined by

< o€ @) 0 ..0
B(uv U) - <U7v§><uvvz>¢(§ax>|(£o x0) = ];1’0]' s Up W (E , T ) (A]-O)
: deg3
has maximal rank d — 1 (cf. 1@( yRee
As a result, there exists a (unique up to sign) vector @ € R?, [i| = 1, so that the scalar

function
& (@, Vap(€,2°))

has a critical point at & = £°. Our further assumption is that this critical point is nondegenerate,
i.e., we suppose that the associated (d — 1) x (d — 1) quadratic form is nonsingular, i.e.,

32
det | ——— (@, V(& 2° > #0 A1l eq:curvu
(g, ™ Feete A
: h
at & = €0, éoetsgnthat this is precisely the curvature condition @_ut{l‘{_a%]g we imposed earlier in

Theorem e above two conditions are therefore just the Carleson—Sjélin conditions.

. :oscint .
Theorem A.7. Under the above assumptions on @, the operator @msﬁes the estimate

IT>Fllza@ay S AT Fll o a1 (A.12)
where
d+1\ ,
= — <p<2.
q <d_1>p and 1<p<2

I.{emar.'k A.8. In sev.eral applications however, the above oscil.la ry ié){ﬁéei%rlag]% igg Q%e(i%%}%ﬁa'
tions with kernels of singular integral operators. Phong and Stein [[128] (see also [129]) considered
the following situation. Let T be a L? bounded operator that is representable by a distribu-

tion kernel K, ie., (T'f)(z) = [ K(z,y)f(y)dy for f € S, where K satisfies |0)09 K (x,y)| <
|z —y| =4 1e1=181, Let (2, ) be a real smooth phase function, let 1) € C°(R? x R%), and assume
det (0,02, ¢) has no zeros on the support of . Consider the operator

(T f)() = / D K () () ) dy

]Rd
defined by
(6. Tf) = / da / dy @D K (2, ) () ()
R4 R4

Then the L? operator norm of Ty remains bounded as A\ — oo.
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. tein1993 X teinl1986
Proof. See Stein HSF[Q, Chapter IX, Section §1.2, Theorem 1] or [146, Theorem 10].
It suffices to prove the case p = 2 since the case p = 1 is trivial and the rest follows by

interpolation. By duality, the asserted bound for p = 2 is equivalent to
/ 2(d+1
T3 Fll sy S A W Fllrsy for = 25D

where
(TLF)(€) = / e~ NEDY(e ) F(x)dw, €€ R,
Rd

Let us now rewrite the squared L? norm as

1T sy = (P TTF) = [ [ Kaan) F@ PG dyda

with the kernel
Ky(z,y) :/ ei/\[*”(g’””)""(g’y)]q/z(f,m)z/;(ﬁ,y) de . (A.13)
Rd—l

Thus, it suffices to see that K is the kernel of an L"(R%) — L (R?) bounded operator whose
2d/r’

norm does not exceed a constant times A~ .

Our plan is to use Theoremaﬁatﬁﬂﬁiz—boundedness of non-degenerate oscillatory integrals
(in R%). To apply this theorem, we construct an appropriate new phase function ¢ on R? x R
Because of our assumptions on ¢, we can construct it in such a way that it indeed satisfies the
following two (non-degeneracy) conditions. Writing = = (£,&4) with & = (&1, ...,&€4-1) € R97L,
the constructed ¢ shall then obey

(1) ¢(E,2) = ¢(& =) + po(x)€q and
(2) det(V=V.) # 0.
In fact, V¢V, already has rank d — 1 by the non-degeneracy condition, i.e., we need only chose

¢o(x) such that (u, Vi )po(x) # 0 to increase the rank of the matrix V=V,@tod. - . .
Now, as in the shortest proof of the Tomas—Stein theorem (see Subsection , we construc
an analytic family of kernels K3 on R? x R? by setting

e’

R3(@) = 57y /R | PPEDTEEINY (€ m)p (€, y)lea T v (E) d2

with d= = d€ d§q and where v € C¢°(R) is a bump function at the origin. Let 7, be the associated
integral operator. By an integration by parts, setting s = 0, and applying the fundamental
theorem of calculus along with G(Z, z)|z—(,0) = (&, x), we have

K (,y) = Kx(z,y). (A.14)
Remember that we want to estimate [T < A72%7" via complex interpolation. Next, by
Theorem or non-degenerate oscillatory integral operators, we have ||Ty 2o < A=%2 for

all t € R because of the non-degeneracy condition on ¢. Finally, we claim the following L* — L*°
estimate, namely

B ) < 1 (A.15)
To see this, recall ¢(Z,x) = p(&, z) + po(x)&q and write
K (2,y) = Kx(z,y) - 7s(M(o(y) — ¢o(2)))

where ,

7s(A(po(y) = wo(x))) = F(Z/Q)/ ¢S A (o) =eo@y (¢4)|€q| 71 déq
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Since

d—1
2

~ d—1 a—1
D (a-1)/2(AMpo(y) — o (@)))] < [AM@o(y) — o)) = < IVeolld - (Alz —yl)
for large arguments (i.e., large \), we are left to show
[ K (2, 9)] S (Al —y)) @072

In proving this, we may assume that the integrand is supported in a sufficiently small neigh-
borhood around some & = £9 (for otherwise we can write it as a finite sum of such integrals).
Then, we observe that (&, 1) — @(&,y) = V(& 2) - (2 —y) + O(Jx — y|?). So, the claimed
bound on |Kx(z,y)| just follows from the estimates for non-degenerate oscillatory integrals in
d—1 dimensions (Theorem(@‘—mge of the non-degeneracy condition for egvgich clearly still
holds when we freeze one variable (see also the remark before Theorem . (In fact, if z — y
does not point in the “critical direction” of u, which arises in the non-degeneracy condition, we
even get |Ky(z,y)| < (\x —y|)~™" for any N € N since we can integrate by parts as often as we
wish.) This concludes the proof of the theorem. O

in1991L
Bourgain H% pe}l(;lvea that the theorem can in fact not be improved beyond the range 1 < p < 2

when d > 3. To see this, let d = 3. Then there is an appropriate ¢ and a bounded f having
compact support such that
ITxfllg 2 A2 Y9 as A — o0

sonstein

e
This is however only consistent with the assertion of Theorem I%{ it q > 4 (i.e., p < 2). To prove
this lower bound, take

pl6,2) = & o' + ${A(s)E, )

for ¢ € R?% o = (2, 23) € R? and A(x3) is a real, symmetric 2 x 2 matrix, depending smoothly
on z3. We will now impose two conditions on z3 — A(z3).

(1) dA(x3)/dxs is invertible for each z3. This condition guarantees the curvature condi-
tion at the critical point, namely that the (d — 1) x (d — 1) quadratic form satisfies
det (s, 0y, (0, Vop(€,2°))) # 0 at £ = £°.

(2) rank(A(z3)) =1 for all x3, i.e., the non-degeneracy condition is satisfied.

It is easy to check that these two conditions are compatible, and that indeed there are smooth
functions x3 — A(x3) that satisfy both simultaneously. Now let f(z) = 1 on the support of .
Then

D) = [ e de.

Let S = {x € R : 2’ € Ran(A(x3))}. In view of our assumptions on rank(A(x3)), we see that S
is a smooth hypersurface. Note that if 2 € S, the quadratic function £ — (&, x) has a critical
point, and moreover the rank of 9,,0,;¢(&, ) is exactly 1. Thus if x € S, we can show, using
stationary phase, that
(Thf)(z) ~ A2 as A — 0.

The estimate also holds in a tubular neighborhood of S whose radius is a small multiple of A~
The result is that

[T fllg 2 A7H2AT,
and the result is prov col ain1991L

See also Bourgain %m“fgwm is also shown that for a certain class of phases ¢, one does

have

IT5fllg S A fllos
for some ¢ with ¢ < 2(d+1)/(d —1).
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APPENDIX B. REVERSE LITTLEWOOD—PALEY INEQUALITY FOR SLABS IN d = 2

obaFefferman 3 . . . , [CordobaFefferman1977
or&%btﬁ§§egg%%§b¥%églll descr}be an argument .of Cord.oba and Fofferman 48] (see also‘ bjordob.a
&9, 00]) yielding the reverse Qitl;lewoodfPaley inequality W p = 4. Combining this
with the analysis of Section [ yields a full proof of the restriction conjecture in this case.
The heart of the argument is the fact that the Minkowski sums of all pairs of slabs 6 + 6 =

{€+¢&: £€6,¢ €6} have only bounded overlap (which in turn is somewhat a consequence of
the fact that two circles in R? intersect in at most two points).

Propositign B.1. Let f be a smooth function with supp f - Nl/R(]P’l). With the notation of
Sections@_fhe inequality

1/2

[ fllzere) < > sl

0:R—1/2—slab
L4(R?)

holds.

2

Proof. By the Fourier support condition, we have
5 2

191 = WP~ [ S fote)| [ S To@)| do= |3 s (B.1)
B2 79 9 0,0'
' 2

We distinguish now between the cases dist(6, 8') < const R~'/2 and start with dist(0,¢") < R~1/2,
By Cauchy—Schwarz,

> fofor| <23 1fol? > LS 1ol
0,0":dist (0,0’ )SR~1/2 0 0:dist(0,0/)SR—1/2 o
. . . . =14norm . . .
i.e., it suffices to estimate the right side of @Wh_ere the summation is restricted to slabs which
are at least R~1/2-separated. In particular, it suffices to show
2

> folo|| < > | foforll3

0,0":dist(0,0") > R—1/2 2 0,0’:R—1/2 —slab

which can be interpreted as the statement that fyfs are pairwise almost orthogonal. (Observe
that this right side just agrees with the right side of the statement of the proposition).
Observing that the left side of the claimed inequality equals
2
> fox for
0,0:dist(6,0’) > R~ 1/2 9
by Plancherel’s theorem and that

supp fo * for SO -0,
it suffices to prove that the number of overlaps of 6 — ¢ is bounded, i.e.,
‘{9,0’ RY2 _glab : dist(6,6') > R™Y2 and € € 6 — 9'}‘ <1 forall € € R2.

To prove this, consider the pairs 01, 6] and 62, 65 which are such that 8, — 0] N0y — 65 # 0

and dist(6;,0) 2 R™Y2% (for j = 1,2). In particular, that means that there are y; € ¢; and
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y; € 0} such that y1 — 3} = ya — y5. Moreover, since 0; and 0’ belong to Ni/r(P'), there are
t;,t; €10,1]%"! such that

E 7
lyj — DI S R™H and [y — (1, (1)) S R for j=1,2.

Defining t; = (t;,t}), adding and subtracting (y1 — ¢7) — (y2 — ¥5) = 0, and using the above
estimate yields
(& — 1)) = (& — )| S R
which means in particular
((tr =) = (ta —t3)| SR™' and |(8] — (1)) — (83 — (t2)*)| S R~
From these estimates, it can be inferred [by expanding everything?]
[ty = t4] - [(t +11) — (2 + 1) SR
Since dist(0;,0;) = R~'/2, it follows that
[(t1 +11) = (t2 + 15)| S RV
and in particular
it —to] SR™Y? and |t) —th| S R7Y/?
=y — | SRV and |y —yh| SRV
But that means that for a given pair 1,6} there are only O(1) choices of pairs 6, ) such that
61 — 0} N0y — 64 # () which means
Ha,e’ RY2 _glab : dist(6,0') > R™V/2 and € € 0 — 0’}‘ <1 forall € € R?

as asserted. O

APPENDIX C. INTERPOLATION THEOREMS

, . . rafakos2014C
See, e.g., Tao’s notes on harmonic analysis or Grafakos [[85] Section 1.4].

011and1999
eetl 68:? on Lorentz spaces. See, e.g., Folland |72 Section 6.4], Adams—Fournier

amSp lr sl ofes by G. Rey https://www.guillermorey. rqg/do %ggg‘sn(r%gg;entz pdf,
Grafakos [85] Section 1.4] Trlebelf 0], and Bennett and Sharpley [4]. I'Hflﬁt‘ﬁﬁéro@;?nntbf%
consider Bennett— Sharpley (once more) and in particular Bergh and Lofstrom [[7

Let (X, 0, 1) be a measure space, i.e., a set X equipped with a o-algebra of bubsets of it and
a function p from the o-algebra to [0, oo] that satisfies u() = 0 and

o0 oo

p| UBi| =D uB)

j=1 j=1

for any sequence B; of pairwise disjoint elements of the o-algebra. The function p is called a
(positive) measure on X and elements of the o-algebra of X are called measurable sets.

Definition C.1. Let f be a measurable function on X. Its distribution function Ay : Ry —
[0, 0] is defined by

Ar(@) = p({z e X :|f(z)] > a})

. . rafakos2014C,
We collect some classic properties, see, e.g., Grafakos [[85] Propositions 1.1.3 and 1.1.4].

Proposition C.2.

(1) Xy is non-increasing and right-continuous.
(2) If |f| < |g|, then Ay < A4.


https://www.guillermorey.me/documents/Lorentz.pdf
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(3) If | fn| increases to |f|, then Ay, increases to Ag.
(4) If f =g+ h, then Ap(a+ ) < Ag(a) + An(B)-

(5) We have the layer cake representation

ﬂ@:A hmwwm:A 10,0y (@) da

Js@pds=p [~ %

(7) We have || f|loc = inf{ax > 0: A¢(cr) = 0}.
Chebyshev’s inequality asserts

(6) We have

Ap(a) < a7
which leads to the definition of weak LP spaces.

Definition C.3. Let 0 < p < oo. Then we denote by LP*°(X) the class of all functions whose
quasi-norm (i.e., the triangle inequality only holds up to some constant)

1f1},00 == sup a”A(cx)
a>0

=inf {C >0: A\f(a) <a PC forall a >0}
is finite.

Remarks C.4.

(1) Check that both definitions actually coincide!

(2) By Chebyshev’s inequality, we immediately see || f||p,00 < ||f]lp, i-e., LP C LP:>°

(3) By construction, L>-* isometrically coincides with L°°.

(4) Since A\gn(a) < Ag(/2) + Ap(ar/2), it is easy to see that ||g + hpcc < 2C5([|9]lp,00 +

[Plp,00)-
Example C.5. Let p € [1,00) and f(z) = |z|~%P, then f ¢ LP(R?) for any p, but f € LP»>
since
Hz e RY: |z|~¥P > a}| = / dr ~a™P.
|z|<a—Pr/d
The equimeasurable decreasing rearrangement of f is the function f* on [0, 00), defined by
* =1 <tl=1 <
F0) = it Ar(e) < 1} = inf p(a) <1},

which is a non-increasing function since Ay is non-increasing. In particular, Ay (a) = Af(a). Let

us now define the Lorentz quasi-norm.

Definition C.6. Let f be a measurable function on X and 0 < p, ¢ < oco. We define the Lorentz
quasi-norm as

1/q
o L0 @) 4) ™ g <o,
pq =
sup,s.q t/7 f*(t) if g=o00
By definition, LP'P coincides isometrically with LP.

Proposition C.7. Let f be a measurable function on X and 0 < p,q < co. Then

1/q
1/p\? da .
1£1lp.a = P ([ (ars(@)/e)” o) v <o,
SUPq >0 a)‘f( ) /p if ¢ = o0
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rafakos2014C
Proof. See Grafakos 85 Proposition 1.4.9]. O

We collect some useful properties.

Lemma C.8 (Monotone convergence). Let (f,)nen be a sequence of measurable functions with
|frul | f] almost everywhere. Then || f|lp,q = limp—soo || frllp.q-

Proof. See Lemma 1.3 in Rey’s notes. O
Lemma C.9 (Fatou). Let {f,}nen be a sequence of measurable functions. Then
o < T .
| hnlglogf fallp,g < hnrglorolf 1£1lp.q
Proof. See Lemma 1.9 in Rey’s notes. g

Theorem C.10. Let 0 < p < 00 and 0 < g < oo, then LP? is a quasi Banach space, i.e., it
is complete and satisfies the quasi triangle inequality. For p,q > 1, they are normable and in

particular actual Banach spaces.

rafakos2014C
Proof. See Grafakos [[8b] Theorem 1.4.11]. O

Proposition C.11 (Nestedness). Let 0 < p < oo and 0 < ¢ <1 < oco. Then ||fllpr Sp.ar 1l
i.e., LP9 C LPT.
rafakos2014C

Proof. See Grafakos [85] Proposition 1.4.10]. O
Proposition C.12 (Hoélder’s inequality). Let 0 < p1,pa,p < 00 and 0 < g1, ¢2,q < 00 obey

1 1 1 1 1 1

-=—+— and -=—+—.

p P11 P2 qa q Qg2
Then || fgllp.g < 11 fllpr,q1 191 pa.g2-

202006Notes

Proof. See Tao [165] Lecture 1, Theorem 6.9]. O

rafakos2014C
More details concerning the following proposition can be found in Grafakos H;SB .

Proposition C.13 (Dual characterization). Let 1 < p < oo and 1 < q¢ < co. Then for any
f c Lpﬂ!

£l ~pea sup{‘ [ @5 dute)

ol <1}
202006Notes

Proof. See Tao [165] Lecture 1, Theorem 6.12]. O

C.2. Marcinkiewicz interpolation. Typically, the Marcinkiewicz interpolation theorem is
stated under the condition that an operator satisfies two weak-type estimates. Recall that if
X and Y are two measure spaces and 7T is a linear operator from functions of X to functions of
Y, then T is said to be of strong-type (p, q) if

ITfllayy S fllzex) forall fe LP(X).
We say that T is of weak-type (p,q) if
Ky e Y - [(THW)I = AN S IFIFAT forall A>0, f € LP(X).

Clearly, the strong-type estimate implies the weak-type estimate. One can weaken this concept
even further by only considering functions f which are characteristic functions of a set. This
leads to the notion of restricted weak-type estimates. We say that T is of restricted weak type

(p,q) if
{y €Y : |(T1p)(y)| > A} < |B|YPA~9 forall A\>0,EC X . (C.1)
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Note that every characteristic function belongs to LP*! with

I12]lp.1 = const |E["/?
1999Not
The enhanced M r(éig]ﬁi()es\g(i)(iignterpolation theo a%b&%gﬁb &8 Tao’s notes 1§§97 Tecture 2, Lemma

2.3] or Grafakos [[85) Theorem 1.4.19] and Tao [I65, Lecture 1, Lemma 8.5]) therefore says that
if T is LPi:1 — L% bounded for j € {0, 1}, then T is LP*"" — L9" bounded for all 0 < r < oo.

in1985 fakos2014C
Remark C.14. T ere. lirse%lasl(i@ggesult.by Bourgain }f‘fg leélelé also Grafakos %g, Ei).osﬂ J, but see
also Carbery et al [38] Section 6.2] saying that if the sequence of linear operators T; maps

1Tl 4,5, Si 27

for i € {0,1} and normed vector spaces A;, B; with ap < 0 < «, then T = Zj T; extends
to a bounded operator mapping Ag ;1 to Bpoo. (Recall A = (Ao, A1) and Ay and By are
the Lions—Peetre interpolation spaces.) A more precise and explicit version is formulated in the

following proposition.

T ko0s2014C
Proposition C.15 (Bourgain interpolation (Grafakos’ version ﬁ: L Let0O< pg < pp <

and 0 < Bo,B1, Mo, M1 < oo. Suppose that for k € Z a family of sublinear operators {T}}
is of restricted weak-type (po,po) with constant My27 %% and of restricted weak-type (p1,p1)
with constant M,2F5v for all k € Z. Then there is a constant C = C(fBy, B1,po,p1) such that
> nez Tk is of restricted weak-type (p,p) with constant CM&_GMf where 0 = Bo/(Bo + 1) and

pt=01-0)/po+0/p1.
arberyetal1999

Proposition C.16 (Bourgain interpolation (Carbery et al version [38])). Let U < po, p1, 90, g1 <
oo and 0 < Bo, f1, Mo, M1 < co. Suppose that for k € Z a family of sublinear operators {T}}
satisfies

||Tj||Lpoﬁqu < M027ﬂ0j and HTj”LPl*)L(Il < M12+’81j .

Then there is a constant C' = C(Bo, 81, Do, P1,q0,q1) Such that

IS T fll o < C MO MY)| ]| o
kEZL

where 8 = By/(Bo + B1) and p and q are as usual.
It is convenient to reformulate @%ore symmetric, dual formulation.
Lemma C.17. Let 1 < p,q < co. Then, one has (@% only if
(Lp, T18)| S B[V (C2)
forall EC X and F CY.

This should be compared to the dual strong-type estimate

(g THIS I Ipllgllg -
Proof. For our purposes, we only need the implication (C-1)

= |E' o prove the reverse direc-
tion, one sets F' = {Re(T'1g) > A}.) Using the triangle inequality, the layer cake representation,
and Fubini to do the z-integration first, we have

e 718 < [ (e @de= [ [ 1gren 0 irds

- /Ooo iz € F:|(T1g)(x)| > A} dA.

eq:restrwt2
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We have two estimates for the integrand. The first is just |F|. The second is O(|E|%/PA~9) by
assumption. Thus, the integral can be estimated by

O (/ min{|F|, |E|‘1/”)\_q}d>\>
0

which yields the assertion after an elementary calculation. O

teinWeiss1971
C.3. Stein interpolation. See Stein and Weiss TBI, Chapter V, Theorem 4.1].

APPENDIX D. SOME REMARKS ON THE UNCERTAINTY PRINCIPLE
01££2003

H’dgg d)g)il%gy a;Hb%"Pice exposition of Wolff WT?Q, Chapter 5] and the survey of Folland and Sitaram
(3. For

e following discussion it will be helpful to remember that for an invertible linear map
T :R* — R?, one has
Fol =|det(T)| L foT™
where Tt denotes the inverse transpose of 7.
For us, most of the time, the uncertainty principle is the following heuristic statement. If a
measure [ is supported on an ellipsoid E, then for many purposes fi may be regarded as being

constant on any dual ellipsoid E*.
The simplest rigorous statement is as follows.

Proposition D.1 (L? Bernstein inequality). Assume that f € L? and supp fc By(R) for
some R > 0. Then f is C* and it holds that

D fll2 < (27 R)1*| f]|2 -

Proof. Since f is compactly supported, f is in fact holomorphic and the claimed estimate just
follows from Plancherel. O

A corresponding statement is also true in LP, but proving this and other related results needs
a different argument (namely, the Mikhlin—-Hormander theorem) since there is no Plancherel the-
orem. In this context we state somme lemmas that are helpful to construct compactly supported
functions in Fourier space from Schwartz functions in physical space.

Lemma D.2. There is a fived Schwartz function ¢ such that if f € L'+ L? and supp f C Bo(R),
then

f=¢ xf
where B (z) = R%(Rz).

Proof. Take ¢ € 8 such that ¢|g,(1) =1, i.e., o' |g,(r) = 1. Thus, ((prl * f — f)* =0 which
shows the assertion. O

Lemma D.3. There are radial bump functions X that satisfy x > 0 and x > 1p,(1)-
Proof. If g is an even bump function, then take X(¢) = A?B(g * g)(A¢) for some A, B >0. O

Lemma D.4. There exists a radial 0 < ¢ € S(R?) such that supp¢ C (—1/2,1/2)¢ and with
the property that

Zg@(m—n):l, zeR.

nezd



SOME NOTES ON RESTRICTION THEORY 179

hlagetal2002
Proof. See Schlag—Shubin—Wolff 1933a Fommas 2.4 and Lemma 3. 1]. We only present the proof

for d = 1. The proof for higher dimensions is almost identical.
In Fourier space the claimed partition of unity reads

(&)Y e =N " G(k)ok(€) = do(€) (D.1)
nez keZ

where the first equality follows from Poisson summation (>, f(n) = >, f(k)). To ensure the
second equality, it suffices to take supp@ C (—1/2,1/2) and set <p 0) = lm To obtain the
positivity, start with any even Schwartz function ¢ with supp pg C (—1/4,1/4) and g(0) = 1.
Since (3 extends to an entire function on C, one has

mes[ps = 0] =0.
Therefore, ¢ = ¢ * ©% > 0 everywhere, whereas
¢ = [0 * o)’
has support in (—1/2,1/2). Finally observe that

2(0) = ( 5% (f)d§> =( @(£>2df)2>o.

. X moothenft3au:
The second equation in uses that g is even whereas positivity follows since pg is real.
Hence,

Y ele—n)=¢(0), zeR

neZ
by the preceeding argument. Dividing by the right-hand side finishes the proof. |

Proposition D.5 (L? Bernstein inequality). Suppose that f € L' + L? and supp fc By(R).
Then the following assertions hold.

(1) For any a and p € [1, 0],
1D fllp < RNl -
(2) Forany 1 <p <q < oo,
11
1flg S RG]l -

With the help of the second assertion it becomes obvious that Bernstein inequalities are an
invaluable tool in the analysis of (nonlinear) PDEs. The inequalities say that, for localized
frequency, low Lebesgue integrability can be upgraded to higher integrability (i.e., smoothness)
at the cost of certain powers of N. In fact, this cost is a gain when the frequency is small.

Proof. As before, let ¢ = <pR71 such that f = f. Then the first claim just follows from
VYl = el - R

and Young’s inequality. To prove the second assertion, we note

11 = liell - RV
for any r € [1,00]. Thus, for r being defined by 1+ 1/¢ = 1/p + 1/r, Young’s inequality yields

1flla = 1% fllg < Il fllo S RY7 N1l = RO 111l

thereby showing the second claim. g

270ne could have also obtained this directly since ZneZ e~ 2ming — d¢.,0-

’ eq:smoothenft3aux
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With this warm-up, we are ready to extend the above LP — L9 bounds to ellipsoids instead
of balls using change of variables. An ellipsoid is a set of the form

E:{xeRd:ZMSI} (D.2)

for some a € R? (the center of E), some choice of orthonormal basis vectors {e;} (the axes), and
some choice of positive numbers r; (the axis lengths). We define the dual ellipsoid E* to E as

the é?&sgds ol}gving the same axes as E but with reciprocal axis lengths, i.e., if F is given by
. then should be of the form

{xeRd;Zr§|(x_b)-ej\2g1} (D.3)

for some choice of the center point b.

Proposition D.6 (L? Bernstein inequality for an ellipsoid). Suppose that f € L' + L? and
supp f C FE for some ellipsoid E. Then

1_ 1
1 fllqg S TEIP 7 (| fllp
if1<p<q<oo.

This statement reflects the heuristic fact that faster decay of the Fourier transform (i.e., the
smaller the ellipsoid E is) yields better smoothness properties (in terms of integrability) of the
function.

One could similarly extend the gradient bounds of the previous statements to ellipsoids cen-
tered at the origin, but that statement is awkward since one has to weight different directions
differently, so we ignore this here.

Proof. Let k be the center of E and T be a linear map taking the unit ball onto £ — k. Let
S = Tt be the inverse transpose of T, i.e., also T = S~t. Let furthermore f(z) = e=277 f(z)

and g = f1 oS. Since f/o\T = |det(T)| "1 f o T~*, we have
(&) = | det S| fi(STH(E)) = [det S| F(STHE+ k) = | det T f(T(€ + k) .

Thus, § is supported in the unit ball, so by the LP Bernstein inequality for balls, ||gllq < |lgllp-
On the other hand,

lgllq = 1 det S|~ fllq = | det T[] fllg = [E"/4[| Il
and likewise with ¢ replaced by p. So
\EM Fllg S TEMP1

as claimed. O

Finally, we will also prove a “pointwise statement”, roughly saying that if supp f C FE for
some ellipsoid E, then f is roughly constant on the dual ellipsoid E* (and rapidly decreasing
away from it if f is assumed to be smooth). In fact, we shall show that the values of f on E*
can morally(!) be controlled by the average over E*.

To formulate this precisely, let N be a large number and let ¢(z) = (1 +|z|?>)~". Suppose an
ellipsoid E* is given. Then define pg«(z) = o(T(x — k)), where k is the center of E* and T is a
self-adjoint linear map taking E* — k onto the unit ball. If 77 and T3 are two such maps, then

eq:defellips
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TyoTy is an orthogonal transformation, so ¢z~ is well defined. Essentially ¢g- roughly equals
1 on E* and decays rapidly as one moves away from E*. We could also write more explicitly

, -N
pp-(z) = 1+27|(x_k)'ej|

2
Tj

Proposition D.7 (Locally constant lemma). Suppose that f € L' + L? and supp f CE for
some ellipsoid E. Then for any dual ellipsoid E* and any z € E*,

If(2)l SN |E*|_1/Rd (@)l (@) dz = |E*|7H| fll 21 o e (2 - (D.4)

Proof. Assume first that F is the unit ball so that E* is also the unit ball. Then f is the
convolution of itself with a fixed Schwartz function . Accordingly,

—z T T (E—Z2 —N Q?
£ < [ @l - 2lds Sy [ 1F@I0+o =)V a
Sy [ @I+ )Y da

where we used the rapid decay of ¢ and 1+ |z — 2|? > 1 + |2|? uniformly in |z| when |z| < 1.
This proves the assertion when FF = E* is the unit ball.

Next, suppose F is centered at zero but E and E* are otherwise arbitrary. Let k and T be as
above (T took E* — k to the unit ball, i.e., 7" maps the unit ball to E, and T-! maps E onto
the unit ball, i.e., 77! maps the unit ball onto E* — k; more precisely, these maps also take any
translate of one set to the according translate of the other!), and consider

g@) = f(T 'z +k) & (&) =|detT| > *Ef(T7).

Thus, § is supported on T~ 'E, i.e., a unit ball. According to our above findings for the unit
ball, we have

9| < | o@)lo(o)] da

if y belongs to any unit ball. Hence, it follows that

40 < [ @l T e+ blde = ] [ pp (o)l o+ )] do

1B [ e @)l f(@)] do

by a change of variables and the fact | det T'| = |E*|~!. This shows the assertion since the above
estimate holds for z in some unit ball which we may identify with T'(E* —k) (since T took E* —k
to the unit ball) which however means that the argument 7'z + k belongs to E*. |

When E is not centered at zero, one merely needs to replace f(z) by e 27 f(x) where k is
the center of E.

Remark D.8.

(1) The above proposition is an example of an estimate “with Schwartz tails”. It is not
possible to make the stronger conclusion that, say, | f(z)| is bounded by the average of f
over the double of E* when x € E* (even in the one dimensional case with E = E* being
the unit interval); i.e., taking the average over R? is necessary! To see this, consider
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a fixed Schwartz function g with g(0) # 0 whose Fourier transform is supported in the
“unit interval” [—1,1]. Consider also the functions

2

= (1-2) o)

Since f v are linear combinations of g and its derivatives, they have the same support as
§. Moreover, they converge pointwise boundedly to zero on [—2, 2], except at the origin.
It follows that there can be no estimate of the value of fy at the origin by its average
over [—2,2].

(2) All the estimates related to Bernstein’s inequality are sharp except for the values of the
constants. For instance, if F is an ellipsoid, E* a dual ellipsoid, and N < oo, then there
is a function f with supp f C E* and with

Ifllx = |E],
|f(2)] < App(z),
(V)

where g = ¢}, was defined above. In the case £ = E* being the unit ball, this is
obvious; take f to be any Schwartz function with Fourier support in the unit ball and
with the appropriate L' norm. The general case then follows as above by making a
change of variables.

(3) The name “locally constant lemma” is motivated by the following counterexample. Con-
sider f € S(R : R) with suppf C [0,1]. Then one might wonder whether f could not
actually look like a sequence of peaks whose distance to each other is extremely small.
The locally constant lemma says that this cannot occur. On the one hand, due to the
pointwise bound || f|lcc < [[fll£1(pp- dx), OnE sees that the peaks must not be too big.
However, these peaks then cannot add up to the given L' norm. Hence, f cannot be a
sequence of narrow peaks, but must actually be roughly constant on the dual interval
(which is just [0, 1] again).

The last two estimates imply that || f||, ~ |E |1/P for any p which shows that the last proposition
is also sharp.

D.1. Preliminaries for the wave packet decomposition. If f was smooth and real-valued
and supported on some ellipsoid E, then (by an integration by parts argument, say) f € S(R?)
is concentrated on E* with center of mass at the origin. In general, when f is complex-valued,
one should expand f in a Fourier series where one samples at the centers of masses of all E*
tiling R?. Let us make this more precise and assume for simplicity that supp f C 6, where
6, C R? is a rectangle centered at the origin with side lengths R=%/2 x --- x R™1/2 x R,
oriented along w € S?"!. To make the computations more accessible, let ¢ € C>(R?) with
supp ¢ C [~1/2,1/2] and

T:6, —[-1/2,1/2]¢
T=DoR, ReS0(), D =diag(R"?. . R"*R)

where R € SO(d) rotates 6, to .,, and D scales the rectangle to the unit box [—1/2,1/2]%.
Let us denote by 7,2 a dual rectangle with side lengths R'Y2 x ... x RY? x R, oriented along

w € S 1 and centered at a € R%. Let us collect all centers of masses of these dual rectangles
that tile R¢ by T,,. Then

f=¢oT
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and we wish to expand

= 3" fula)e®™ €1, (¢)

a€eT,

for certain Fourier coefficients f,(a) that we shall now compute. We prepare for a € T,

mila,) £\ _ o mia-§ _ (T "a,€)
@0y = [a (o=t = o [ dele

- 1
~ Tdet(D)

<e27m<T a7-)’s0> )

Since T~ ta € Z% whenever a € T,,, we obtain by summing the equality over a € T,

Y [det(T) |, ferm T = o(¢).

a€T,,

Hence, replacing & — T¢, we obtain

f(f) = (¢ oT)(&) = |det(T)] Z Zmifa) | fle2miay, L (&) (D.5) ’ eq:wpdecomppreliml
a€T,

Taking the inverse Fourier transform, we observe

f(a:) ~ Z < 2mila, f> amia: 5 (33 - a) (D.ﬁ) ’eq:wpdecompprelimQ
a€T,,

where (recall |detT| = R(@HD/2) yp = RE+HD/2F (1, ) which is focused on T,, and obeys
X1, |loc ~ 1. Finally observe that we do not immediately get a Plancherel identity, but

I£13 = | det(T)[> > (2™, f) - (f, e /d§ 2miE (@0 |1y (€)[*(Bap + 1 — Gap)

a,beT,

= [det(T)| D [(e2™Ho) HHZ+ Y (e f><f,62”<b">>/RdXTw(a—b—y)xTw(y)dy-

a€T, a#beT,,

(D.7) ’ eq:almostplancherel]

Since (xr, * x1,)(a — b) is a Schwartz function adapted to, say, a doubly dilated tube T, with
X7, * X7, loo ~ R@TD/2 we have (with the abbreviation f,(a) := (e2™(®) f)) for any N € N,

S @l fu®]r, * xr) (@ =b) ~y B3 | ful(a)][£u®)](1+]a — b)Y

beT, beTy,
a#be r a7be ‘ (D.8) ’eq:almostplanchereli
gN R=T Z |<627rz<a,->’f> 2
a€cT,
Therefore,
||f||% ~ R(@H1)/2 Z |<62m<a">, f>|2 (D.9) ’ eq:almostplancherels?
a€T,,

which reflects the almost orthogonality of the (e?7(%) f)xr  for different a € T,,.
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emeter

from Demeter [57, Chapter 2].
Let T € C°([—4,4]9~1) with

D.2. Wave packet (lta%)mposition for the truncated paraboloid. The following is taken

Y TE-j=1.

jezd
Now let us refine the mesh a bit. Let R > 1 and rescale the lattice Z¢~! to R=Y/2Z9~!, Then
> TRV —j) ~ 1z
l7ISRY/?

where Y (R'/2¢ — j) equals roughly an indicator function on a cube w := ¢, +[-R~'/2, R~1/2]4-1
with ¢, = R~/2j. The ¢, denote the centers of those cubes which are roughly R~'/2 distant

from each other and overlap at most O ]aL many Rimes. We collect these center of masses in the
comppreliml
set Qr € R~1/27-1. Then, as in it 1s reasonable to decompose f in a Fourier series
f(é) — Z Z R 2m (cqs) f1,, > 2m‘cq-frr(R1/2(£_ Cw)) (D.lO)

cw€QR cq€EQR

Z Z 2mi(cq,") >627"i0q'cw'rqw (é‘) (Dl].)

cwENQR ceEQR

where ¢, € R'/2Z?~1 are centers of dual cubes ¢, + [~R'/?, RY/?]9~! which are R'/2-separated
and collected in the set Qr, and

You(l) = RT meaCcd(RY2(6 — ), [|Tqulli ~RT . (D.12)

For future use, let us record the following almost orthogonality property, valid for any weight
Wq,w € C (such as wq,, = wqd, w, for instance),

1/2
d—1
Z Z wq1qu7w||2 ~ R Z Z |u)q,u.)|2 (D13)
cw€QR g EQR cw€QR cgEQR

which is a consequence of the fact that the c beslw le¥ (i\éerlapplng (for the Zc €On
summation) and similar computations as in ([D.7]) cOn summation). Our goal is

to understand F§ f in the case of the truncated paraboloid S = ]P’d S ={(£€%): ¢ e [-1,1]4 1L
To that end, we first record

* —2miz-(cy,,c2 i
(FSTQ,W)(I) =e? () /Tq,w(n)ez ®x.q.w(N) dn

with a complicated expression for the phase (which just comes from exploiting the galilean
symmetries of P4-1)

2 =g+ 2cuxd | T4
Pa,qw(n) =n- — iz TR
By stationary phase, we anticipate that F§Y, ., will be concentrated on a RY2x...x RY2x R
tube centered at (¢y, 0) pointing in the direction (—2c¢,,, 1) (which just follows from the observation
that the old 2’ = 0 point gets mapped to the new point x’ which satisfies ' + 2¢, x4 = 0). That

is, F'¢Y ¢, () decays rapidly Wje%e.veggﬂ’dlﬁd) is no critical point in the sense that V, ¢4 ¢ = 0.

More precisely, recall Theorem which says
WF(FgTq,w) = {(=, vx@x,q,w(n)) s (zm) € R¢ \ {0} X Supp(qu), vn‘ﬂx,q,w(n) = O}'

That is, the singularities will propagate along rays pointing in the direction V;¢; 4. To make
these statements more precise we introduce the following definitions.

eq:upsilonal
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Definition D.9 (Tubes and wave packets). (1) We denote by T}, the spatial tube in R? given
by
Tyw = {2 = (2',24) €R?: |2’ — g + 2cuwa| < RY?, |24| < R} (D.14)
The collection of these tubes for fixed w is denoted by T,,. The collection of all tubes is denoted
by T.
(2) For M > 1, let

MT,, = {z=(2',24) € R?: |2’ — ¢y + 2c,x4] < MRY?, |24 < R} (D.15)

denote the dilate of T ., around its central axis.

(3) For each tube T =T, ,, we write Y, ,, = Tp and F§Yr = ¢p. The latter function (or any

scalar multiple thereof) is called wave packet.

emeter2020
The following theorem (see [07] Theorem 2.2]) summarizes the main features of the wave

packet decomposition.

Theorem D.10 (Wave packet decomposition). Let f € C™([—4,4]9"1Y), then there is a decom-
position
F=>fr (D.16)
TEeT

with supp fr C wr for some wr = ¢y 7+ [fR’l/Q, Rfl/Z]dfl with c, v € Q. Let F&fr = arpr
with ar € C so that

Fsf = Z arer - (D.17)
TET
Then the w1 obey for any k > 1,
lerle ST, llprlla S R/ (D.18)
lor |l Lo ma-1x[—mRpMT) SEMTF, M >1 (D.19)
supp ¢ C {(£,€%) : € € wr}, (D.20)
the ar obey the Plancherel similarity (recall | Yr||3 ~ R%)
d—1
£ ~ R Jar|? (D.21)
TET
d—1
1F10]5 ~ R=Z > Jarl?, (D.22)
TET,,

and the coefficients fr obey the Plancherel similarity
1115 ~ D o113 (D.23)

TET
In particular, th choices

ap = 2T . (eQ”i<Cq">,f1w> and fr =arYr
are admissible.
Proof. Taking ar and fr as above, then the bound
lor || Lo (Ra-1 [ rRNMT) Sk MTF, M >1

follows from non-stationary phase arguments since

inf Vobraw(m)| = M.
UESUPP(T),mG(Rd*IX[_RyR])\MT| nQD ', (77)‘
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The bound [|¢7|| e ey S 1 is immediate while

d—1
IF1l5 ~ RZ D farl?,
TeT,
silonalmostorthogonal

follows from the almost orthogonality of the T, @' or Parseval’s identity
D7l )2 = R L.

cq€EQR

Summing this over all w € Qg and using the fact that these cubes overlap at most O(1) many
times (to exploit almost orthogonality), one infers

d—1
I£I? ~R= > far|*.
TET
Note also that
A3~ lIfll3 -
TET

follows from the bound | Tr||3 ~ R(*~1/2 and

supp ¢ C {(£,6%) : £ € wr},

which in turn follows from a direct computation. Note that ¢ is a measure supported on a
hypersurface. O

D.3. Other interesting uncertainty principles. &9&5{% li{btgesresting variant of the uncer-
tainty principle was found by Shubin—Vakilian—Wolff [[I35] Theorem 2.1].

Definition D.11. Let p(z) = min{1,1/|z|}. Then a set E C R? is called e-thin if

BN Bu(p(@))| < ¢|Bu(p(@))] . =R,

hubinetal1998
Theorem D.12 ([I35] Theorem 2.1]). There are € > 0 and C' < oo such that if E and F are

two e-thin sets in R, then for any f € L*(R?), it holds that
1£1l2 < © (I leageey + 1 flliare)) -

Clearly, the theorem says that f and f cannot both be concentrated on small sets wt e}%%amgg?’
same time. There gre, Humerous related results in the literature, see, e.g., Fefferman W%Q or
X o avinJoricke
Havin—Joricke
We keep track of the following lemma which says that sharp cut-offs in spatial variables
automatically lead to frequency smearings on the inverse scale.

Lemma D.13. Let Ny, Ny >0, N > Ny + No, and F : R? — R? be measurable. Let Y8 (€)=
N9y (NE) where 5 is a smooth bump function on R such that §(x) =1 for |z| <1, i.e., yi/n is
a smoothing operator in frequency space on scale N~'. Then

Lioj<n F(D)1g<n, = Lg<ny F - (F(E) % v1yn) F Ligj<n, - (D.24)

Analogously, for any surface measure do on a codimension one manifold S that is embedded in
R4, we have

Vaj<n F5Fslaj<n, = L P (do s n) F lpj<n, (D-25)

where Fs and F§ are the usual Fourier restriction and extension operators.
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Proof. Let f € S(R?), then

(1< F(D)1 g 1<n, f) () = 1<, /F(w —Y) Ly <n, f(y) dy.

Since || < Ny and |y| < Na, we automatically have |z — y| < Ny + No < N. Thus, with the
smooth bump function ¥, we obtain

(1< F(D)1 1<, f) (2) = 1|x\<N1/F (z = y)3(|z = yl/N)1y<n, f(y) dy

= Ly, F ! (F(f) *v1/N8) F Ligj<n, f) (2),

which is the first part of the assertion.
Since F§Fg acts as convolution with (do)Y, we obtain analogously

(Ljaj<n, F§Fs1jzj<n, f)) (2) = Liz1<n, /(dU)v(u’U = )3z —yl/N)1y<n, f(y) dy

= (Lojen 1 (do % y1yn) F Ljajeny f) (@)

since
(do s yyw)” (@ —y) = /Rd dé i) /Sdff(n) YN (€ =)
= [ dotny e (12 —y1/)
= (do)"(z = y)j(jz — yl/N).
This concludes the proof. O

APPENDIX E. HAUSDORFF MEASURES
a:hausdorff

01111}2%3 following we summarize some properties of Hausdorff measures following Wolff’s notes
Rd 179) Chapter 8].

efhausdorff0| Definition E.1. Fix o > 0 and let £ C R?. For € > 0, we define

=inf{> r}
j=1

where the infimum is taken over all countable coverings of E by balls B, (r;) with r; <e.

alconer1986
Clearly, HS(FE) decreases when £ N\, 0 and so we define the (spherical) Hausdorff measure |64}
p. 7]
— i €
H,(FE) := gl\% H(E). (E.1)
It is also clear that for 3 < o we have H{(F) < Hg(FE) whenever € < 1, i.e.,
H,(FE) is a non-increasing function in «. (E.2) ’ eq:hausdorffmonotone

rkshausdorfr| Remarks E.2. (1) If HL(F) = 0, then H,(F) = 0. This follows from the definition since a
covering showing that H}(E) < § will necessarily consist of balls of radius §/°.
(2) It is also clear that H,(E) = 0 whenever a > n since one can then already cover R? by

balls B, (r;) such that > > j—1 7§ is arbitrarily small.

defhausdorff | Lemma E.3. Let E C R, Then there is a unique number ag, called the Hausdorfl dimension
of E or dim(E) such that Hy(E) = oo if o < ag and Ho(E) =0 if a > «p.
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Proof. Define gq tg be the supremum of all o such that H,(E) = oo. Thus, H,(F) = oo if
a < ag by :Iﬁflgi Now suppose « > g, let 8 € (ap, @), and define M := 1+ Hg(E) < co. For
given € € (0,1), we can therefore find a covering of balls with Zj rf < M and r; <e. Thus,

Zr;" <2 B er < BM
J J

which goes to zero as ¢ — 0. Thus, H,(E) = 0 for a > ay. O

Remarks E.4. (1) The set function H, may seen to be countably additive on Borel sets, i.e.,

H, defines a Borel measure. In particular, H,(E U F') ) for compact, dlSJOlnt

sets E, F. This is part of the reason one considers Ha 1nste?fd gs%rﬁ% aﬁ@nérl%QG Q)antt € 21995

refer to standard references in the area like Carleson’s survey [[40], Fa Coner 64], or Mattila ]17
(2) The Borel measure H, coincides with |Bg(1)|~! tlme1 f%ea}s%‘gg%gue measure. If a < d,

then H, is non-sigma finite. The follows, e.g., by Lemma which 1implies that any set of

non-zero Lebesgue measure will have infinite H, measure.

Example E.5. (1) The canonical example is the usual 1/3-Cantor set on [0,1] This has a

covering of 2" intervals of length 37", so it has finite Hice2 measure. It is not hard to show that
log3 alconer1986

in fact its H loga MeAsUre is non-zero. This can be done geometrically (cf. [64, Theorem 8.6]
og3 dorfl b
with similitudes ¢ (z) = /3 and ¥3(z) = (v + 2)/3@[), or one can apply Proposition elow

to the Cantor measure. In particular, the Hausdorff dimension of the Cantor set is log 2/ log 3.

There are various other notions of dimension. Let us mention only one of them, namely the
Minkowski dimension which we define here only for compact sets.

Definition E.6 (Minkowski dimension). Suppose E C R? is compact, then let Es = {x € R? :
dist(x, E') < 0} be the d-neighborhood of E.
Let ag be the supremum of all « > 0 such that, for some constant C,
|Es| > Cod=
for all 6 € (0,1]. Then, oy is called the lower Minkowski dimension of E, denoted by d,(F).
Let ay be the supremum of all a > 0 such that, for some constant C,
|Es| > Cod
for a sequence of ¢’s converging to zero. Then «; is called the upper Minkowski dimension of E,
denoted by dy (FE).

It would also be possible to define the Minkowski dimensions like the Hausdorff dimension
but restricting to coverings of balls of the same size. Namely, define a set S to be d-separated if
any two distinct points x,y € S satisfy |x —y| > §. Let E5(F) be the d-entropy on E, defined by
the maximal possible cardinality for a d-separated subset of E. Iﬂ Then, one can show that

. log&s(E)
dL(E) = hgri)ltl;lf W s
g&s(E)

283ee also Corollary 8.7 there which says that the Cantor set is indeed self-similar since it satisfies the open
set condition UJ 1 ¥;([0,1]) C [0, 1].

293ee also Theorem 8.3 there which says that there is a unique compact set E C R such that ¢(E) =
U Y;(E) = E for any finite set of contractions, and for any non-empty compact set F C R, one has
limy_, o ¥ (F) = E in Hausdorff metric.

30Show that Es(F) is comparable to the minimum number of §-balls required to cover E.
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Notice that countable sets may have positive lower Minkowski dimension; consider, e.g., the set
{1/n}5<; U {0} which has upper and lower Minkowski dimension 1/2.

In the following, we will give a potential theoretic characterization of the Hausdorff measure.
If E is a compact set, then let P(E) denote the space of all probability measures supported on
E. The following will be quite helpful.

Proposition E.7. Suppose E C R? is compact. Then the following two assertions are equiva-
lent.

(1) There is a p € P(E) such that
p(By(r)) < Cre (E.3)

for a suitable constant C' and all x € R%, r > 0.
(2) H,(E) > 0.

01££2003
Proof. See Wolff P{’m, Proposition 8.2]. g

Let us now define the a-dimensional energy of a (positive) measure p with compact support
Iﬂ by the formula

I () ::/W, a<d. (E.4)

Let us also define the mean field potential

V() = / & — g~ du(y),

i.e., we have
() = [ V@) duo). (£.5)

. . . -hausdorffprob . .
Roughly, one expects u to have I, (1) < oo if and only if it satisfies @._KMBEH this precise
statement is false, we will now see that the Hausdorff dimension of a compact subset can still be

defined in terms of the energies of measures in P(E).

Lemma E.8. Let p be a probability measure with compact support. Then, the following two
assertions hold.

:hausdorffprob
(1) If 1 satisfies (Efl% i?ufsﬁgz 1;171 < oo for all B < a.

2) Conversely, if p satisfies I (1) < oo, then there is another probability measure v such
auséoryf rog
that v(X) < 2u(X) for all sets X and such that v satisfies .

Prq%fa.u s((}gr}éfi;cc})]bout loss of generality, we assume that the diameter of supp(u) is < 1. Then, by

[Vi@du) s [ 32 B ) duto) £ [ 32 duta) $1.
j=0 §=0

(2) Let F = {z: V,*(x) < 2I0(p)}, then u(F) > 1/2 by Io(u) = [ V,* () du(z) (and the mean

value theorem). Let us now define the new probability measure v by v(X) = pu(X 0 F)/ufF).
ié%li; Suppose

By the previous argument v(X) < 2u(X) and we are left to show that v satisfies
first z € F. If r > 0 then

31The compact support assumption is not needed; it is only included to simplify the presentation

’ eq:hausdorffprob

’ eq:defalphaenergy

’ eq:coulombenergy
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-hausdorffprob
which shows @m xr € F. For general x we distinguish between the cases where
the intersection B,(r) N F is empty or not. Assume first that r is such that B,(r) N F = 0.
Then evidently v(B,(r)) = 0. Else, if B,(r)NF # 0, let y € B,(r) N F and observe that
v(By(r)) < v(By(2r)) S r* by the first part of the proof. O

We are now ready to give an alternative characterization of Hausdorff dimension for compact
subsets of R.

Proposition E.9. If E is compact then the Hausdorff dimension of E coincides with the number

sup{a: Jp € P(E) with I,(1) < oo} . (E.6)

Proof. Denote the above supremum by s. If 5 < s, then by (2) of the previoug 1er&1mfaf
know that E supports a measure with u(B,(r)) < C’rﬁ But then by Proposition IE;?E We have

Hg(E) > 0 le, A.< dlmE which means s < dim E. Conversely, if 5 < dim E, then by
Proposition I@kﬁ F supports a measure with (B, (r)) < Cr*+¢ for some sufficiently small € > 0.
Then Ig(p) < oo and so 8 < s which shows dim F < s. O

As the a-energy is the expectation value of a translational invariant function, the Fourier
transform should come in handy. In particular, we will make us of the elementary

Proposition E.10. Let u be a positive measure with compact support and o« < d. Then
dps()dp(y) / |(6) 2 L (%52)mo/?
Iau:/izca d§, where cq = —=———. E.7
W= Ty = f g T(a/2) =0

. . . achausdorff A A
Using this and Proposition iE% allows us to prove a lower bound on the Hausdorff dimension
of the support of probability measures.

Corollary E.11. Suppose j1 is a compactly supported probability measure on R* with

()] < lel=* (E.8)
b
for some 0 < 8 < d/2, or more generally that 1!?5%5 5 Trie i the L? sense
[P ds s v, (E9)
Bo(N)

Then the dimension of the support of u is at least 2.

L achausdorff . -ftprobmeasurel2
Proof. By Proposition iEf@ 1t suffices to show that if (Eflgi ho ds, then I, (p) < oo for all a < 2.
But in view of the Fourier representation of I, (u), we have (using |i1(€)| < ||ul]l1 = 1)

_1 d 2 —j(d—a) N 2
ol </§|<1 /g|>1> \do‘ €3 Sup|u |+22 / 1a(8)]” d§

=0 29 <|¢]<2i+1

o0

Sl 4+ D2 2794020 < o
§=0

. - ftprobmeasurel2
whenever o < 23. This shows and concludes the proof. O

One may ask the converse question, whether a compact set with dimension o must support a
measure p satisfying

(E)] Se (L+ &) /2 (E.10)

eq:coulombfo

eq:ftprobmea

eq:ftprobmea

eq:necftboun
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for all € > 0. The answer is (emphatically) no El Indeed, there are many counterexamples,
i.e., sets with positive Hausdorff dimension which do not support any measure whose Fourier

transform even decays as || — oo. Consider, e.g., the line segment E = [O 1] x {0} C R2
Clearly, E has dimension 1, but if g is a measure supported on E, then i(£) only on &, and
so it cannot go to zero as 51 +¢2 — 0. If one considers only the case 1]9 gbhls questj

. . . Ve 1Snc12002
related to the classical question of “sets of uniqueness”, see, e.g., Salem TSZ ygmund
For instance, one can show that the standard 1/3 Cantor set does not support any measure such
that 4 vanishes at infinity. Indeed, it is non-trivial to show that a “non-counterexample” exists,

i.e., a set F with given dimension « which supports Jegsure satisfying @Wan find a
construction of such a set due to Kaufman in Wolff [179; Chapter 9].

Remark E.12. There is an important relation between the Fourier transform of Borel measures
and dynamical properties thereof in quantum mechanics. Consider a self-adjoint Hamiltonian
H in some Hilbert space #, the associated spectral measure (on Borel sets in R) duy(A) =
(1, dEg(N)) for some ¢ € H, and its Fourier transform

p(t) = / & dpy = (1,6 ) = ((0), (1))

Its absolute square, i.e., |y (t)] = [(1(0),%(t))|?, denotes the survival probability as (0) is
evolved along the Hamiltonian flow. Usually, one is interested in its Cesaro average

< |l >7i= f/ (1) dt.

Wiener’s theorem then asserts limy oo < [fp]? >7= >, cp [t ({A})|?. Thus, if ¢ € H,, the
continuous spectral subspace of H, the survival probability decays to zero. If p1, is uniformly
o Hélder continuous (UaH), ie., uy(I) < |I|%for some o € and gwhere [I| denotes the
Lebesgue measure, then, Strlchartz s theorem f see also Last HZTheorem 3.1]) refines
Wiener’s theorem and says

<l >r ST, ¥ € Hun(a)

where Hyn(o) = {9 py is UaH}.
We say that a measure p is a-continuous iff u(E) = 0 for any set E for hich Bl%e Hausdorff
measure H,(F) = 0 and denote Hoe = {9 : py is a-continuous}. Last [II2] Theorem 5.2]

showed that for all a € [0,1] one has Hqp(a) = Hae which means that H,. must have a dense
: D)
subset of vectors for ?vhlch' supp T < |fuy| >T < 0 jefalphaenergy .
Moreover, the a-dimensional energy defined in 1s relafed, via the Fourier transform to

O G 171000 = G ) = [ LADID)

. L achausdorff ast1996
Recalling Proposition Eflg 1t 15 then interesting to observe that (cf. Last [I12] Lemma 5.1] p is
a-continuous, whenever I, () < 0o.
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