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Abstract. In these notes, we review the state of progress on the restriction problem in
harmonic analysis with an emphasis on the developments of the past decade or so on the

euclidean space version of these problems for spheres and other hypersurfaces. As the field is

quite large, we will merely give the main ideas and developments in this area.
The restriction problem is connected to many other conjectures, most notably the Kakeya

and Bochner–Riesz conjectures, as well as PDE conjectures such as the local smoothing con-
jecture which will be discussed as well.

These notes are mostly based on Tao’s famous review
Tao2004
[164], his lecture notes on restriction

problems
Tao1999Notes
[159], the lecture notes by Wolff on harmonic analysis

Wolff2003
[179], recent lecture notes by

Hickman and Vitturi on decoupling theory
HickmanVitturi
[94], and the introductory review

Stovall2019
[152] by Stovall.
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1. The restriction problem – some background

From now on, we fix d ≥ 2 and remark that all constants A or a are allowed to depend
on d (although it would be interesting to track the precise dependence of the constants on the
dimension as d→∞). The Fourier transform of a function f on Rd is formally defined as

f̂(ξ) :=

∫
Rd
f(x)e−2πix·ξ dx .

By the Riemann–Lebesgue lemma we know that f̂ is a continuous bounded function on Rd which

vanishes at infinity if f ∈ L1(Rd). In particular, f̂ can be meaningfully restricted to any subset
S of Rd, thereby creating a continuous bounded function on S.

For applications, the above definition needs to be extended to a larger class of functions. For

f ∈ L1 ∩ L2, the Plancherel theorem states that ‖f‖2 = ‖f̂‖2 and since L1 ∩ L2 is dense in
L2, the Fourier transform extends uniquely to a bounded linear operator of L2 onto itself. By
interpolation, we obtain the Hausdorff–Young inequality which states that for 1 ≤ p ≤ 2, this

extension maps Lp boundedly into Lp
′

and obeys ‖f̂‖p′ ≤ Ap,d‖f‖p. This range of Lp → Lq

estimates is the best possible; for the sharp constant Ap,d, see Beckner
Beckner1975
[3] and for extremizers,

see Lieb
Lieb1990G
[115].

For f ∈ Lp, p > 1, f̂ is usually interpreted as an Lp
′

limit, f̂ = limn→∞ f̂n where fn is a
sequence of integrable functions converging to f in Lp. By the Hausdorff–Young inequality, one

can therefore restrict f̂ to any set S of positive measure. However, the above interpretation leads
to an obvious obstruction to restricting a Fourier transform to sets of Lebesgue measure zero.
Indeed Lp

′
consists of equivalence classes within which its members are allowed to differ off of

sets of measure zero, i.e., it makes no sense to define Fourier restriction to a set of measure zero
as a simple composition. In particular, there is no meaningful way to restrict L2 functions to
any set S of measure zero.

In 1967 Stein made the surprising discovery (unpublished work) that when such sets contain
“sufficient curvature” (see also Subsection

ss:restrictionplaness:restrictionplane
3.4), then one can indeed restrict the Fourier transform

of Lp functions for certain p > 1. This lead to the restriction problem
Stein1978
[145]: for which sets S ⊆ Rd
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and which 1 ≤ p ≤ q ≤ ∞ can the Fourier transform of an Lp function be meaningfully restricted,
i.e.,

‖f̂ |S‖Lq(S) ≤ Ap,q,d‖f‖Lp(Rd)

for smooth, compactly supported f?
Of course, there are infinitely many such sets to consider, but we will focus on sets S which

are hypersurfaces, or compact subsets of hypersurfaces. In particular, we shall be interested in
the sphere

Ssphere := {ξ ∈ Rd : |ξ| = 1} ,
the paraboloid

Sparab := {ξ ∈ Rd : ξd = |ξ|2/2} ,
and the cone

Scone := {ξ ∈ Rd : ξd = |ξ|}
where ξ = (ξ, ξd) ∈ Rd−1 × R ≡ Rd. These three surfaces are model examples of hypersurfaces
with curvature, though of course the cone differs from the sphere and the paraboloid in that it
has one vanishing principal curvature. These three surfaces also enjoy a large group of symme-
tries (the orthogonal group, the parabolic scaling and Galilean groups, and the Poincaré group,
respectively). Moreover, these hypersurfaces are intimately related (via the Fourier transform) to
certain PDEs, namely the Helmholtz equation, the Schrödinger equation, and the wave equation,
respectively. This is going to be the topic of Section

s:PDEs:PDE
12.

Organization. The rest of the notes is structured as follows. In the next section, we will use a
duality argument to reformulate the restriction problem as an “extension problem” which (as of
this writing) is a more convenient point of view to think of the problem. In Section

s:Necessarys:Necessary
3, we will

find two necessary conditions for the restriction problem which lead to the restriction conjecture.
In Sections

s:locals:local
6 and

s:bilinears:bilinear
7 we will describe two classical tools to tackle the restriction conjecture.

A more recent approach via Littlewood–Paley theory is discussed in Section
s:LPs:LP
8. Connected to

Littlewood–Paley theory is a recently established tool by Bourgain and Demeter
BourgainDemeter2015,BourgainDemeter2017
[27, 28] (see also

the references in
HickmanVitturi
[94]), namely `2 decoupling, which is the topic of Section

s:decouplings:decoupling
18. In Sections

s:PDEs:PDE
12,

s:Kakeyas:Kakeya
14, and

s:BRs:BR
15 we will illuminate certain relations between the restriction problem and conjectures

concerning nonlinear, dispersive PDEs, the Kakeya, and the Bochner–Riesz conjectures.

2. Restriction and extension estimates

From now on let S be a compact subset (but with non-empty interior) of one of the above
surfaces Ssphere, Sparab, or Scone. We endow S with a canonical measure dσ. For the sphere, it
is the surface measure; for the paraboloid, it is the pullback of the d − 1-dimensional Lebesgue
measure dξ under the projection map ξ 7→ ξ; for the cone it is the pullback of dξ/|ξ| as it is
Lorentz invariant.

In order to restrict f̂ to S, it will suffice to prove an a priori “restriction estimate” of the
form

‖f̂ |S‖Lq(S,dσ) ≤ Ap,q,S‖f‖Lp(Rd) (2.1) eq:restriction

for all C∞c or Schwartz functions f and some 1 ≤ q ≤ ∞, since one can then use density
arguments to obtain a continuous restriction operator from Lp(Rd) to Lq(S, dσ) which extends

the restriction operator R : f 7→ f̂ |S for such nice functions. (Finding the sharp value of Ap,q,S
in (

eq:restrictioneq:restriction
2.1) is another interesting difficult problem, which has only been solved in a few cases so far).

We will denote by RS(p→ q) the statement that (
eq:restrictioneq:restriction
2.1) holds for all f . From the introductory

remarks on the Hausdorff–Young inequality (the faster a function decays, i.e., f lives in low

Lp spaces, the smoother is its Fourier transform, i.e., f̂ lives in high Lq spaces), we see that
RS(1 → q) holds for all 1 ≤ q ≤ ∞ by Hölder’s inequality while RS(2 → q) fails for all
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1 ≤ q ≤ ∞. The interesting question is what happens for intermediate values of p, i.e., our aim

is to find the highest value of p (the slowest decay of f) and q (greatest smoothness of f̂) such
that the restriction estimate (

eq:restrictioneq:restriction
2.1) still holds. (Observe the implication RS(p→ q)⇒ RS(p̃→ q̃)

for all p̃ ≤ p and q̃ ≤ q by Sobolev and Hölder inequalities.)
The dual of the restriction operator RS is the extension operator

(RS)∗F (x) =: ESF (x) = (F dσ)∨ =

∫
S

F (ξ)e2πix·ξdσ(ξ) .

A simple duality argument based on Parseval’s identity (think of a change of variables to under-
stand (Fdσ)∨ better, too)

sup
‖f‖

Lp(Rd)=1

‖f̂ |S‖Lq(S,dσ) = sup
‖f‖

Lp(Rd)=1

sup
‖F‖

Lq
′
(S,dσ)

=1

∫
S

F (ξ)f̂(ξ) dσ(ξ)

= sup
‖F‖

Lq
′
(S,dσ)

=1

sup
‖f‖

Lp(Rd)=1

∫
Rd

(Fdσ)∨(x)f(x) dx = sup
‖F‖

Lq
′
(S,dσ)

=1

‖(Fdσ)∨‖Lp′ (Rd)

(2.2) eq:duality

shows that the restriction estimate (
eq:restrictioneq:restriction
2.1) is equivalent to the following extension estimate

‖(Fdσ)∨‖Lp′ (Rd) ≤ Ap,q,d‖F‖Lq′ (S,dσ) (2.3) eq:extension

for all smooth functions F on S. We use R∗S(q′ → p′) to denote the statement that the estimate
(
eq:extensioneq:extension
2.3) holds. Due to the smoothness of F one may use stationary phase arguments to obtain

asymptotics for (Fdσ)∨, see also
Stein1993
[149, Chapter VIII, Proposition 6]. However, such asymptotics

depend on the smooth norms of F , not just the Lq
′
(S) norm, and so do not imply estimates

of the form (
eq:extensioneq:extension
2.3). In this sense, one can think of extension estimates as a more general way to

control oscillatory integrals since only magnitude bounds on F (ξ) and no bounds on derivatives
are required.

Understanding the extension operator better. Let us clarify at this stage the meaning of
the restriction and extension operators. Suppose f ∈ Lp(Rd) and F ∈ Lq′(S, dσ) as in the above
duality argument. After rotating and translating S in the ambient space Rd, we may assume
(since S is compact) that S is given as the graph

ξd = ϕ(ξ1, ..., ξd−1)

where ϕ ∈ C∞c (Rd−1). This allows us to write the measure as

dσ(ξ) = (1 + |∇ϕ|2)1/2dξ1, ..., dξd−1 ,

which is called the euclidean (or induced) surface measure. (Note that S is the level set of a
function Ψ : Rd → R and that the measure is actually given by

dσ(ξ) =
|(∇Ψ)(ξ1, ..., ξd)|
|∂Ψ/∂ξd|

dξ1, ..., dξd−1.

(Compare this to the “canonical measure” dΣλ(ξ) = |∇Ψ(ξ)|−1dσ(ξ) which equals, locally at
least, |∂Ψ/∂ξd|−1 dξ′ in Yafaev

Yafaev2010
[181, Chapter 2, Formula (1.4) and p. 111].) Using ξd =

ϕ(ξ1, ..., ξd−1) and the chain rule (remember (∂ξd/∂ξi)
d−1
i=1 = ∇ϕ), we (formally) have(

|(∇Ψ)(ξ1, ..., ξd)|
|∂Ψ/∂ξd|

)2

=

d∑
i=1

|∂Ψ/∂ξi|2

|∂Ψ/∂ξd|2
= 1 +

d−1∑
i=1

∣∣∣∣ ∂Ψ/∂ξi
∂Ψ/∂ξd

∣∣∣∣2 = 1 +

d−1∑
i=1

∣∣∣∣∂ξd∂ξi

∣∣∣∣2 = 1 + |∇ϕ|2

which yields the previous representation. Alternatively, using the implicit function theorem,
we know that locally ξd = ϕ(ξ′), whenever (ξ′, ξd) ∈ S where S denoted the level set of Ψ :
Rd → R. Thus, locally, Ψ(ξ) = 0 = ξd − ϕ(ξ′) = 0, i.e., ∇Ψ(ξ) = (−∇ϕ(ξ′), 1) and ∂Ψ/∂ξd =
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1 on S. Therefore, |∇Ψ(ξ)|/|∂Ψ/∂ξd| = (1 + |∇ϕ(ξ′)|2)1/2 and in particular dσ(ξ) = (1 +
|∇ϕ(ξ′)|2)1/2dξ′.)

Now, using the above representation, abbreviating ψ(ξ) =
√

1 + |∇ϕ(ξ)|2 and ξ̃ ≡ (ξ, ξd) =

(ξ1, ..., ξd−1, ξd) ∈ Rd, we may write the left side of (
eq:dualityeq:duality
2.2) as∫

S

f̂(ξ)F (ξ) dσ(ξ) =

∫
Rd−1

f̂(ξ)F (ξ)ψ(ξ) dξ =

∫
Rd
f̂(ξ̃)F (ξ̃)ψ(ξ̃)1ξd=ϕ(ξ) dξ̃

where 1ξd=ϕ(ξ) is to be understood as the one dimensional Dirac delta function which forces

ξd = ϕ(ξ). Using Parseval’s theorem (in L2(Rd)), the right side of the last formula equals (with
x ∈ Rd) ∫

Rd
f(x)

(
Fψ1ξd=ϕ(ξ)

)∨
(x) dx

where (using pullback)(
Fψ1ξd=ϕ(ξ)

)∨
(x) =

∫
Rd
F (ξ̃)ψ(ξ̃)1ξd=ϕ(ξ)e

2πix·ξ̃ dξ̃ =

∫
Rd−1

F (ξ)ψ(ξ)e2πi(x′·ξ+xdϕ(ξ)) dξ

=

∫
S

F (ξ)e2πix·ξ dσ(ξ) = (Fdσ)∨(x)

with the inconsistent notation x′ = (x1, ..., xd−1) ∈ Rd−1. This clarifies the computation in (
eq:dualityeq:duality
2.2).

rem:dispersionsurfaces Remark 2.1. Had we started with a set of the form

Sλ := {ξ ∈ Rd : a(ξ) = λ}

for a function a : Rd → R with

∇a(ξ) 6= 0 for ξ ∈ a−1(Λ) ,Λ ⊆ R ,

then we define the measure on Sλ by the equality

dΣλ(ξ) =
dσλ(ξ)

|∇a(ξ)|
where dσλ(ξ) is the euclidean (Lebesgue) surface measure on Sλ. We remark that dΣλ is some-
times also called the canonical measure associated to a (which is not intrinsic to Sλ, however),
see also Strichartz

Strichartz1977
[153, p. 705]. In particular, the elementary volume dξ in Rd satisfies

dξ = dλdΣλ(ξ) .

Moreover, by the implicit function theorem, the equation a(ξ) = λ for λ close to some λ0 ∈ Λ ⊆ R
defines a function ξd = F (ξ′, λ) for ξ close to ξ(0) ∈ Sλ0

. Since the euclidean surface measure is
given by dσλ(ξ) = (1 + |∇ξ′F (ξ′, λ)|2)1/2 dξ′ (as we have seen above), we have

dΣλ(ξ) =
dξ′

|∂a(ξ)/∂ξd|
.

Let us see the advantage of the introduction of dΣλ(ξ). If one defines the Fourier multiplier
H0 = F∗AF , where A is multiplication by the symbol a(ξ) and X ⊆ R is some Borel set, then
it is well known that its spectral projection is given by

E0(X) = F∗1{a−1(X)}F .

Thus, be the above discussion, we have

〈ψ,E0(X)ψ〉 =

∫
a−1(X)

|ψ̂(ξ)|2 dξ =

∫
X

dλ

∫
Sλ

|f̂(ξ)|2 dΣλ(ξ) .
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In particular, for a given measurable function F : [0,∞)→ R, we have

〈ψ, F (H0)ψ〉 =

∫
R+

dλ F (λ)

∫
Sλ

|ψ̂(ξ)|2 dΣλ(ξ) .

3. Necessary conditions
s:Necessary

In this section, we will derive two common necessary conditions on p and q such that the
extension estimate ‖(Fdσ)∨‖Lp′ (Rd) .p,q,d ‖F‖Lq′ (S), i.e., R∗S(q′ → p′), holds. The restriction

conjecture asserts that these two conditions are in fact also sufficient. The conjecture has been
solved for the paraboloid and the sphere in two dimensions, and for the cone in up to four
dimensions, but see also

Tao2004
[164, Figures 1 and 2] for a more detailed [and probably out of date]

summary of progress on this problem. In fact, the restriction problems for the three surfaces
are related. Let us merely mention that the restriction conjecture of the sphere would imply
the conjecture for the paraboloid since one can parabolically rescale the sphere to approach the
paraboloid, but see also Tao

Tao1999
[160] (where the surprising fact that the Bochner–Riesz conjecture

implies the restriction conjecture is shown).

3.1. The trivial condition. By setting F ≡ 1, we immediately see that we need (dσ)∨ ∈
Lp
′
(Rd). In the case of the sphere and the paraboloid (which have non-vanishing Gaussian

curvature), stationary phase computations yield

|(dσ)∨(x)| . (1 + |x|)−(d−1)/2 ,

i.e., we need p′ > 2d/(d−1), respectively p < 2d/(d+1). For the sphere, an explicit computation
using the Fourier–Bessel transform yields (dσ)∨ = 2π|ξ|(2−d)/2J(d−2)/2(2π|ξ|). On the other
hand, the asymptotics for the cone are slightly different, giving the condition p′ > 2(d−1)/(d−2).

ss:Knapp
3.2. Knapp’s example. We will sketch this example

Tomas1975,Strichartz1977
[168, 153] only for the sphere and the

paraboloid (more precisely its intersection with the d dimensional unit cube). Assume that
R � 1 and take any interior point ξ0 of the surface S. By a Taylor expansion, one sees that
S contains a “cap” κ ⊆ S centered at ξ0 whose diameter is roughly R−1. The cap has surface
measure ∼ R−(d−1) and can be packed into a d dimensional disk D of diameter R−1 and thickness
R−2 which is oriented perpendicular to the unit normal of S at ξ0. Now, let F = 1κ be the
characteristic function of the cap κ and T be the tube dual toD. This is the tube which is centered
at the origin, aligned along the unit normal to S at ξ0 with length ∼ R2 and thickness ∼ R. By
the uncertainty principle (see also Appendix

a:uncertaintya:uncertainty
D), (Fdσ)∨ has magnitude ∼ σ(κ) ∼ R−(d−1) on a

large portion of T (since the phase function eix·ξ is basically constant for ξ ∈ D and x ∈ T ) and
decays rapidly outside of T . In particular, we have

‖(Fdσ)∨‖Lp′ (Rd) & |T |
1/p′R−(d−1) ∼ R(d+1)/p′−(d−1) .

On the other hand,

‖F‖Lq′ (S,dσ) ∼ |κ|
1/q′ ∼ R−(d−1)/q′ .

Letting R→∞ thus leads to the second necessary condition

d+ 1

p′
≤ d− 1

q

for R∗S(q′ → p′) to hold. (Note that the Fourier transform d̂σ of the measure dσ associated to

Sd−1 decays like |x|−(d−1)/2, i.e., it is Lp
′
-bounded for any p′ > 2d/(d− 1). Thus the conjecture

says that this Lp
′
-boundedness also holds for F̂ dσ.)

One can formulate a Knapp counterexample for any smooth hypersurface. Of course, the
obtained necessary conditions become stronger as the surface becomes flatter. In the extreme
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case where the surface is infinitely flat (e.g. when it is a hyperplane), there are no estimates.
In fact, the function g(x) := (1 + |x1|)−1 lies in Lp for any p > 1 but has an infinite Fourier
transform on every point of the hyperplane {ξ ∈ Rd : ξ1 = 0}.

Hence, we have the following conjectures, which are in fact all equivalent to each other
Mattila2015
[121,

Section 19.3].

Conjecture 3.1. ‖ĝ dσ‖Lq(Rd) . ‖g‖Lp(S) for q > 2d/(d− 1) and q = (d+ 1)p′/(d− 1).

Conjecture 3.2. ‖ĝ dσ‖Lq(Rd) . ‖g‖L∞(S) for q > 2d/(d− 1).

Conjecture 3.3. ‖ĝ dσ‖Lq(Rd) . ‖g‖Lq(S) for q > 2d/(d− 1).

Proposition 3.4. The above three conjectures are equivalent to each other.

Proof. Clearly the third version implies the second by Hölder. Once one shows the converse (i.e.,
second implies third version), the equivalence between the first and second version follows from
interpolation. Observe that if q = 2d/(d− 1) and q = (d+ 1)p′/(d− 1), then p = q. For the rest,
see

Mattila2015
[121, Theorem 19.8]. �

Before we come to the last example, we elaborate a bit on the situation of the paraboloid
and perform some explicit computations for the reader’s convenience. In fact, we will have a
first encounter with “wave packets”, an important tool that we will discuss in further detail in
Section

s:wavepackets:wavepacket
9.

Knapp’s example for the paraboloid - an explicit computation. Let F be a smooth,
non-negative function with supp F ⊆ {|ξ| < 0.1} and ‖F‖1 = 1. For |x|, |xd| < 1 the integral
defining Re ((Fdσ)∨(x)) has no cancellation (since the phase function is strictly positive in this
case), and hence |(Fdσ)∨(x)| is nearly as large as possible, i.e.,

|(Fdσ)∨(x)| ≥
∫
Rd

cos(x · (ξ, |ξ|2))F (ξ) dξ ≥
∫
Rd

cos(0.1 + 0.01)F (ξ) dξ ∼ 1 .

For large |x|, the integrand oscillates rapidly in ξ, leading to cancellation in the integral, and
hence a small contribution, i.e., |(Fdσ)(x)| � 1 for |x| � 1.

We will now rescale the above F such that “it lives on the paraboloid” by defining

FRξ0,x0
(ξ) = Rd−1e2πix0(ξ,|ξ|2)ϕ(R(ξ − ξ0))

for some R � 1 where R−1 denotes the frequency scale of the parabolic subset (before it was
the disk D)

κRξ0 := {ξ ∈ P : 0 ≤ (ξ − ξ0) · νξ0 < 0.01R−2}
(centered at ξ0) of the paraboloid P, as before. Here, νξ0 = (−2ξ0, 1) denotes the upward normal
to P at ξ0. It is pretty clear that κRξ0 is contained in a R−1× · · · ×R−1×R−2 rectangle centered
at ξ0 and whose short side is oriented along νξ0 . We finally note that, due to the additional
phase factor, (FRξ0,x0

dσ)∨ is going to be concentrated around x0 in real space.

By scaling, the extension of this almost characteristic function on the inflated cap κRξ0 is given
by

(FRξ0,x0
dσ)∨(x) = e2πi(x−x0)ξ0(Fdσ)(R−1((x− x0) + 2(x− x0)dξ0), R−2(x− x0)d) .

By the estimates on (Fdσ)∨, we see that (Fξ0,x0dσ)∨ ∼ 1 on the tube

TRξ0,x0
= {x ∈ Rd : |(x− x0) + 2(x− x0)dξ0| < R , |xd − (x0)d| < R2}

which is centered at x0, has width R and length R2, and is aligned along νξ0 . Off this tube,

(FRξ0,x0
dσ)∨ decays rapidly. This shows that ‖(FRξ0,x0

dσ)∨‖Lp′ (Rd) & |T |1/p
′ ∼ R(d+1)/p′ whereas

‖FRξ0,x0
‖Lq′ (P) ∼ R(d−1)/q which again shows that (d+ 1)/p′ ≤ (d− 1)/q is necessary.
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For T = TRξ0,x0
and FT = FRξ0,x0

, the extension (FRξ0,x0
dσ)∨ is called a wave packet associated

to T . For any R� 1, a partition of unity directly decomposes the original function F as a sum
of (unmodulated) R-caps, indexed by a collection of O(Rd−1) tubes, i.e.,

F =
∑
T

cTFT , T = TRξ0,0 .

Most of the coefficients cT are of order R−(d−1) by scaling, the rest of them are even smaller.
The curvature of P implies that distinct tubes T, T ′ with directions νT and νT ′ are separated by
at least R−1 since

angle ∼ sin(angle) =
R−2

R−1
= R−1 .

3.3. Hardy–Littlewood majorant conjecture. The derivation of this conjecture is similar to
the first (trivial) condition. Assume that F is a smooth function on S such that ‖F‖L∞(S) ≤ 1.
Since Fdσ is pointwise dominated by dσ, it seems intuitive that (Fdσ)∨ should be “smaller”
than (dσ)∨, too. The conjecture then states that the necessary conditions of the trivial condition
should in fact be sufficient to obtain R∗S(∞ → p′) for completely general sets. It is known that
the conjecture is true when p′ is an even integer (using Plancherel’s theorem) but is false for
other values of p′. However, it may still be that the majorant conjecture is true if the set S is
“non-pathological”, e.g. in the cases for the sphere or the paraboloid.

ss:restrictionplane
3.4. Are there restriction estimates for the plane? We already mentioned in the intro-
duction, that curvature was crucial for Stein’s discovery of restriction estimates. Conversely, we
may ask what happens when the curvature is zero, i.e., are there restriction estimates for the
plane? Let us consider the hyperplane {ξd = 0}, or even only the subset

S = {ξ ∈ Rd : ξd = 0, |ξ| ≤ 1}

with the obvious surface measure dσ. Thus, by the Hölder and the Hausdorff–Young inequality,

we have ‖f̂‖Lq(S) . ‖f‖p for p = 1 and arbitrary q ≥ 1. However, these are the only estimates
available.

restrictionplane Proposition 3.5. Suppose ‖f̂‖Lq(S) . ‖f‖p holds for all test functions f and the above S. Then
one must have p = 1.

Proof. The idea is to consider functions whose Fourier transform is concentrated on and near S.

For this, let ψ ∈ S(Rd) with ψ̂ ∼ 1 near the origin and let

f(x1, ..., xd) = ψ(x1, ..., xd−1, xd/λ)

for large λ. Then ‖f‖p ∼ λ1/p and

f̂(ξ1, ..., ξd) = λψ̂(ξ1, ..., ξd−1, λξd) .

In particular, f̂ ∼ λ on the pancake with dimensions 1 × ... × 1 × λ−1 and f̂ |S ∼ λ. Thus,

‖f̂‖Lq(S) ∼ λ and for ‖f̂‖Lq(S) . ‖f‖p, i.e., λ . λ1/p to hold, we must have p = 1. �

In summary, there are no non-trivial restriction estimates for planes, even if we only consider

compact pieces. The reason for this failure is that the plane is so flat that one can easily find f̂
which are extremely large on and close to the plane.
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3.5. Curved surfaces, Fourier transforms of measures. We just saw that there are no
non-trivial restriction estimates for pieces of flat planes. Obviously, one may ask “how much
restriction is possible, if we bend the plane a bit”?

As a starting point, suppose S has dimension d− 1 and has non-vanishing Gauss curvature at
every point. By that we mean the following. Let ξ0 be any point of S and consider a rotation and
translation of S such that ξ0 becomes the origin and that the tangent plane to S at ξ0 becomes
the hyperplane ξd = 0. Then, near the origin at least, S can be given as a graph

ξd = ϕ(ξ1, ..., ξd−1)

where ϕ ∈ C∞c (Rd−1) and ϕ(0) = ∇ϕ(0) = 0. Now, consider the (d− 1)× (d− 1) Hessian of ϕ,
i.e., (

∂2ϕ

∂ξj∂ξk

)
j,k

(0) .

Its eigenvalues ν1, ..., νd−1 are called the principle curvatures of S at ξ0. The determinant of the

Hessian, i.e.,
∏d−1
j=1 νj is called the Gaussian curvature of S at ξ0. Then, the following decay

estimate for the Fourier transform of the surface measure dσ of S can be proven via a stationary
phase argument, see Stein

Stein1993
[149, Chapter XIII, Section §3 and §5.7].

Proposition 3.6. Suppose S is a smooth hypersurface in Rd with associated surface measure
dσ. Assume ψ ∈ C∞c (Rd) is a fixed function whose support intersects S in a compact subset of
S and let dµ = ψdσ. If S has nowhere vanishing Gaussian curvature, then

|(dµ)∨(x)| . |x|−(d−1)/2 . (3.1) eq:decayft

Remarks 3.7. (1) Herz
Herz1962
[92] showed that, for ψ = 1, the surface need only be C [(d−1)/2+2] to

obtain the above estimate on |(dµ)∨(x)|. If the surface is C [(d−1)/2+4], he obtained the leading
coefficient of the asymptotic expansion for |(dµ)∨(x)| as |x| → ∞. If ψ is not constant on S, one

can show (following the arguments of
Stein1993
[149, Chapter XIII, §3.1] that ψ ∈ Cdd/2e+2

c and that the
surface is Cdd/2e+4 are sufficient conditions to obtain the above estimate on |(dµ)∨(x)|.

(2) For smooth hypersurfaces where only k of the d−1 principal curvatures are non-vanishing,
Littman

Littman1963
[117] showed |(dµ)∨(x)| . |x|−k/2. (This is to be compared with the assertion in Stein

Stein1993
[149, Chapter XIII, §3.2], where it is shown that |(dµ)∨(x)| . |x|−1/k for hypersurfaces vanishing
to k-th order, i.e., ϕ(ξ1, ..., ξd−1) = O(|ξ|k). (One says that S has finite type k ∈ {2, 3, ...}.)

Proposition 3.8 (
Stein1993
[149, Chapter XIII, §3.2, Theorem 2]). Suppose S is a smooth m-dimensional

(1 ≤ m ≤ d− 1) manifold in Rd of finite type. Let dµ = ψdσ be as above. Then

|(dµ)∨(x)| . |x|−1/k

where k is the type of S inside the support of ψ.

Using a T ∗T argument (with T being the restriction operator) and the Hardy–Littlewood–
Sobolev inequality, it is possible to establish the following (far from sharp) restriction estimate
for finite type hypersurfaces.

Theorem 3.9. Suppose S is a smooth m-dimensional (1 ≤ m ≤ d − 1) manifold in Rd of type
k. Then, one has RS(p→ 2) for any 1 ≤ p ≤ p0 with p0 = 2dk/(2dk − 1).

Although the theorem is not sharp, its main idea, namely exploiting cancellations through L2

estimates, is the basis of the proof of the Tomas–Stein theorem.
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Proof. If f ∈ Lp(Rd), then the Lp(Rd)→ L2(S, dσ)-boundedness of the restriction operator RS
is equivalent to the Lp → Lp

′
-boundedness of ESRS where ES is the extension operator which is

dual to RS . In particular, it suffices to show (cf. (
eq:tseq:ts
4.10))

|〈f, ESRSf〉| . ‖f‖2p .

Using the definition of Rs and ES , namely (RSf)(ξ) = f̂(ξ)|S and (ESg)(x) =
∫
S

eix·ξg(ξ)dσ(ξ),

we have 〈f, ESRSf〉 =
∫
f(x)K(x − y)f(y) dx dy (which also equals 〈f̂ , f̂dσ〉 = 〈f, f ∗ (dσ)∨〉 ≤

‖f‖p‖f ∗ (dσ)∨‖p′ ≤ ‖f‖2p‖(dσ)∨‖Lp′/2,∞ using the weak Young inequality) where

K(x− y) =

∫
S

eiξ·(x−y)dσ(ξ) = (dσ)∨(x− y) .

Since |(dσ)∨(x)| . |x|−1/k, we have |〈f, ESRSf〉| . ‖f‖2p by the Hardy–Littlewood–Sobolev
lemma if p = 2dk/(2dk − 1), i.e., p′ = 2dk. The assertion follows from interpolation with
p = 1. �

Extending the idea of Subsection
ss:restrictionplaness:restrictionplane
3.4, one can establish the following necessary condition for

surfaces vanishing to k-th order. This argument generalizes the Knapp example, see Subsection
ss:Knappss:Knapp
3.2. The original “Knapp” condition is obviously restored for k = 2.

Proposition 3.10. Suppose ϕ(ξ1, ..., ξd−1) = O(|ξ|k) for some k ≥ 2. Then, RS(p→ q) is only
possible if

p′ ≥ d+ k − 1

d− 1
q .

Proof. Let ψ be as in Proposition
restrictionplanerestrictionplane
3.5, i.e., ψ ∈ S(Rd) with ψ̂ ∼ 1 near the origin and let

f(x1, ..., xd) = ψ(x1/λ
1/k, ..., xd−1λ

1/k, xd/λ)

for some large λ, i.e., f is a bump function on the λ1/k × · · ·λ1/k × λ tube. In particular,

‖f‖Lp ∼ λ((d−1)/k+1)/p and f̂(ξ) = λ(d−1)/k+1ψ(λ1/kξ1, ..., λ
1/kξd−1, λξd). Since the volume of

the cap where f̂ does not decay rapidly is roughly λ−(d−1)/k, we have ‖f̂ |S‖Lq(S) & λ(d−1)/k+1×
λ−(d−1)/(kq). Comparing this with ‖f‖p ∼ λ(d−1+k)/p, yields the claimed necessary condition. �

The last two results and in particular Subsection
ss:restrictionplaness:restrictionplane
3.4, i.e., the absence of non-trivial restric-

tion estimates on planes (which corresponds to the limit k → ∞) underline the importance of
curvature in restriction theory.

4. The Tomas–Stein restriction theorem

As far as positive results (besides the trivial L1 → L∞ estimate) go, we only have the follow-
ing theorem of Tomas

Tomas1975,Tomas1979
[168, 169] and Stein (1975, unpublished and

Stein1986
[146]) which says that the

restriction conjecture is indeed true for q = 2.
In fact, Stein gave two proofs of the restriction theorem. The first one relies on Tomas’ (two

pages long!) observation and on an extension of the classic Riesz–Thorin interpolation which is
unpublished. We will discuss this in more detail in the second subsubsection. The other one
establishes a theory of non-homogeneous oscillatory integral operators

Stein1986
[146] that we will discuss

in the next subsubsection. We emphasize that this approach uses ideas of Carleson and Sjölin
CarlesonSjolin1972
[42] who proved the restriction theorem for d = 3 and 1 ≤ p ≤ 4/3. The reader who is interested
in the history prior to the Tomas–Stein theorem is invited to consult Tomas’ paper

Tomas1975
[168].

Theorem 4.1. If 1 ≤ p ≤ 2(d+ 1)/(d+ 3), then RS(p→ 2) holds.
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Remark 4.2. Bak and Seeger
BakSeeger2011
[2] extended the Tomas–Stein estimate to treat measures µ that

satisfy

sup
rad(B)≤1

µ(B)

rad(B)a
≤ A (4.1) eq:dim

and

sup
|ξ|≥1

|ξ|b|µ̌(ξ)| ≤ C. (4.2) eq:fourierdim

The number inf{a : (
eq:dimeq:dim
4.1) holds for some A < ∞} is called the “dimension of µ”, whereas the

number inf{a : (
eq:fourierdimeq:fourierdim
4.2) holds for some C <∞} is called the “Fourier dimension”. For (sufficiently)

smooth hypersurfaces with non-vanishing Gauss curvature, one has a = 2b = d − 1. Bak and
Seeger proved that the Tomas–Stein theorem extends to the stronger Lorentz-type estimate

‖f̂‖L2(S) .d,a,b A
b

d−a+bC
d−a
d−a+b ‖f‖2Lpc,2(Rd) ,

where pc = 2(d−a+b)/(2(d−a)+b). One interesting application of this concerns surfaces where
only k of the d − 1 principal curvatures are non-vanishing. Littman

Littman1963
[117] showed |(dµ)∨(x)| .

|x|−k/2 for smooth hypersurfaces. In this case, pc = (2 + k)/(2 + k/2).

As we shall see, the proof heavily relies on the fact q = 2 and it has been very difficult (though
not completely impossible) to push this argument beyond q < 2. We will now discuss the two
approaches of the proof of this theorem.

4.1. Non-homogeneous oscillatory integral operators. Following
Sogge2017
[143, Chapter 2] and

Stein
Stein1993
[149, Sections IX.1 and IX.2], the first approach consists in establishing a robust theory of

non-homogeneous oscillatory integral operators of the form

I(λ) :=

∫
Rd

eiλϕ(y)a(y) dy .

If ϕ has a non-degenerate critical point (i.e., ∇ϕ(y0) = 0 but det(∂2ϕ/∂yi∂yj) 6= 0 when y = y0),
say at y0 = 0, and a is a smooth cutoff function having small support, one can easily check that

|I(λ)| ∼ λ−d/2 as λ→ +∞ ,

whenever a(0) 6= 0, see, e.g.,
Sogge2017
[143, Theorem 1.1.4]. The situation can be naturally extended by

considering operators of the form

(Tλf)(x) =

∫
Rd

eiλϕ(x,y)a(x, y)f(y) dy , λ > 0

where a is now a smooth cutoff function and ϕ ∈ C∞(Rm × Rd) is real. One may then, e.g.,
ask whether Tλf belongs to some Lp. The most basic result occurs when m = d. If ϕ is
non-degenerate in the sense that the mixed Hessian satisfies the non-degeneracy condition

det

(
∂2ϕ

∂xj∂xk

)
6= 0 ,

then we shall find that
‖Tλf‖L2(Rd) . λ

−d/2‖f‖L2(Rd) .

This result obviously has the same flavor as the estimates for I(λ), and, in fact, one can see that,
for every λ, there are functions for which ‖Tλf‖2/‖f‖2 ∼ (1 + λ)−d/2 if a is non-trivial.

However, there are many natural situations where the non-degeneracy condition is not met.
The most popular example is of course ϕ(x, y) = |x − y| for which the Hessian has only rank
d − 1! The Tomas–Stein theorem will immediately follow from estimates on oscillatory integral
operators with such phase functions.
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4.1.1. Non-degenerate oscillatory integral operators. Let us however start with the simpler sit-
uation where the non-degeneracy condition is satisfied. The main theorem of this subsection is
the following

oscintnondeg Theorem 4.3. Suppose ϕ is a real C∞ phase function satisfying the non-degeneracy condition

det

(
∂2ϕ

∂xj∂xk

)
6= 0 (4.3) eq:nondeg

on supp(a) where a ∈ C∞c (Rd × Rd). Then for λ > 0,∥∥∥∥∫
Rd

eiλϕ(x,y)a(x, y)f(y) dy

∥∥∥∥
L2(Rd)

. λ−d/2‖f‖L2(Rd) . (4.4) eq:oscintnondeg

If we let Tλ be the operator in (
eq:oscintnondegeq:oscintnondeg
4.4), then clearly

‖Tλf‖∞ . ‖f‖1 .
Thus, we obtain the following consequence by Riesz interpolation.

Corollary 4.4. If 1 ≤ p ≤ 2, then∥∥∥∥∫
Rd

eiλϕ(x,y)a(x, y)f(y) dy

∥∥∥∥
Lp′ (Rd)

. λ−d/p
′
‖f‖Lp(Rd) . (4.5) eq:oscintnondegp

Remark 4.5. Clearly, the phase function ϕ(x, y) = 〈x, y〉 leading to the standard Fourier trans-
form satisfies the hypotheses of Theorem

oscintnondegoscintnondeg
4.3. Furthermore, (

eq:oscintnondegpeq:oscintnondegp
4.5) implies that∥∥∥∥∫ ei〈x,y〉a(x/

√
λ, y/

√
λ)f(y) dy

∥∥∥∥
p′
. ‖f‖p ,

i.e., (
eq:oscintnondegpeq:oscintnondegp
4.5) leads to another proof of the Hausdorff–Young inequality ‖f̂‖p′ . ‖f‖p.

Before we prove this theorem, we restate the non-degeneracy condition (
eq:nondegeq:nondeg
4.3) in an equivalent

form. Expanding

∇x[ϕ(x, y)− ϕ(x, z)] =

(
∂2ϕ(x, y)

∂xj∂yk

)
(y − z) +O(|y − z|2) ,

it is immediate that (
eq:nondegeq:nondeg
4.3) is equivalent to

|∇x[ϕ(x, y)− ϕ(x, z)]| ∼ |y − z| , |y − z| � 1 . (4.6) eq:nondeg2

This is the form that we shall use in the proof of Theorem
oscintnondegoscintnondeg
4.3.

Proof of Theorem
oscintnondegoscintnondeg
4.3. Using a smooth partition of unity, we can decompose a(x, y) into a finite

number of pieces each of which has the property that (
eq:nondeg2eq:nondeg2
4.6) holds on its support. Thus, we may

assume without loss of generality that

|∇x[ϕ(x, y)− ϕ(x, z)]| & |y − z| on supp(a)

holds. The assertion then follows from Young’s inequality for integral operators
Sogge2017
[143, Theorem

0.3.1], once we show that

|Kλ(y, z)| .N (1 + λ|y − z|)−N for all N ∈ N

where

Kλ(y, z) =

∫
Rd

eiλ[ϕ(x,y)−ϕ(x,z)]a(x, y)a(x, z) dx

is the integral kernel of 〈f, Tλf〉L2(Rd). Since the above estimate just follows from a stationary
phase argument (using (

eq:nondeg2eq:nondeg2
4.6)), we are already done. �
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4.1.2. Oscillatory integral operators related to the restriction theorem. The main result in this
subsection is that, under some natural additional geometric conditions on ϕ, we can prove that
Tλ also maps Lp(Rd−1) functions to Lq(Rd) functions with norm λ−d/q (see (

eq:oscintnondegpeq:oscintnondegp
4.5)).

As in the previous subsubsection, we will require a (modified) non-degeneracy condition of
the form

rank

(
∂2ϕ

∂yj∂zk

)
= d− 1 , (4.7) eq:nondeg3

i.e., the mixed Hessian associated to the phase function has maximal rank. This condition alone
would yield that Tλ : Lp(Rd−1) → Lq(Rd) is bounded with norm O(λ−(d−1)/q) if q ≥ 2 and
p ≥ q′. To get the better result O(λ−d/q), we need an additional condition, more precisely, a
curvature hypothesis.

To state it, we first notice that, since Cϕ = {(z, ϕ′z(z, y), y,−ϕ′y(z, y))}, (
eq:nondeg3eq:nondeg3
4.7), and the constant

rank theorem imply that, for every z0 ∈ suppz(a), the image of y 7→ ϕ′z(z0, y), i.e.,

Sz0 =
∏
T∗z0

Rd
(Cϕ) = {ϕ′z(z0, y) : (z0, ϕ

′
z(z0, y), y,−ϕ′y(z0, y)) ∈ Cϕ}

is a C∞ (immersed) hypersurface in T ∗z0R
d. Clearly, one can identify T ∗z0R

d with Rd. In this
case, the curvature hypothesis says that

Sz0 ⊆ T ∗z0R
d has everywhere non-vanishing Gaussian curvature. (4.8) eq:curvhyp

Since changes of coordinates induce changes of coordinates in the cotangent bundle that are
linear in the fibers, one concludes that (

eq:curvhypeq:curvhyp
4.8) is (like (

eq:nondeg3eq:nondeg3
4.7)) an invariant condition. Notice that

(
eq:nondeg3eq:nondeg3
4.7) is a condition involving second derivatives of the phase function whereas (

eq:curvhypeq:curvhyp
4.8) is in fact a

condition involving third derivatives.
If the two conditions (

eq:nondeg3eq:nondeg3
4.7) and (

eq:curvhypeq:curvhyp
4.8) are met, we shall say that the phase function satisfies

the Carleson–Sjölin condition. The main result of this subsubsection concerns estimates on
oscillatory integral operators with such phase functions. It is due to Carleson and Sjölin

CarlesonSjolin1972
[42]

and Hörmander
Hormander1960
[95] in the two-dimensional case and to Stein

Stein1986
[146, Theorem 10] in the higher-

dimensional case.

carleson Theorem 4.6. Let Tλ as in (
eq:oscintnondegeq:oscintnondeg
4.4) and suppose that the Carleson–Sjölin condition (i.e., the non-

degeneracy condition (
eq:nondeg3eq:nondeg3
4.7) and the curvature condition (

eq:curvhypeq:curvhyp
4.8)) holds. Then

‖Tλf‖Lq(Rd) .p λ
−d/q‖f‖Lp(Rd−1) (4.9) eq:carleson

if q = (d+ 1)p′/(d− 1) and

(1) 1 ≤ p ≤ 2 for d ≥ 3;
(2) 1 ≤ p < 4 for d = 2.

Bourgain
Bourgain1991L
[14] proved that the theorem can in fact not be improved beyond the range 1 ≤ p ≤ 2

when d ≥ 3. For the proof, we refer to
Sogge2017
[143, Theorem 2.2.1], see also Stein

Stein1986
[146, Theorem 10] or

Stein1993
[149, p. 380]. The details can also be found in Appendix

a:carlesona:carleson
A.2. Let us now actually see why the

Tomas–Stein theorem is an immediate consequence of this theorem.

Corollary 4.7. Suppose that S ⊆ Rd, d ≥ 2 is a C∞ hypersurface with everywhere non-vanishing
Gaussian curvature. Then, if dσ is the Lebesgue measure on S and if dµ = βdσ with β ∈ C∞c ,
it follows that (∫

S

|f̂(ξ)|r dµ(ξ)

)1/r

.S ‖f‖Ls(Rd) ,

provided that r = (d− 1)s′/(d+ 1) and
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(1) 1 ≤ s ≤ 2(d+ 1)/(d+ 3) for d ≥ 3;
(2) 1 ≤ s < 4/3 for d = 2.

Notice that the exponents r and s are just conjugate to those in Theorem
carlesoncarleson
4.6 which indicates

that we will in fact prove the dual assertion, i.e., an extension estimate.

Proof. Without loss of generality, we may rotate and translate S such that ξd = ϕ(ξ′) for some
ϕ ∈ C∞(Rd−1) where as usual ξ = (ξ′, ξd) ∈ Rd. We shall now actually prove the (dual) extension
estimate, i.e.,

‖(Fdµ)∨‖Ls′ (Rd) . ‖F‖Lr′ (S)

where

(Fdµ)∨(x) =

∫
S

e2πix·ξF (ξ)dµ(ξ)

=

∫
Rd−1

e2πi(x′·ξ′+xdϕ(ξ′)F (ξ′, ϕ(ξ′))β(ξ′, ϕ(ξ′))(1 + |∇ϕ(ξ′)|2)1/2 dξ′

and we used the pullback formula

dµ(ξ) = β(ξ′, ϕ(ξ′))(1 + |∇ϕ(ξ′)|2)1/2dξ′ ≡ Ψ(ξ′, ϕ(ξ′))dξ′

To apply the Carleson–Sjölin theorem, we merely need to verify the non-degeneracy condition of
Theorem

carlesoncarleson
4.6. But this is easy since the Hessian of ϕ has rank d−1 and the curvature hypothesis

holds by assumption. Thus, Theorem
carlesoncarleson
4.6 implies ‖Tλ‖Lp(Rd−1)→Lq(Rd) . λ−d/q where Tλ is

defined by

(TλF )(x) :=

∫
Rd−1

eiλ〈x,(ξ
′,ϕ(ξ′))〉a(x, ξ′)F (ξ′, ϕ(ξ′)) ·Ψ(ξ′, ϕ(ξ′)) dξ′ .

By scaling x 7→ x/λ, this means that if p and q are as in Theorem
carlesoncarleson
4.6, we have∥∥∥∥∫

Rd−1

e2πi〈x,(ξ′,ϕ(ξ′))〉a(x/λ, ξ′)F (ξ′, ϕ(ξ′))Ψ(ξ′, ϕ(ξ′)) dy

∥∥∥∥
Lqx(Rd)

.p ‖F (·, ϕ(·))Ψ(·, ϕ(·))‖Lp(Rd−1)

for every λ > 0. Using once more the pullback formula, we conclude∥∥∥∥∫
S

e2πix·ξF (ξ) dµ(ξ)

∥∥∥∥
Lqx(Rd)

.p ‖F‖Lp(S) ,

thereby showing the assertion. �

4.2. The original arguments of Tomas and Stein. Following Tao
Tao1999Notes
[159, Lecture 2], we will

now outline the genesis of the Tomas–Stein theorem. In particular, we will encounter three basic
interpolation theorems which are vital tools in (harmonic) analysis in general.

Squaring the desired restriction estimate shows that we need to prove∫
S

|f̂(ξ)|2 dσ(ξ) . ‖f‖2p .

We rewrite the left side as the L2 inner product, use the convolution theorem and Hölder’s
inequality to obtain∫

S

|f̂(ξ)|2 dσ(ξ) = 〈f̂ , f̂dσ〉 = 〈f̂ ,F [f ∗ ďσ]〉 = 〈f, f ∗ ďσ〉 ≤ ‖f‖p‖f ∗ ďσ‖p′ .

Thus, it suffices to prove

‖f ∗ ďσ‖p′ . ‖f‖p . (4.10) eq:ts
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Note that this is just the TT ∗ method in disguise (i.e., showing that an operator T is Lp → L2-

bounded is equivalent to showing that T ∗T is Lp → Lp
′
-bounded). The above observation was

first made by Fefferman and Stein
Fefferman1970
[65, p. 33ff].

We will now outline three proofs of (
eq:tseq:ts
4.10).

4.2.1. First attempt: fractional integration. The most obvious tool to attack (
eq:tseq:ts
4.10) would of

course be to use the Hardy–Littlewood–Sobolev inequality (which is a special case of the “weak
Young inequality”).

hls Lemma 4.8. If 0 < α < d, 1 < p, q <∞, and

1

q
+ 1 =

1

p
+
α

d
,

then

‖f ∗ | · |−α‖q . ‖f‖p
The other tool that we shall use is an interpolation theorem for weak-type operators. It turns

out that the assumption that an operator has weak-type can be relaxed even a bit more. Recall
that, for some measure spaces X,Y , a linear operator T : X → Y is said to have weak-type (p, q)
if

|{x ∈ X : |(Tf)(x)| > λ}| . λ−q‖f‖qp for all f ∈ Lp, λ > 0 .

One can weaken this by considering only characteristic functions. We say that T has restricted
weak-type (p, q) if

|{x ∈ X : |(T1E)(x)| > λ}| . λ−q|E|p/q for all E ⊂ X,λ > 0 . (4.11) eq:rwt

It is convenient to rephrase this estimate in a more symmetric form.

Lemma 4.9. Suppose 1 < p, q <∞. Then T has restricted weak-type (p, q) if and only if

|〈T1E ,1F 〉| . |E|1/p|F |1/q
′

(4.12) eq:rwtdual

for all sets E ⊆ X, F ⊆ Y .

As a comparison, recall that, by duality, the strong-type (p, q) estimate is equivalent to

|〈Tf, g〉| . ‖f‖p‖g‖q′

for all f ∈ Lp, g ∈ Lq′ .

Proof. For our purposes, the necessity of the restricted weak-type estimate suffices which is why
we will only deal with this direction. (For the other direction, one applies (

eq:rwtdualeq:rwtdual
4.12) to the set

F = {Re(T1E) > λ}.)
Using the layer cake representation and Fubini, we have

|〈T1E ,1F 〉| ≤
∫
F

|T1E(x)| dx =

∫
F

∫ ∞
0

1{|T1E |>λ}(x) dλ dx =

∫ ∞
0

|{x ∈ F : |T1E(x)| > λ}| dλ .

Recalling the restricted weak-type hypothesis, the integrand can be estimated by

|{x ∈ F : |T1E(x)| > λ}| ≤ min{|F |, λ−q|E|q/p} .
Thus,

|〈T1E ,1F 〉| .
∫ ∞

0

min{|F |, λ−q|E|q/p} dλ . |E|1/p|F |1/q
′

by an elementary computation. �

Let us recall now
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marcinkiewicz Lemma 4.10 (Marcinkiewicz interpolation). Suppose 1 < p0 < q0 < ∞, 1 < p1 < q1 < ∞,
p0 < p1, q0 < q1, and T is of restricted weak-types (p0, q0) and (p1, q1). Then, T is of strong-type
(pθ, qθ) for any θ ∈ (0, 1) where 1/pθ = (1− θ)/p0 + θ/p1 and similarly for qθ.

Proof. See Tao’s notes
Tao1999Notes
[159, Lecture 2, Lemma 2.3] or Grafakos

Grafakos2014C
[85, Theorem 1.4.19] and Tao

Tao2006Notes
[165, Lecture 1, Lemma 8.5] for a further enhanced version. �

Using the decay estimate (
eq:decayfteq:decayft
3.1) (from stationary phase)

|ďσ(x)| . |x|−(d−1)/2 ,

and the Hardy–Littlewood–Sobolev inequality (Lemma
hlshls
4.8) with 1/p′ + 1 = 1/p + 2/p′ and

2/p′ = (d− 1)/(2d), i.e., p′ = 4d/(d− 1) and p = 4d/(3d+ 1), we get

‖f ∗ ďσ‖p′ . ‖f ∗ | · |−(d−1)/2‖p′ . ‖f‖p .
In other words, we just proved the restriction estimate RS(4d/(3d + 1) → 2). By interpolation
with the trivial estimate RS(1 → 2), we thus get RS(p → 2) for any 1 ≤ p ≤ 4d/(3d+ 1). This
is a non-trivial statement, however, it is far from the best possible. Recall that the restriction
conjecture says that p can go up to the endpoint 2(d+ 1)/(d+ 3).

The reason why we did not get a good estimate here is because we only performed pure size
estimates, i.e., we merely exploited the decay of the convolution kernel ďσ(x). However, due to
taking a Fourier transform, ďσ(x) actually also oscillates, in particular for large x. For instance,
we have

ďσ(x) = const J(d−2)/2(|x|)/
√
|x|

for the sphere by the Fourier–Bessel transform. (Recall that |Jν(x)| . |x|−1/2 for |x| → ∞.) In
d = 3, this reduces to

sin(|x|)
|x|

.

Crudely estimating these formulae by |x|−1 is very inefficient.

4.2.2. Second attempt: real interpolation. In
Tomas1975
[168] Tomas introduced a very simple argument

that made use both of the decay and the oscillations of the kernel ďσ. This allowed him to get
within an ε of the sharp result. The idea was to decompose ďσ dyadically. This idea is a very
effective technique in harmonic analysis — break up your functions or kernels into many pieces in
such a way that the behavior close to the singularity or at infinity can be treated very precisely,
i.e., choose very small dyadic pieces where you need to obtain precise estimates. This approach
works quite well, except when one has to recombine, i.e., to glue, all the pieces back together.
In this way one often loses an ε, but rarely does one lose more than this.

Let us start with the main idea, i.e., the dyadic decomposition of ďσ. For this, let ϕ be a
radial bump function which equals 1 near 0 and is compactly supported. Then, define

ψk(x) := ϕ(2−kx)− ϕ(2−k+1x) .

Thus, ψk has size roughly 1 and is supported on the annulus |x| ∼ 2k. Moreover, the ψk are all
related to each other by

ψk(x) = ψ0(2−kx)

and we have the telescopic identity

1 = ϕ(x) +
∑
k>0

ψk(x) .

Thus, one can break up f ∗ ďσ as

f ∗ ďσ = f ∗ (ϕďσ) +
∑
k>0

f ∗ (ψkďσ) .
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Now, we may just use the triangle inequality, obtain

‖f ∗ ďσ‖p′ ≤ ‖f ∗ (ϕďσ)‖p′ +
∑
k>0

‖f ∗ (ψkďσ)‖p′ ,

and estimate each term separately. Note that one can (and should usually) be more sophisticated
than the triangle inequality and use almost orthogonality results such as the Cotlar–Stein lemma
(for operator norm bounds) or Carbery’s lemma

Carbery2009
[35] (for Schatten norm bounds).

Since dσ is a compactly supported measure, ďσ is a C∞ function (it’s complex analytic in
fact). Thus, ϕďσ ∈ C∞c , i.e., the first term can be bounded by a constant times ‖f‖p by Young’s
inequality.

Next, our goal is to estimate

‖f ∗ (ψkďσ)‖p′ . 2−εk‖f‖p (4.13) eq:localizedmeasure

since this would sum up nicely. We will prove such an estimate by interpolating between and
L1 → L∞ and an L2 → L2 estimate. The latter is just the one that will capture the oscillations
of dσ!

Obtaining the L1 → L∞ estimate is easy because of the decay of the kernel ďσ and the fact
that ψk localizes to the region |x| ∼ 2k. We obtain

‖f ∗ (ψkďσ)‖∞ . ‖f‖1‖ψkďσ‖∞ . ‖f‖12−k(d−1)/2 . (4.14) eq:crude1infty

For the L2 → L2 estimate, we use Plancherel and obtain

‖f ∗ (ψkďσ)‖2 = ‖f̂ · (ψkďσ)‖2 . ‖f‖2‖ψ̂k ∗ dσ‖∞ .

Since ψk is smooth and compactly supported and acts as a mollifier, we have the standard
estimate

|ψ̂k(ξ)| . 2dk

< 2kξ >N

for any N ∈ N. Thus, we obtain by scaling

|ψ̂k ∗ dσ(ξ)| =
∣∣∣∣∫
S

ψ̂k(ξ − η)dσ(η)

∣∣∣∣ . 2k

since we are integrating over S, i.e., an d− 1-dimensional subset of Rd and therefore

‖f ∗ (ψkďσ)‖2 . 2k‖f‖2 . (4.15) eq:crude22

Interpolating (using Riesz–Thorin) between (
eq:crude1inftyeq:crude1infty
4.14) and (

eq:crude22eq:crude22
4.15) thus yields

‖f ∗ (ψkďσ)‖p′ . 2−ε‖f‖p
for some ε, provided p < 2(d+ 1)/(d+ 3).

Thus, by exploiting oscillation (via the Fourier transform-based L2 → L2 estimate) and decay,
we get RS(p→ 2) for all 1 ≤ p < 2(d+ 1)/(d+ 3). This is almost, but not quite, the sharp result
as we are still missing the endpoint.

4.2.3. Last attempt: complex interpolation. In 1975 Stein (unpublished) obtained the endpoint
estimate RS(2(d + 1)/(d + 3) → 2) by extending the classic Riesz–Thorin interpolation “by
adding a single letter to the alphabet”

Fefferman1995S
[68, p. 3]. Besides that, we will refuse to give in to the

triangle inequality as we did in the last section and we will also make a special assumption on
the localizing function ψ.

complexint Theorem 4.11 (Stein’s interpolation theorem). Assume Tz is an operator depending analyti-
cally on z in the strip 0 ≤ Re z ≤ 1. Suppose Tz is Lp0 → Lq0-bounded for Re z = 0 and
Lp1 → Lq1-bounded for Re z = 1. Then Tθ is Lpθ → Lqθ -bounded for 1/pθ = (1− θ)/p0 + θ/p1,
1/qθ = (1− θ)/q0 + θ/q1, and θ ∈ [0, 1].
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Let p = 2(d+ 1)/(d+ 3) and recall that we want to prove

‖
∑
k>0

f ∗ (ψkďσ)‖p′ . ‖f‖p .

At this endpoint, (
eq:localizedmeasureeq:localizedmeasure
4.13), i.e.,

‖f ∗ (ψkďσ)‖p′ . 2−εk‖f‖p ,
only holds when ε = 0. In other words, to get the endpoint, we must not use the triangle
inequality at this stage. We will therefore show the following two enhanced versions of the
previous L1 → L∞ and L2 → L2 bounds, namely

‖
∑
k>0

2[ d−1
2 +it]kf ∗ (ψkďσ)‖∞ . ‖f‖1 (4.16a) eq:enhanced1infty

‖
∑
k>0

2[−1+it]kf ∗ (ψkďσ)‖2 . ‖f‖2 (4.16b) eq:enhanced22

for all t ∈ R. These two estimates, together with Theorem
complexintcomplexint
4.11, then yield the desired estimate.

(Note that, if we were only dealing with a fixed k, the above two estimates just correspond to
(
eq:crude1inftyeq:crude1infty
4.14) and (

eq:crude22eq:crude22
4.15)!) Let us now prove (

eq:enhanced1inftyeq:enhanced1infty
4.16a) and (

eq:enhanced22eq:enhanced22
4.16b) and begin with the former. Rewriting

it as

‖f ∗
∑
k>0

2[ d−1
2 +it]k(ψkďσ)‖∞ . ‖f‖1 ,

we see that it suffices (by Young’s inequality) to prove

‖
∑
k>0

2[ d−1
2 +it]k(ψkďσ)‖∞ . 1 .

But this just follows from the decay estimate |ďσ(x)| . |x|−(d−1)/2 since ψk localizes onto the
dyadic region |x| ∈ [2k, 2k+1], i.e.,∑

k>0

2[ d−1
2 +it]kψk(x) = O(|x|(d−1)/2) .

Note how we are being more efficient here than in the proof of (
eq:crude1inftyeq:crude1infty
4.14).

Now let us turn to (
eq:enhanced22eq:enhanced22
4.16b). By the same arguments as in the previous section (i.e., Plancherel

and Hölder), it suffices to prove

‖
∑
k>0

2[−1+it]k(ψ̂k ∗ dσ)‖∞ . 1 .

Ignoring the cancellation coming from the 2itk factor (which would be helpful however for k � 1),
we will obtain this from ∑

k>0

2−k|(ψ̂k ∗ dσ)(x)| . 1 . (4.17) eq:4.14

In the previous section we already estimated |(ψ̂k ∗ dσ)(x)| . 2k, which is however just not good
enough for our purpose. Instead, we shall establish the more sophisticated estimate

|(ψ̂k ∗ dσ)(x)| .

{
2k(2kd(x, S))−N for d(x, S) ≥ 2−k

2k + 2k(2kd(x, S)) for d(x, S) ≤ 2−k

where d(x, S) = |1 − |x|| is the distance of x to the unit sphere. Once we have this estimate,
(
eq:4.14eq:4.14
4.17) follows from a routine calculation. Our task is thus to estimate∣∣∣∣∫

Sd−1

ψ̂k(x− ω)dσ(ω)

∣∣∣∣ .
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For d(x, S) ≥ 2−k the claimed estimate follows, e.g., from the rapid decay |ψ̂k(x)| . 2kd(1 +

2k|x|)−Ñ (possibly with Ñ ≥ N + d), decomposing Sd−1 into regions where d(x, ω) ∼ 2k+j for
some j ≥ 0, and then summing in j.

Now, let us look at the region d(x, S) ≤ 2−k. If we just use the size estimate |ψ̂k(x)| .
2kd(1 + 2k|x|)−Ñ , we will end up with a bound of order O(2k) which is just not good enough.
Instead, we shall impose and exploit some moment conditions on ψk.

We first observe the Lipschitz bound

|∇(ψ̂k ∗ dσ)(x)| = 2k|((2−k∇ψ̂k) ∗ dσ)(x)| . 22k

where we used that also 2−k∇ψ̂k satisfies the above size estimate (by scaling) and that dσ is
supported on a d− 1-dimensional manifold. Thus, for y ∈ Sd−1,

(ψ̂k ∗dσ)(x)− (ψ̂k ∗dσ)(y)+(ψ̂k ∗dσ)(y) ≤ (ψ̂k ∗dσ)(y)+d(x, y)(∇ψ̂k ∗dσ)(z) . 2k+22kd(x, y) .

Thus, it suffices to consider points x on the unit sphere. By rotational symmetry, we may assume
x = en, i.e., we need to show

|
∫
Sd−1

ψ̂k(en − ω)dσ(ω)| = O(1) .

Because of the rapid decay of ψ̂k we may as well restrict ourselves to the region, say, |en − ω| <
1/10. In this case, we parameterize ω ∈ Sd−1 as

ω = (ω,
√

1− |ω|2) , ω ∈ Rd−1 .

Since we restricted our attention to |en − ω| < 1/10, this means, it suffices to consider |ω| <√
1− (9/10)2 � 1. Thus, we will estimate in the following∫

|ω|�1

ψ̂k(ω, 1−
√

1− ω2)J(ω) dω

where J(ω) is the Jacobian appearing from our parameterization of ω. We may now rewrite this
as a constant times ∫

Rd−1

ψ̂k(ω,O(ω2))(1 +O(ω2)) dω (4.18) eq:convpsik1

modulo extremely tiny errors. We claim that this is quantity is∫
Rd−1

ψ̂k(ω, 0) dω +O(1) . (4.19) eq:convpsik2

If this were the case, then we can simply choose ϕ, and thus ψ0, so that∫
Rd−1

ψ̂0(ω, 0) dω = 0

and this will achieve the desired estimate.
To prove the claimed approximation, we first observe that

ψ̂k(ω,O(ω2)) = ψ̂k(ω, 0) +O
(

2(d+1)kω2

(1 + 2k|ω|)N

)
for all N > 0 by the rapid decay of ψ̂k and the mean value theorem. Thus, the error between
(
eq:convpsik1eq:convpsik1
4.18) and (

eq:convpsik2eq:convpsik2
4.19) is at most ∫

Rd−1

O
(

2(d+1)kω2

(1 + 2k|ω|)N

)
dω = O(1)

which follows by scaling.
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ss:complexintagain
4.3. Complex interpolation once more. We shall give one further proof of the Tomas–
Stein theorem which, however, does not use the dyadic decomposition of the kernel (dσ)∨.
The technique that we will outline here, is in particular useful to obtain “uniform” resolvent
estimates such as ‖(Q(D) − z)−1‖p→p′ . 1 uniformly in z ∈ C for |z| ≥ 1, Im(z) 6= 0,
Q(ξ) = −ξ2

1 − ξ2
2 − ... − ξ2

j + ξ2
j+1 + ... + ξ2

d and p such that 2/(d + 1) ≤ 1/p − 1/p′ ≤ 2/d,

see, e.g., Kenig–Ruiz–Sogge
Kenigetal1987
[106, Theorem 2.3] where one interpolates between the L2 →

L2 bounds of eζ
2

(Γ(d/2 + ζ))−1(Q(D) − z)ζ for Re(ζ) = 0 and the L1 → L∞ bounds of

eζ
2

(Γ(d/2 + ζ))−1(Q(D)− z)ζ for Re(ζ) ∈ [−(d+ 1)/2,−d/2].

tscomplex Theorem 4.12. Suppose S is a smooth hypersurface in Rd with non-zero Gaussian curvature.
Then (∫

S0

|f̂(ξ)|2 dσ(ξ)

)1/2

.p,S0
‖f‖Lp(Rd)

holds for each f ∈ S(Rd), 1 ≤ p ≤ 2(d + 1)/(d + 3), whenever S0 is an open subset of S with
compact closure in S.

The proof can be found in Stein
Stein1986
[146, Theorem 3]. A more detailed exposition can be found

in Stein–Shakarchi
SteinShakarchi2011
[150, Chapter 8, Theorem 5.2].

Proof. Suppose 0 ≤ ψ ∈ C∞c (Rd). It will then suffice to prove(∫
S

|f̂(ξ)|2ψ(ξ) dσ(ξ)

)1/2

.p0 ‖f‖Lp(Rd) (4.20)

for p0 = 2(d + 1)/(d + 3), the other cases follow from interpolation 1. By covering the support
of ψ by sufficiently many small open sets, it will be enough to prove the restriction estimate
when (after a suitable rotation and translation of coordinates) the surface S is represented (in
the support of ψ) as the graph ξd = ϕ(ξ′). Now, with dµ = ψdσ, the usual Plancherel argument
implies ∫

S

|f̂(ξ)|2dµ(ξ) =

∫
Rd

(Tf)(x)f(x) dx

where (Tf)(x) = (K ∗ f)(x) with

K(x) =

∫
e2πix·ξ dµ(ξ) .

Thus, we are left to show the Lp0 → Lp
′
0 boundedness of the convolution kernel K. To do so, we

consider the family of kernels

Ks(x) :=
es

2

Γ(s/2)

∫
Rd

e2πix·ξ|ξd − ϕ(ξ′)|−1+sη(ξd − ϕ(ξ′))ψ̃(ξ′) dξ (4.21) eq:surfacefamily

where η ∈ C∞c (Rd) is a bump function sitting at the origin and we set ψ̃(ξ′) = ψ(ξ′, ϕ(ξ′))(1 +
|∇ϕ(ξ′)|2)1/2 so that

dµ(ξ) = ψ(ξ)dσ(ξ) = (1 + |∇ϕ(ξ′)|2)1/2ψ(ξ′, ϕ(ξ′))dξ′.

Now, the change of variables ξd 7→ ξd + ϕ(ξ′) in the above integrals shows that it equals

ζs(xd)

∫
Rd−1

e2πi(x′·ξ′+xdϕ(ξ′))ψ̃(ξ′) dξ′ = ζs(xd)K(x)

1In fact, the interpolation argument shows that we can take q so that the restriction estimate holds where
the L2(S, dσ) norm is replaced by the Lq(S, dσ) norm with q = (d − 1)p′/(d + 1) which is the optimal relation
between p and q.
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with

ζs(xd) =
es

2

Γ(s/2)

∫
R

e2πixdξd |ξd|−1+sη(ξd) dξd .

(Note that we now only need to study a “classical” function ζs(xd) and the “regularized” kernels
Ks since K0(x) = K(x) and we shall interpolate between K1+it and K−d/2+it for t ∈ R.) So, first
it is well known that ζs has an analytic continuation in s which is an entire function. Moreover,
ζ0 ≡ 1 (by an integration by parts, setting s = 0, and applying the fundamental theorem of
calculus using η(0) = 1) and |ζs(xd)| .< xd >

−Re(s), where the real part of s remains bounded
from below (see also Stein–Shakarchi

SteinShakarchi2011
[150, Chapter 8, Lemma 4.6]). From these facts it follows

that Ks has an analytic continuation to an entire function of s (whose values are smooth functions
of x1, ..., xd of at most polynomial growth). Moreover, one concludes

(1) K0(x) = K(x),
(2) K(1−d)/2+it is L1 → L∞ bounded with |K(1−d)/2+it(x)| ≤ |ζ(1−d)/2+it(xd)||K0(x)| . 1

for all x ∈ Rd and t ∈ R, and
(3) K1+it is L2 bounded with |K̂1+it(ξ)| . 1 for all ξ ∈ Rd and t ∈ R.

In fact, (2) follows from the estimates |K0(x)| = |(dµ)∨(x)| . |x|−(d−1)/2 and |ζ(1−d)/2+it(xd)| .
|xd|(d−1)/2 whereas (3) follows from the definition (

eq:surfacefamilyeq:surfacefamily
4.21) of Ks. (The integrand in (

eq:surfacefamilyeq:surfacefamily
4.21) is just

K̂s which is clearly bounded for s = 1.) Thus, we have shown that the analytic family Ts of
operators, defined by Tsf = Ks ∗ f satisfies

‖T(1−d)/2+itf‖∞ . ‖f‖1 , t ∈ R

because of (2) and also

‖T1+itf‖2 . ‖f‖2 , t ∈ R
because of (3) and Plancherel. Thus, by complex interpolation (0 = (1 − θ) + θ · (−d/2), i.e.,
θ = 2/(d + 1), 1 − θ = (d − 1)/(d + 1), and 1/p = (1 − θ)/2 + θ/1 = (d + 3)/(2d + 2), i.e.,

p = 2(d+ 1)/(d+ 3) = p0), we obtain the asserted Lp0 → Lp
′
0 boundedness. �

4.4. A final word on complex interpolation. Frank and Sabin
FrankSabin2017
[79, Proposition 1] no-

ticed that once one proves the Lp(Rd) → Lp
′
(Rd) boundedness of some operator T on Rd

via complex interpolation, one not only obtains that W1TW2 is L2(Rd) bounded for arbitrary
W1,W2 ∈ L2p/(2−p)(Rd) (by Hölder’s inequality). In fact, W1TW2 also belongs to some trace
ideal Sp(L2(Rd)). We quote

complexinterpolationschatten Proposition 4.13 (Frank–Sabin
FrankSabin2017
[79, Proposition 1]). Let Tz be an analytic family of operators

in Rd in the sense of Stein defined on the strip −λ0 ≤ Rez ≤ 0 for some λ0 > 1. Assume that
the bounds

‖Tiy‖2,2 ≤M0ea|y| , ‖T−λ0+iy‖1,∞ ≤M1eb|y| , ∀y ∈ R (4.22)

hold for some a, b ≥ 0 and for some M0,M1 ≥ 0. Then, for all W1,W2 ∈ L2λ0(Rd : C), it holds
that W1T−1W2 ∈ S2λ0(L2(Rd)) with

‖W1T−1W2‖S2λ0 (L2(Rd)) ≤M
1−1/λ0

0 M
1/λ0

1 ‖W1‖L2λ0 (Rd)‖W2‖L2λ0 (Rd) . (4.23)

The basic idea is to use complex interpolation between Schatten spaces (cf. Simon
Simon2005
[138,

Theorem 2.9]) applied to the holomorphic family W−z1 TzW
−z
2 for Re(z) ∈ [−λ0, 0]. One then

interpolates between the L2 → L2 bound and the Hilbert–Schmidt estimate

‖Wλ0−iy
1 T−λ0+iyW

λ0−iy
2 ‖2S2 =

∫
Rd
dx

∫
Rd
dy |W1(x)|2λ0 |W2(x)|2λ0 |T−λ0+iy(x, y)|2 .
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Sometimes, there are better estimates for |T−λ0+iy(x, y)| available than a simple uniform bound.
This may, e.g., be the case when Tz is a differential operator such as (−∆− ζ)z. Then one may
use tools like the Hardy–Littlewood–Sobolev inequality and so on.

Proof. For Wj = |Wj |eiϕj we have

‖W1T−1W2‖S2λ0 ≤ ‖eiϕ1‖L2→L2‖|W1|T−1 |W2|‖S2λ0‖eiϕ2‖L2→L2 ≤ ‖|W1|T−1 |W2|‖S2λ0 .

Thus, we can reduce to the case where W1,W2 are non-negative. Moreover, by a density argu-
ment, we may suppose W1,W2 to be simple functions. For simple W1,W2 ≥ 0 we now define the
family of operators

Sz := W−z1 TzW
−z
2

which is still analytic in the sense of Stein in the strip −λ0 ≤ Re(z) ≤ 0 and satisfies S−1 =
W1T−1W2. On the right border of the strip, i.e., Re(z) = 0, we have

‖Sis‖L2→L2 ≤ ‖W−is1 ‖∞‖W−is2 ‖∞‖Tis‖L2→L2 ≤M0ea|s| , s ∈ R .

On the left border, we prove that S−λ0+is is Hilbert–Schmidt. Indeed, we obtain

‖S−λ0+is‖2S2 =

∫
Rd
dx dyW1(x)2λ0W2(y)2λ0 |T−λ0+is(x, y)|2 ≤M2

1 e2b|s|‖W1‖2λ0

2λ0
‖W2‖2λ0

2λ0
.

Thus, by complex interpolation for Schatten ideals (cf. Simon
Simon2005
[138, Theorem 2.9]), it follows

that S−1 ∈ S2λ0(L2(Rd)) with

‖S−1‖S2λ0 (L2(Rd)) ≤M
1−1/λ0

0 M
1/λ0

1 ‖W1‖2λ0
‖W2‖2λ0

.

This concludes the proof. �

If, in addition, the operator T−1 can be factorized in A∗A, we have the following duality
principle which is interesting in the context of many-fermion systems, where a one-particle density
matrix of orthonormal wave functions has the form

γ =
∑
j

νj |fj〉〈fj |

for some νj ≥ 0 satisfying
∑
j νj = 1 and orthonormal fj ∈ L2(Rd).

Lemma 4.14 (Frank–Sabin
FrankSabin2017
[79, Lemma 3]). Let H be a separable Hilbert space. Assume that

A is a H → Lp
′
(Rd) bounded operator for some 1 ≤ p ≤ 2 and let α ≥ 1. Then the following are

equivalent.

(i) There is a constant C > 0 such that

‖WAA∗W‖Sα(L2(Rd))) ≤ C‖W‖2L2p/(2−p)(Rd) , ∀W ∈ L2p/(2−p)(Rd : C) . (4.24)

(ii) There is a constant C ′ > 0 such that for any orthonormal system (fj)j∈J ∈ H and any
sequence (νj)j∈J ⊆ C,∥∥∥∥∥∥

∑
j∈J

νj |Afj |2
∥∥∥∥∥∥
Lp′/2(Rd)

≤ C ′
∑
j∈J
|νj |α

′

1/α′

. (4.25)

Moreover, the values of the optimal constants C and C ′ coincide.

Applications of these principles include

• Tomas–Stein restriction estimates in Schatten spaces
FrankSabin2017
[79, Theorems 2 (and 4) and 3 (and

5)] (the optimality of these results is shown in
FrankSabin2017
[79, Theorem 6]),
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• Strichartz estimates for the paraboloid S = {(ω, ξ) ∈ R × Rd , ω = −|ξ|2} (Schrödinger
with −∆)

FrankSabin2017
[79, Theorems 7,8, and 9] , the cone S = {(ω, ξ) ∈ R× Rd , ω2 = |ξ|2} (wave,

respectively Schrödinger with
√
−∆)

FrankSabin2017
[79, Theorem 10], and the two-sheeted hyperboloid

S = {(ω, ξ) ∈ R × Rd , ω2 = 1 + |ξ|2} (Klein–Gordon, respectively Schrödinger with√
1−∆)

FrankSabin2017
[79, Theorem 11], and

• uniform Sobolev inequalities à la Kenig–Ruiz–Sogge
Kenigetal1987
[106] for −∆ (see

FrankSabin2017
[79, Theorems 12

and 13] and Subsection
ss:lapschattenss:lapschatten
16.5 later) and Cuenin

Cuenin2017
[51] for (m2 −∆)s/2 −m with 0 < s < d

and
∑d
j=1 αj(−i∇j) + βm with m ≥ 0.

• Eigenvalue estimates for Schrödinger operators with complex potentials
FrankSabin2017
[79, Theorem 16].

See also Frank–Laptev–Lieb–Seiringer
Franketal2006
[78], Frank

Frank2011,Frank2018E
[76, 77], Frank–Simon

FrankSimon2017
[80], Laptev–

Safronov
LaptevSafronov2009
[111], Safronov

Safronov2010
[131].

For the sake of completeness we state the Tomas–Stein estimate for trace ideals here.

traceclassrestr Theorem 4.15. Let d ≥ 2, S ⊆ Rd be a smooth, compact surface with non-zero Gaussian
curvature. Then

‖W1F∗SFSW2‖
S

(d−1)q
d−q (L2(Rd))

. ‖W1‖L2q(Rd)‖W2‖L2q(Rd) , q ∈ [1,
d+ 1

2
] . (4.26)

Sketch of the proof. By Proposition
complexinterpolationschattencomplexinterpolationschatten
4.13 and the proof of Theorem

tscomplextscomplex
4.12, one obtains the bound

‖W1F∗SFSW2‖
S

2p
2−p (L2(Rd))

. ‖W1‖
L

2p
2−p (Rd)

‖W2‖
L

2p
2−p (Rd)

, p ∈ [1,
2(d+ 1)

d+ 3
] .

The assertion in the theorem follows by interpolating this (with p = 2(d + 1)/(d + 3)) with the
trace bound

‖W1F∗SFSW2‖S1(L2(Rd)) ≤ ‖W1F∗S‖S2(L2(S),L2(Rd))‖W2F∗S‖S2(L2(S),L2(Rd))

where

‖WF∗S‖2S2(L2(S,dσ),L2(Rd)) =

∫
Rd
|W (x)|2

∫
S

dσ(ξ) = σ(S)‖W‖2L2(Rd) .

Here we used that the integral kernel of WF∗S is given by W (x)e2πix·ξ. �

The “trace class restriction theorem”
traceclassrestrtraceclassrestr
4.15 is predated by an observation of Birman, Koplienko,

Krein, Kurda, and Yafaev (see also
BirmanYafaev1981,BirmanYafaev1984
[10, 11] for asymptotic results on the eigenvalues of the

scattering matrix, in particular of FSV F
∗
S in L2(S) and

Yafaev2010
[181, Proposition 8.1.3] for a textbook

reference) in the context of scattering amplitudes. The proof uses the same strategy above by
interpolating in Schatten ideals between a bounded operator (when the potential decays like
|x|−1−ε) and a trace class operator (when the potential decays like |x|−d−ε).

Theorem 4.16 (Yafaev
Yafaev2010
[181, Proposition 8.1.3]). Suppose |V (x)| . (1 + |x|)−ρ for some ρ > 1

and let

Γ0(λ) : S(Rd)→ S ′(Sd−1)

f 7→ 2−1/2λ(d−2)/4f̂(λ1/2·)

be the rescaled restriction operator on
√
λSd−1 (see

Yafaev2010
[181, Formula (1.2.5)]) with adjoint Γ∗0 (ex-

tension operator) given by

(Γ∗0g)(x) = 2−1/2λ(d−2)/4

∫
Sd−1

e2πi
√
λx·ξg(ξ) dΣ(ξ)

where dΣ is the Lebesgue measure on Sd−1 (see
Yafaev2010
[181, Formula (1.2.7)]). Then for all λ > 0 and

p > (d− 1)/(ρ− 1) and p ≥ 1, one has

‖Γ0V Γ∗0‖Sp(L2(Sd−1)) . λ
−1+(d−1)/(2p) .
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4.5. A simpler L2-based restriction theorem. Notice that the L2 estimate in Tomas’ argu-
ments was based only on dimensionality considerations. This suggests that there should be an

L2 bound for f̂dσ (similar to the classical trace lemma ‖ĝ‖L2(S) . ‖g‖L2
σ(Rd) for all σ > 1/2)

valid under very general conditions.

easyl2restriction Theorem 4.17. Let ν be a positive finite measure satisfying the dimensional condition2

ν(Bx(r)) ≤ Crα . (4.27) eq:dimmeasure

Then there is a bound

‖f̂dν‖L2(B0(R)) ≤ CR
d−α

2 ‖f‖L2(dν) . (4.28) eq:easyl2restriction

The proof relies on the following well known

schur Lemma 4.18 (Schur’s test). Let (X,µ) and (Y, ν) be measure spaces and K(x, y) a measurable
function on X × Y satisfying∫

X

|K(x, y)| dµ(x) ≤ A for all y ∈ Y ,∫
Y

|K(x, y)| dν(y) ≤ B for all x ∈ X .

Let TK : S(X) → S ′(Y ) defined by TKf(x) =
∫
Y
K(x, y)f(y) dν(y). Then, for f ∈ L2(dν), the

integral defining TKf converges dµ-a.e. and we have

‖TKf‖L2(dµ) ≤
√
AB‖f‖L2(dν) .

Proof of Theorem
easyl2restrictioneasyl2restriction
4.17. Let ϕ ∈ S(Rd) such that ϕ(x) ≥ 1 on B0(1) and that ϕ̂ ∈ C∞c (Rd).

Denote the scaled version by ϕR(x) = ϕ(x/R). Then,

‖f̂dν‖L2(B0(R)) ≤ ‖ϕR(x)f̂dν(−x)‖L2(dx) = ‖ϕ̂R ∗ (fdν)‖L2(Rd) .

We will now use Schur’s test to estimate the operator norm of the convolution operator ϕ̂R ∗ (·).
On the one hand, we have ∫

Rd
|Rdϕ̂(R(ξ − η))| dξ = ‖ϕ̂‖L1(Rd) <∞

and on the other hand, ∫
|Rdϕ̂(R(ξ − η))| dν(η) . Rd−α

since ϕ̂ was assumed to be compactly supported and the dimensional condition on dν. Thus, by
Schur’s test,

‖f̂dν‖L2(B0(R)) . R
(d−α)/2‖f‖L2(dν) ,

thereby establishing the claim. �

2We only require one half of the Ahlfors–David regularity condition which would involve also a matching lower
bound.
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4.6. Trace theorems. We recall some classical trace theorems from PDE or scattering theory
and follow Yafaev

Yafaev2010
[181, Section 1.1]. Throughout, we assume that S ⊆ Rd is a hypersurface, i.e.,

a codimension one manifold. We start with the case where S can be parameterized by, say, a
continuous function F : Ω→ R where Ω ⊆ Rd−1 is an open set, i.e., ξd = F (ξ′).

tracethm1 Proposition 4.19. Let α > 1/2, then∫
Ω

|û(ξ′, F (ξ′)|2 dξ′ . 1

2α− 1

∫
Rd

(1 + x2
d)
α|u(x)|2 dx ≤ 1

2α− 1
‖u‖2L2

α(Rd) , (4.29) eq:tracethm1

where ‖u‖L2
α(Rd) = ‖u‖L2(Rd, <x>2α dx).

Proof. Let

ũ(ξ′, xd) :=

∫
Rd−1

e−2πix′·ξ′u(x′, xd) dx
′

and

û(ξ′, F (ξ′)) =

∫
Rd

e−2πi(x′·ξ′+xdF (ξ′))u(x′, xd) dx =

∫
R

e−2πixdF (ξ′)ũ(ξ′, xd) dxd .

Then, by Schwarz

|û(ξ′, F (ξ′))|2 . 1

2α− 1

∫
R
< xd >

2α |ũ(ξ′, xd)|2 dxd

and therefore ∫
Ω

dξ′ |û(ξ′, F (ξ′))|2 . 1

2α− 1

∫
Ω

dξ′
∫
R
dxd < xd >

2α |ũ(ξ′, xd)|2

=
1

2α− 1

∫
Rd
< xd >

2α |u(x)|2 dx

where we used Plancherel in the prime variables in the final step. This concludes the proof. �

Remark 4.20. The proof also goes through when Rd in position space is replaced by Zd and
correspondingly Rd by Td = [−1/2, 1/2]d the d-dimensional torus in Fourier space. Of course
one needs that S is actually contained in Td.

Next we recall that the left side of (
eq:tracethm1eq:tracethm1
4.29) is actually Hölder continuous with respect to a

variation of the function F , i.e., with respect to perturbation of the surface in question.

tracethm1holder Proposition 4.21. Let α > 1/2 and

θ =


α− 1/2 for α < 3/2

1− ε for any ε ∈ (0, 1) for α = 3/2

1 for α > 3/2

.

Then∫
Ω

|û(ξ′, F (ξ′))− û(ξ′, F̃ (ξ′))|2 dξ′ .α,θ sup
ξ′∈Ω
|F (ξ′)− F̃ (ξ′)|2θ

∫
Rd

(1 + x2
d)
α|u(x)|2 dx . (4.30) eq:tracethm1holder

Proof. We use the same representation as before, i.e.,

ũ(ξ′, xd) :=

∫
Rd−1

e−2πix′·ξ′u(x′, xd) dx
′

which allows us to write for ξd, ξ̃d ∈ R,

û(ξ′, ξd)− û(ξ′, ξ̃d) =

∫
R

(
e−2πixdξd − e−2πixdξ̃d

)
ũ(ξ′, xd) dxd
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and estimate

|û(ξ′, ξd)− û(ξ′, ξ̃d)|2 ≤
(∫

R
sin2(π(ξ̃d − ξd)xd) < xd >

−2α dxd

)
×
(∫

R
< xd >

2α |ũ(ξ′, xd)|2 dxd
)
.

using Schwarz. The first integral on the right side is bounded by a constant times |ξd − ξ̃d|2θ.
Thus, setting ξd = F (ξ′) and ξ̃d = F̃ (ξ′) yields

|û(ξ′, ξd)− û(ξ′, ξ̃d)|2 . |F (ξ′)− F̃ (ξ′)|2θ
∫
R
< xd >

2α |ũ(ξ′, xd)|2 dxd .

Integrating this over ξ′ and using Plancherel as in the proof of Proposition
tracethm1tracethm1
4.19 concludes the

proof. �

The integral in (
eq:tracethm1eq:tracethm1
4.29) is actually taken over the hypersurface S given by the equation ξd =

F (ξ′). Clearly, the Lebesgue measure dξ′ can be replaced by any scaled version C(ξ′)dξ′ for any
C(ξ′) > 0. If, e.g., F ∈ C1

b (Ω) (i.e., F is continuously differentiable with bounded derivative),
then one can integrate over the Euclidean measure

dΣS(ξ′) =
(
1 + |∇F (ξ′)|2

)1/2
dξ′ (4.31)

on S. Thus, Proposition
tracethm1tracethm1
4.19 implies that

‖û‖2L2(S) .α ‖u‖
2
L2
α(Rd) , α > 1/2 .

This inequality shows that sufficiently fast decaying functions have Fourier transforms that can
be meaningfully restricted to hypersurfaces; more precisely, this shows

L2
1/2+ε(R

d) ↪→ L2(S) .

Moreover, for the existence of a trace of a function, it suffices to have decay only in some directions
transversal to S. Moreover, the relation L2

1/2+ε(R
d) ↪→ L2(S) can be generalized as follows.

Proposition 4.22. Suppose a hypersurface can be covered by a finite number of hypersurfaces
Sj given in their own coordinate systems by functions ξd = Fj(ξ

′) where ξ′ belong to open sets
Ωj ⊆ Rd−1. Assume further that Fj ∈ C1

b (Ωj) for all j. Then, one has

‖û‖2L2(S) .
1

2α− 1
‖u‖2L2

α(Rd) , α > 1/2

and hence L2
1/2+ε(R

d) ↪→ L2(S).

5. Randomized restriction in Z2

We follow Bourgain
Bourgain2003
[18]. Let Γ ⊆ Π2 be a smooth, compact hypersurface with nowhere

vanishing Gaussian curvature. We could in principle work in any dimension if Γ satisfied these
assumptions, however in the model case where Γ is the level set

Γλ = {m(ξ) := 2(cos(2πξ1) + cos(2πξ2)) = λ} , |λ| ∈ (τ, 4− τ) , 0 < τ � 1 ,

this is only satisfied in d = 2. We denote by Σλ the arclength-measure of Γλ. Thus, by stationary
phase,

|d̂Σλ(n)| . (1 + |n|)−1/2 , n ∈ Z2

and so by Stein’s proof (using complex interpolation), we have
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Lemma 5.1. Let µ be a measure supported on Γλ such that µ� Σλ and dµ/dΣλ ∈ L2(Γ, dΣ).
Then

‖µ̂‖`6(Z2) . ‖
dµ

dΣλ
‖L2(Γ,dΣλ) .

Now suppose

Vω(n) := ωn|n|−εv(n)

where {ωn : n ∈ Z2} are independent Bernoulli or normalized Gaussian random variables, and
v ∈ `p(Z2) and some p ≥ 1. By Hölder and the above Tomas–Stein estimate, we obtain the
deterministic estimate

‖FSt2 vF
∗
St1
‖L2(Γt1 ,dΣt1 ),L2(Γt2 ,dΣt2 ) . ‖v‖`3/2(Z2) .

(As usual FSt and F ∗St denote the Fourier restriction and extension operators with respect to
(Γt, dΣt).) However, the randomness of Vω allows us to relax the decay condition on v(n)
substantially.

randomtsz2 Theorem 5.2. Let Vω(n) := ωn|n|−εv(n) =
∑
`≥0 V` with v ∈ `3(Z2), V0(n) = V 10(n) and

V`(n) = V 12`−1≤|n|≤2`(n). Then

Eω
[
‖FSV`F ∗S‖L2(Γ,dΣ),L2(Γ,dΣ)

]
. ‖v‖`3(Z2) · 2−c` , some 0 < c < ε . (5.1)

If Vω(n) := ωnw(n) with w ∈ `3−ε(Z2), then

Eω
[
‖FSt2V`F

∗
St1
‖L2(Γt1 ,dΣt1 ),L2(Γt2 ,dΣt2 )

]
. ‖w‖`3−ε(Z2) · 2−c` , some c = c(ε) > 0 . (5.2)

To prepare the proof we collect some classic results in geometry of Banach spaces and prob-
ability theory. The crucial ingredients going into the proof of Theorem

randomtsz2randomtsz2
5.2 are the “dual to

Sudakov bound” (Theorem
dualsudakovdualsudakov
5.6) and “Dudley’s Lψ2 estimate3” (Corollary

bourgaindudleybourgaindudley
5.28). The proof will

be concluded in Subsection
ss:proofrandomtsz2ss:proofrandomtsz2
5.5.

5.1. Facts in geometry of Banach spaces and entropy bounds. We mainly follow Pajor
and Tomczak–Jaegermann

PajorTomczakJaegermann1986
[126] and Bourgain–Lindenstrauss–Milman

Bourgainetal1989
[22].

The main question we pursue here is the following: suppose we are given two subsets D and
B of a linear space. What is the minimal number of dilated translates of B needed to cover D?
I.e., for given t > 0 we want to find good upper bounds on

N(D,B, t) := min{k ∈ N : ∃(xi)ki=1 s.t. D ⊆
k⋃
i=1

xi + tB} . (5.3)

Sometimes we will use a slightly different terminology, e.g., in the following more concrete situ-
ation. Suppose that (T, d) is a compact metric space, then

N(T, d, ε) := smallest number of ε-balls needed to cover T . (5.4)

Example 5.3. If T is the unit ball in an n-dimensional Banach space, such as `pd ≡ (Rd, ‖ · ‖p),
then

N(T, d, ε) ≤ (1 + 2/ε)n . (5.5)

See, e.g., Figiel–Lindenstrauss–Milman
Figieletal1977
[70, Lemma 2.4] or Bourgain–Lindenstrauss–Milman

Bourgainetal1989
[22,

Lemma 2.4].

3ψ2 stands for the Orlicz function ey
2
.
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The main estimate we are interested here is the “dual to Sudakov estimate” due to Pajor and
Tomczak–Jaegermann

PajorTomczakJaegermann1986
[126]. We will recast their estimate in a different form that will be useful

in our context and follow Bourgain et al
Bourgainetal1989
[22].

Let ‖| · |‖ := [·, ·]1/2 denote the euclidean norm and scalar product on Rn with Bn its unit ball
and Sn−1 its boundary, the euclidean sphere. Suppose ‖ · ‖ is another norm on Rn and denote
by X = (Rn, ‖ · ‖) and X∗ = (Rn, ‖ · ‖∗) the corresponding Banach space and its dual. Here,

‖ψ‖∗ := sup{|[ψ,ϕ]| : ϕ ∈ X with ‖ϕ‖X ≤ 1} .
Since all norms on Rn are equivalent to each other there exist a, b > 0 such that

a−1‖|x|‖ ≤ ‖x‖ ≤ b‖|x|‖ . (5.6) eq:equivalentnormsrn

If, e.g., ‖| · |‖ = ‖ · ‖2 and ‖ · ‖ = ‖ · ‖1, then a = 1 and b = n1/2. By interpolation, we obtain
a = 1 and b = n1/p−1/2 if ‖ · ‖ = ‖ · ‖p and 1 ≤ p ≤ 2. By duality, we have a = n1/2−1/p and
b = 1 for p ∈ [2,∞].

Next, define the median Mr of r(x) := ‖x‖ on Sn−1 by

µ({x ∈ Sn−1 : r(x) ≥Mr}) ≥
1

2
and µ({x ∈ Sn−1 : r(x) ≤Mr}) ≥

1

2
(5.7)

where µ is the associated normalized, rotation invariant Haar measure on Sn−1. Moreover, the
average Ar of r(x) = ‖x‖ on Sn−1 is given by

Ar :=

∫
Sn−1

‖x‖dµ(x) . (5.8)

We record the following lemma on the comparability of Ar and Mr.

Lemma 5.4. If b ≤
√
n in (

eq:equivalentnormsrneq:equivalentnormsrn
5.6), then there is C > 0 such that |Ar −Mr| < C. If additionally

ab ≤
√
n in (

eq:equivalentnormsrneq:equivalentnormsrn
5.6), then 1/2 ≤ Ar/Mr ≤ C.

Proof. See Milman–Schechtman
MilmanSchechtman1986
[122, Lemma 5.1]. �

Next, we rewrite Ar using homogeneity and polar coordinates as

Ar =
an

(2π)n/2

∫
Rn
‖x‖ exp(−‖|x|‖

2

2
) dx , an ∼ n−1/2 . (5.9)

A probabilistic way to write this is to consider n independent and normalized Gaussian variables
{gj(ω)}nj=1 on some probability space (Ω, ρ). Then

Bourgainetal1989
[22, (4.4)]

Ar = an

∫
Ω

∥∥∥∥∥∥
n∑
j=1

gj(ω)ej

∥∥∥∥∥∥ dρ(ω) , an ∼ n−1/2 (5.10) eq:averageprobabilistic

where {ej}nj=1 denotes an orthonormal basis in Rn.
We are now in position to state two answers to the question posed at the beginning of this

section. The first gives an upper bound on the minimal number of euclidean t-balls needed to
cover BX , the unit ball in X = (Rn, ‖ · ‖).

sudakov Proposition 5.5 (Sudakov
Sudakov1971
[155]). Let X = (Rn, ‖ · ‖) and ‖| · |‖ be the euclidean norm on Rn.

Let BX and Bn denote the unit balls in Rn with respect to the norms ‖ · ‖, respectively ‖| · |‖.
Then

logN(BX , ‖| · |‖, t) = logN(BX , B
n, t) ≤ C · n ·

(
Ar∗

t

)2

, (5.11)

where Ar∗ :=
∫
Sn−1 ‖x‖∗dµ(x).

The following estimate is dual to that one.
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dualsudakov Theorem 5.6 (Dual to Sudakov
PajorTomczakJaegermann1986,Bourgainetal1989
[126, 22]). Let X = (Rn, ‖ · ‖) and ‖| · |‖ be the euclidean norm

on Rn. Let BX and Bn denote the unit balls in Rn with respect to the norms ‖ · ‖, respectively
‖| · |‖. Then

logN(Bn, ‖ · ‖, t) = logN(Bn, BX , t) ≤ C · n ·
(
Ar
t

)2

. (5.12) eq:dualsudakov

remarksudakovinterpretation Remark 5.7. It is useful to have another interpretation of N(Bn, ‖ ·‖, t) in mind. It is precisely
the minimal size of a finite subset E ⊆ Bn that satisfies

max
x∈Bn

min
x′∈E
‖x− x′‖ < t .

Proof. We follow
Bourgainetal1989
[22, Proposition 4.2]. Let σ be the probability measure on Rn defined by

dσ(x) =
1

(2π)n/2
exp(−‖| · |‖

2
) dx .

Then by

Ar =
an

(2π)n/2

∫
Rn
‖x‖ exp(−‖| · |‖

2
) dx =

∫
Sn−1

‖x‖dµ(x)

and Chebyshev’s inequality

σ({x ∈ Rn : |f(x)| > α}) ≤ α−p
∫

|f(x)|≥α

|f(x)|pdσ(x) ,

we have, for f(x) = ‖x‖, p = 1, and α = 2Ar/an that

σ({x ∈ Rn : ‖x‖ > 2Ar
an
}) ≤ an

2Ar

∫
Rn
‖x‖dσ(x) =

1

2

and so

σ({x ∈ Rn : ‖x‖ ≤ 2Ar
an
}) ≥ 1

2
. (5.13) eq:dualsudakovaux

Next, suppose {xj}Nj=1 is a maximal subset of Bn relative to the requirement that ‖xj − x`‖ ≥ t
for all j 6= `. This ensures that the sets {xj + t

2BX}
N
j=1 have disjoint interior. Since σ is a

probability measure, this disjointness implies

N∑
j=1

µ({yj +
2Ar
an

BX}) = Nµ({yj +
2Ar
an

BX}) ≤ 1 , where yj =
4Ar
ant

xj . (5.14) eq:dualsudakovaux2

By convexity of e−u and symmetry of BX with respect to the origin (for the first estimate in the
following formula) and (

eq:dualsudakovauxeq:dualsudakovaux
5.13) (for the second estimate), we have for fixed j = 1, ..., N ,

µ({yj +
2Ar
an

BX}) =
1

(2π)n/2

∫
2Ar
an

BX

dx exp(−‖|x− yj |‖
2

2
)

≥ 1

(2π)n/2

∫
2Ar
an

BX

dx exp(−‖|x− yj |‖
2 + ‖|x+ yj |‖2

4
)

=
1

(2π)n/2

∫
2Ar
an

BX

dx exp(−‖|x|‖
2 + ‖|yj |‖2

2
)

≥ 1

2
exp(−‖|yj |‖

2

2
) ≥ 1

2
exp(− 4A2

r

(tan)2
) .
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Combining this with (
eq:dualsudakovaux2eq:dualsudakovaux2
5.14) then finally gives

N ≤ 2 exp(
4A2

r

(tan)2
)⇒ logN .

1

n
·
(
Ar
t

)2

.

This concludes the proof. �

In the following we are interested in finding large euclidean sections in a finite-dimensional
normed space.

Definition 5.8. Let X,Y be two n-dimensional normed spaces. The Banach–Mazur distance
betweeen them is defined as

d(X,Y ) := inf{‖T‖ · ‖T−1‖ : T : X → Y isomorphism} . (5.15)

If d(X,Y ) ≤ λ, we say that X and Y are λ-isomorphic.

Obviously, d(X,Y ) ≥ 1 and d(X,Y ) = 1 if and only if X and Y are isometric. Thus, by the
discussion after (

eq:equivalentnormsrneq:equivalentnormsrn
5.6), we see that (cf.

MilmanSchechtman1986
[122, p. 20])

d(`2n, `
p
n) ≤ n|1/2−1/p| 1 < p <∞ .

Theorem 5.9 (F. John
MilmanSchechtman1986
[122, Theorem 3.3]). Let X = (Rn, ‖ · ‖) be an n-dimensional normed

space. Let D be the ellipsoid of maximal volume inscribed in BX and ‖| · |‖ be the euclidean norm
induced by D, i.e., D = {x ∈ BX : ‖|x|‖ ≤ 1}. Then

n−1/2‖|x|‖ ≤ ‖x‖ ≤ ‖|x|‖

and consequently d(`2n, X) ≤
√
n (where `2n is equipped with ‖|(x1, ..., xn)|‖2 =

∑n
j=1 |xj |2.)

5.2. Connection between probability theory and geometry of Banach spaces. We fol-
low Milman–Schechtman

MilmanSchechtman1986
[122].

Definition 5.10. Let X be a normed space and {εj}j∈N be Rademacher signs. For 1 ≤ p ≤ 2 ≤
q < ∞, and n ∈ N we define the type p (resp. cotype q) constants Tp(X,n) (resp. Cq(X,n)) of
X as the smallest T (resp. C) such thatE

∥∥∥∥∥∥
n∑
j=1

εjxj

∥∥∥∥∥∥
2


1/2

≤ T

 n∑
j=1

‖xj‖p
1/p

resp.  n∑
j=1

‖xj‖q
1/q

≤ C

E

∥∥∥∥∥∥
n∑
j=1

εjxj

∥∥∥∥∥∥
2


1/2

for all x1, ..., xn ∈ X. If Tp(X) := supn Tp(X,n) < ∞ (resp. Cq(X) := supn Cq(X,n) < ∞) we
say that X has type p resp. cotype q with type p constant Tp(X) and cotype constant Cq(X).

Theorem 5.11 (Kahane’s inequality). Let X be a normed space and p ∈ [1,∞). Then there is
a constant Kp > 0 such that

E‖
n∑
j=1

εjxj‖ ≤ [E(‖
n∑
j=1

εjxj‖p)]1/p ≤ Kp E‖
n∑
j=1

εjxj‖ (5.16)

where x1, ..., xn ∈ X and {εj}j∈N are Rademacher distributed.

Proof. See, e.g.,
MilmanSchechtman1986
[122, Theorem 9.2]. �
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Example 5.12. Lp has type p and cotype 2 for 1 ≤ p ≤ 2. Respectively, Lq has type 2 and
cotype q for 2 ≤ q < ∞. (See

MilmanSchechtman1986
[122, Example 9.3].) This follows from Kahane’s inequality and

Khinchine’s inequality (for 0 < p <∞)

‖(
∑
j

|xj |2)1/2‖pLp ∼
∫

E(|
∑
j

εjxj |p) dx . (5.17)

Definition 5.13. A L2-normalized, random Gaussian variable is a random variable g(ω) whose
distribution is given by

P(g(ω) ≤ t) =
1

(2π)1/2

∫ t

−∞
e−s

2/2 ds .

Let {gj}∞j=1 be a sequence of independent gaussian variables normalized in L2. For a normed
space X, 1 ≤ p ≤ 2 ≤ q <∞, and n ∈ N we define the gaussian type p (resp. cotype q) constants
αp(X,n) (resp. βq(X,n)) of X as the smallest T (resp. C) such thatE

∥∥∥∥∥∥
n∑
j=1

gj(ω)xj

∥∥∥∥∥∥
2


1/2

≤ T

 n∑
j=1

‖xj‖p
1/p

resp.  n∑
j=1

‖xj‖q
1/q

≤ C

E

∥∥∥∥∥∥
n∑
j=1

gj(ω)xj

∥∥∥∥∥∥
2


1/2

for all x1, ..., xn ∈ X.

The following two statements assert that “Rademacher” (co)type and gaussian (co)type are
somewhat comparable with each other.

Lemma 5.14. If 1 ≤ p ≤ 2 ≤ q <∞, then

Tp(X,n) ≤
√
π/2αp(X,n) ≤

√
π/2KpTp(X,n) and

βq(X,n) ≤
√
π/2Cq(X,n) .

Proof. See
MilmanSchechtman1986
[122, p. 53-54]. �

The following gives the missing bound for the cotypes when X = Lq.

Proposition 5.15. For all C <∞ and q ∈ [2,∞) there is a constant K = K(C, q) such that if
βq(X) ≤ C (the gaussian cotype q constant) then for all n and x1, ..., xn ∈ X, one has

‖
n∑
j=1

gjxj‖Lq(X) ≤ K‖
n∑
j=1

εjxj‖Lq(X)

where gj are independent, symmetric, L2-normalized, random Gaussians, and εj Rademacher
signs. In particular, Cq(X) ≤ Kβq(X).

Proof. See
MilmanSchechtman1986
[122, Appendix II, Theorem 1]. �

Definition 5.16. Let 1 ≤ n ≤ m, X be a normed space, and

RadnX := {
n∑
j=1

rj(t)xj : xj ∈ X, j = 1, ..., n}
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denote the subspace of L2(X, {−1, 1}m) that is spanned by the first n Rademacher functions.
If f =

∑
A⊆{1,...,m} wA · xA ∈ L2(X, {−1, 1}m) (where {wα}α∈A is any orthonormal basis in

L2({−1, 1}m) equipped with counting measure and {xα}α∈A ∈ X are coefficients), then

Radnf :=

n∑
j=1

rj · x{j} .

Lemma 5.17. Let X be a normed space, n ∈ N, and 1 < p ≤ 2. Then

Cp′(X,n) ≤ Tp(X∗, n) ≤ ‖Radn‖Cp′(X,n) .

In particular, if X∗ has type p then X has cotype p′. Conversely, if ‖Radn‖ < ∞ and X has
cotype p′, then X∗ has type p.

Proof. See
MilmanSchechtman1986
[122, Lemma 9.10 and Corollary 9.11]. �

We now state a theorem estimating ‖Radn‖ for a general finite-dimensional space.

Theorem 5.18. Let X be a finite-dimensional normed space of dimension k. Then, for all n,m,
one has

‖Radn‖L2({−1,1}m,X) ≤ (e+ 1) log(1 + d(X, `2k)) . (5.18)

In particular, there exists a universal constant K > 0 such that

‖Radn‖L2({−1,1}m,X) ≤ K · log k . (5.19)

Moreover, if X ⊆ L1(0, 1), then

‖Radn‖L2({−1,1}m,X) ≤ K · (log k)1/2 . (5.20)

Proof. See
MilmanSchechtman1986
[122, Theorem 14.5] and

Bourgainetal1989
[22, p. 94]. �

5.3. Tails of sub-gaussian distributed random variables.

Definition 5.19 (Orlicz function4). An Orlicz function is a convex increasing function ψ : R+ →
R+ with ψ(0) ∈ [0, 1). For a random variable X we define its Orlicz norm by

‖X‖ψ := inf{c > 0 : P[ψ(|X|/c)] ≤ 1}
with the understanding that ‖X‖ψ =∞ if the infimum runs over an empty set. The Orlicz space
Lψ = Lψ(Ω,Σ,P) consists of all random variables X on the probability space (Ω,Σ,P) with finite
Orlicz norm, i.e., Lψ = {X : ‖X‖ψ <∞}.

Example 5.20.

• For q ≥ 1, the function ψq(x) = exp(xq)− 1 is an Orlicz function with ‖X‖ψ <∞ if and
only if there is K1 > 0 such that X − PX satisfies P{|X| > t} ≤ 2 exp(−tq/Kq

1) for all
t > 0. (If q = 2, we will say that X is sub-gaussian.)

• For p ∈ [1,∞]) the function ψ(x) = xp is Orlicz.
• We have the hierarchy L∞ ⊆ Lψ2 ⊆ Lp for all p ∈ [1,∞). (The first inclusion is a

consequence of (2) in Proposition
subgaussianpropssubgaussianprops
5.22 and the second inclusion follows from the obvious

bound ‖X‖ψ2
. ‖X‖∞.)

Remark 5.21. The bound ‖X‖ψ ≤ σ immediately gives the tail bound

P(|X| > t) ≤ Pψ(|X|/σ)

ψ(t/σ)
≤ 1

ψ(t/σ)
, t > 0 .

4See
Vershynin2018
[173, Section 2.7].
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subgaussianprops Proposition 5.22 (Sub-gaussian properties). Let X be a random variable. Then the following
are equivalent.

(1) The tails of X satisfy P{|X| > t} ≤ 2 exp(−t2/K2
1 ) for all t > 0.

(2) ‖X‖Lp := (E|X|p)1/p ≤ K2
√
p for all p ≥ 1.

(3) E exp(λ2X2) ≤ exp(K2
3λ

2) for all λ ∈ R such that |λ| < 1/K3.
(4) There is K4 > 0 such that E(exp(X2/K2

4 )) ≤ 2. (This is called the ψ2 condition.)

Moreover, if EX = 0 then (1)-(4) are also equivalent to

(5) E exp(λX) ≤ exp(K2
5λ

2) for all λ ∈ R.

The parameters Ki appearing in the statements differ from each other by at most an absolute
factor.

Proof. See Vershynin
Vershynin2018
[173, Proposition 2.5.2]. �

Definition 5.23. A random variable X that satisfies one of the equivalent properties in Propo-
sition

subgaussianpropssubgaussianprops
5.22 is called a sub-gaussian random variable. The sub-gaussian norm of X, denoted by

‖X‖ψ2 is defined to be the smallest K4 in the fourth property in Proposition
subgaussianpropssubgaussianprops
5.22, i.e.,

‖X‖ψ2
= inf{t > 0 : E(exp(X2/t2)) ≤ 2} . (5.21)

Thus, if X is sub-gaussian, then, e.g.,

P{|X| > t} ≤ 2 exp(−ct2/‖X‖2ψ2
) .

Moreover it is clear that when X is sub-gaussian, then so is X−EX with ‖X−EX‖ψ2
. ‖X‖ψ2

(by Jensen, but see also
Vershynin2018
[173, Lemma 2.6.8]).

Example 5.24.

• Random gaussians X ∼ N(0, σ2) with variance σ2 are sub-gaussian with ‖X‖ψ2
. σ.

• Rademacher signs are sub-gaussian with ‖X‖ψ2 = 1/
√

log 2 since |X| = 1.

See also Vershynin
Vershynin2018
[173, Example 2.5.8].

The following lemma is crucial for the proof of Theorem
randomtsz2randomtsz2
5.2.

maximumsubgaussians Lemma 5.25 (Maximum of sub-gaussians). Let (Xj)j∈N be a sequence of sub-gaussian random
variables which are not necessarily independent. Then we have for any N ≥ 2 that

E max
1≤j≤N

|Xj | . max
1≤j≤N

‖Xj‖ψ2

√
logN .

Remarks 5.26. (1) In some sense this lemma can be seen as a substitute for the dual of the
missing p =∞-Kintchine inequality∫

Rd
E|
∑
j

εjfj(x)|p dx ∼ ‖(
∑
j

|fj |2)1/2‖pLp . (5.22)

(2) This estimate is sharp as can be seen by taking X1, ..., XN to be N independent N(0, 1)
normal distributed variables. Then Emax1≤j≤N Xj &

√
logN (cf.

Vershynin2018
[173, Exercise 2.5.11]).

Proof. See Vershynin
Vershynin2018
[173, Exercise 2.5.10] or Theorem 1.14 in MIT notes https://ocw.mit.

edu/courses/mathematics/18-s997-high-dimensional-statistics-spring-2015/lecture-notes/

MIT18_S997S15_Chapter1.pdf. �

We will now state some tail bounds.

https://ocw.mit.edu/courses/mathematics/18-s997-high-dimensional-statistics-spring-2015/lecture-notes/MIT18_S997S15_Chapter1.pdf
https://ocw.mit.edu/courses/mathematics/18-s997-high-dimensional-statistics-spring-2015/lecture-notes/MIT18_S997S15_Chapter1.pdf
https://ocw.mit.edu/courses/mathematics/18-s997-high-dimensional-statistics-spring-2015/lecture-notes/MIT18_S997S15_Chapter1.pdf
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sumindepgaussian Lemma 5.27 (Sums of independent sub-gaussians). Let X1, ..., XN be independent, mean-zero,

sub-gaussian random variables. Then
∑N
n=1Xn is sub-gaussian as well with

‖
N∑
n=1

Xn‖2ψ2
.

N∑
n=1

‖Xn‖2ψ2
.

Proof. See
Vershynin2018
[173, Proposition 2.6.1]. �

This and Lemma
maximumsubgaussiansmaximumsubgaussians
5.25 allow us to obtain the following corollary that will be crucial for the

proof of Theorem
randomtsz2randomtsz2
5.2. Compare also with

Bourgain2002
[26, (4.1), (4.14)] and

Bourgain2003
[18, (3.12)] where it is referred

to as “Dudley’s Lψ2-estimate”.

bourgaindudley Corollary 5.28. Let {ωn}n∈N be independent sub-gaussian random variables and E be a sepa-
rable, (possibly infinite-dimensional) vector space over C with cardinality |E|. Then

E

(
sup

ξ=(ξn)n∈N∈E
|
∑
n

ωnξn|

)
.
√

log |E| · sup
ξ=(ξn)n∈N∈E

(
∑
n

|ξn|2)1/2 .

Proof. Identify Xj with
∑
n ωnξ

(j)
n where (ξ

(j)
n )n∈N denote the elements of the vector ξ(j) ∈ E

that we use to identify Xj . By Lemmas
maximumsubgaussiansmaximumsubgaussians
5.25 and

sumindepgaussiansumindepgaussian
5.27, one has

E

(
sup
ξ∈E
|
∑
n

ωnξn|

)
≤
√

log |E| sup
ξ∈E
‖
∑
n

ωnξn‖ψ2 ≤
√

log |E| sup
ξ∈E

[
∑
n

|ξn|2‖ωn‖2ψ2
]1/2 .

This concludes the proof. �

The following is a simple tail bound that is useful for measuring exceptional sets.

Proposition 5.29 (Hoeffding inequality). Let X1, ..., XN be independent, mean-zero, sub-gaussian
random variables and a = (a1, ..., aN ) ∈ RN . Then for every t > 0 we have

P(|
N∑
j=1

ajXj | ≥ t) ≤ 2 exp(− ct2

supj ‖Xj‖2ψ2
‖a‖22

)

Proof. See
Vershynin2018
[173, Theorem 2.6.3]. �

Definition 5.30. A random variable X that satisfies ‖X‖ψ1
where ψ1(x) = ex − 1 is called a

sub-exponential random variable.

Proposition 5.31. Let X be a random variable. Then the following are equivalent.

(1) The tails of X satisfy P{|X| > t} ≤ 2 exp(−t/K1) for all t > 0.
(2) ‖X‖Lp := (E|X|p)1/p ≤ K2p for all p ≥ 1.
(3) E exp(λ|X|) ≤ exp(K3λ) for all λ ∈ R such that |λ| < 1/K3.
(4) There is K4 > 0 such that E(exp(|X|/K4)) ≤ 2. (This is called the ψ2 condition.)

Moreover, if EX = 0 then (1)-(4) are also equivalent to

(5) E exp(λX) ≤ exp(K2
5λ

2) for all λ ∈ R such that |λ| ≤ 1/K5.

The parameters Ki appearing in the statements differ from each other by at most an absolute
factor.

Proof. See
Vershynin2018
[173, Proposition 2.7.1]. �

Lemma 5.32. (1) Any sub-gaussian random variable is also sub-exponential.
(2) A random variable X is sub-exponential if and only if X2 is sub-gaussian and in this case

‖X2‖ψ1 = ‖X‖2ψ2
.
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(3) Let X and Y be sub-gaussian random variables. Then ‖XY ‖ψ1 ≤ ‖X‖ψ2‖Y ‖ψ2 .
(4) If X is sub-exponential, then ‖X − EX‖ψ1

. ‖X‖ψ1
.

Theorem 5.33 (Bernstein). Let X1, ..., XN be independent, mean-zero, sub-exponential random
variables, and a = (a1, ..., aN ) ∈ RN . Then for every t ≥ 0 we have

P

| N∑
j=1

ajXj | ≥ t

 ≤ 2 exp

(
−cmin{ t2

maxj ‖Xj‖2ψ1
‖a‖22

,
t

maxj ‖Xj‖ψ1
‖a‖∞

}

)
.

Proof. See
Vershynin2018
[173, Theorem 2.8.2]. �

5.4. Sub-gaussians, Sudakov, Dudley, and entropy once again. The following bounds
once more refer to geometry of Banach spaces (Proposition

sudakovsudakov
5.5 and Theorem

dualsudakovdualsudakov
5.6) now in a

concrete probabilistic setting.

sudakovprocess Theorem 5.34 (Sudakov’s minorization). Let (Xt)t∈T be a Gaussian process indexed by a set
T equipped with the pseudo-metric5 dX induced by X defined as6

dX(s, t) = ‖Xs −Xt‖L2 =
(
E(Xt −Xs)

2
)1/2

, s, t ∈ T .
Then for each ε > 0, we have

logN(T, dX , ε) .
supt∈T |Xt|2

ε2
.

Proof. See
LedouxTalagrand1991
[113, Theorem 3.18]. �

Example 5.35. Consider Brownian motion where Xt − Xs ∼ N(0, t − s), i.e., the incre-
ments are independent and are distributed according to the Gaussian law dµt−s(x) = (t −
s)−1/2 exp(−|x|2/(t− s)) dx. Then

dX(t, s)2 =

∫
x2 dµt−s(x) =

∫
x2 e−|x|

2/(t−s)
√
t− s

dx ∼ t− s .

Definition 5.36 (Sub-gaussian increments). Consider a random process (Xt)t∈T on a metric
space (T, d). We say that this process has sub-gaussian increments if there exists K > 0 such
that

‖Xt −Xs‖ψ2 ≤ Kd(t, s) , t, s ∈ T . (5.23) eq:subgaussianincrements

Example 5.37. Let (Xt)t∈T be a Gaussian process on an abstract set T . Define a metric on T
by

d(t, s) := ‖Xt −Xs‖L2 , t, s ∈ T .
Then (Xt)t∈T is a process with sub-gaussian increments and K above is an absolute constant.

We now state Dudley’s inequality which gives a bound on a general sub-gaussian random pro-
cess (Xt)t∈T in terms of the metric entropy log(N(T, d, ε)) of T . Note that it almost complements
Sudakov’s bound in Theorem

sudakovprocesssudakovprocess
5.34.

dudley Theorem 5.38 (Dudley). Let (Xt)t∈T be a mean-zero random process on a metric space (T, d)
with sub-gaussian increments as in (

eq:subgaussianincrementseq:subgaussianincrements
5.23). Then

E sup
t∈T

Xt . K
∫ ∞

0

√
log(N(T, d, ε)) dε

5That is, d(t, s) = 0 does not necessarily imply t = s.
6The pseudo-metric dX(s, t) is also called “increments of the random process (Xt)t∈T ”.
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and

E sup
t∈T

Xt . K
∑
k∈Z

2−k
√

log(N(T, d, 2−k))

Proof. See
LedouxTalagrand1991
[113, Theorem 11.17] or

Vershynin2018
[173, Theorems 8.1.3 and 8.1.4]. �

Theorem 5.39 (Fernique).

Proof. See
LedouxTalagrand1991
[113, Theorem 11.18] and Theorem 6.6 in https://www.math.ucla.edu/~biskup/

PIMS/PDFs/lecture6.pdf. �

ss:proofrandomtsz2
5.5. Proof of Theorems

randomtsz2randomtsz2
5.2 and

randomtsrandomts
??. As mentioned in the beginning of this section, one of

the main tools will be the dual to Sudakov bound (Theorem
dualsudakovdualsudakov
5.6), i.e.,

logN(Bn, ‖ · ‖X , t) . n · (
Ar
t

)2

where Bn = {x ∈ Rn : ‖x‖2 ≤ 1} is the euclidean unit ball in Rn, ‖ · ‖X denotes another norm
on Rn, and

Ar =

∫
Sn−1

‖x‖X dµ(x) ∼ n−1/2

∫
Ω

‖
n∑
j=1

gj(ω)ej‖X dρ(ω)

denotes the average of ‖x‖X on the euclidean unit sphere which can be expressed probabilistically
using n independent random gaussians and any orthonormal basis {ej}nj=1 of Rn, cf. (

eq:averageprobabilisticeq:averageprobabilistic
5.10).

Proof of Theorem
randomtsz2randomtsz2
5.2. We only focus on Γt1 = Γt2 ≡ Γ. The general case is proven analogously.

Our task is to compute

‖FSV`F ∗S‖L2(Γ),L2(Γ) = sup
µ1,µ2

∣∣∣∣∣∣
∑
|n|∼2`

Vω(n)µ̂1(n)µ̂2(n)

∣∣∣∣∣∣ = 2−ε` sup
µ1,µ2

∣∣∣∣∣∣
∑
|n|∼2`

ωnvnµ̂1(n)µ̂2(n)

∣∣∣∣∣∣
(5.24) eq:opnormrandomts

where the supremum is taken over all µj ∈ L2(Γ, dσ) with ‖dµ/dσ‖2 ≤ 1 for j = 1, 2. The main
idea is to find a (finite) covering Et of the distorted euclidean ball {µ̂(n)||n|∼2` : ‖µ‖L2(Γ) ≤ 1}
with `∞|n|∼2` -balls of radius t and to expand µ̂(n)||n|∼2` =

∑
r ξ

(r)(n) for some ξ(r) ∈ Fr ⊆
E2−r−1 − E2−r . The main task is to understand ‖ξ(r)‖p for p ∈ {6,∞} and the cardinality
|Fr| . |E2−r−1 | · |E2−r |. Of course, the latter quantity will be estimated by means of the dual to
Sudakov estimate (Theorem

dualsudakovdualsudakov
5.6).

To apply the dual to Sudakov bound, we construct the norm ‖ · ‖X on Rd as follows. Consider
a linear operator

S = (S1, ..., Sm) : `2d → `∞m

(where each Sj has d columns for any j = 1, ...,m) and define

‖ψ‖X := ‖Sψ‖`∞m . (5.25)

Now change the perspective and observe that not only does N(Bd, ‖ · ‖X , t) equal the minimal
number of t-balls in ‖S · ‖`∞m norm needed to cover {ψ ∈ Bd} but also the minimal number of

t-balls in ‖ · ‖`∞m norm needed to cover the deformed euclidean unit ball {Sψ : ψ ∈ Bd} ⊆ `∞m .

https://www.math.ucla.edu/~biskup/PIMS/PDFs/lecture6.pdf
https://www.math.ucla.edu/~biskup/PIMS/PDFs/lecture6.pdf
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We will now compute the average. Using Corollary
bourgaindudleybourgaindudley
5.28, we obtain

Ar ∼ d−1/2

∫
Ω

dµ max
1≤j≤m

|
d∑

n=1

Sj,nengn(ω)|

. d−1/2(logm)1/2 max
1≤j≤m

(

d∑
n=1

|Sj,nen|2)1/2

= d−1/2(logm)1/2‖S‖`2d→`∞m
Thus, the entropy number for {Sψ : ψ ∈ Bd} is bounded by

logN(Bd, ‖ · ‖X , t) . (logm)t−2‖S‖2`2d→`∞m ,

which – and this is important – does not depend on the dimension d that we started with. But
that means that we may cover any infinite-dimensional euclidean ball, such as L2, with balls in
a suitable L∞ metric. In fact, we will now replace `2d by our space of interest, namely L2(Γ, dΣ).
The role of S will be played by the localized Fourier extension operator

S : L2(Γ, dΣ)→ `∞(Z2)

µ 7→ µ̂
∣∣
|n|∼2`

for some ` ∈ N. (Recall that 2` was the localization in physical space where we splitted V =
∑
` V`

with V` = V 12`−1≤|n|≤2` .) Indeed, by its very definition (or Riemann–Lebesgue), we have

‖S‖L2(Γ,dΣ)→`∞(Z2) ≤ C

and, by Tomas–Stein,

‖S‖L2(Γ,dΣ)→`6(Z2) ≤ C .

Thus, by the penultimate estimate and the above discussion, we can cover the set {Sψ : ψ ∈
L2(Γ, dΣ), ‖ψ‖ ≤ 1} with N(t) many t-balls in the `∞m -norm where now m ∼ 2`. Put differently,
there exists a set Et ⊆ `∞|n|∼2` of cardinality |Et| that satisfies7

log |Et| < C`t−2

max
µ∈L2(Γ), ‖dµ/dΣ‖2≤1

min
ξ∈Et
‖µ̂− ξ‖`∞

|n|∼2`
< t

max
ξ∈Et
‖ξ‖6 < C

(5.26) eq:constructedcovering

We now take t of the form 2−r for r ∈ N. Thus, there exists a subset

Fr ⊆ E2−r−1 − E2−r = {ξr+1 − ξr : ξr+1 ∈ E2−r−1 , ξr ∈ E2−r} (5.27)

with the properties8

‖ξ‖∞ < 2−r+1 and ‖ξ‖6 < C , ξ ∈ Fr (5.28) eq:propertiesdifferencesetsudakov

and for each µ ∈ L2(Γ) with ‖dµ/dσ‖2 ≤ 1 there is a representation

Sµ = µ̂(n)
∣∣
|n|∼2`

=
∑
r

ξ(r) for some ξ(r) ∈ Fr . (5.29) eq:decompextension

7Recall Remark
remarksudakovinterpretationremarksudakovinterpretation
5.7.

8One may think of Fr being the set of differences ξ − ξ′ where ξ and ξ′ belong to the same or “parental” 2−r

or 2r−r−1 cube in `∞|n|∼2`
metric. This is a consequence of the geometrical fact that dyadic cubes either contain

each other or are disjoint.
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Plugging this decomposition into (
eq:opnormrandomtseq:opnormrandomts
5.24), we obtain

‖FSV`F ∗S‖L2(Γ),L2(Γ) ≤ 2−ε`
∑

r1,r2∈N
max

ξ(1)∈Fr1 , ξ(2)∈Fr2

∣∣∣∣∣∣
∑
|n|∼2`

ωnvnξ
(1)
n ξ(2)

n

∣∣∣∣∣∣ . (5.30) eq:estimaterandomvs

Now fix r1, r2 and take the ω-expectation. On the one hand, we have the simple deterministic
bound

max
ξ(1)∈Fr1 , ξ(2)∈Fr2

∣∣∣∣∣∣
∑
|n|∼2`

ωnvnξ
(1)
n ξ(2)

n

∣∣∣∣∣∣ . 2−r1−r2
∑
|n|∼2`

|ωn||vn| . 2−r1−r2 · 24`/3‖v‖3 , (5.31) eq:trivialdeterministic

which already behaves quite well in r1, r2 but terribly in `. We now derive a second bound.
Since the {ωn} are independent sub-gaussian random variables, we may apply Dudley’s estimate
(Corollary

bourgaindudleybourgaindudley
5.28) and obtain

Eω

 max
ξ(1)∈Fr1 , ξ(2)∈Fr2

∣∣∣∣∣∣
∑
|n|∼2`

ωnvnξ
(1)
n ξ(2)

n

∣∣∣∣∣∣


. (log |Fr1 |+ log |Fr2 |)
1/2

 max
ξ(1)∈Fr1 , ξ(2)∈Fr2

 ∑
|n|∼2`

|vn|2|ξ(1)
n |2|ξ(2)

n |2
1/2

 .
(5.32) eq:expectationdecomposedvs

To estimate log |Frj |, recall that (
eq:constructedcoveringeq:constructedcovering
5.26) said log |E2−r | . `4r. Combining this with the trivial

estimate |Fr| . |E2−r−1 | · |E2−r | gives

log |Fr| . log |E2−r−1 |+ log |E2−r | . `4r . (5.33) eq:cardinalityfr

Next, we bound [...] on the right side of (
eq:expectationdecomposedvseq:expectationdecomposedvs
5.32). Using Hölder and (

eq:propertiesdifferencesetsudakoveq:propertiesdifferencesetsudakov
5.28), the sum over |n| ∼ 2`

is bounded by ∑
|n|∼2`

|vn|2|ξ(1)
n |2|ξ(2)

n |2
1/2

≤ ‖v‖3‖ξ(1) · ξ(2)‖6 . ‖v‖3 min{2−r1 , 2−r2} . (5.34) eq:estimatensum

Combining (
eq:cardinalityfreq:cardinalityfr
5.33) with (

eq:estimatensumeq:estimatensum
5.34), we obtain

Eω

 max
ξ(1)∈Fr1 , ξ(2)∈Fr2

∣∣∣∣∣∣
∑
|n|∼2`

ωnvnξ
(1)
n ξ(2)

n

∣∣∣∣∣∣
 . √`(2r1 + 2r2) min{2−r1 , 2−r2}‖v‖3 .

√
`‖v‖3 .

This estimate alone would not be good enough to survive the r1, r2 summation. However,
combining it with (

eq:trivialdeterministiceq:trivialdeterministic
5.31), we see that the ω-expectation of (

eq:estimaterandomvseq:estimaterandomvs
5.30) is bounded from above by

Eω‖FSV`F ∗S‖L2(Γ),L2(Γ) . 2−ε`
∑

r1,r2∈N
min{

√
`, 2−r1−r224`/3}‖v‖3 . `5/22−ε`‖v‖3 . 2−ε

′`‖v‖3

for some 0 < ε′ < ε. This proves Theorem
randomtsz2randomtsz2
5.2 for Vω(n) = ω(n)|n|−εv(n) and v ∈ `3(Z2).

If Vω(n) = ω(n)w(n) with w ∈ `3−ε(Z2), then the deterministic bound in (
eq:trivialdeterministiceq:trivialdeterministic
5.31) becomes

max
ξ(1)∈Fr1 , ξ(2)∈Fr2

∣∣∣∣∣∣
∑
|n|∼2`

ωnwnξ
(1)
n ξ(2)

n

∣∣∣∣∣∣ . 2−r1−r2
∑
|n|∼2`

|ωn||wn| . 2−r1−r2 · 2
2(2−ε)
3−ε `‖w‖3−ε
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which is – as expected – a slight improvement over (
eq:trivialdeterministiceq:trivialdeterministic
5.31) since (2 − ε)/(3 − ε) < 2/3. On the

other hand, (
eq:estimatensumeq:estimatensum
5.34) (which came from the probabilistic estimate using Dudley’s Lψ2 inequality)

is improved to ∑
|n|∼2`

|wn|2|ξ(1)
n |2|ξ(2)

n |2
1/2

≤ ‖w‖3−ε‖ξ(1) · ξ(2)‖ 2(3−ε)
1−ε

. ‖w‖3−ε2−ε̃(r1+r2) ·min{2−r1 , 2−r2}

for ε̃ = (p− 6)/p > 0 with p = 2(3− ε)/(1− ε) > 6 which follows from Hölder’s inequality

‖ξ(j)‖p ≤ ‖ξ(j)‖6/p6 ‖ξ(j)‖
p−6
p
∞ . 2−

p−6
p rj .

Combining these estimates as before then gives

Eω‖FSV`F ∗S‖L2(Γ),L2(Γ) .
∑

r1,r2∈N
min{2−ε̃(r1+r2)

√
`, 2−r1−r22

2(2−ε)
3−ε `}‖w‖3−ε . 2−ε

′`‖w‖3−ε .

This concludes the proof of Theorem
randomtsz2randomtsz2
5.2. �

6. Local restriction estimates
s:local

We follow Lecture 1 in Hickman–Vitturi
HickmanVitturi
[94] and strongly advise to consider Tao–Vargas–Vega

Taoetal1998
[167] where the techniques that we are about to describe were first developed and systematically
applied.

We now discuss the first tool which is used to prove the above restriction theorems. The key
idea is to reduce the study of global restriction theorems (where the “physical” space variable is
allowed to range over all Rd) to local restriction theorems (where the physical space variable is
constrained to lie in a ball). Our aim is then to prove estimates of the form

‖f̂ |S‖Lq(S,dσ) ≤ Ap,q,S,αRα‖f‖Lp(B(x0,R)) (6.1) eq:locres

for any exponents p, q, α ≥ 0, and any radius R ≥ 1 of any ball B(x0, R) = {x ∈ Rd : |x− x0| ≤
R}. We will denote the statement such that the above estimate holds for any test function f by
RS(p → q;α). Note that the center x0 of the ball is irrelevant since one can translate f by an

arbitrary amount without affecting the magnitude of f̂ .
Obviously, we have RS(p→ q;α1)⇒ RS(p→ q;α2) if α1 ≤ α2 and RS(p→ q; 0) is equivalent

to the global restriction estimate by letting R→∞ and applying a limiting argument. Observe
also that the statement for exponents α ≥ n/p′ is trivial because of Hölder’s inequality, namely

|f̂(ξ)| ≤ ‖f‖1 ≤ ApRn/p
′
‖f‖Lp(B(x0,R)) .

Thus, the aim is to lower the value of α from the trivial value n/p′ toward the ultimate aim
α = 0 for p and q belonging to the conjectured range of the restriction conjecture.

By duality, local restriction estimates are equivalent to local extension estimates, more pre-
cisely RS(p → q;α) ⇔ R∗S(q′ → p′;α) where R∗S(q′ → p′;α) denotes the statement that the
estimate

‖(Fdσ)∨‖Lp′ (B(x0,R)) ≤ Ap,q,S,αR
α‖F‖Lq′ (S,dσ) (6.2) eq:locext

holds for all smooth functions F on S, all R ≥ 1, and all balls B(x0, R).
In the following we will focus on proving localized extension estimates, taking advantage of

many phenomena not arising in the global setting. First, we observe that localizing to scale R in
the spatial variable leads to a localization in frequency space on the scale R−1 by the uncertainty
principle. More precisely, we expect F to be “blurred out” on this scale which should allow us
to safely fatten up the set S to NR−1(S), the R−1 neighborhood of S. This is going to be made
precise in the following
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fatlocext Lemma 6.1. The localized extension estimate R∗S(q′ → p′;α) follows from

‖Ǧ‖Lp′ (B(x0,R)) ≤ Ap,q,S,αR
α−1/q‖G‖Lq′ (N1/R(S)) (6.3) eq:fatlocext

whenever G is a smooth function with supp G ⊆ N1/R(S).

Remark 6.2. In the following we will make use of the following two facts.

(1) For every f ∈ L1 + L2 with supp f̂ ⊆ B0(R) there is a ϕ ∈ S(Rd) such that f = ϕR ∗ f
where ϕR = Rdϕ(Rx) (cf. Lemma

smoothenftsmoothenft
D.2).

(2) There are functions 0 ≤ ϕ ∈ C∞c (Rd) with ϕ̂ > 0. To see this, take, e.g., ψ ∈ C∞c (Rd)
with supp ψ ⊆ B0(C); then ψ ∗ ψ is supported in B0(2C) and F [ψ ∗ ψ] = |ψ̂|2. Thus,
ϕ = ψ ∗ ψ does the job. (See also Lemma

smoothenft2smoothenft2
D.3.)

Proof of Lemma
fatlocextfatlocext
6.1. Fix R ≥ 1 and ψ ∈ C∞c (Rd) with supp ψ ⊆ B(0, 1) and |ψ̌(x)| & 1 for all

x ∈ B(x0, 1). Let further G := ψR−1 ∗Fdσ where ψR−1(ξ) = Rdψ(Rξ). Note that this definition
implies that supp G ⊆ NR−1(S). Therefore, we may apply (

eq:fatlocexteq:fatlocext
6.3) to deduce

‖(Fdσ)∨‖Lp′ (B(x0,R)) . ‖(Fdσ)∨ψ̌R−1‖Lp′ (B(x0,R)) = ‖Ǧ‖Lp′ (B(x0,R))

≤ Ap,q,S,αRα−1/q‖G‖Lq′ (NR−1 (S)) .

Thus, it suffices to show

‖ψR−1 ∗ (Fdσ)‖Lq′ (Rd) . R
1/q‖F‖Lq′ (S,dσ) .

For q′ = 1, the above estimate follows immediately from Young’s inequality, so by interpolation
it suffices to prove the estimate for q′ =∞, i.e., we are left to show

‖ψR−1 ∗ (Fdσ)‖∞ . R‖F‖L∞(S) .

By Hölder’s inequality, it suffices to show∫
S

|ψR−1(ξ − η)|dσ(η) . R (6.4) eq:boundloc

uniformly in ξ ∈ Rd. Heuristically, it is clear why (
eq:boundloceq:boundloc
6.4) is true because the support of the

integrand intersects S on at most a Rd−1 cap but ψR−1 is an L1-scaling invariant function, i.e.,
the integral should be of order R. To make this argument rigorous, we will in fact prove the
more general statement that whenever ψ ∈ S(Rd) and S ⊆ Rd is any compact hypersurface (no
curvature assumption is needed!), one has

I(ξ) := Rn
∫
S

dσ(η)

(1 +R|ξ − η|)d
. R

uniformly in ξ for R � 1 (where we used the rapid decay of the integrand). Decomposing
S =

⋃∞
k=−1 Sk(ξ) with Sk(ξ) = Ak(ξ) ∩ S where

A−1(ξ) := {η ∈ Rd : R|ξ − η| ≤ 1} and Ak(ξ) := {η ∈ Rd : 2k ≤ R|ξ − η| ≤ 2k+1} ,
one rewrites

I(ξ) = Rd
∞∑

k=−1

∫
Sk(ξ)

dσ(η)

(1 +R|ξ − η|)d
.

Now, due to the dimensionality of S, one has for any r > 0,

σ(B(ξ, r) ∩ S) . rd−1 .

Indeed, this estimate is obvious for large r, whereas for 0 < r < 1, the surface is essentially flat,
i.e., B(ξ, r) ∩ S resembles a disk of radius r, thereby also leading to the above estimate. Thus,

σ(S−1) . R−(d−1) and σ(Sk) . (2kR−1)d−1
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and so

I(ξ) . Rd
∞∑

k=−1

(2kR−1)d−1 · 2−kd ≤ R ,

thereby concluding the proof. �

In fact, the estimates (
eq:locexteq:locext
6.2) and (

eq:fatlocexteq:fatlocext
6.3) are equivalent, although the converse implication will

not be used in the present section but will be referred to later.

fatlocext2 Lemma 6.3. The local extension estimate R∗S(q′ → p′;α) implies (
eq:fatlocexteq:fatlocext
6.3) for all smooth functions

G supported in N1/R(S).

Proof. Without loss of generality (by the translation and rotation invariance of the problem
togehter with the triangle inequality), we may assume supp G ⊆ NR−1(Pd−1) ∩ B0(1/2). In

particular, supp G is contained in the disjoint union of vertical translates Pd−1
ζ := Pd−1 + (0, ζ)

of the paraboloid where ζ ranges over (−R−1, R−1) ⊂ R. By Fubini’s theorem and a change of
variables, we have

Ǧ(x) =

∫
|ζ|≤R−1

dζ

∫
ξ′∈[−1,1]d−1

dξ′ G(ξ′, ξ′2)e2πix·(ξ′,ξ′2) =

∫
|ζ|≤R−1

dζ (G|Pd−1
ζ

dσζ)
∨(x) ,

where dσζ denotes the euclidean surface measure on Pd−1
ζ .

Now, assuming that the local extension estimate R∗S(q′ → p′;α) holds, then it follows from
translational invariance that

‖(Gdσζ)∨‖Lp′ (B0(R)) .α R
α‖G‖Lq′ (Pd−1

ζ ) for all ζ .

Combining this estimate with Minkowski’s inequality, we infer

‖Ǧ‖Lp′ (B0(R)) ≤
∫
|ζ|≤R−1

dζ ‖(Gdσζ)∨‖Lp′ (B0(R)) .α R
α

∫
|ζ|≤R−1

dζ ‖G|Pd−1
ζ
‖Lq′ (Pd−1

ζ )

and Hölder’s inequality bounds the latter by

Rα−1/q

(∫
|ζ|≤R−1

dζ ‖G|Pd−1
ζ
‖q
′

Lq′ (Pd−1
ζ )

)1/q′

= Rα−1/q‖G‖Lq′ (NR−1 (Pd−1))

which concludes the proof. �

Obviously, the corresponding statements also hold for the restriction problem by duality, i.e.,

‖f̂‖Lq(N1/R(S)) ≤ Ap,q,S,αRα−1/q‖f‖Lp(B(x0,R)) (6.5) eq:fatlocrest

for all test functions f on B(x0, R). In fact, this formulation reveals the restriction estimate
RS(2→ 2; 1/2) for smooth compact hypersurfaces S by Plancherel’s theorem. (This estimate can
also be obtained from the Agmon–Hörmander theorem or from the frequency localized Sobolev
trace lemma.)

The obvious question now is of course how to convert local restriction estimates to global
estimates. The key tool to do so is exploiting the decay of the Fourier transform (dσ)∨. Indeed,
suppose we have a decay estimate of the form

|(dσ)∨(x)| . (1 + |x|)−ρ

for some ρ > 0. (For hypersurfaces with everywhere non-vanishing Gaussian curvature, ρ =
(d− 1)/2, see e.g.

Stein1993
[149, Chapter VIII, §3.1, Theorem 1]). Then, the contributions to the global

restriction estimate (
eq:restrictioneq:restriction
2.1) coming from widely separated portions of physical space will be almost

orthogonal (in Fourier space). To make this intuition precise, suppose R ≥ 1 and B(x0, R) and
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B(x1, R) are two balls which are separated by at least a distance of R. If fj is supported on

B(xj , R) (j = 0, 1), then f̂0|S and f̂1|S will be almost orthogonal, namely

| < f̂0|S , f̂1|S >L2(S,dσ) | = | < f̂0dσ, f̂1 >L2(Rd) | = | < f0 ∗ (dσ)∨, f1 >L2(Rd) |
. R−ρ‖f0‖L1(B(x0,R))‖f1‖L1(B(x1,R))

(6.6) eq:quasiorthogonal

where we used the decay assumption on (dσ)∨(x) appearing in the convolution and the fact that
the supports of f0 and f1 are separated by at least R. Put differently, the almost orthogonality
in Fourier space means that distant balls in physical space do not interact much with each other.

The Tomas–Stein argument (for RS(2(ρ + 1)/(ρ + 2) → 2)) uses orthogonality on L2(S, dσ),
and at first glance it seems that it can only applied to obtain restriction theorems RS(p → q)
when q = 2. However, Bourgain

Bourgain1991,Bourgain1995
[13, 25] observed that the same type of orthogonality arguments,

exploiting the decay of (dσ)∨, can also be used to obtain restriction estimates which are not L2

based, albeit with some inefficiencies due to the use of non-L2 orthogonality estimates.

Theorem 6.4. Let ρ be as above. If RS(p → q;α) holds for some ρ + 1 > αq, then we have
RS(p̃→ q̃) whenever

q̃ > 2 +
q

ρ+ 1− α
and

p̃

q̃
< 1 +

q

p(ρ+ 1− αq)
.

The ideas of the above theorem were extended by Tao
Tao1999
[160, Theorem 1.2]. The proof will be

given in Appendix
s:proofss:proofs
A, see Theorem

epsilonremovalepsilonremoval
A.1.

epsilonremovalTao Theorem 6.5. Let ρ be as above. If RS(p → p;α) holds for some p < 2 and 0 < α � 1, then
one has RS(q → q) whenever

1

q
>

1

p
+

Aρ
log(1/α)

.

Although Bourgain’s theorem is more efficient for most values of α, the latter theorem is
superior because it does not lose any exponents in the limit α → 0. In particular, we have the
following consequence. If RS(p→ p; ε) holds for all ε > 0, then RS(p− ε→ p− ε) is also true for
every ε > 0. (The converse statement follows easily from interpolation). Thus, one can convert a
local restriction estimate with ε losses to a global estimate, where the ε loss has been transferred
to the exponents. This is a prime example of an ε-removal lemma which is a common in this
theory. These arguments show that the restriction conjecture for the paraboloid in fact states
that for all ε > 0, the inequality

‖(Fdσ)∨‖L2d/(d−1)(B(x0,R)) ≤ Ad,εRε‖F‖L2d/(d−1)(Pd−1)

holds for a suitable class of functions F on Pd−1. (Note that it makes sense to consider restriction
estimates at the endpoint p′ = q′ = 2d/(d− 1) in the local setting. This is another advantage of
the localized setup).

7. Multilinear restriction estimates
s:bilinear

The following ideas will be of interest of their own but also very useful to understand Bourgain
and Demeter’s proof of decoupling estimates. The central theme of the analysis will be the multi-
linear approach, in particular the multi-linear restriction theorem of Bennett, Carbery, and Tao
Bennettetal2006
[6].

We start with a motivation for bilinear restriction estimates and show in particular how
curvature in the linear world is translated to transversality in the multilinear world. As a striking
example of the power of bilinear techniques is the complete proof by Córdoba and Fefferman of
the restriction conjecture in two dimensions, see Subsection

ss:2drestrictionss:2drestriction
7.4. Finally, we generalize these

ideas to higher dimensions where the bilinear analysis will be replaced by a multilinear one.
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The bilinear restriction estimate was first proved by Tao
Tao2003A
[156] building on earlier arguments

of Wolff
Wolff2001
[178]. The work of Tao–Vargas–Vega

Taoetal1998
[167] is perhaps the first systematic treatment of

the bilinear phenomenon and its impact on the linear problem.

7.1. Introduction. The original motivation was the “L4” or “bi-orthogonality” theory by what
we mean that expressions like ‖f‖Lp′ can be calculated explicitly if p′ is an even integer, and
especially when p′ = 4. Indeed, in this case, we have, using Plancherel,

‖(Fdσ)∨‖24 = ‖(Fdσ) ∗ (Fdσ)‖2 .

That means that we reduced the restriction estimate R∗S(q′ → 4) (which usually crucially depends
on oscillations and cancellations) to the pure size estimate

‖(Fdσ) ∗ (Fdσ)‖2 .q ‖F‖2Lq′ (S,dσ)
,

which can be proven or disproven using more direct methods.
As an example, consider d = 2 and S = S1, the circle. In this case, there is a logarithmic

divergence in the above estimate because dσ ∗ dσ blows up like |x|−1/2 on the circle {x ∈ R2 :
|x| = 2} of radius 2. Localizing in physical space to a disk of radius R shows that one can easily
prove the modified estimate

‖G ∗G‖L2(R2) .q (logR)1/2R−3/2‖G‖2L4(N1/R(S))

for all R ≥ 1 and all G with suppG ⊆ N1/R(S). Comparing this with the general localized
restriction estimate (

eq:fatlocexteq:fatlocext
6.3) shows that this is just the restriction estimate R∗S(4 → 4; ε) for any

ε > 0. Thus, using the ε-removal lemma (Theorem
epsilonremovalTaoepsilonremovalTao
6.5), we obtain the optimal restriction

estimate for the circle. Note that this was already proven by Zygmund
Zygmund1974
[184] using more direct

methods.

7.2. The importance of transversality. At first glance, this approach seems to be restricted
to L4 because of Plancherel’s theorem. However, one can partially extend those ideas to other
exponents p′. The main point is that the linear estimate

‖(Fdσ)∨‖Lp′ (Rd) .p,q,S ‖F‖Lq′ (S,dσ)

is equivalent (by squaring) to the quadratic estimate

‖(Fdσ)∨(Fdσ)∨‖Lp′/2(Rd) .p,q,S ‖F‖
2
Lq′ (S,dσ)

which one can depolarize as the bilinear estimate

‖(F1dσ)∨(F2dσ)∨‖Lp′/2(Rd) .p,q,S ‖F1‖Lq′ (S,dσ)‖F2‖Lq′ (S,dσ) .

In such an estimate the worst case typically occurs if both F1 and F2 are concentrated on the
same small cap on S. This is just the situation in Knapp’s example (Subsection

ss:Knappss:Knapp
3.2).

We saw that the basic idea is to rewrite the desired linear restriction estimate as a bilinear
restriction estimate which in turn is a special case of the more general estimate

‖(F1dσ2)∨(F2dσ2)∨‖Lp′/2(Rd) .p,q,S1,S2 ‖F1‖Lq′ (S1,dσ1)‖F2‖Lq′ (S2,dσ2) . (7.1) eq:bilinearrest

Here, S1 and S2 is a pair of smooth hypersurfaces, equipped with surface measures dσ1 and dσ2,
respectively. Moreover, F1 and F2 are smooth and supported on S1, respectively S2. We will
denote by R∗S1,S2

(q′ × q′ → p′/2) the statement that (
eq:bilinearresteq:bilinearrest
7.1) holds.

By the above discussion, R∗S,S(q′ × q′ → p′/2) is of course equivalent to R∗S(q′ → p′). That
means that bilinear restriction estimates are more general than linear ones, i.e., there are bilinear
estimates that cannot be inferred from linear ones. Consider the following
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Example 7.1. Let S1 = {(ξ1, 0) ∈ R2 : ξ1 ∈ R} and S2 = {(0, ξ2) ∈ R2 : ξ2 ∈ R}, i.e., the
coordinate axis in R2. Then (F1dσ1)∨(x, y) = F̌1(x) and (F2dσ2)∨(x, y) = F̌2(y) which means
that there are in general no global linear restriction estimates R∗Sj (q

′ → p′) (j = 1, 2), unless

p′ = ∞, since the Fourier transforms do not decay at infinity. On the other hand, Plancherel
yields

‖(F1dσ1)∨(F2dσ2)∨‖2L2(R2) =

∫
R2

|F̌1(x)|2|F̌2(y)|2 dx dy = ‖F1‖2L2(R)‖F1‖2L2(R) ,

i.e., the bilinear restriction R∗S1,S2
(2 × 2 → 2) holds, although the symmetrized estimates

R∗S1,S1
(2× 2→ 2) and R∗S2,S2

(2× 2→ 2) are false.

The above example clearly indicates that transversality plays a major role in deriving bilinear
restriction estimates (unlike in the linear situation where oscillations and cancellations were
crucial). In Subsection

ss:2drestrictionss:2drestriction
7.4 we will discuss bilinear estimates in R2 in much more detail.

Let us instead now discuss a higher-dimensional analog of the above theme. We say that two
smooth hypersurfaces S1 and S2 are transversal to each other, if the set of unit normals of S1 is
separated by some non-zero distance from the set of unit normals of S2.

Proposition 7.2. Let S1 and S2 be two smooth hypersurfaces which are transversal to each
other. Then, the restriction estimate R∗S1,S2

(2× 2→ 2) holds.

Proof. By Plancherel, it suffices to prove the convolution estimate

‖(F1dσ1) ∗ (F2dσ2)‖L2(Rd) .S1,S2
‖F1‖L2(S1,dσ)‖F2‖L2(S2,dσ) .

By Cauchy–Schwarz,

‖(F1dσ1) ∗ (F2dσ2)‖L2(Rd) . ‖|F1|2dσ1 ∗ |F2|2dσ2‖L1(Rd)‖dσ1 ∗ dσ2‖L∞

and the second factor on the right side is bounded because of the transversality assumption. �

Generalizations of bilinear L2 estimates arose already in works by Bourgain
Bourgain1993F
[16], Klainerman–

Machedon
KlainermanMachedon1993
[108], and many other authors in the context of nonlinear evolution equations. These

estimates turned out to be especially useful for handling non-linearities which contain certain
derivatives which create a “full norm”.

7.3. Necessary conditions for bilinear restriction estimates. In this subsection, we will
discuss necessary conditions for bilinear restriction estimates for the sphere and the paraboloid.
Let S1 and S2 be two compact transverse subsets of Sd−1 or Pd−1. We already saw that bilinear
estimates can be derived from linear ones, i.e., R∗S(q′ → p′) yields by polarization the bilinear
estimate R∗S1,S2

(q′× q′ → p′/2), whereas the converse statement is in general false. For instance,

although the bilinear estimate RS1,S2
(2×2→ 2) holds, the corresponding linear estimate RS(2→

4) is only true in three or higher dimensions. One reason for this is that there is no exact
“transverse, bilinear” analog of the Knapp example. Indeed, the best known necessary conditions
were derived by considering bilinear analogs of Knapp examples, see Foschi and Klainerman

FoschiKlainerman2000
[75]

and Tao–Vargas–Vega
Taoetal1998
[167]. Namely, for R∗S1,S2

(q′ × q′ → p′/2) to hold, one must have

p >
2n

n+ 1
;

n+ 2

p′
+
n

q′
≤ n;

n+ 2

p′
+
n− 2

q′
≤ n− 1 . (7.2) eq:bilinearnec

This is somewhat less stringent than the condition

p >
2n

n+ 1
;

n+ 1

p′
+
n− 1

q′
≤ n− 1

for the linear estimate R∗S(q′ → p′). Nevertheless, the bilinear version of the restriction conjecture
asserts that the conditions (

eq:bilinearneceq:bilinearnec
7.2) are also sufficient. Apart from the case d = 2, this conjecture
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is still open. It is remarkable that it has been recently shown that the bilinear conjecture is
(neglecting the endpoint) equivalent to the linear restriction conjecture for Sd−1 and Pd−1.

ss:2drestriction
7.4. Proof of the two-dimensional restriction conjecture. Before we give a systematic
description of multilinear restriction estimates, we present a proof of the full restriction conjecture
in two dimensions involving bilinear restriction estimates. The presentation follows closely

Tao1999Notes
[159,

Lecture 5]. The original proof goes back to Córdoba and Fefferman. Compare also to Fefferman
Fefferman1970
[65, p. 33ff].

Recall that the desired estimate reads

‖ĝdσ‖q . ‖g‖Lp(S1)

for q > 4 and q ≥ 3p′ in d = 2. One of the fundamental reasons that the two-dimensional
restriction conjecture is proved comparably easily is the involved exponent q = 4. One may be
tempted to repeat the same argument in higher dimensions; however, it turns out that the results
obtained do not improve upon Tomas–Stein and can even be worse.

As a first step, we note that it suffices to consider the quarter circle, thereby avoiding nui-
sances involving antipodal points. The conjecture for S1 then follows by the triangle inequality.
Moreover, it suffices to consider the end-point q = 3p′ as the conjecture follows for higher q by
interpolation involving Hölder’s inequality.

By the enhanced Marcinkiewicz interpolation theorem (see, e.g., Tao
Tao1999Notes
[159, Lecture 2, Lemma

2.3] or Grafakos
Grafakos2014C
[85, Theorem 1.4.19] and Tao

Tao2006Notes
[165, Lecture 1, Lemma 8.5]), it would suffice to

prove the restricted weak-type estimate (recall (
eq:restrwt1eq:restrwt1
C.1))

‖1̂Ωdσ‖Lq,∞ = sup
λ≥0

λ|{|1̂Ωdσ| ≥ λ}|1/q . |Ω|1/p

where Ω is an arbitrary subset of the circle S1. Actually, we don’t have to go quite this weak
and will prove instead

‖1̂Ωdσ‖q . |Ω|1/p .
Now, the fundamental idea in the proof of the two-dimensional restriction estimate is to square

it, i.e.,

‖1̂Ωdσ 1̂Ωdσ‖q/2 . |Ω|2/p (7.3) eq:bilinear

and invoke Plancherel’s theorem. Since q > 4, we have 2 < q/2 < ∞, i.e., we are suddenly
interested in estimating bilinear quantities such as

‖f̂dσ ĝdσ‖2
and

‖f̂dσ ĝdσ‖∞
where f and g are some functions on S1. The latter quantity is easy to estimate, thanks to the

trivial estimate ‖f̂dσ‖∞ . ‖f‖1. Thus,

‖f̂dσ ĝdσ‖∞ . ‖f‖1‖g‖1 (7.4) eq:bilinearint1

and we are left with L2 estimates. In general, it is hard to obtain good estimates for general f
and g. However, if f and g are supported on disjoint arcs, i.e., they are somewhat transversal to
each other, one obtains significant cancellations. This is summarized in the following

transversal Lemma 7.3. Suppose f and g are supported in distinct θ-arcs of S1, whose separation is also
comparable θ. Then

‖f̂dσ ĝdσ‖2 . θ−1/2‖f‖2‖g‖2 . (7.5) eq:bilinearint2
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We give two proofs of this fact below due to Tao and Hickman–Vituri. Another exposition of
Tao’s proof is contained in the lecture notes of Zhang

Zhang2020Notes
[183, Lecture 6].

Remark 7.4. One can make the definition of θ-separation more precise, especially for more
general compact hypersurfaces. Namely, suppose (Sj)j=1,...,n is a family of compact hypersurfaces
and denote by νj : Sj → Sd−1 the associated Gauss map 9. Then the Sj are said to be θ-separated,
if

|det(ν1(x1), ..., νn(xn))| ≥ θ whenever xj ∈ Sj for j = 1, ..., n . (7.6) eq:separated

We will give two proofs of Lemma
transversaltransversal
7.3. The first one follows Tao’s notes

Tao1999Notes
[159, Lecture 5,

Lemma 1.2] and the second one the notes of Hickman and Vitturi
HickmanVitturi
[94, Lecture 3, Lemma 2].

Proof of Lemma
transversaltransversal
7.3 following Tao. By Plancherel, the assertion is equivalent to

‖(fdσ) ∗ (gdσ)‖2 . θ−1/2‖f‖2‖g‖2 .

We verify this estimate by bilinear interpolation between

‖(fdσ) ∗ (gdσ)‖1 . ‖f‖1‖g‖1
and

‖(fdσ) ∗ (gdσ)‖∞ . θ−1‖f‖∞‖g‖∞ .

The first estimate is clear by Young’s inequality (or Fubini’s theorem).
To prove the second estimate, we assume that f and g are supported on θ-arcs I and J . We

denote by dσI and dσJ the restrictions of the surface measure to these arcs. By the pointwise
estimates

fdσ ≤ ‖f‖∞dσI and gdσ ≤ ‖g‖∞dσJ
it suffices to prove

‖dσI ∗ dσJ‖∞ . θ−1

where

dσ1 ∗ dσ2(A) :=

∫
S1

∫
S1

1A(η1 + η2) dσ1(η1) dσ2(η2)

for any Borel set A lying in S1, and, if dσ1∗dσ2 is absolutely continuous with respect to Lebesgue,
then (cf.

FoschiOliveira2017
[74, (1.8)])

dσ1 ∗ dσ2(ξ) :=

∫
S1

∫
S1
δ(ξ − η1 − η2) dσ1(η1) dσ2(η2) .

To do so, we approximate dσI by (2ε)−11Iε where ε > 0 is a small number and Iε is the ε
neighborhood of I, i.e.,

Iε := {r(cos θ, sin θ) : θ ∈ I , 1− ε ≤ r ≤ 1 + ε} .

By the definition of induced Lebesgue measure, dσI is the weak limit of such measures. Thus, it
suffices to prove

‖ 1

2ε
1Iε ∗ dσJ‖∞ . θ−1 (7.7) eq:convolutionarcs

for all sufficiently small θ, uniformly in ε. Clearly, the integral∫
J

1

2ε
1Iε(ξ − η)dσJ(η) =

1

2ε
|{η ∈ J : ξ − η ∈ Iε}| =

1

2ε
|(ξ + J) ∩ Iε|

9That is, νj continuously maps a point xj ∈ Sj to a choice of unit normal vector νj(xj) to Sj at xj .
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only contributes whenever ξ ∈ η + Iε and η ∈ J . Thus, the convolution is supported on the
set-theoretic sum of the arc J and the thickened arc Iε. But since any translate of J intersects
Iε in an arc of length at most εθ−1, the assertion follows. �

Remark 7.5. To avoid the convolution between measures in (
eq:convolutionarcseq:convolutionarcs
7.7), one could also fatten dσJ

there and show instead

‖1Iε ∗ 1Jε‖L∞(R2) . ε
2|I|−1 ,

which may be easier to verify. (Recall that the separation of I and J was supposed to be
comparable, i.e., θ ∼ |I| ∼ |J |). See also Remark

intersectionrectanglesintersectionrectangles
14.18 (especially Formula (

eq:intersectionrectangles2eq:intersectionrectangles2
14.22)) later for a

similar computation, where the fattened arcs are, however, simple rectangles.

Related to convolution of measures is the following special instance, see Demeter
Demeter2020
[57, Lemma

1.20].

Lemma 7.6. Let dσ be the surface measure on Sd−1. Then for each d ≥ 2 the measure dσ ∗ dσ
is absolutely continuous with respect to Lebesgue measure on Rd, i.e., dσ ∗ dσ = F dξ for some
integrable F . Moreover suppF ⊆ B0(2) and satisfies for a.e. ξ

|F (ξ)| .

{
|ξ|−1 , 0 < |ξ| < 1

(2− |ξ|)(d−3)/2 , 1 ≤ |ξ| ≤ 2 .

Recall that, like convolution of functions, convolutions of measures are supported on the
Minkowski sum of their supports, i.e.,

supp(σSd−1 ∗ σSd−1) ⊆ supp(σSd−1) + supp(σSd−1) = {x+ y : x, y ∈ Sd−1} ⊆ Rd .

For an explicit formula, see also the survey by Foschi and Oliveira e Silva
FoschiOliveira2017
[74, (3.2)], namely

(σSd−1 ∗ σSd−1)(ξ) =
|Sd−2|
|ξ|

(
1− |ξ|

2

4

) d−3
2

+

. (7.8)

This shows that the |ξ|−1 singularity in the lemma is in fact necessary, and hence the Radon–
Nikodym derivative dσ ∗dσ with respect to Lebesgue exists, but is not bounded. Essentially this
is due to the large symmetry of Sd−1 which leads to the fact that the origin can be represented
in multiple ways by ξ+ η where ξ, η ∈ Sd−1. Heuristically, this is another reason why we split S1

into multiple chunks so that “most of the time different arcs cannot too badly with each other”.

Proof. Let Sd−1
ε be the ε-neighborhood of Sd−1 and let σε := ε−11Sd−1

ε
. Then σε dξ ⇀ dσ as

ε→ 0. Note that

σε ∗ σε(ξ) = ε−2

∫
Rd

1Sd−1
ε

(ξ − η)1Sd−1
ε

(η) dη = ε−2|Sd−1
ε ∩ (ξ + Sd−1

ε )| .

The right side is zero for |ξ| > 2. Since Sd−1
ε ∩ (ξ + Sd−1

ε ) is a body of revolution, its volume is
at most a constant multiple of the area of the cross section S1

ε ∩ ((r, 0) + S1
ε ) with r = |ξ|.

Now suppose r ≤ 1. Then note that any y = (y1, y2) ∈ S1
ε ∩ ((r, 0) + S1

ε ) satisfies

1− 2ε ≤ y2
1 + y2

2 ≤ 1 + 3ε , since y ∈ S1
ε and y ∈ ((r, 0) + S1

ε )

1− 2ε ≤ (y1 − r)2 + y2
2 ≤ 1 + 3ε , since (y1 − r, y2) ∈ S1

ε

and thus also (combining the first lower bound y2
1 + y2

2 ≥ 1 − 2ε with the second upper bound
−2y1r + r2 + y2

1 + y2
2 ≤ 1 + 3ε),

|2y1 − r| ≤
5ε

r
.
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This means that the horizontal projection of S1
ε ∩ ((r, 0) + S1

ε ) sits inside an interval of length
5ε/r. Since r ≤ 1 the vertical slices of S1

ε ∩ ((r, 0) + S1
ε ) have length . ε. Using Fubini, we find

that |S1
ε ∩ ((r, 0) + S1

ε | . ε2/r. Thus, if |ξ| ≤ 1, then

sup
ε∈(0,1)

σε ∗ σε(ξ) . |ξ|−1 .

Finally a similar computation shows that if 1 ≤ |ξ| ≤ 2, then

sup
ε∈(0,1)

σε(ξ) ∗ σε(ξ) . (2− |ξ|)
d−3
2 .

Since σε ∗ σε dξ ⇀ dσ ∗ dσ, the proof is concluded. �

Proof of Lemma
transversaltransversal
7.3 following Hickman–Vitturi. For ξ ∈ S1 we can approximate the circle locally

by a parabola which can be parameterized by (t, t2) for t ∈ R. Now, since we are assuming that
the two arcs of length θ are only θ-separated and θ is supposed to be very tiny, we can assume that
these arcs are actually θ-transverse caps on the one-dimensional parabola P1. So, let I1, I2 ⊆ [0, 1]
be the two intervals parameterizing these caps. By the transversality condition, I1 and I2 are
O(θ)-separated. Denoting g1 = f and g2 = g, we observe

2∏
j=1

ĝjdσ(x) =

∫
I2

∫
I1

2∏
j=1

gj(tj , t
2
j )e

2πi[x1(t1+t2)+x2(t21+t22)] dt1 dt2

= 2−1

∫∫
D

2∏
j=1

gj(tj(u), tj(u)2)|t1(u)− t2(u)|−1e2πix·u

where we have applied the change of variables u1 = t1 + t2 and u2 = t21 + t22. 10 The latter is the
Fourier transform of a bivariate function and so, by Plancherel, we have

‖
2∏
j=1

ĝjdσ‖22 = 2−2

∫∫
D

2∏
j=1

|gj(tj(u), tj(u)2)|2|t1(u)− t2(u)|−2 du

= 2−1

∫
I1

∫
I2

|gj(tj , t2j )|2|t1 − t2|−1 dt1 dt2

The result now follows from |t1−t2| & θ which is a consequence of the separation hypothesis. �

Remark 7.7. Note that this argument can be generalized to prove n-linear restriction estimates
for θ-separated pieces of the moment curve t 7→ (t, t2, ..., tn). Here, the Jacobian arising from
the above indicated change of variables is a (scalar multiple of a) Vandermonde determinant and
one can use the same argument as of the footnote to prove the injectivity of the mapping, now
invoking the Newton–Girard formulae.

To prove (
eq:bilineareq:bilinear
7.3), we have to piece all this together. However, we cannot simply interpolate

between (
eq:bilinearint1eq:bilinearint1
7.4) and (

eq:bilinearint2eq:bilinearint2
7.5) because of the support restrictions in Lemma

transversaltransversal
7.3. Therefore, we will

split the left side of (
eq:bilineareq:bilinear
7.3) into pieces in order to exploit (

eq:bilinearint2eq:bilinearint2
7.5).

To this end, we will use the Whitney decomposition. For every n ≥ 0, we divide S1 into 2n

equal arcs, so that each arc at stage n has exactly two children at stage n + 1. We denote the

10To see that this change of variables is valid on I1 × I2, note that if sj , tj ∈ Ij (for j = 1, 2) satisfy

s1 + s2 = t1 + t2 and s21 + s22 = t21 + t22 .

Then it follows from the formula 2ab = (a + b)2 − (a2 + b2) that s1s2 = t1t2. Consequently, by comparing

coefficients, we see that
∏2
j=1(z − tj) and

∏2
j=1(z − sj) define the same polynomial (here, z is a single complex

variable) and hence the tj equal the sj , up to permutation. The separation of the intervals now implies tj = sj
for j = 1, 2.
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set of all arcs at stage n by An. We say that two arcs I, J ∈ An from the same stage n > 1 are
close, if they are not adjacent, but their parents are adjacent. In this case, we write I ∼ J . Note
that for each I there are only O(1) arcs J which are close to J .

Remark 7.8. Here we see that the non-vanishing curvature condition is crucial in the linear
problem as it allows us to find sufficiently many transverse pairs of arcs in the bilinear problem.

For every x 6= y on S1, there is exactly one pairs of arcs I, J containing x and y respectively
such that I ∼ J . This implies (by imagining the following formula in Fourier space)

1̂Ωdσ 1̂Ωdσ =
∑
I∼J

1̂ΩdσI 1̂ΩdσJ =
∑
n>1

∑
I,J∈An:I∼J

1̂ΩdσI 1̂ΩdσJ .

Remark 7.9. This decomposition is somewhat special to the bilinear perspective and so far,
there seems to be no known satisfactory way to duplicate this in a linear setting.

We are now ready to plug this decomposition into (
eq:bilineareq:bilinear
7.3). To deal with the n summation, we

simply use the triangle inequality to obtain

‖1̂Ωdσ 1̂Ωdσ‖q/2 .
∑
n>1

‖
∑

I,J∈An:I∼J
1̂ΩdσI 1̂ΩdσJ‖q/2 .

We will estimate the Lq/2 norm by interpolating between estimates on the L∞ and the L2 norm
and we begin with the former. By the triangle inequality and (

eq:bilinearint1eq:bilinearint1
7.4), we obtain

‖
∑

I,J∈An:I∼J
1̂ΩdσI 1̂ΩdσJ‖∞ .

∑
I,J∈An:I∼J

|Ω ∩ I||Ω ∩ J | .

Although there are no Fourier transforms appearing on the right side anymore, a more tractable
dependence on Ω or factors of 2−n would be desirable. Fortunately, similar crude estimates will
do the trick. Clearly, we may estimate |Ω ∩ J | . 2−n at stage n. But since there are only O(1)
arcs J for each I, we obtain on the one hand

‖
∑

I,J∈An:I∼J
1̂ΩdσI 1̂ΩdσJ‖∞ .

∑
I∈An

|Ω ∩ I| · 2−n = 2−n|Ω| .

Alternatively, we may simply lift the restriction I ∼ J on the summation and obtain

‖
∑

I,J∈An:I∼J
1̂ΩdσI 1̂ΩdσJ‖∞ .

(∑
I∈An

|Ω ∩ I|

)( ∑
J∈An

|Ω ∩ J |

)
= |Ω|2 .

Combining the last two estimates therefore shows

‖
∑

I,J∈An:I∼J
1̂ΩdσI 1̂ΩdσJ‖∞ . |Ω|min{|Ω|, 2−n} . (7.9) eq:bilinearint1new

Thus, we are left with the L2 estimate. This time the triangle inequality is a bad idea as there
are lots of oscillations and orthogonality present that should be exploited more effectively. The
following observation of Fefferman is fundamental for what comes next.

As I ∼ J vary, the functions 1̂ΩdσI 1̂ΩdσJ have Fourier transform supports which are essen-
tially disjoint which means that the functions themselves are essentially orthogonal. This is just
done by computing the set theoretic sums of I and J and computing. Because of this (almost)
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orthogonality 11, we thus have

‖
∑

I,J∈An:I∼J
1̂ΩdσI 1̂ΩdσJ‖2

.

 ∑
I,J∈An:I∼J

‖1̂ΩdσI 1̂ΩdσJ‖22

1/2

. 2n/2

 ∑
I,J∈An:I∼J

|Ω ∩ I||Ω ∩ J |

1/2

,

where we used Lemma
transversaltransversal
7.3 with θ = 2−n in the final inequality. By the same arguments as before,

we estimate the sum over the close arcs and obtain

‖
∑

I,J∈An:I∼J
1̂ΩdσI 1̂ΩdσJ‖2 . 2n/2(|Ω| min{|Ω|, 2−n})1/2 .

Combining this with (
eq:bilinearint1neweq:bilinearint1new
7.9) by Hölder’s inequality, we thus have

‖
∑

I,J∈An:I∼J
1̂ΩdσI 1̂ΩdσJ‖q/2 . 22n/q(|Ω| min{|Ω|, 2−n})1−2/q .

Finally, summing over n, we obtain

‖1̂Ωdσ 1̂Ωdσ‖q/2 .
∑
n>1

22n/q(|Ω| min{|Ω|, 2−n})1−2/q ,

where the right side can be computed (by considering 2−n > |Ω| and 2−n > |Ω| separately) to
be |Ω|1−2/q = |Ω|2/p, which was desired.

Remark 7.10. A quite similar argument can be used to prove the Bochner–Riesz conjecture in
d = 2.

One of the key innovations here was the bilinear approach. Unfortunately, one cannot apply
the above argument directly to higher dimensions unless q/2 ≥ 2. (As one can check, these cases
are already taken care of by the Tomas–Stein estimate.) Nevertheless, the bilinear approach was
quite useful in higher dimensions, and in fact all the best results on the restriction conjecture
and related problems has come from precisely such an approach.

Remark 7.11. The original proof of Córdoba and Fefferman did not take such an explicitly
bilinear approach, and was more elegant; however, it was less obvious whether any of the ideas
could be extended to other dimensions and exponents.

s:bilineartolinear
7.5. From bilinear to linear. The most valuable feature of the bilinear restriction conjecture
is the fact that it implies the linear restriction conjecture. For technical reasons, consider only
compact subsets of the paraboloid.

bilineartolinear Proposition 7.12 (
Taoetal1998
[167]). Let S ⊆ Pd−1 be compact and S1 and S2 transversal subsets of S. If

q > 2d/(d− 1) and q ≥ p′(d+ 1)/(d− 1), and the conjectured bilinear inequality

‖f̂1 dσf̂2 dσ‖Lq̃/2(Rd) . ‖f1‖Lp̃(S1)‖f2‖Lp̃(S2)

holds for all (p̃, q̃) in a neighborhood of (p, q), then the conjectured linear inequality

‖f̂ dσ‖Lq(Rd) . ‖f‖Lp(dσ)

11One can obtain perfect orthogonality by only considering, say, every tenth pair (I,J) and then add up the
ten smaller sums by the triangle inequality.
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holds.

We first follow Bennett
Bennett2014
[5, p. 7-8]. See Tao–Vargas–Vega

Taoetal1998
[167] for the original argument

(Theorem 2.2 for the global and Theorem 4.1 for the local restriction estimates) and Bourgain–
Guth

BourgainGuth2011
[29] for a simpler argument. For a textbook treatment see Demeter

Demeter2020
[57, Chapter 7]. In

the second subsection we present an argument relying on parabolic rescaling which is borrowed
from Demeter

Demeter2020
[57, Chapter 4].

7.5.1. Bourgain–Guth method. We present the argument in a such a way that it may be adapted
to a more general multilinear setting.

Sketch of proof of Proposition
bilineartolinearbilineartolinear
7.12. We show the extension estimate ‖f̂ dσ‖Lq(Rd) . ‖f‖Lp(dσ)

in the range p = q > 2d/(d− 1). This special case is readily seen to imply the linear restriction
conjecture on the interior of the full conjectured range of Lebesgue exponents.

Let {Sα} be a partition of S by patches of diameter approximately 1/K and write

f =
∑
α

fα , fα := fχSα .

By linearity, f̂ dσ =
∑
α f̂α dσ. The key observation is the following inequality, see Bourgain–

Guth
BourgainGuth2011
[29]. �

bourgainguth Proposition 7.13. We have

|f̂ dσ(x)|q . K2(d−1)q
∑

Sα1
,Sα2

|f̂α1 dσ(x)f̂α2 dσ(x)|q/2 +
∑
α

|f̂α dσ|q , (7.10) eq:bourgainguth

where the sum in Sα1
and Sα2

is restricted to 1/K-transversal pairs Sα1
and Sα2

, i.e., |v1∧v2| ≥
1/K for all choices of unit normal vectors v1, v2 to Sα1 , Sα2 , respectively.

Proof. This essentially amounts to an application of the elementary abstract inequality

‖a‖q`1(ZN ) . N
∑
j 6=k

|ajak|q/2 + ‖a‖q`q(ZN )

for finite sequences of real numbers a. �

Continuation of sketch of proof of Proposition
bilineartolinearbilineartolinear
7.12. Assuming the truth of Proposition

bourgainguthbourgainguth
7.13 and

integrating in x, we obtain [where does the K2(d−1)q come from?]

‖f̂ dσ‖qq . K2(d−1)q
∑

Sα1
,Sα2

‖f̂α1
dσf̂α2

dσ‖q/2q/2 +
∑
α

‖f̂α dσ‖qq , (7.11) eq:bilineartolinearaux

which, because of the terms ‖f̂α dσ‖qq appearing on the right side, strongly suggests the viability
of a bootstrapping argument. To this end, let C = C(R) denote the smallest constant in the

inequality ‖f̂ dσ‖Lq(B0(R)) ≤ C‖f‖q over all R � 1 and f ∈ Lp(dσ). The only role of the
parameter R here is to ensure that C is a-priori finite. Our goal is to show C <∞, uniformly in
R. Because of the Fourier cut-off on Sα (which has diameter 1/K), the hypothesis gives [where
does the K2d/q−(d−1) come from?]

‖f̂α dσ‖q . CK2d/q−(d−1) .

Since 2d/q− (d−1) < 0 and K � 1, this represents a gain! Using (
eq:bilineartolinearauxeq:bilineartolinearaux
7.11) along with the property∑

α ‖fα‖qq = ‖f‖qq (by Fourier disjointness), we obtain

‖f̂ dσ‖qq ≤ cK2(d−1)q
∑

Sα1
,Sα2

‖f̂α1
dσf̂α2

dσ‖q/2q/2 + CK2d/q−(d−1)‖f‖qq (7.12)
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for some constant c independent of K. Taking K so large that cK2d/q−(d−1) ≤ 1/2 (say), we see
that it suffices to show

K2(d−1)q
∑

Sα1
,Sα2

‖f̂α1
dσf̂α2

dσ‖q/2q/2 ≤ A(K)‖f‖qq . (7.13) eq:bilineartolinearaux2

Believing this estimate for a moment, then by definition of C, we have C ≤ cA+C/2, from which
we may deduce that C <∞ uniformly in R. However, (

eq:bilineartolinearaux2eq:bilineartolinearaux2
7.13) is a straightforward consequence of

the conjectured bilinear inequality. �

Remark 7.14. The above argument would have been equally effective if the factor K2(d−1) in
(
eq:bourgaingutheq:bourgainguth
7.10) were replaced by any fixed power of K. As we have seen, the key feature of (

eq:bourgaingutheq:bourgainguth
7.10) is the

absence of a power of K in the second “bootstrapping” term on the right side.

7.5.2. Parabolic rescaling and bilinear to linear reduction. Parabolic rescaling means that the
affine functions

Rd−1 × R 3 (ξ, ξd) 7→
(
ξ − ξ0
δ

,
ξd − 2ξ0 · ξ + |ξ0|2

δ2

)
, δ > 0, ξ0 ∈ Rd−1

map the (infinite) paraboloid into intself.
Next recall that any nonsingular affine map T (η) = Aη+v (for some d×d matrix A) interacts

with the Fourier transform via

Ĝ := F̂ ◦ T ⇒ G(x) =
1

det(A)
F ((A−1)tx)e−2πi〈v,(A−1)tx〉 .

Our goal is to use change of variables to convert inequalities involving functions whose Fourier
support lives on or near a small cap on Pd−1 into similar inequalities involving functions whose
Fourier support is then spread over neighborhoods of the whole Pd−1. To make this precise, we
will need to measure the constants appearing in such inequalities precisely. In the context of
bilinear restriction, we make the following

Definition 7.15 (Bilinear restriction constants). Let 1 ≤ p, q ≤ ∞ and 0 < D ≤ 1. We denote
by BR∗(q×q 7→ p,D) the smallest constant C such that for each set of cubes Ω1,Ω2 ⊆ [−1, 1]d−1

with dist(Ω1,Ω2) ≥ D and each f : Ω1 ∪ Ω2 → C, we have

‖EΩ1
f EΩ2

f‖Lp/2(Rd) ≤ C‖f‖Lq(Ω1)‖f‖Lq(Ω2) .

We will now parabolically rescale the known bilinear restriction estimates and afterwards
combine these with a Whitney decomposition to derive new linear restriction estimates.

bilinearrescaled Proposition 7.16. Let Ω1,Ω2 be two cubes in [−1, 1]d−1 with side length δ and assume that
the distance D between their centers satisfies D ≥ 4δ. Then for each 1 ≤ p, q ≤ ∞ and each
f : Ω1 ∪ Ω2 → C, we have

‖EΩ1
fEΩ2

f‖Lp/2(Rd) ≤ D
2(d−1)

q′ −
2(d+1)
p BR∗(q × q 7→ p,

1

2
)‖f‖Lq(Ω1)‖f‖Lq(Ω2) .

Note that the exponent of D is non-negative when p, q are in the linear restriction range.
Thus, we have extra gain as D gets smaller.

Proof. Let ξ0 be the midpoint of the line segment joining the centers of Ω1 and Ω2. Define an
affine transformation on Rd−1 by

L(ξ) ≡ Lξ0,D(ξ) :=
ξ − ξ0
D

.

Then a simple computation shows that

|EΩif(x′, xd)| = Dd−1|EL(Ωi)fL(D(x′ + 2xdξ0), D2xd)| , fL := f ◦ L−1 .
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Note that L(Ω1) and L(Ω2) are now cubes in [−1, 1]d that are separated by at least 1/2 (instead
of 2δ. Changing variables on the spatial side then gives

‖EΩ1fEΩ2f‖Lp/2(Rd) = D2(d−1)−2(d+1)/p‖EL(Ω1)fLEL(Ω2)fL‖Lp/2(Rd)

≤ D2(d−1)−2(d+1)/pBR∗(q × q 7→ p,
1

2
)‖fL‖Lq(L(Ω1))‖fL‖Lq(L(Ω2))

= D
2(d−1)

q′ −
2(d+1)
p BR∗(q × q 7→ p,

1

2
)‖f‖Lq(Ω1)‖f‖Lq(Ω2) ,

which concludes the proof. �

We recall the dyadic Whitney decomposition. A dyadic interval is an interval of the form
[`2k, (`+ 1)2k] with `, k ∈ Z. A dyadic cube is the Cartesian product of dyadic intervals of equal
length. If two dyadic cubes intersect, then one must be the subset of the other.

dyadicwhitney Proposition 7.17 (Dyadic Whitney decomposition). Let S ⊆ Rm be a closed set. Then there
is a collection C of closed dyadic cubes Ω with pairwise disjoint interiors such that

Rm \ S =
⋃

Ω∈C
Ω

and whose sidelength `(Ω) grows with the distance to S by

4`(Ω) ≤ dist(Ω, S) ≤ 50`(Ω) . (7.14) eq:dyadicwhitney

Proof. See Demeter
Demeter2020
[57, Proposition 4.3] or Tao

Tao2006Notes
[165, Lecture 3, Proposition 4.6]. �

We need this in the following particular case.

dyadicwhitneycor Corollary 7.18. Let d ≥ 2, then there is a collection C of closed cubes Ω = Ω1 × Ω2 ⊆
[−1, 1]d−1 × [−1, 1]d−1 with pairwise disjoint interiors such that

[−1, 1]2d−2 \ {(ξ, ξ) : ξ ∈ [−1, 1]d−1} =
⋃

Ω∈C
Ω

and

4`(Ω) ≤ dist(Ω1,Ω2) ≤ 100`(Ω) . (7.15) eq:dyadicwhitneycor

Observe that the lower bound in (
eq:dyadicwhitneycoreq:dyadicwhitneycor
7.15) reflects the fact that the cubes Ω do not intersect

the diagonal. However, the bounds say that their side length is still comparable to the distance
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between the underlying Ω1 and Ω2. In d = 2 this is illustrated in the following figure.

Figure 1. Dyadic Whitney decomposition of [−1, 1]2 in the lower triangle fig:dyadicwhitney

Proof. It suffices to achieve a similar decomposition with [−1, 1] replaced with [0, 2] and then
translate the cubes by (−1,−1, ...,−1). The advantage of working with [0, 2] is that it is already
a dyadic interval.

Use the family of Proposition
dyadicwhitneydyadicwhitney
7.17 with m = 2d − 2 and S = {(ξ, ξ) : ξ ∈ Rd−1} and only

keep the cubes that are inside [0, 2]2d−2. They obviously cover [0, 2]2d−2. Likewise, the bounds
(
eq:dyadicwhitneycoreq:dyadicwhitneycor
7.15) follow from (

eq:dyadicwhitneyeq:dyadicwhitney
7.14). �

The following lemma says that when we have a sequence of functions with disjoint Fourier
support, we can easily decouple their contributions to an Ls norm.

hybrid Lemma 7.19. Let R be a finite collection of rectangular boxes in Rd with 2R∩2R′ = ∅ whenever
R 6= R′ ∈ R. For R ∈ R let FR : Rd → C be an Ls function for some 1 ≤ s ≤ ∞ with
supp(F̂R) ⊆ R. Then

‖
∑
R

FR‖Ls .

(∑
R

‖FR‖ss

)1/s

, 1 ≤ s ≤ 2

and

‖
∑
R

FR‖Ls .

(∑
R

‖FR‖s
′

s

)1/s′

, s ≥ 2

where the implicit constants do not depend on R.
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Proof. Let ϕR ∈ S(Rd) with 1R ≤ ϕ̂R ≤ 12R and ‖ϕR‖ = 1. Note that FR = FR ∗ϕR. Consider
the operator T acting on an arbitrary family GR = (GR)R∈R of functions GR via

T (GR) =
∑
R

GR ∗ ϕR .

By orthogonality, T : L2(Rd : `2(R))→ L2(Rd), i.e.,

‖T (GR)‖22 =

∫
|
∑
R

GR ∗ ϕR(x)|2 dx =

∫
|
∑
R

ĜRϕ̂R(ξ)|2 =
∑
R

∫
|ĜRϕ̂R(ξ)|2

=
∑
R

∫
|GR ∗ ϕR(x)|2 ≤

∑
R

‖GR‖22

and by Young’s inequality, T : L1(Rd : `1(R))→ L1(Rd), i.e.,

‖T (GR)‖1 =

∫
|
∑
R

GR ∗ ϕR(x)| dx ≤
∑
R

‖GR ∗ ϕR‖1] ≤
∑
R

‖GR‖1 .

Vector-valued interpolation thus gives the first assertion. Since T : L∞(Rd, `1(R))→ L∞, i.e.,

‖T (GR)‖∞ = ‖
∑
R

GR ∗ ϕR‖∞ ≤
∑
R

‖GR‖∞ ,

vector-valued interpolation also gives the second assertion. �

We are now ready to assemble all the previous ingredients and prove that bilinear restriction
estimates give linear ones.

Theorem 7.20. Assume that

BR∗(∞×∞ 7→ p,
1

2
) <∞

for some 2d(d− 1) < p ≤ 4 when d ≥ 3 or for some p > 4 when d = 2. Then the linear estimate
R∗(∞→ p) holds.

Proof. Let C be a collection of closed cubes Ω = Ω1×Ω2 ⊆ [−1, 1]d−1× [−1, 1]d−1 as in Corollary
dyadicwhitneycordyadicwhitneycor
7.18. Let f : [−1, 1]d−1 → C. Then we may write (neglecting the diagonal which has Lebesgue
measure zero)

Ef(x)2 =

∫
[−1,1]d−1×[−1,1]d−1

f(ξ1)f(ξ2)e2πix′·(ξ1+ξ2)+2πixd(ξ21+ξ22) dξ1 dξ2

=
∑

Ω=Ω1×Ω2∈C

∫
Ω1×Ω2

f(ξ1)f(ξ2)e2πix′·(ξ1+ξ2)+2πixd(ξ21+ξ22) dξ1 dξ2

=
∑
Ω∈C

EΩ1f(x)EΩ2f(x) .

Now for k ≥ 1 define Ck to consist of these cubes in C whose side length is 2−k. We separate
these scales using the triangle inequality and obtain

‖Ef‖2p = ‖(Ef)2‖p/2 ≤
∑
k≥1

‖
∑

Ω∈Ck

EΩ1
fEΩ2

f‖p/2 . (7.16) eq:trivialseparation

Now note that as Ω ranges through Ck, the collection of cubes 4(Ω1 + Ω2) overlap at most C
times for some C independent of k. This follows from the following two observations.

(1) The upper bound dist(Ω1,Ω2) ≤ 100`(Ω) = 100`(Ω1 × Ω2) in (
eq:dyadicwhitneycoreq:dyadicwhitneycor
7.15) forces Ω1 + Ω2 ⊆

Ω1 + 1000Ω1.
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(2) Each Ω1 appears at most O(1) times as the first component of some Ω ∈ Ck. (This
observation will allows us to exploit orthogonality within each family Ck.)

We would now like to appply Lemma
hybridhybrid
7.19 with s = p/2 and FR = EΩ1

fEΩ2
f . The Fourier

transform of EΩ1
fEΩ2

f is supported inside a rectangular box RΩ ⊆ Rd−1 ×R whose projection
to Rd−1 lies inside 2(Ω1 + Ω2). But by the finite overlaps of 4(Ω1 + Ω2) (discussed above) it
follows that we can split Ck into C = O(1) families such that the boxes 2RΩ are pairwise disjoint
for Ω in each family. By applying Lemma

hybridhybrid
7.19 with s = p/2 to each family, we obtain

‖
∑

Ω∈Ck

EΩ1fEΩ2f‖p/2 .

(∑
Ω∈Ck

‖EΩ1fEΩ2f‖
p/2
p/2

)2/p

, d ≥ 3

respectively

‖
∑

Ω∈Ck

EΩ1fEΩ2f‖p/2 .

(∑
Ω∈Ck

‖EΩ1fEΩ2f‖
p/(p−2)
p/2

)p−2/p

, d = 2

where the implicit constants do not depend on k.
Now the lower bound in (

eq:dyadicwhitneycoreq:dyadicwhitneycor
7.15) (i.e., dist(Ω1,Ω2) ≥ 4`(Ω)) allows us to apply the parabolically

rescaled bilinear estimate of Proposition
bilinearrescaledbilinearrescaled
7.16 to each term in the sum and obtain

‖EΩ1
fEΩ2

f‖1/2p/2 . 2−k(d−1− d+1
p )‖f‖L∞([−1,1]d−1) .

Note that there are O(2k(d−1)) cubes in Ck, so

‖
∑

Ω∈Ck

EΩ1
fEΩ2

f‖p/2 .

{
(2k(d−1) 2−kp(d−1− d+1

p ))
2
p ‖f‖2L∞([−1,1]d−1) , d = 3

(2k 2−k
2p
p−2 (1− 3

p ))
p−2
p ‖f‖2L∞([−1,1]d−1) , d = 2 .

In both cases the upper bound is O(2−kεp‖f‖2L∞([−1,1]d−1)) for some εp > 0 (since p > 2d/(d−1)).

Combining this with (
eq:trivialseparationeq:trivialseparation
7.16) finishes the proof. �

ss:2dkakeya
7.6. Two-dimensional Kakeya theorems. We follow Tao

Tao1999Notes
[159, Lecture 6].

ss:multilinearrestr
7.7. Multilinear restriction. We follow Bennett–Carbery–Tao

Bennettetal2006
[6] and the notes of Hickman

and Vitturi
HickmanVitturi
[94, Lecture 3, Sections 2-5].

Recall that we have seen in the beginning of this section that the presence of curvature of a
single (sub)manifold was crucial in the linear restriction problem, whereas transversality between
two submanifolds became important in the bilinear world. One of the puzzling features of bilinear
problems is, however, that they seem to confuse the role played by curvature in higher dimensions.
For instance, it is known that the bilinear restriction theories for the cone and the paraboloid are
almost identical, whereas the linear theory for these surfaces is certainly not. Moreover, simple
heuristics suggest that the optimal k-linear restriction theory requires at least d−k non-vanishing
curvatures, but that further curvature assumptions have no further effect. For this reason, it
seems natural to consider a d-linear setup in d dimensions since then one does not expect to
require any curvature hypotheses. We are therefore seeking inequalities of the form∥∥∥∥∥∥

d∏
j=1

(gjdσj)
∨

∥∥∥∥∥∥
Lq/d(Rd)

.
d∏
j=1

‖gj‖Lp(Sj) for all q ≥ 2d/(d− 1) and p′ ≤ q(d− 1)/d

for hypersurfaces {Sj}dj=1 endowed with associated smooth measures {σj}dj=1, respectively, when-
ever the Sj are “sufficiently separated” in the sense of (

eq:separatedeq:separated
7.6). In fact, by multilinear interpolation
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(see, e.g., Bergh–Löfström
BerghLofstrom1976
[7]), and Hölder’s inequality, it would suffice to prove the endpoint

case p = 2 and q = 2d/(d− 1), i.e.,∥∥∥∥∥∥
d∏
j=1

(gjdσj)
∨

∥∥∥∥∥∥
L2/(d−1)(Rd)

.
d∏
j=1

‖gj‖L2(Sj) .

Remarkably, this conjecture was almost completely resolved by Bennett–Carbery–Tao
Bennettetal2006
[6]

where they proved the above estimate with a subpolynomial loss in the constants.
In the following we adapt the notation that has been used so far to their work. To this end,

for j = 1, ..., d, let

• Uj ⊆ Rd−1 be compact neighborhoods of the origin,
• Σj : Uj → Rd be smooth parameterizations of the (d − 1)-dimensional manifolds Sj of
Rd, and

• (Ejg)(x) :=
∫
Uj

e2πix·Σj(ξ)g(ξ) dξ for x ∈ Rd be the associated extension operators.

The analog of the bilinear transversality condition will essentially amount to requiring that
the normals to the submanifolds parameterized by the Σj ’s span all points of the parameter
space. In order to express this in an appropriately uniform manner, we make the following

Definition 7.21. For each 1 ≤ j ≤ d let Yj be the (d− 1)-form

Yj(ξ) :=

d−1∧
k=1

∂

∂ξk
Σj(ξ) , ξ ∈ Uj .

By duality, the Yj can be viewed as vector fields on Uj . We will not impose any curvature
conditions (in particular, we permit the vector fields Yj to be constant), but we will impose the
following

assummultrestr Assumption 7.22. Let A, ν > 0 be given. Then the following assertions hold.
(1) The manifolds Sj obey the “transversality” (or “spanning”) condition

det(Y1(ξ(1)), ..., Yd(ξ
(d))) ≥ ν for all ξ(1) ∈ U1, ..., ξ

(d) ∈ Ud . (7.17) eq:transcond

(2) The maps (parameterizations) Σj obey the smoothness condition

‖Σj‖C2(Uj) ≤ A for all j = 1, ..., d . (7.18) eq:smoothcond

Remarks 7.23. (1) If Uj is sufficiently small, then Ejgj = Ĝjdσj where Gj : Σj(Uj) → C isremsassumpsmultilinearrestr
the “normalized lift” of gj , i.e., Gj(Σj(ξ)) = |Yj(ξ)|−1gj(ξ) for ξ ∈ Uj , and dσj is the induced
Lebesgue measure on Σj(Uj).

(2) Using a partition of unity and an appropriate affine transformation, we can assume ν ∼ 1
and that for each j = 1, ..., d, the manifold Σj(Uj) is contained in a sufficiently small neighbor-
hood of the j-th standard basis vector ej ∈ Rd.

Observe that, whenever the Σj are linear, then, by an application of Plancherel’s theorem, the
conjectured multilinear estimate is equivalent to the Loomis–Whitney inequality

LoomisWhitney1949
[118]. Namely,

let πj : Rd → Rd−1 denote the projection onto the hyperplane e⊥j (where xj = 0), i.e., πj(x) =
(x1, ..., xj−1, xj+1, ..., xd), then∫

Rd
f1(π1(x)) · · · fd(πd(x)) dx ≤ ‖f1‖d−1 · · · ‖fd‖d−1 for all fj ∈ Ld−1(Rd−1) (7.19) eq:loomiswhitney

which is sometimes also written as

‖
d∏
j=1

fj ◦ πj‖L1/(d−1)(Rd) ≤
d∏
j=1

‖fj‖L1(e⊥j ) .



SOME NOTES ON RESTRICTION THEORY 59

For now, let us merely observe that in view of this inequality, we can view multilinear restric-
tion as a certain (rather oscillatory) generalization of the Loomis–Whitney inequality. We will
reencounter this inequality in some moments when we will be discussing the multilinear analog
of the Kakeya conjecture where the nature of this generalization will become clearer. Let us for
now close this subsection with the main result.

multilinrestr Theorem 7.24 (Near-optimal multilinear restriction (Bennett–Carbery–Tao
Bennettetal2006
[6, Theorem 1.16])). Let

Assumption
assummultrestrassummultrestr
7.22 hold. Then for each ε > 0, q ≥ 2d/(d − 1) and p′ ≤ q(d − 1)/d, there exists a

constant C = C(A, ν, ε, d, p, q) > 0 such that∥∥∥∥∥∥
d∏
j=1

Ejgj

∥∥∥∥∥∥
Lq/d(B0(R))

≤ CRε
d∏
j=1

‖gj‖Lp(Uj) (7.20) eq:multilinrestr

holds for all gj ∈ Lp(Uj), j = 1, ..., d, and all R ≥ 1.

Naturally, the question arises whether this theorem has any consequences for the linear prob-
lem. Unfortunately, the transversality hypotheses make it difficult to apply multilinear restriction
estimates directly to obtain new linear estimates in dimensions d > 2. After some years however,
Bourgain and Guth

BourgainGuth2011
[29] introduced the so-called `2-decoupling which allows one to use Theorem

multilinrestrmultilinrestr
7.24 to obtain improved partial results on the restriction conjecture in higher dimensions. This
technique and its applications will be discussed in detail in Section

s:decouplings:decoupling
18.

In Subsection
ss:multilinearrestreqkakeyass:multilinearrestreqkakeya
7.10 we will see that this theorem is equivalent to the so-called multilinear

Kakeya conjecture that we will discuss (and prove!) in the next subsections.
ss:multilinearkakeya

7.8. Multilinear Kakeya. We follow Bennett–Carbery–Tao
Bennettetal2006
[6] and the notes of Hickman and

Vitturi
HickmanVitturi
[94, Lecture 3, Sections 2-5]. See also Guth

Guth2010,Guth2015
[89, 90] (in particular the short proof of the

non-optimal result.)

It is well known (and it will be discussed in Subsection
ss:restrimplieskakeyass:restrimplieskakeya
14.1) that the linear restriction conjec-

ture implies the linear Kakeya conjecture (Conjecture
kakeyakakeya
14.1). To state it precisely, let us introduce

the following notation that will also be used in Section
s:Kakeyas:Kakeya
14 later. Let 0 < δ � 1, ω ∈ Sd−1, and

a ∈ Rd. Then we define a δ-tube to be any rectangular (or cylindrical) box T δω(a), or short, T ,
in Rd with d − 1 side lengths δ (or diameter 2δ) and one side length 1 which is oriented in the
direction ω. By T we denote an arbitrary collection of such δ-tubes whose orientations form a
maximal δ-separated subset of Sd−1. The cardinality of T is denoted by #T. Then the maximal
Kakeya conjecture says that for any ε > 0 and d/(d − 1) < q ≤ ∞, there exists a constant C
independent of δ such that∥∥∥∥∥∑

T∈T
1T

∥∥∥∥∥
Lq(Rd)

≤ Cδ(d−1)/q(#T)1−1/(q(d−1)) .

We emphasize that the “separation condition” on each of the δ-tubes is crucial in this linear
problem.

By a straightforward adaptions of the arguments given in Subsection
ss:restrimplieskakeyass:restrimplieskakeya
14.1, one sees that the

multilinear restriction conjecture implies the corresponding multilinear Kakeya-type conjecture
that we will describe now. Suppose T1, ...,Td are families of δ-tubes in Rd where we now allow (!)
the tubes within the same family Tj to be parallel (in contrast to the linear problem). However,
we assume that, for each j = 1, ..., d, the tubes in Tj must point in directions belonging to a
fixed spherical cap, say Sj = {ω ∈ Sd−1 : |1− ω · ej | ≤ C−1} for some large C > 0, centered at
ej . In this case, we say that the family Tj is transversal. (The vectors ej may be replaced by any
fixed linearly independent set of vectors in Rd here, as affine invariance considerations reveal.)
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multilinearkakeyaorg Theorem 7.25 (Near-optimal multilinear Kakeya (Bennett–Carbery–Tao
Bennettetal2006
[6, Theorem 1.15])). If

d/(d−1) < q ≤ ∞, then there exists a constant C > 0 which is independent of δ and the transver-
sal families of tubes T1, ...Td, such that∥∥∥∥∥∥

d∏
j=1

 ∑
Tj∈Tj

1Tj

∥∥∥∥∥∥
Lq/d(Rd)

≤ C
d∏
j=1

(δd/q#Tj) . (7.21) eq:multilinearkakeyaorg

Furthermore, for each ε > 0 there is a similarly uniform constant C > 0 for which∥∥∥∥∥∥
d∏
j=1

 ∑
Tj∈Tj

1Tj

∥∥∥∥∥∥
L1/(d−1)(B0(1))

≤ Cδ−ε
d∏
j=1

(δd−1#Tj) . (7.22) eq:multilinearkakeyaorgendpoint

Remarks 7.26. (1) Since the case q =∞ is trivially true, (
eq:multilinearkakeyaorgeq:multilinearkakeyaorg
7.21) is equivalent, via Hölder, to the

endpoint case q = d/(d−1). In contrast to the linear setting, there is no obvious counterexample
prohibiting this claim holding at the endpoint q = d/(d − 1), and indeed in the d = 2 case it is
easy to verify this endpoint estimate. In fact, as we will present next, Guth

Guth2010
[89] did eventually

obtain the endpoint result.
(2) By contrast with similar statements at lower levels of multilinearity, each family Tj is

permitted to contain parallel tubes, and in fact, even arbitrary repetitions of tubes.
(3) The decision to formulate (

eq:multilinearkakeyaorgeq:multilinearkakeyaorg
7.21) in terms of δ × · · · δ × 1 tubes is largely for historical

reasons. However, just by scaling, it is easily seen that the above estimate is equivalent to∥∥∥∥∥∥
d∏
j=1

 ∑
T̃j∈T̃j

1T̃j

∥∥∥∥∥∥
Lq/d(Rd)

≤ C
d∏
j=1

(#T̃j) ,

where the collections T̃j consist of tubes of width 1 and arbitrary (possibly infinite) length where,

of course, still the appropriate transversality condition is imposed on the families T̃1, ..., T̃d.
(4) Note that the extreme case of (

eq:multilinearkakeyaorgeq:multilinearkakeyaorg
7.21) when the collections of rectangles are 1-transverse

corresponds (by Hadamard’s inequality) precisely to the situation when all the rectangles in
Tj are oriented in the same direction ej . Under these hypothesis, (

eq:multilinearkakeyaorgeq:multilinearkakeyaorg
7.21) is a consequence of

the Loomis–Whitney inequality (
eq:loomiswhitneyeq:loomiswhitney
7.19). Put differently, the multilinear Kakeya estimate is a

generalization of the Loomis–Whitney inequality. The geometric nature of this generalization is
of course much more transparent than in the multilinear restriction problem.

(4) As opposed to the linear case, the multilinear Kakeya theorem does not imply something
on the dimension of Besicovitch sets, although there is a connection to the joints problem, see
Bennett–Carbery–Tao

Bennettetal2006
[6, §7].

(5) Bennett–Carbery–Tao
Bennettetal2006
[6, §6] also derived a natural variable coefficient extension of their

results.
(6) Although, we will not review their proof here, let us summarize their strategy. First, one

observes that if each Tj ∈ Tj is centered at the origin (for all j = 1, ..., d), then, the two sides of
(
eq:multilinearkakeyaorgeq:multilinearkakeyaorg
7.21) are trivially comparable. This observation leads to the suggestion that such configurations

of tubes might actually be extremal for the left side of (
eq:multilinearkakeyaorgeq:multilinearkakeyaorg
7.21). For analytic reasons, in pursuing

this idea it seemed natural to replace the rough indicator functions by Gaussians of the form
e−〈x−v,A(x−v)〉 for an appropriate positive definite d × d matrix A and vectors v ∈ Rd. Using
these Gaussians as “smoothed cutoff functions”, they give a novel proof of the Loomis–Whitney
inequality in §3. Afterwards, they perturb the inequality in §4; as a corollary of this perturbed
inequality, they obtain the multilinear Kakeya conjecture up to the endpoint (and a “weak” form
of the multilinear restriction conjecture). �
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weightedmultkakeya Theorem 7.27 (Weighted multilinear Kakeya). Assume that the assumptions of Theorem
multilinearkakeyaorgmultilinearkakeyaorg
7.25

hold. For each Tj ∈ Tj let wTj ≥ 0 be a weight and define the simple functions

gj :=
∑
Tj∈Tj

wTj1Tj .

Then, one has the similar estimate∥∥∥∥∥∥
d∏
j=1

gj

∥∥∥∥∥∥
L1/(d−1)(B0(1))

≤ Cδ−ε
d∏
j=1

(δd−1
∑
Tj∈Tj

wTj ) . (7.23) eq:weightedmultkakeya1

Proof. If wTj ∈ N for all Tj ∈ Tj , then the result is a consequence of the original multilinear
Kakeya inequality (

eq:multilinearkakeyaorgeq:multilinearkakeyaorg
7.21) by including repeats of the tubes in the collections. The estimate for

rational weights follows by rescaling and for reals by continuity. �

multilinearkakeyafull Theorem 7.28 (Endpoint multilinear Kakeya (Guth
Guth2010
[89])). Formula (

eq:multilinearkakeyaorgendpointeq:multilinearkakeyaorgendpoint
7.22) holds without the

subpolynomial loss δ−ε. Moreover, the dependence of the transversality constant ν is given by
ν−1/(d−1).

multilinearkakeyasimple Theorem 7.29 (Simple multilinear Kakeya (Guth
Guth2015
[90])). Suppose that `j,a are lines in Rd where

j = 1, ..., d and a = 1, ..., Nj. Let T̃j,a be the 1-neighborhood of `j,a. Suppose that Sj ⊆ Sd−1 is a
spherical cap and that the lines `j,a lie in Sj. Suppose that for any vectors vj ∈ Sj, we have the
transversality condition |v1 ∧ · · · ∧ vd| ≥ ν.

Let QS denote any cube of side length S. Then for any ε > 0 and any S ≥ 1, one has

∫
QS

d∏
j=1

 Nj∑
a=1

1Tj,a

 1
d−1

≤ Cεν−O(1)Sε
d∏
j=1

N
1
d−1

j , (7.24) eq:multilinearkakeyasimple

where ν−O(1) means that the dependence on the transversality constant ν is polynomial.

Moreover, we have the following weighted analog similar to Theorem
weightedmultkakeyaweightedmultkakeya
7.27. For each Tj,a ∈ Tj

let wj,a ≥ 0 be a weight and define the simple functions

gj :=
∑
Tj∈Tj

wj,a1Tj,a .

Then, with the above notation,

∫
QS

d∏
j=1

g
1
d−1

j ≤ Cεν−O(1)Sε
d∏
j=1

(∑
a

wj,a

) 1
d−1

, (7.25)

holds.

Remarkably, we will find next that the multilinear restriction and Kakeya theorems are essen-
tially equivalent. This equivalence follows from multilinearizing a well known induction-on-scales
argument of Bourgain

Bourgain1991
[13] (see also Tao–Vargas–Vega

Taoetal1998
[167] for this argument in the bilinear

setting). Before we study this equivalence in detail, we proceed with a review of Guth’s simple
proof of Theorem

multilinearkakeyasimplemultilinearkakeyasimple
7.29.
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7.9. Guth’s simple proof of Theorem
multilinearkakeyasimplemultilinearkakeyasimple
7.29. The main goal of this section will be to prove

the following theorem. Theorem
multilinearkakeyasimplemultilinearkakeyasimple
7.29 will follow from it and the ensuing observation.

multilinearkakeyasimple2 Theorem 7.30. Suppose that `j,a are lines in Rd where j = 1, ..., d and a = 1, ..., Nj. Let T̃j,a
be the 1-neighborhood of `j,a. Suppose that the lines `j,a makes an angle of at most (10d)−1 with
the ej-axis.

Let QS denote any cube of side length S. Then for any ε > 0 and any S ≥ 1, one has∫
QS

d∏
j=1

 Nj∑
a=1

1Tj,a

 1
d−1

≤ CεSε
d∏
j=1

N
1
d−1

j , (7.26) eq:multilinearkakeyasimple2

The proof is split into three steps.

(1) Reduction to almost axis-parallel tubes
(2) Analyzing the case of exactly axis-parallel tubes using the Loomis–Whitney inequality

(
eq:loomiswhitneyeq:loomiswhitney
7.19)

(3) Perturbation of the Loomis–Whitney inequality and multiscale analysis

7.9.1. Reduction to nearly axis parallel tubes. The first observation in Bennett et al
Bennettetal2006
[6] is that

it suffices to consider collections Tj of tubes which are almost parallel to each other. In fact,
Theorem

multilinearkakeyasimple2multilinearkakeyasimple2
7.30 will follow from

multilinearkakeyasimpleaux Proposition 7.31. For every ε > 0, there is some δ > 0 such that the following holds. Suppose
that `j,a are lines in Rd, and that each line `j,a makes an angle of at most δ with the ej-axis.
Then for any S ≥ 1 and any cube QS of side length S, we have∫

QS

d∏
j=1

 Nj∑
a=1

1Tj,a

 1
d−1

≤ CεSε
d∏
j=1

N
1
d−1

j . (7.27) eq:multilinearkakeyasimpleaux

We will use this to prove Theorems
multilinearkakeyasimple2multilinearkakeyasimple2
7.30 and

multilinearkakeyasimplemultilinearkakeyasimple
7.29.

Proof of Theorem
multilinearkakeyasimple2multilinearkakeyasimple2
7.30 assuming Proposition

multilinearkakeyasimpleauxmultilinearkakeyasimpleaux
7.31. Let Sj ⊆ Sd−1 be a spherical cap around

ej of radius, say (10d)−1. By the hypothesis of Theorem
multilinearkakeyasimple2multilinearkakeyasimple2
7.30, every line `j,a has a direction

belonging to Sj . Now, for a given ε > 0, we pick a δ as in Proposition
multilinearkakeyasimpleauxmultilinearkakeyasimpleaux
7.31. We subdivide Sj

now into smaller caps Sj,β of radius δ/10, i.e., Sj can be covered by roughly δ−1 .ε 1 caps Sj,β .
Let us abuse notation and write “`a,j ∈ Sj,β”, whenever the direction of `a,j belongs to Sj,β .
Since the number of caps is .ε 1, we have∫

QS

d∏
j=1

 Nj∑
a=1

1Tj,a

 1
d−1

.ε
∑

β1,...,βd

∫
Qs

d∏
j=1

 ∑
`j,a∈Sj,β

1Tj,a

 1
d−1

.

We claim that each β-summand on the right side is controlled by Proposition
multilinearkakeyasimpleauxmultilinearkakeyasimpleaux
7.31. Clearly, this

is the case when βj is such that Sj,βj contains ej . Otherwise, we perform a linear change of
variables such that the center of Sj,β is mapped to ej . Since the angle between the `j,a and ej
is at most (10d)−1, the involved Jacobian is at most constd. In any case, the integral in the new
coordinates is again controlled using Proposition

multilinearkakeyasimpleauxmultilinearkakeyasimpleaux
7.31. �

Proof of Theorem
multilinearkakeyasimplemultilinearkakeyasimple
7.29 assuming Proposition

multilinearkakeyasimpleauxmultilinearkakeyasimpleaux
7.31. We again cover Sj by caps Sj,β of a small

radius ρ. As long as ρ ≤ ν/(100d), we can guarantee that |v1 ∧ · · · ∧ vd| ≥ ν/2 for all vj ∈ Sj,β .
We pick a sequence of caps S1,β1

, ..., Sd,βd and change coordinates so that the center of the cap
Sj,βj is mapped to the coordinate vector ej . The distortion of lengths and volumes caused by

this coordinate change is O(ν−1). So, we may apply Proposition
multilinearkakeyasimpleauxmultilinearkakeyasimpleaux
7.31 in these new coordinates.
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If ρ = ρ(ε) is small enough, the image of Sj,β is contained in a cap of radius δ = δ(ε) as in
Proposition

multilinearkakeyasimpleauxmultilinearkakeyasimpleaux
7.31 – and this gives the desired estimate with error of order CεO(ν−1)Sε. Finally,

we sum over CεO(ν−1) with different choices of S1,β1
, ..., Sd,βd . �

7.9.2. The axis parallel case (Loomis–Whitney). As we have remarked after Theorem
multilinearkakeyaorgmultilinearkakeyaorg
7.25, the

case where all `j,a are parallel to the ej-axis follows from the Loomis–Whitney inequality (
eq:loomiswhitneyeq:loomiswhitney
7.19)

in the form ∫
Rd

d∏
j=1

fj(πj(x))
1
d−1 ≤

d∏
j=1

‖fj‖
1
d−1

L1(Rd−1)
.

In fact, if the line `j,a is parallel to the ej-axis, then it can be defined by the point πj(x) = ya ∈
Rd−1 where it intersects the plane xj = 0, see the figure below.

Figure 2 fig:loomiswhitney

Then ∑
a

1Tj,a(x) =
∑
a

1Bya (1)(πj(x)) .

Applying the Loomis–Whitney inequality with

fj =
∑
a

1Bya (1)(πj(x))

with ‖fj‖L1(Rd−1) = |Sd−1|Nj , we obtain

∫
Rd

d∏
j=1

 Nj∑
a=1

1Tj,a

 1
d−1

=

∫
Rd

d∏
j=1

fj(πj(x))
1
d−1 ≤

d∏
j=1

‖fj‖L1(Rd−1) ∼
d∏
j=1

N
1
d−1

j .

7.9.3. The multiscale argument. In the previous subsubsection we saw how to prove Proposition
multilinearkakeyasimpleauxmultilinearkakeyasimpleaux
7.31 in the case where all tubes are parallel to each other. We will now have to understand and
control the impact of slightly tilting them with tilting angle at most δ = δ(ε) for a given fixed
ε. The main idea is the following. Instead of trying to prove the desired estimate immediately
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on the scale S, we will first study a smaller scale, say δ−1. Then, we will jump to the larger
scale δ−2 using the Loomis–Whitney inequality and continue this procedure until we arrive at
the desired scale S.

To set up the argument (and also generalize the lemma a bit), we introduce the one-parameter
family of tubes of variable thickness Tj,a,W which are W -neighborhoods (cylindrical or rectan-
gular) of the line `j,a.

The following lemma is crucial to get the inductive step from scale δ−1 to scale δ−2 running.

multiscalekakeya Lemma 7.32. Suppose the lines `j,a make an angle of at most δ from the ej-axis. Let Tj,a,W be
as before and introduce

fj,W :=

Nj∑
a=1

1Tj,a,W .

If S ≥W/δ and QS is any cube of sidelength S, then∫
QS

d∏
j=1

f
1/(d−1)
j,W dx ≤ Cdδd

∫
QS

d∏
j=1

f
1/(d−1)
j,W/δ dx .

Proof. Since S ≥ W/δ, we may divide QS into subcubes Q whose side length belongs to

[W/δ20d ,
W/δ
10d ]. Thus, it suffices to prove for each such cube∫

Q

d∏
j=1

f
1/(d−1)
j,W dx ≤ Cdδd

∫
Q

d∏
j=1

f
1/(d−1)
j,W/δ dx .

Since the side length of Q is ≤ W/δ
10d , one can find an axis-parallel tube T̃j,a,W̃ of twice the

thickness, i.e., W̃ = 2W , see also the figure below.

Figure 3 fig:tiltedvsaxisparalleltubes

Therefore, we have 1Ta,j,W (x) ≤ 1T̃a,j,2W (x) for all x ∈ Q and may estimate

∫
Q

d∏
j=1

f
1/(d−1)
j,W ≤

∫
Q

d∏
j=1

(∑
a

1T̃a,j,2W

) 1
d−1

.
d∏
j=1

(
Nj(Q)

1
d−1 ·W

d−1
d−1

)
= W d

d∏
j=1

Nj(Q)
1
d−1 .

Here, we used Loomis–Whitney in the second inequality (like in the previous step) and denoted
the number of tubes Tj,a,W that intersect Q by Nj(Q).
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Now, since the side length of Q is ≤ W/δ
10d , its diameter is ≤ W/δ

10
√
d
≤ W/δ

10 . Thus, if Tj,a,W

intersects Q, then certainly 1Tj,a,W/δ(x) = 1 for all x ∈ Q and hence Nj(Q) ≤
∑Nj
a=1 1Tj,a,W/δ(x)

for all x ∈ Q. Using this bound and that |Q| ∼ (W/δ)d, we obtain

W d
d∏
j=1

Nj(Q)
1
d−1 . δd|Q|

d∏
j=1

 Nj∑
a=1

1Tj,a,W/δ(x)

 1
d−1

∼ δd
∫
Q

d∏
j=1

 Nj∑
a=1

1Tj,a,W/δ(x)

 1
d−1

,

thereby establishing the claim. �

We are now ready to give the

Proof of Theorem
multilinearkakeyasimpleauxmultilinearkakeyasimpleaux
7.31. Suppose first S = δ−M . Using Lemma

multiscalekakeyamultiscalekakeya
7.32 repeatedly, we get∫

QS

d∏
j=1

 Nj∑
a=1

1Tj,a

 1
d−1

=

∫
QS

d∏
j=1

f
1
d−1

j,1 ≤ CMd δd·M
∫
QS

d∏
j=1

f
1
d−1

j,δ−M

with Cd from the assertion of that lemma. Since fj,δ−M (x) ≤ Nj for all x, we can further estimate

∫
QS

d∏
j=1

 Nj∑
a=1

1Tj,a

 1
d−1

≤ CMd δd·M
d∏
j=1

N
1
d−1

j

∫
QS

= CMd

d∏
j=1

N
1
d−1

j .

Since S = δ−M , we have M = logS
log(δ−1) and therefore CMd = S

logCd
log(δ−1) . Now, for given ε, we chose

δ = δ(ε) so small that logCd
log(δ−1) ≤ ε. Thus, for S = δ−M , the above estimate reads

∫
QS

d∏
j=1

 Nj∑
a=1

1Tj,a

 1
d−1

≤ Sε
d∏
j=1

N
1
d−1

j

when S = δ−M . Now, for an arbitrary S ≥ 1, we can find M ∈ N0 so that QS can be covered by
Cδ(ε) cubes of side length δ−M . But then we can use the above estimate for each such subcube
and obtain ∫

QS

d∏
j=1

 Nj∑
a=1

1Tj,a

 1
d−1

≤ CεSε
d∏
j=1

N
1
d−1

j .

This concludes the proof of Theorem
multilinearkakeyasimpleauxmultilinearkakeyasimpleaux
7.31. �

ss:multilinearrestreqkakeya
7.10. Multilinear restriction ⇔ multilinear Kakeya. We follow Bennett–Carbery–Tao

Bennettetal2006
[6,

§2].

Notation. Recall that we introduced for α ≥ 0, q ≥ 2d/(d− 1), and p′ ≤ q(d− 1)/d the notation

R∗(p× ...× p→ q;α)

to denote the multilinear restriction estimate

‖
d∏
j=1

Ejgj‖Lq/d(BR(0)) ≤ CRα
d∏
j=1

‖gj‖Lp(Uj) ,

for some C = C(A, ν, α, d, p, q), for all gj ∈ Lp(Uj), j = 1, ..., d, and all R ≥ 1. Similarly, for
d/(d− 1) ≤ q ≤ ∞, we use

K∗(1× ...× 1→ q; ε)
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to denote the multilinear Kakeya estimate

‖
q∏
j=1

(
∑
Tj∈Tj

1Tj )‖q/d ≤ Cδ−ε
d∏
j=1

(δd/q#Tj) (7.28) eq:notationkakeya

for some C = C(ε, d, q), for all transversal collections of families of δ-tubes in Rd, and all
0 < δ ≤ 1. Recall once more, that (

eq:notationkakeyaeq:notationkakeya
7.28) is equivalent (by standard density arguments in

suitable weak topologies), to the superficially stronger inequality

‖
d∏
j=1

(
∑
Tj∈Tj

1Tj ∗ µTj )‖Lq/d(Rd) ≤ Cδ−ε
d∏
j=1

(δd/q
∑
Tj∈Tj

‖µTj‖) (7.29) eq:kakeyameasure

for all finite measures µTj (with Tj ∈ Tj and j = 1, ..., d) on Rd.
With this notation, Theorem

multilinearkakeyaorgmultilinearkakeyaorg
7.25 is equivalent to the statement K∗(1× ...× 1→ q; 0) for all

d/(d − 1) ≤ q ≤ ∞, and K∗(1 × ... × 1 → d/(d − 1); ε) for all ε > 0. Similarly, Theorem
multilinrestrmultilinrestr
7.24 is

equivalent to R∗(2× ...× 2→ 2d(d− 1); ε) for all ε > 0.

7.10.1. Multilinear restriction ⇒ multilinear Kakeya. As we have already outlined (see also
Proposition

restrictionkakeyarestrictionkakeya
14.4), a standard randomization argument allows one to deduce the multilinear

Kakeya conjecture from the multilinear restriction conjecture. In the localized setting, this of
course continues to be true, i.e., for any α ≥ 0, we have

R∗(2× ...× 2→ 2d

d− 1
;α)⇒ K∗(1× ...× 1→ d

d− 1
; 2α) . (7.30) eq:multilinrestrimplieskakeya

7.10.2. Multilinear Kakeya ⇒ multilinear restriction. Multilinearizing a well known bootstrap-
ping argument of Bourgain

Bourgain1991
[13] (again, see Tao–Vargas–Vega

Taoetal1998
[167] in the bilinear setting), we

shall obtain the following reverse mechanism.

inductionrestrkakeya Proposition 7.33. For all α, ε ≥ 0 and 2d/(d− 1) ≤ q ≤ ∞, we have

R∗(2× ...× 2→ q;α) and K∗(1× ...× 1→ q

2
; ε)⇒ R∗(2× ...× 2→ q;

α

2
+
ε

4
) .

Remark 7.34. Note that there are minor flaws in the proofs of this proposition in Bennett–
Carbery–Tao

Bennettetal2006
[6, Proposition 2.1] and in Bennett

Bennett2014
[5, Proposition 4.8]. (Formula (14) in

Bennettetal2006
[6] can

only hold, when the L2(ARj ) norm on the right side of the estimate is replaced by the L2(A
√
R

j )

norm. A similar flaw occurs in
Bennett2014
[5].) This flaw is however not grave, as A

√
R

j can still be covered

by R−1/2 × ... × R−1/2 × R−1 discs (there are now O(R1/2) more discs in the argument as in
these works) as they are merely used to perform a partition of unity of fj ∗ ϕxR1/2 . In any case,
a correct version of the proof appears Lecture 1 (Proposition 36) in Tao’s notes

Tao2020Notes
[166].

Using elementary estimate, one easily verifies R∗(2× ...× 2→ 2d/(d− 1);α) for very large α.
For instance, noting that |B0(R)| = cdR

d, one has

‖
d∏
j=1

Ejgj‖L2/(d−1)(B0(R)) ≤ cdRd(d−1)/2
d∏
j=1

‖Ejgj‖∞ ≤ cdRd(d−1)/2
d∏
j=1

‖gj‖L1(Uj) ,

which, by Cauchy–Schwarz, yields R∗(2 × ... × 2 → 2d/(d − 1); d(d − 1)/2). In the presence
of appropriately favorable Kakeya estimates this large value of α may then be reduced by a
repeated application of the above proposition. In particular, Proposition

inductionrestrkakeyainductionrestrkakeya
7.33 together with

(
eq:multilinrestrimplieskakeyaeq:multilinrestrimplieskakeya
7.30) (multilinear restriction ⇒ multilinear Kakeya) shows the equivalence

R∗(2× ...× 2→ 2d

d− 1
; ε)⇔ K∗(1× ...× 1→ d

d− 1
; ε) for all ε > 0 .
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Therefore, the multilinear restriction theorem (Theorem
multilinearkakeyaorgmultilinearkakeyaorg
7.25) follows from the multilinear Kakeya

theorem (Theorem
multilinearkakeyaorgmultilinearkakeyaorg
7.25). In fact, already Guth’s simpler version (Theorem

multilinearkakeyasimplemultilinearkakeyasimple
7.29) is sufficient to

prove Theorem
multilinearkakeyaorgmultilinearkakeyaorg
7.25.

The proof of Proposition
inductionrestrkakeyainductionrestrkakeya
7.33 is very similar to that of Tao–Vargas–Vega

Taoetal1998
[167, Lemma 4.4],

and on a technical level slightly more straightforward. We begin by stating a lemma which, given
(1) in Remark

remsassumpsmultilinearrestrremsassumpsmultilinearrestr
7.23 and the control of |Yj | implicit in Assumption

assummultrestrassummultrestr
7.22 is a standard manifestation

of the uncertainty principle. (See Córdoba
Cordoba1980
[47] for the origin of this (see also

Cordoba1977
[49]) and Tao–

Vargas–Vega
Taoetal1998
[167, Proposition 4.3] for a proof in the bilinear case which immediately generalizes

to the multilinear case.) In effect, this is similar to localized linear restriction theory that we
discussed in Section

s:locals:local
6, especially Lemmas

fatlocextfatlocext
6.1 and

fatlocext2fatlocext2
6.3.

localizedmultilinearrestriction Lemma 7.35. The multilinear restriction estimate R∗(2× ...× 2→ q;α) is true if and only if

‖
d∏
j=1

f̌j‖Lq/d(B0(R)) ≤ CRα−d/2
d∏
j=1

‖fj‖2 (7.31) eq:localizedmultilinearrestriction

for all R ≥ 1 and functions fj ∈ Ŝ(Rd) with supp fj ⊆ ARj ≡ N1/R(Σj(Uj)) := Σj(Uj)+O(R−1)

(an R−1-neighborhood or R−1-annulus) for all j = 1, ..., d.

We now turn to the proof of Proposition
inductionrestrkakeyainductionrestrkakeya
7.33, where the implicit constants in the . notation

will at most depend on A, ν, d, p, α, and ε.

Proof of Proposition
inductionrestrkakeyainductionrestrkakeya
7.33. The proof is somewhat similar to the one of Lemma

multiscalekakeyamultiscalekakeya
7.32 and uses

induction on scales.
Because of the above lemma on the equivalence between global and localized restriction esti-

mates, it suffices to show

‖
d∏
j=1

f̌j‖Lq/d(B0(R)) . R
α/2+ε/4−d/2

d∏
j=1

‖fj‖L2(ARj )

for all fj with supp fj ⊆ ARj with j = 1, ..., d. To this end, let ϕ ∈ Ĉ∞c (Rd) be a bump

function adapted to B0(C) such that ϕ̌(x) ≥ 0 for x ∈ B0(1). For R ≥ 1 and x ∈ Rd, define the
modulated (L1-normalized) dilate ϕx

R1/2(ξ) := e−2πix·ξRd/2ϕ(R1/2ξ) which is a bump adapted to

B0(C/R1/2) in Fourier space, respectively a Schwartz function in physical space which is centered
at x, bounded from below on Bx(C−1R1/2), and rapidly decaying away from Bx(C−1R1/2). By
the assumption R∗(2 × ... × 2 → q;α) and the above localization lemma (Lemma

localizedmultilinearrestrictionlocalizedmultilinearrestriction
7.35 with R

replaced by
√
R and replacing fj by the modulate fje

2πi〈x,·〉), we infer

‖
d∏
j=1

(ϕxR1/2)∨f̌j‖Lq/d(Bx(R1/2)) . R
α/2−d/4

d∏
j=1

‖ϕxR1/2 ∗ fj‖L2(A
√
R

j )

for all x ∈ Rd. Thus, “Lq/d-averaging” this inequality over x ∈ B0(R) (i.e., taking both sides
to the power q/d, integrating over x ∈ B0(R), and taking everything to the power d/q) yields
(using

∫
|x|≤R 1|x−y|≤

√
R dx & R

d/21|y|≤R)

‖
d∏
j=1

f̌j‖Lq/d(B0(R)) . R
α/2−d/4

R−d/2 ∫
B0(R)

 d∏
j=1

‖fj ∗ ϕxR1/2‖2
L2(A

√
R

j )

q/(2d)

dx


d/q

.

In what follows, we shall show that the [...]d/q-term is bounded by Rε/4 · R−d/4 where the
Rε/4 is just the square root of the constant in the multilinear Kakeya estimate (

eq:kakeyameasureeq:kakeyameasure
7.29) with
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δ = R−1/2. Now, for each j = 1, ..., d, we cover A
√
R

j (the R−1/2-neighborhood around Σj(Uj))

by a boundedly overlapping family of R−1/2 × ... × R−1/2 × R−1-discs {Dj} and introduce
fj,Dj := 1Djfj . Since for each j, the supports of the functions fj,Dj ∗ ϕxR1/2 are only finitely
overlapping, we further obtain

‖
d∏
j=1

f̌j‖Lq/d(B0(R)) . R
α/2−d/4

R−d/2 ∫
B0(R)

 d∏
j=1

∑
Dj

‖fj,Dj ∗ ϕxR1/2‖2L2(Rd)

q/(2d)

dx


d/q

.

Applying Plancherel to the right side and using that (ϕx
R1/2)∨ is rapidly decreasing away from

Bx(
√
R), we estimate the right side further from above by a constant times

Rα/2−d/4

R−d/2 ∫
B0(R)

 d∏
j=1

∑
Dj

‖(fj,Dj )∨‖2L2(Bx(R1/2))

q/(2d)

dx


d/q

. (7.32) eq:localizedmultilinearrestrictionsmoothened

For each Dj , let ψDj ∈ Ŝ(Rd) with ψDj (ξ) ∼ 1 for ξ ∈ Dj and whose Fourier transform satisfies

|(ψDj )∨(x+ y)| . R−(d+1)/21Tj (x) , x, y ∈ Rd with |y| ≤ R1/2 ,

where Tj denotes the R1/2 × ... × R1/2 × R-tube (which is dual to the disc Dj) centered at
the origin and oriented along the normal of the disc Dj . (Note that we are here using the full

C2(Uj) control given by Assumption
assummultrestrassummultrestr
7.22.) Defining f̃j,Dj := fj,Dj/ψDj , we see that fj,Dj and

f̃j,Dj are pointwise comparable. Now, by Cauchy–Schwarz (write the following convolution like

|(f̃j,Dj )∨(z)| |(ψDj )∨(z − w)|1/2 · |(ψDj )∨(z − w)|1/2), we may estimate

|(fj,Dj )∨(x+ y)|2 = |(f̃j,Dj )∨ ∗ (ψDj )
∨(x+ y)|2 . R−(d+1)/2|(f̃j,Dj )∨|2 ∗ 1Tj (x)

for all x, y ∈ Rd with |y| ≤ R1/2. Integrating this in y over |y| ≤ R1/2 yields

‖(fj,Dj )∨‖2L2(Bx(R1/2)) . R
−1/2|(f̃j,Dj )∨|2 ∗ 1Tj (x) .

Plugging this estimate in (
eq:localizedmultilinearrestrictionsmoothenedeq:localizedmultilinearrestrictionsmoothened
7.32) and applying the R−1/2-rescaled Kakeya hypothesis K∗(1× ...×

1→ q/2; ε) with δ = R−1/2 (in its equivalent “measure form” (
eq:kakeyameasureeq:kakeyameasure
7.29)), we obtain

‖
d∏
j=1

f̌j‖Lq/d(B0(R)) . R
α
2−

d
4

R− d2 ∫
B0(R)

 d∏
j=1

∑
Dj

R−1/2|(f̃j,Dj )∨|2 ∗ 1Tj (x)

q/(2d)

dx


d/q

. Rα/2−d/2+ε/4
d∏
j=1

∑
Dj

‖f̃j,Dj‖2L2(A
√
R

j )

1/2

. Rα/2−d/2+ε/4
d∏
j=1

‖fj‖L2(A
√
R

j )
= Rα/2−d/2+ε/4

d∏
j=1

‖fj‖L2(ARj ) .

In the penultimate inequality we used Kakeya and then Plancherel, and in the final inequality,
the pointwise comparability |f̃j,Dj | ∼ |fj,Dj | and then the almost disjointness of the fj,Dj to take

the Dj-sum into the L2(A
√
R

j )-norm. This concludes the proof of Proposition
inductionrestrkakeyainductionrestrkakeya
7.33. �
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8. Restriction estimates via reverse Littlewood–Paley inequalities and the
Kakeya conjecture

s:LP

Before we introduce the third tool commonly used to prove restriction estimates, let us discuss
another possible approach to prove localized inequalities of the form (for Pd−1 for the sake of
concreteness)

‖(Fdσ)∨‖L2d/(d−1)(B(x0,R)) . R
ε‖F‖L2d/(d−1)(Pd−1,dσ)

for R� 1 and any x0 ∈ Rd. As we saw earlier, the above estimate can actually be reduced to

‖Ǧ‖L2d/(d−1)(B(x0,R)) . R
ε−(d+1)/(2d)‖G‖L2d/(d−1)(N1/R(Pd−1))

for any Ǧ with smooth Fourier support contained in N1/R(Pd−1) (see Lemma
fatlocextfatlocext
6.1). To make

things simpler, let us only consider smooth functions f ≡ Ĝ with f̂ = G belonging to the unit
ball in L∞(N1/R(Pd−1)), i.e., we are aiming to prove

‖f‖L2d/(d−1)(BR) . R
ε−1 .

Of course, this is a weaker statement (by Hölder’s inequality), but by symmetry considerations
one can actually show these statements are equivalent to each other.

We are now going to decompose N1/R(Pd−1) into a collection of “slabs” θ ⊆ Rd, i.e., essentially

disjoint curved regions with dimension R−1/2×R−1/2× · · · ×R−1. An explicit way to do this is
to cover [−1, 1]d−1 with 2R−1/2×R−1/2× · · · ×R−1/2 cubes {Q} whose centers lie in the lattice
R−1/2Zd−1 and define each θ by

θ = {(ξ′, η + |ξ′|2) : ξ′ ∈ Qθ, |η| . R−1}

for some choice of Qθ ∈ {Q}. We emphasize once more that it is important that the slabs are
only essentially disjoint, i.e., they have some finite overlap which will also become manifest in
a moment. In fact, the finite overlap allows us to construct a partition of unity of N1/R(Pd−1)
which is adapted to the family of slabs. Another consequence of this construction (and the
curvature of Pd−1) is the following observation concerning the set Ω of normals of these slabs.

Lemma 8.1. The normals of the above slabs are R−1/2-separated.

Proof. For j = 1, 2, assume (ξ′j , |ξ′|2) ∈ Pd−1 and let νj = ∇|ξ′|2/‖∇|ξ′|2‖ (with ∇|ξ′j |2 =

(2ξ′j ,−1)) denote the unit normal of Pd−1 at (ξ′j , |ξ′|2). Then, by Cauchy–Schwarz and |ξ′1−ξ′2| ∼
R−1/2,

ν1 · ν2 =
4ξ′1 · ξ′2 + 1

(4|ξ′1|2 + 1)1/2(4|ξ′2|2 + 1)1/2
≤
(

1− 4|ξ′1 − ξ′2|2

(4|ξ′1|2 + 1)(4|ξ′2|2 + 1)

)1/2

≤ (1−AR−1)1/2 .

Thus, we obtain

|ν1 − ν2|2 = 2(1− ν1 · ν2) & R−1

by the mean value theorem. If ν1 · ν2 < 0, the above difference is even O(1). �

We will now decompose f using the partition of unity that is given by the slabs θ, i.e.,

f =
∑

θ:R−1/2−slab

fθ where f̂θ = f̂1θ .

Our goal is then to prove ∥∥∥∥∥∥
∑

θ:R−1/2−slab

fθ

∥∥∥∥∥∥
L2d/(d−1)(B(x0,R))

. Rε−1 .
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In fact, we will show the ostensibly stronger estimate∥∥∥∥∥∥
∑

θ:R−1/2−slab

fθ

∥∥∥∥∥∥
2d/(d−1)

. Rε−1 .

The main difficulty is to understand the cancellation properties between the individual fθ. There-

fore, our first goal is to replace the `1 quantity
∑
θ |fθ| by the `2 quantity

(∑
θ |fθ|2

)1/2
which has

the effect of separating the contributions from individual fθ whilst accounting for any destructive
interference. Unfortunately, such a strong relationship has not been obtained yet, which is why
we only have the following

reverselpconj Conjecture 8.2 (Reverse Littlewood–Paley inequality for slabs). Suppose f has frequency sup-
port in N1/R(Pd−1). Then

‖f‖Lp(Rd) . R
ε

∥∥∥∥∥∥∥
 ∑
θ:R−1/2−slab

|fθ|2
1/2

∥∥∥∥∥∥∥
Lp(Rd)

for 2 ≤ p ≤ 2d

d− 1
. (8.1) eq:reverselpconj

For even Hölder exponents, the reverse square function estimate can be proved under the
condition that Minkowski sums of sets have only bounded overlap.

Definition 8.3. Let (Ωj)
n
j=1 be a sequence of sets in Rd. We say that “ξ lies in at most A2 ∈ N

of the Ωj” whenever the maximal number of Ωj which contain ξ is given by A2, i.e.,

A2 := sup
ξ∈Rd
{number of Ω′js containing ξ} .

Then we have the following

reverselpl2l4 Proposition 8.4 (Reverse L2 and L4 square function estimates). Let f1, ..., fn ∈ S(Rd) have
Fourier support in sets Ω1, ...,Ωn ⊆ Rd, respectively. Then we have the following assertions.

(1) (Almost orthogonality) If the sets Ω1, ...,Ωn have overlap at most A2, (i.e., every ξ lies
in at most A2 ∈ N of the Ωj) for some A2 > 0, then

‖
n∑
j=1

fj‖L2(Rd) ≤ A
1/2
2 ‖(

n∑
j=1

|fj |2)1/2‖L2(Rd) .

(2) (Almost bi-orthogonality) If the (n2) sum sets Ωi + Ωj := {ξ + ξ′ : ξ ∈ Ω , ξ′ ∈ Ω′} with
i, j ∈ {1, ..., n} have overlap at most A4 for some A4 > 0, then

‖
n∑
j=1

fj‖L4(Rd) ≤ A
1/4
4 ‖(

n∑
j=1

|fj |2)1/2‖L4(Rd) .

Remarks 8.5. (1) Clearly, the above theme can be generalized for L2p with p ∈ N, if one
assumes that the sum sets

∑p
j=1 Ωj have overlap at most A2p, see, e.g., Gressman–Guo–Pierce–

Roos–Yung
Gressmanetal2021
[87].

(2) By using fifj in place of fifj , one can also establish a variant of (2) in Proposition
reverselpl2l4reverselpl2l4
8.4

where the sum set Ωi + Ωj is replaced by the difference set Ωi −Ωj := {ξ − ξ′ : ξ ∈ Ω , ξ′ ∈ Ω′}.

Proof. (1) For p = 2 this is an immediate consequence of Plancherel’s theorem, pointwise Cauchy–
Schwarz

(

n∑
j=1

|f̂j(ξ)|)2 ≤ A2(

n∑
j=1

|f̂j(ξ)|2)
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(since the sets are only finitely overlapping) and Fubini. More precisely,

‖
n∑
j=1

fj‖2 = ‖
n∑
j=1

f̂j‖2 ≤ A1/2
2 ‖(

n∑
j=1

|f̂j |2)1/2‖2 = A
1/2
2 ‖(

n∑
j=1

|fj |2)1/2‖2 .

(2) Writing

‖
n∑
j=1

fj‖24 = ‖
n∑

i,j=1

fifj‖2

and

‖(
n∑

i,j=1

|fifj |2)1/2‖2 = ‖(
n∑
j=1

|fj |2)1/2‖24

it becomes obvious that this assertion follows from what we have just shown. More precisely,
using the fact that fifj has Fourier support in the Minkowski sum Ωi + Ωj (by the convolution

theorem, i.e., supp f̂1 ∗ f̂2 ⊆ supp f̂1 +supp f̂2) and the fact that these sums only overlap finitely,
we can apply Cauchy–Schwarz in the i, j-summation, i.e.,

(

n∑
i,j=1

f̂ifj(ξ))
2 ≤ A4

n∑
i,j=1

|f̂ifj |2(ξ)

and conclude as before using Plancherel. �

In Appendix
s:CordobaFeffermans:CordobaFefferman
B we will apply the above observation to review a classical argument due to

Córdoba which proves the reverse Littlewood–Paley inequality (and thereby the restriction con-
jecture) in d = 2 when p = 4. (Recall that we already presented in Subsection

ss:2drestrictionss:2drestriction
7.4 an alternative

proof of two-dimensional restriction relying on bilinear techniques.)

Remark 8.6. In fact, an argument of Carbery
Carbery2015
[36] shows that the hypothesized square function

estimate (
eq:reverselpconjeq:reverselpconj
8.1) implies the Kakeya conjecture and, consequently, the restriction conjecture. At-

tempting to prove the whole restriction conjecture from this direction seems a quite optimistic
strategy as (

eq:reverselpconjeq:reverselpconj
8.1) appears to be very powerful and in all likelihood considerably more difficult

than the restriction conjecture.

From now on, we will assume that the reversed Littlewood–Paley inequality holds. The
frequency localization onto the slabs leads (by the uncertainty principle) to a localization to dual
tubes which is called wave packet decomposition and which will be discussed in the next section.
Let us anyway anticipate already the main result of that section, Lemma

wavepacketwavepacket
9.2, which says that

there exist constants fT and a collection T(θ) of tubes dual to the slab θ (which is centered at
ξθ ∈ Rd) which cover Rd such that

fθ(x) =
∑

T∈T(θ)

fTψT (x) ,

where ψT (x) = |T |−1e−2πix·ξθϕT (x) is a so-called wave packet associated to T . Here, ϕT = ϕ◦a−1
T

where ϕ is a Schwartzian bump function centered at the origin with supp ϕ̂ ⊆ [−1/2, 1/2]d and
aT is an affine transformation whose linear part has determinant |T | and maps [−1/4, 1/4]d

bijectively to T . (Recall that for an invertible linear map S : Rd → Rd, one has

f̂ ◦ ST = |det(ST )|−1f̂ ◦ S−t

where S−t denotes the inverse transpose of S.)
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Now, applying the Littlewood–Paley conjecture together with the wave packet decomposition
implies that it suffices to bound (noting |T | ∼ R(d+1)/2)

R−(d+1)/2

∥∥∥∥∥∥∥∥
 ∑
θ:R−1/2−slab

 ∑
T∈T(θ)

|fT ||ϕT |

2


1/2
∥∥∥∥∥∥∥∥
L2d/(d−1)(Rd)

.

We will do so by replacing the “smooth indicator function” ϕT (which decays rapidly away
from T ) by a sharp cut-off 1T and afterwards applying the Kakeya conjecture

kakeyakakeya
14.1. In this

context (using |T | ∼ R(d+1)/2 and that the number of R−1/2-separated slabs covering Pd−1 is
O(R(d−1)/2)), the conjecture says∥∥∥∥∥∥

∑
θ:R−1/2−slab

1Tθ

∥∥∥∥∥∥
Ld/(d−1)(Rd)

. Rε+d−1 .

We begin with the replacement of ϕT by 1T . For this, let ` ∈ Zd and 1T,` denote the
characteristic function of the rectangle aT

(
[−1/4, 1/4]d + `/2

)
. Thus, the 1T,` yield a rough

partition of unity of Rd.

Lemma 8.7. With the above notation, the estimate∥∥∥∥∥∥∥∥
 ∑
θ:R−1/2−slab

 ∑
T∈T(θ)

|fT ||ϕT |

2


1/2
∥∥∥∥∥∥∥∥
L2d/(d−1)(Rd)

.
∑
`∈Zd

(1 + |`|)−(d+1)

∥∥∥∥∥∥∥∥
 ∑
θ:R−1/2−slab

 ∑
T∈T(θ)

|fT |1T,`

2


1/2
∥∥∥∥∥∥∥∥
L2d/(d−1)(Rd)

holds.

Proof. This follows from the rapid decay of ϕ, i.e.,

|ϕT (x)| =
∑
`∈Zd

ϕT (x)1T,`(x) .
∑
`∈Zd

1T,`(x)(
1 + |a−1

T (x)|
)d+1

.
∑
`∈Zd

1T,`(x)

(1 + |`|)d+1

and a two-fold application of Minkowski’s inequality (first in the `2-norm and afterwards in the
L2d/(d−1)-norm). �

Since the supports of the 1T,` are essentially disjoint as T varies over T(θ) (i.e., 1T1,`(x)1T2,`(x) =
0 for almost all T1, T2 ∈ T(θ)), one has ∑

T∈T(θ)

|fT |1T,`

2

.
∑

T∈T(θ)

|fT |21T,` .

That means that the L2d/(d−1)-norm (of the right side appearing in the inequality of the above
lemma) for a fixed ` ∈ Zd can be bounded by∥∥∥∥∥∥

∑
θ:R−1/2−slab

∑
T∈T(θ)

|fT |21T,`

∥∥∥∥∥∥
Ld/(d−1)(Rd)
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This means that it suffices to show that this expression is O(R(d−1)/2). Using the information

on
∑
T |fT |2 from the wave packet decomposition and our initial hypothesis that f̂ belongs to

the unit ball of L∞(N1/R(Pd−1)), we have∑
T∈T(θ)

|fT |2 . 1 ,

i.e., there exists a sequence (cT )T∈T(θ) of non-negative real numbers such that∑
T∈T(θ)

c2T . 1

and that∥∥∥∥∥∥
∑

θ:R−1/2−slab

∑
T∈T(θ)

|fT |21T,`

∥∥∥∥∥∥
Ld/(d−1)(Rd)

.

∥∥∥∥∥∥
∑

θ:R−1/2−slab

∑
T∈T(θ)

cT1T,`

∥∥∥∥∥∥
Ld/(d−1)(Rd)

.

randomization Lemma 8.8. With the above notation, we have∥∥∥∥∥∥
∑

θ:R−1/2−slab

∑
T∈T(θ)

cT1T,`

∥∥∥∥∥∥
Ld/(d−1)(Rd)

. E

∥∥∥∥∥∥
∑

θ:R−1/2−slab

1Tθ,`

∥∥∥∥∥∥
Ld/(d−1)(Rd)

for any ` ∈ Zd and choice (Tθ) ∈
∏
θ T(θ) 12.

Believing this lemma for the moment, the argument is concluded by applying the hypothesized
Kakeya estimate ∥∥∥∥∥∥

∑
θ:R−1/2−slab

1Tθ,`

∥∥∥∥∥∥
Ld/(d−1)(Rd)

. Rε+d−1 (8.2) eq:kakeyasquarefct

which is valid for every choice ` ∈ Zd and (Tθ) ∈
∏
θ T(θ). We conclude the section with the

Proof of Lemma
randomizationrandomization
8.8. (1) Consider randomly selecting a sequence of rectangles, one for each

direction θ. Each T is chosen from T(θ) with a probability cT
13. This means that we constructed

a probability space
∏
θ T(θ) where a sequence of rectangles (i.e., a singleton {(Tθ)}) is picked

with the probability
∏
θ cTθ .

(2) For a fixed x ∈ Rd, consider the random variable
∑
θ 1Tθ,`(x) which counts the number of

rectangles of the above randomly picked sequence (Tθ) for which x ∈ supp 1Tθ,`. The expectation
value (with respect to the “probability space” T(θ)) that x ∈ supp 1Tθ,` holds for a given θ is
given by

E1Tθ,`(x) =
∑

T∈T(θ)

cT1Tθ,`(x) .

Thus, by the linearity of the expectation, one has

E

 ∑
θ:R−1/2−slab

1Tθ,`(x)

 =
∑

θ:R−1/2−slab

∑
T∈T(θ)

cT1Tθ,`(x) .

12Here, (Tθ) is understood as a randomly picked sequence of rectangles, one for each direction θ. The space∏
θ T(θ) is thus endowed with a probability measure which assigns the probability

∏
θ cTθ to each singleton {(Tθ)}.

13More precisely, consider a sequence of slabs (θj)j∈N. Then for each slab θj , there is a sequence of rectangles

(Tnθj
)n∈N ∈ T(θj) (which covers Rd) and the above cT actually means cTn

θj
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Taking the Ld/(d−1)-norm of these expressions, we infer from Minkowski’s inequality∥∥∥∥∥∥
∑

θ:R−1/2−slab

∑
T∈T(θ)

cT1Tθ,`(x)

∥∥∥∥∥∥
Ld/(d−1)(Rd)

≤ E

∥∥∥∥∥∥
∑

θ:R−1/2−slab

1Tθ,`(x)

∥∥∥∥∥∥
Ld/(d−1)(Rd)

for any ` ∈ Zd and choice (Tθ) ∈
∏
θ T(θ). �

9. The wave packet decomposition
s:wavepacket

We will now present the third method which has been used over the last say ten years to
obtain restriction estimates.

For the sake of illustration, assume that we wish to prove restriction estimates for the parab-
oloid Pd−1 using restriction estimates via reverse Littlewood–Paley inequalities.

Recall that we covered N1/R(Pd−1) with R−1/2 × · · · × R−1/2 × R−1-slabs θ whose normal

directions were R−1/2-separated. This lead us to the decomposition f =
∑
θ fθ in Fourier space

where f̂θ = f̂1θ. By the uncertainty principle, localizing to a slab θ which is oriented in direction
ω is equivalent to localizing to a dual tube T (or rather to a collection of such tubes covering
Rd) of dimensions R1/2× · · ·×R1/2×R in physical space which is oriented along ω as well. The
functions which are going to localize to these tubes are called wave packets and can be thought
of as smoothed out copies of Knapp examples. The goal of this section is to make the above
intuition more precise.

Let T be some rectangle and aT be an affine transformation whose linear part has determinant
|T | and which maps [−1/4, 1/4]d bijectively to T .

Let further ϕ be a Schwartzian bump function at the origin such that supp ϕ̂ ⊆ [−1/2, 1/2]d

and ϕ̂|[−1/4,1/4]d = 1. Define then ϕT := ϕ ◦ a−1
T as the bump function on the tube T . (Recall

that for an invertible linear map S : Rd → Rd, one has

f̂ ◦ S = |det(S)|−1f̂ ◦ S−t

where S−t denotes the inverse transpose of S.)
Finally, for a given slab θ, we denote by T(θ) the finitely overlapping collection of tubes which

are dual to θ, oriented along the direction of θ.
With the above notation, we are finally in position to define wave packets.

Definition 9.1 (Wave packets). Let θ be an R−1/2-slab centered at ξθ ∈ Rd. Let T , aT , ϕT
and T(θ) as above. Then a wave packet associated to T ∈ T(θ) is defined as

ψT (x) := |T |−1e2πix·ξθϕT (x) .

Before we make the heuristics of the beginning of the section precise, the following crucial
observations are in order.

(1) If a∗T denotes the adjoint of the linear part of the affine transformation aT , then |ψ̂T (ξ)| ∼
|ϕ̂(a∗T (ξ − ξθ)) and ψ̂T is supported on a dilute of θ with |ψ̂T |θ| = 1.

(2) We have the support property {ξ ∈ Rd : |ψ̂T (ξ)| = 1} ⊆ (a∗T )−1
(
[−1/4, 1/4]d

)
+ ξθ where

(a∗T )−1
(
[−1/4, 1/4]d

)
is a rectangle dual to T .

wavepacket Lemma 9.2 (Wave packet decomposition). Let f ∈ C∞(Rd) with Fourier support in N1/R(Pd−1).

Then for any R−1/2-slab θ there exists a decomposition

fθ(x) =
∑

T∈T(θ)

fTψT (x)
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where the constants fT satisfy  ∑
T∈T(θ)

|fT |2
1/2

. ‖f̂θ‖L2
avg(θ) .

Here, the averaged Lp norm ‖ · ‖Lpavg(Ω) for some subset Ω ⊆ Rd of finite Lebesgue measure is
defined as

‖f‖Lpavg(Ω) := |Ω|−1/p‖f‖Lp(Ω) . (9.1) eq:defavglp

Proof. Denote by T0 the R1/2 × · · · × R1/2 × R-rectangle oriented along θ and centered at 0.
Then

gθ(ξ) := f̂θ((a
∗
T0

)−1ξ + ξθ)

is supported on [−1/2, 1/2]d and can be thought of as a function on the torus Td = [−1/2, 1/2]d.
That means, that it can be expanded in a Fourier series whose Fourier coefficients uk satisfy∑

k∈Zd
|uk|2 = ‖gθ‖2L2([−1/2,1/2]d) . ‖f̂θ‖

2
L2

avg(θ) .

Therefore,

f̂θ(ξ) = gθ(a
∗
T0

(ξ − ξθ)) =
∑
k∈Zd

uke−2πik·a∗T0 (ξ−ξθ) for ξ ∈ (a∗T0
)−1

(
[−1/2, 1/2]d

)
+ ξθ .

On the other hand, we saw in our earlier considerations that the function ϕ̂(a∗T0
(ξ − ξθ)) equals

one on supp f̂θ and is itself supported on (a∗T0
)−1

(
[−1/2, 1/2]d

)
+ ξθ. But that means that the

last equality can also be written as

f̂θ(ξ) = gθ(a
∗
T0

(ξ − ξθ)) =
∑
k∈Zd

uke−2πik·a∗T0 (ξ−ξθ)ϕ̂(a∗T0
(ξ − ξθ)) for ξ ∈ Rd .

Performing an inverse Fourier transform on the last expression then leads to

fθ(x) =
∑
k

uk|det a−1
T0
|e2πix·ξθϕT0(x− aT0k) = const

∑
k

ukψT0+aT0k
(x) .

The proof is concluded by noting that T(θ) is just the collection of all rectangles of the form
{T0 + aT0k}k∈Zd . �

10. Induction on scales

11. Adapting Wolff’s argument to the paraboloid

12. Connection to PDEs
s:PDEss:strichartz

12.1. Original Strichartz estimates. Strichartz
Strichartz1977
[153, §3] observed that restriction theorems

immediately yield estimates on the Lp norms of solutions to certain dispersive PDEs, in particular
the free Schrödinger equation, the Klein–Gordon equation, and the acoustic wave equation. We
begin this section by giving classic bounds on ‖u‖Lpx for the free Schrödinger equation. We will
then generalize these estimates to mixed norm estimates which are invaluable to prove global
well-posedness of nonlinear dispersive equations such as the cubic nonlinear Schrödinger equation.

The main theorem of this section is the following result
Strichartz1977
[153, Corollary 1]. The full range

of Strichartz estimates were proven by Keel and Tao
KeelTao1998
[105], whereas non-endpoint results were

obtained by Ginibre and Velo
GinibreVelo1992
[84] and Yajima

Yajima1987
[182].
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strichartzfreeschroedinger Theorem 12.1 (Strichartz estimate for the free Schrödinger equation). Let u(x, t) be the solu-
tion of the inhomogeneous, free Schrödinger equation

i
∂u

∂t
(x, t) + λ∆xu(x, t) = g(x, t)

u(x, 0) = f(x)
(12.1) eq:freeschroedinger

for x ∈ Rd, t ∈ R, and λ ∈ R\{0}. Assume f ∈ L2(Rd) and g ∈ Lp(Rd+1) for p = 2(d+2)/(d+4).
Then u ∈ Lq(Rd+1) for q = 2(d+ 2)/d and ‖u‖q ≤ a(‖f‖2 + ‖g‖p).

Proof. It is well known that (
eq:freeschroedingereq:freeschroedinger
12.1) has a unique solution which can be written as

u(x, t) =

∫ t

0

eiλ(t−s)∆g(x, s) ds+ a

∫
Rd
f̂(ξ)e−i(x·ξ+λξ

2·2t) dξ

by performing a Fourier transform and applying Duhamel’s formula. The estimate for the second
term is then an immediate consequence of the restriction theorem

‖(Fdσ)∨‖Lq(Rd+1) . ‖F‖L2(S)

where the manifold S is the paraboloid starting at the origin, i.e.,

S = {(x, t) ∈ Rd+1 : R(x, t) := t− λ|x|2 = 0} .

To estimate the first term we use ‖eit∆‖2→2 = 1 (by unitarity) and ‖eit∆‖1→∞ . |t|−d/2 (by the
fundamental solution of the free Schrödinger equation). Thus, by interpolation,

‖eit∆‖p→q . |t|−d(
1
p−

1
2 ) = |t|−d/(d+2) .

Thus, with r = d/(d+2) (i.e., 1/p−1/q = 1−r = 2/(d+2)), and the Hardy–Littlewood–Sobolev
inequality,∥∥∥∥∫ t

0

eiλ(t−s)∆g(·, s) ds
∥∥∥∥
Lq(Rd)

.
∫ t

0

|t− s|−r‖g(·, s)‖Lp(Rd) ds . ‖g‖Lp(Rd+1) ,

which was asserted. �

Remark 12.2. One should compare the last inequality with the Christ–Kiselev lemma
ChristKiselev2001
[45]

which says the following.
Let X,Y be Banach spaces, I be a time interval, and K ∈ C0(I × I → B(X → Y )) be a

kernel taking values in the space of bounded operators from X to Y . Suppose 1 ≤ p < q ≤ ∞ is
such that ∥∥∥∥∫

I

K(t, s)f(s) ds

∥∥∥∥
Lqt (I→Y )

. ‖f‖Lpt (I→X)

for all f ∈ Lp(I → X). Then, for any s < t, one also has∥∥∥∥∥∥
∫

s∈I:s<t

K(t, τ)f(τ) dτ

∥∥∥∥∥∥
Lqt (I→Y )

. ‖f‖Lpt (I→X)

The principle that motivates this lemma is that if an operator is known to be bounded from
one space to another, then any “reasonable localization” (in this case to the causal region s < t
of time interactions) of that operator should be bounded as well. Unfortunately, the condition
p < q is necessary.

The proof of this lemma as it was formulated here can be found in Smith and Sogge
SmithSogge2000
[140] or

Tao
Tao2000
[161].
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For Strichartz estimate for the Schrödinger equation with scalar potentials, we refer to the
recent paper by Seo and Seok

SeoSeok2019
[134] and the vast list of references therein. Let us in particular

emphasize the groundbreaking works by Bouclet and Mizutani
BoucletMizutani2018
[12] and Burq et al

Burqetal2003,Burqetal2004
[30, 31] for

Schrödinger operators with critical singularities and critical decay (in particular of Hardy’s type).

12.2. Global well-posedness of the cubic NLS in d = 2.

12.2.1. Non-linear dispersive equations. Let us discuss some immediate consequences of the re-
striction conjecture regarding evolution equations. Examples for such equations are the heat
equation

∂tu−∆u = 0 ,

the wave equation

∂2
t u−∆u = 0 ,

and Schrödinger’s equation

i∂tu−∆u = 0 .

There are many other important evolution equations such as the Euler or the Navier–Stokes
equation which describe the motion of fluids.

For evolution equations, the natural problem to study is the Cauchy problem (as opposed to,
say, the Dirichlet problem). We specify initial data u(0) = f (and, for the wave equation also
the initial velocity ∂tu(0) = g) and ask for the solution u at a later time t. There are three
fundamental questions that one can ask about such equations.

• Existence: does a solution u(t) exist at all? In what sense (weak, strong, classical) is it
a solution? Does it exist for all times, or just for a finite time interval?

• Uniqueness: can there be more than one solution with the same initial data? Are there
some extra conditions (e.g., regularity conditions) one needs to impose to force unique-
ness? If there are still several solutions, is there a “good”, or “physically relevant”
solution that is somehow “better” than the others?

• Stability: suppose we perturb the initial data slightly. How does this affect the solution?
More precisely, does the solution depend continuously on the data (as measured in some
Banach space norm, for instance)?

An equation is said to be well-posed if it satisfies all of the above three properties. (Clearly,
one can qualify well-posedness as being local or global in time, or being subject to some regularity
condition, etc.)

For linear equations these questions are fairly simple to answer, but they become more subtle
for non-linear equations. In the following we shall focus on the nonlinear Schrödinger equation
(NLS), a prime example for a dispersive equation, i.e., irregularities of solutions do not go away at
all, but instead they propagate around in space. In particular, different frequency irregularities
move in different directions or at different speeds. As such, solutions do not get smoother as
time goes by, but they do tend to spread out and decay.

For this discussion, we shall just focus on variants of the Cauchy problem for the free linear
Schrödinger equation

i∂tu−∆u = 0

u(0) = f

in two spatial dimensions, i.e., u(t, x) is a function on R × R2. For this equation, we have the
exact solution

u(t, x) = e−it∆f(x) =
1

4πt

∫
R2

e−i|x−y|
2/(4t)f(y) dy
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which is valid for all t 6= 0 (and pointwise for f ∈ L1 ∩L2). For fixed f ∈ L1, the solution decays
in time, namely

‖e−it∆f‖∞ ≤
1

4πt
‖f‖1 .

On the other hand,

‖e−it∆f‖2 = ‖f‖2
by Plancherel. (In fact, all Sobolev norms are conserved in time.) So, even though the solution
decays pointwise, the L2-norm is not altered, i.e., nothing gets “annihilated” (or created). This
is reflecting the dispersive rather than dissipative (meaning that singularities attenuate and
disappear as time goes by) nature of the equation. Very poetically speaking, it is the ∆ term
in the Schrödinger equation that causes the dispersion; without this term, the equation becomes
∂tu = 0 which obviously has no dispersion.

Now let us perturb the free Schrödinger equation. Popular examples of perturbations include

• restricting the equation on a manifold on Rd,
• adding an obstacle (and providing some sort of boundary condition),
• adding a potential,
• coupling it with another equation, or
• adding a non-linearity.

Let us consider the last option and restrict ourselves to the so-called meson equation or cubic
non-linear Schrödinger equation in d = 2 dimensions, i.e.,

i∂tu−∆u = λ|u|2u
u(0) = f

(12.2) eq:3nls

where λ ∈ C is a constant. One could of course consider other non-linearities as well but the
cubic non-linearity is just L2-critical, i.e., if ‖u‖2 is kept constant (as it physically is), it is not
possible to scale λ away (which is possible for other powers of the non-linearity).

To get some idea of what this equation is doing, let us pretend that the dispersive term, i.e.,
∆u, was not present. Then (

eq:3nlseq:3nls
12.2) can be integrated and the solution reads

u(t) = (|u(0)|−2 − 2at)−
a+ib
2a

u(0)

|u(0)|
where −iλ = a+ib. Obviously, if a = Im(λ) > 0, the equation will blow up in finite time, namely
at t = (2a|u(0)|2)−1. It is basically the non-linearity which causes a positive feedback loop and
leads to the rapid increase of the solution.

However, we expect that the dispersive ∆u term tries to stop this blow-up from happening
by spreading the singularities of u around as soon as they get too large. Of course, for this to
happen, the solution at t = 0 or the coupling constant λ of the non-linearity must not be too
big. In fact, we have the following

Theorem 12.3. Suppose ‖f‖2 = 1. Then, if λ is sufficiently small, there there exists a global
solution u to (

eq:3nlseq:3nls
12.2) such that ‖u‖2 . 1 for all t. Furthermore, the space-time estimate

‖u‖L4
x,t
. 1 holds. This solution is unique subject to the above condition, and the solution

depends continuously in the norms just mentioned on the initial data f in L2. Finally, we
have scattering in the following sense. There exists some initial data f+ such that

‖u(t)− e−it∆f+‖2 → 0 as t→∞ .

In the PDE jargon, we just claimed that the meson equation is globally well-posed with
scattering in L2 for small λ. In Subsection

sss:largelambdasss:largelambda
12.2.4 we shall discuss the case of large coupling

constants λ.
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Note that this theorem does not care about the sign of λ. (Intuitively, λ > 0 should act
as an “attractor”.) The theorem says that the decay inherent in the Schrödinger equation has
tamed the effect of the non-linearity. In fact, as time goes to infinity, the non-linearity becomes
increasingly irrelevant.

The techniques used to prove this result are by no means restricted to this one particular
equation; they can be extended to all kinds of non-linear dispersive equations which are in
some sense a small perturbation of a well-understood linear equation. Unfortunately, we still do
not really understand how to push the well-posedness theory beyond perturbation theory into
equations that are far more non-linear than (

eq:3nlseq:3nls
12.2).

The treatment of these equations is connected, spiritually at least, with restriction theory. An
informal link is as follows. Suppose that u is a global solution to the free Schrödinger equation

i∂tu−∆u = 0 .

Assuming that u has a space-time Fourier transform, we get (formally at least),

−2πτû(τ, ξ) + 4πξ2û(τ, ξ) = 0 ,

where

û(τ, ξ) =

∫ ∫
e−2πi(tτ+ξ·x)u(t, x) dt dx .

If û(τ, ξ) 6= 0, this implies τ = 2π|ξ|2, i.e., û is supported on the paraboloid

S = {(τ, ξ) : τ = 2π|ξ|2} .

Thus, we may write

û = g dσ

for some g, where dσ is some surface measure on S. It turns out that the best choice of dσ is the
spatial Lebesgue measure dξ, or more precisely the pullback of this measure under the projection
map (τ, ξ) 7→ ξ.

If we require that the initial data of u is in L2, it turns out to imply a L2 estimate on g by

Plancherel’s theorem. In other words, we have a representation of u as u = ĝdσ where we have
L2 control on g.

We would like to say that u decays at infinity, so that the non-linear effects will also die away.
It turns out that the right estimate to use is

‖ĝdσ‖L4
x,t
. ‖g‖2 .

(In d spatial dimensions, this is ‖ĝdσ‖
L

2(d+2)/d
x,t

. ‖g‖2.) If we take the adjoint of this, this

becomes

‖f̂‖L2(S,dσ) . ‖f‖4/3
which is just the Tomas–Stein restriction estimate RS(4/3→ 2) in d = 3 dimensions.

In what follows we will however not invoke the Tomas–Stein estimate since u is supposed
to solve the non-linear, rather than the free Schrödinger equation. However, the Tomas–Stein
philosophy, particularly squaring an estimate and interpolating between an L1 → L∞ and an
L2 → L2 estimate, will be very present.

12.2.2. Proof of well-posedness in d = 2. Let us start with the proof of the main theorem. We
want to solve the equation

iut −∆u = λ|u|2u
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with initial data u(0) = f . Without loss of generality, let ‖f‖2 = 1. In a first step, we shall
rewrite this equation as an integral formulation via Duhamel’s principle, namely

u(t) = e−it∆f + iλ

∫ t

0

e−i(t−s)∆(|u|2u)(s) ds . (12.3) eq:nlsduhamel

(One should think of the first term as the influence of the initial data, whereas the second term
corresponds to the cumulative influence of the forcing term |u|2u.) Although this equation is
equivalent to the differential form, it is much easier to handle when it comes to proving existence
and uniqueness.

To find a solution, we shall use an iterative method. We first approximate u by the linear
solution

u0(t) = e−it∆f

and then make the better approximation

u1(t) = e−it∆f + iλ

∫ t

0

e−i(t−s)∆(|u0|2u0) ds

and so forth, by defining uk+1 = Nuk where

(N(u))(t) = e−it∆f + iλ

∫ t

0

e−i(t−s)∆(|u|2u) ds .

We hope that this sequence of approximations converges to a limit as k →∞ so that N(u) = u.
Put differently, our goal is to show that the operator N has a fixed point, that this point is
unique, and that it depends continuously on the data. This would be an immediate consequence
of the contraction mapping theorem, provided we know that N is a contraction on some metric
space X which contains u0. This sounds easy enough – and a very large number of existence
results in PDE are ultimately derived from this very simple idea. The catch is that we have to
pick the right metric space to get the contraction working.

After a lot of experimentation and looking at the behavior of the first few iterates u0, u1, etc.,
we ultimately decide that the correct space to use is

X = {u : ‖u‖L4
x,t
≤ C} ,

where C is some universal constant and the metric is induced by the L4 norm. Thus, we would
like to show

‖u0‖L4
x,t
. 1 (12.4) eq:zerothit

and

‖N(u)−N(v)‖L4
x,t
≤ 1

2
‖u− v‖L4

x,t
for all u, v ∈ L4

x,t . (12.5) eq:contraction

This will be accomplished by the following three estimates which go under the name Strichartz
estimates and were already discussed in Subsection

ss:strichartzss:strichartz
12.1. We shall use the homogeneous Strichartz

estimate (yields estimate (
eq:zerothiteq:zerothit
12.4) on u0 = e−it∆f)

‖e−it∆f‖L4
x,t
. ‖f‖2 (12.6) eq:homstrichartz

(compare this to Theorem
strichartzfreeschroedingerstrichartzfreeschroedinger
12.1), the dual homogeneous Strichartz estimate (yields scattering

and that u(t) still belongs to L2)

‖
∫ ∞

0

eit∆F (t) dt‖2 . ‖F‖L4/3
x,t

, (12.7) eq:dualhomstrichartz
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and the retarded Strichartz estimate (yields the contraction property)

‖
∫ t

0

e−i(t−s)∆F (s) ds‖L4
x,t
. ‖F‖

L
4/3
x,t

. (12.8) eq:retardedstrichartz

We shall prove these estimates in the next subsubsection. For now, let us see how these estimates
give what we want.

First, the estimate on the zeroth iteration u0 = e−it∆f , i.e., (
eq:zerothiteq:zerothit
12.4), follows trivially from

(
eq:homstrichartzeq:homstrichartz
12.6). Next, we shall prove the contraction property (

eq:contractioneq:contraction
12.5). We first note that one can simplify

N(u)−N(v) as

N(u)−N(v) = iλ

∫ t

0

e−i(t−s)∆(|u|2u− |v|2v) ds .

Thus, by (
eq:retardedstrichartzeq:retardedstrichartz
12.8), we have

‖N(u)−N(v)‖L4
x,t
. |λ|‖|u|2u− |v|2v‖

L
4/3
x,t

.

Now, we use the pointwise estimate

||u|2u− |v|2v| = ||u|2(u− v)− |v|2(v − u) + |u|2v − |v|2u|
≤ ||u|2(u− v)− |v|2(v − u)|+ |uuv − vvu|
= ||u|2(u− v)− |v|2(v − u)|+ |uv(u− v)|
≤ |u|2|u− v|+ |v|2|v − u|+ |u||v||u− v|

≤ 3

2

[
|u|2|u− v|+ |v|2|u− v|

]
= O(|u|2|u− v|) +O(|v|2|u− v|)

and Hölder’s inequality to obtain

‖N(u)−N(v)‖L4
x,t
. |λ|

(
‖u‖24‖u− v‖4 + ‖v‖24‖u− v‖4

)
.

But since u, v ∈ L4
x,t, (

eq:contractioneq:contraction
12.5) clearly holds, if λ is chosen sufficiently small.

Thus, we have proven existence, uniqueness, and continuous dependence of u on the initial
data. As a bonus, we get that the limit u ∈ L4

x,t. However, we are not done yet; we still

need to show that u(t) still belongs to L2 and that scattering occurs. Let us investigate the
square-integrability. From Duhamel’s version of the NLS, we obtain

‖u(t)‖2 . ‖e−it∆f‖2 + ‖e−it∆
∫ t

0

eis∆(|u|2u) ds‖2 .

Clearly, the first term is bounded since f ∈ L2. To estimate the second one, we use (
eq:dualhomstrichartzeq:dualhomstrichartz
12.7) and

obtain

‖
∫ t

0

eis∆(|u|2u) ds‖2 . ‖|u|2u‖4/3 = ‖u‖34 . 1

as desired. Finally, we show scattering. Define f+ by

f+ = f + iλ

∫ ∞
0

eis∆(|u|2u)(s) ds ,

i.e., f+ is equal f modified by the backdated effect of the non-linearity. From (
eq:dualhomstrichartzeq:dualhomstrichartz
12.7) and the

argument just given, we see that f+ ∈ L2. We wish to show

‖u(t)− e−it∆f+‖2 → 0 as t→∞ .
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From Duhamel’s version of the NLS, we have

u(t)− e−it∆f+ =

(
e−it∆f + iλ

∫ t

0

e−i(t−s)∆(|u|2u)(s) ds

)
−
(

e−it∆f + iλ

∫ ∞
0

e−i(t−s)∆(|u|2u)(s) ds

)
= −iλe−it∆

∫ ∞
t

eis∆(|u|2u)(s) ds .

Using (
eq:dualhomstrichartzeq:dualhomstrichartz
12.7), we obtain

‖u(t)− e−it∆f+‖2 . |λ|‖1[t,∞)|u|2u‖4/3
which yields the claim by monotone convergence.

12.2.3. Proof of the Strichartz estimates. [Check whether the following arguments were generalized

by Keel--Tao
KeelTao1998
[105, Theorem 1.2] to obtain sharp Strichartz estimates from L1 → L∞

bounds on eitH.]
Let us first see the implications (

eq:retardedstrichartzeq:retardedstrichartz
12.8) ⇒ (

eq:dualhomstrichartzeq:dualhomstrichartz
12.7) ⇒ (

eq:homstrichartzeq:homstrichartz
12.6) and finally prove (

eq:retardedstrichartzeq:retardedstrichartz
12.8). First,

the homogeneous Strichartz estimate follows from the dual homogeneous estimate by Cauchy–
Schwarz, namely ∣∣∣∣∣

∫ (∫ ∞
0

eit∆F (t, x) dt

)
f(x) dx

∣∣∣∣∣ . ‖F‖L4/3
x,t
‖f‖2 .

Rearranging the left side, this becomes∣∣∣∣∫ ∫ F (t, x)e−it∆f(x) dt dx

∣∣∣∣ . ‖F‖L4/3
x,t
‖f‖2 .

Taking sup
F∈L4/3

x,t
, we obtain ‖e−it∆f‖L4

x,t
. ‖f‖2, i.e., (

eq:homstrichartzeq:homstrichartz
12.6) by duality of the Lp spaces.

Next, let us see how the dual homogeneous estimate follows from the retarded estimate. First,
we square the dual homogeneous estimate as

〈
∫ ∞

0

eit∆F (t) dt,

∫ ∞
0

eis∆F (s) ds〉 . ‖F‖2
L

4/3
x,t

and rewrite it as ∫ ∞
0

∫ ∞
0

〈eit∆F (t), eis∆F (s)〉 ds dt . ‖F‖2
L

4/3
x,t

.

By symmetry, it suffices to consider the portion of the double integral where s ≤ t, i.e.,∫ ∞
0

dt

∫ t

0

ds 〈eit∆F (t), eis∆F (s)〉 . ‖F‖2
L

4/3
x,t

and rewrite this once more as∫
R2

∫ ∞
0

F (t, x)

(∫ t

0

e−i(t−s)∆F (s, x) ds

)
dt dx .

Now, by Hölder’s inequality, the left side is bounded by

‖F‖
L

4/3
x,t

∥∥∥∥∫ t

0

e−i(t−s)∆F (s, x) ds

∥∥∥∥
L4
x,t

.

Now, we may apply the retarded estimate (
eq:retardedstrichartzeq:retardedstrichartz
12.8) which yields the claimed inequality.
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Finally, let us prove the retarded estimate. We right out the L4
x,t norm of the left side of

(
eq:retardedstrichartzeq:retardedstrichartz
12.8) as (∫ ∞

0

dt

∥∥∥∥∫ t

0

e−i(t−s)∆F (s) ds

∥∥∥∥4

L4
x

)1/4

and apply Minkowski’s inequality to obtain

‖
∫ t

0

e−i(t−s)∆F ds‖L4
x,t
≤

(∫ ∞
0

dt

(∫ t

0

ds ‖e−i(t−s)∆F‖L4
x

)4
)1/4

By interpolating between ‖e−it∆f‖2 ≤ ‖f‖2 and ‖e−it∆f‖∞ . |t|−1‖f‖1, we can estimate the
L4
x norm appearing in the integrand and thus obtain

‖
∫ t

0

e−i(t−s)∆F ds‖L4
x,t
.

(∫ ∞
0

dt

(∫ t

0

ds |t− s|−1/2‖F (s)‖
L

4/3
x

)4
)1/4

≤ ‖| · |−1/2 ∗ ‖F (·)‖
L

4/3
x
‖L4

t
. ‖F‖

L
4/3
x,t

where we used the Hardy–Littlewood–Sobolev inequality (in the time-dimension!) in the final
inequality. This concludes the proof of (

eq:retardedstrichartzeq:retardedstrichartz
12.8).

sss:largelambda
12.2.4. Large values of λ. The proof of the contraction property (

eq:contractioneq:contraction
12.5) crucially relied on the

smallness of λ. Therefore, it is not expected to obtain global existence for large λ since the
non-linear term can make the the wave function extremely large for certain frequencies before
dispersive effect of ∆ can repair the damage. However, one can at least get a local solution.

Theorem 12.4. Suppose ‖f‖2 = 1 and λ is arbitrary. Then there exits a time T0 > 0 and
a local solution u to (

eq:3nlseq:3nls
12.2) such that ‖u(t)‖2 . 1 for all 0 ≤ t ≤ T0. Moreover, u satisfies

‖u‖L4
x,t(R2×[0,T0]) . 1. This solution u is unique subject to the above conditions and the solution

depends continuously in the norms just mentioned on the initial data f ∈ L2.

The proof of this theorem is virtually identical to that of the main theorem. There are,
however, two main differences.

(1) All our norms are restricted to the space-time interval R3 × [0, T0].
(2) We iterate on a much smaller ball, namely

X = {u : ‖u‖L4
x,t(R2×[0,T0]) ≤ ε}

where ε(λ) is a tiny number. One can check that the Duhamel map N is still a contraction
if this number is small enough.

(3) We must guarantee that the zeroth iterate u0 = e−it∆f is in X. But this follows from
the homogeneous Strichartz estimate ‖e−it∆f‖L4

x,t
. ‖f‖2, i.e., ‖u0‖L4

x,t
. 1 globally.

Thus, if T0 is chosen small enough, monotone convergence shows ‖u0‖L4
x,t(R2×[0,T0]) ≤ ε.

12.3. Strichartz estimates for the Schrödinger equation on the torus via decoupling
inequalities. See Subsubsection

sss:strichartztorussss:strichartztorus
18.1.2 and the notes of Hickman–Vitturi

HickmanVitturi
[94, p. 22, Lecture 2,

Section 2.2].
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13. Pointwise convergence of the Schrödinger evolution
s:maxschroedinger

We consider the nonlinear Schrödinger equation (NLS){
i∂tu(x, t) = −∆u(x, t) +N (u) ,

u(x, 0) = f(x) ,
x ∈ Rd or Td

where Td = R/2πZ and N is a power-type nonlinearity. The basic question is the following: Let
s > 0 and f ∈ Hs(Rd). For which s > 0 does the solution u(x, t) converge pointwise (Lebesgue)
almost everywhere to f(x) as t→ 0? For N = 0 in R1 this question was first posed by Carleson
Carleson1980
[41, p. 24] who showed that almost everywhere convergence holds, whenever f ∈ H1/4(R).
Dahlberg–Kenig

DahlbergKenig1982
[55] showed that this one-dimensional result is sharp; in fact, they proved that

s ≥ 1/4 is a necessary condition for a.e. convergence in Rd for all d ≥ 1. Recently, Bourgain
Bourgain2016
[21] showed that s ≥ d/(2(d + 1)) is a necessary condition for a.e. convergence to the initial
data. This has been proved to be sharp, up to the endpoint, by Du–Guth–Li

Duetal2017
[60] in d = 2 and

Du–Zhang
DuZhang2019
[62] in higher dimensions.

See works by Kenig–Ruiz
KenigRuiz1983
[107], Sjölin

Sjolin1987
[139], Vega

Vega1988
[171], Bourgain

Bourgain1992,Bourgain2016
[15, 21], Du–Guth–Li

Duetal2017
[60],

Du–Guth–Li–Zhang
Duetal2018
[61], Du–Zhang

DuZhang2019
[62], and the references therein.

For N (z) = |z|p−1z, see Compaan–Lucá–Staffilani
Compaanetal2019
[46] who proved pointwise a.e. convergence

in Ωd ∈ {Rd,Td} for p ≥ 3 and

s > max

{
s∗,

d

2
− 2

p− 1

}
and s ≥ 1/4 for d = 1 and p < 9. Here,

s∗ := inf
{
s : lim

t→0
eit∆f(x) = f(x) for a.e. x ∈ Ωd , f ∈ Hs(Ωd)

}
is the exponent for which pointwise a.e. convergence in the linear setting, i.e., N = 0 holds,
i.e., s∗ = d/(2(d + 1)) on Rd and s∗ = d/(d + 2) on Td (see Moyua–Vega

MoyuaVega2008
[123] in d = 1 and

Wang–Zhang
WangZhang2019
[174] for higher dimension.).

See Dimou–Seeger
DimouSeeger2019
[59] for convergence of evolution generated by fractional Laplace in one

dimension. Bounds on eigenfunctions of −∆, see, e.g., Sogge
Sogge2014,Sogge2008
[142, 141]. See also Stovall’s review

Stovall2019
[152] for more references.

14. Connection to the Kakeya conjecture
s:Kakeya

In this section, we first show that the so-called Kakeya maximal conjecture is a consequence of
the restriction conjecture. Afterwards, we discuss the connection between the so-called Kakeya
set conjecture and the Kakeya maximal conjecture. In particular, we review the proof of the
two-dimensional Kakeya maximal conjecture. Finally, we discuss how Kakeya can be used to
study the restriction conjecture without the help of the square function conjecture (see Section
s:LPs:LP
8).

ss:restrimplieskakeya
14.1. Restriction conjecture ⇒ Kakeya maximal conjecture. Here, we follow Lecture 1
in the notes of Hickman and Vitturi

HickmanVitturi
[94] and Wolff

Wolff2003
[179, Proposition 10.5].

The Knapp example (Subsection
ss:Knappss:Knapp
3.2) in the introduction is central to the following discussion.

Recall that the restriction estimate R∗Pd−1(q′ → p′) “just barely fails” for p′ = q′ = 2d/(d − 1).
By that we mean that for all ε > 0 the estimate

‖(Fdσ)∨‖L2d/(d−1)(B(0,R)) . R
ε‖F‖L2d/(d−1)(Pd−1,dσ)

holds for all R� 1.



SOME NOTES ON RESTRICTION THEORY 85

We are now going to consider the case where F is the superposition of many disjoint Knapp
examples, i.e.,

F =
∑
κ

1κ

where κ is a R−1/2 × · · · ×R−1/2 cap on Pd−1. If Ω ⊆ Sd−1 denotes the set of normal directions
to these caps, we have

‖F‖L2d/(d−1)(Pd−1) .
(
R−(d−1)/2 × |Ω|

)(d−1)/(2d)

. (14.1) eq:knapplp

On the other hand, the uncertainty principle tells us that (1κdσ)∨ is essentially constant on a
tube dual to κ (with unit normal ω), i.e., on a tube Tω with dimensions R1/2 × · · · × R1/2 × R
which is oriented in the direction ω. Away from Tω, the function (1κdσ)∨ decays rapidly. Thus,
heuristically,

(Fdσ)∨(x) ∼ R−(d−1)/2
∑
ω∈Ω

e2πix·ξω1Tω (x) (14.2) eq:dualknapp

where ξω denotes the center of the cap oriented in direction ω ∈ Ω. By modulating the summands
of F , one may replace each Tω in (

eq:dualknappeq:dualknapp
14.2) with any translate of itself while maintaining (

eq:knapplpeq:knapplp
14.1).

Here, we will however agree that the tubes are contained in a ball B(0, AR) for some A > 1 but
otherwise arrange them in an arbitrary fashion. Our goal now is to show that these tubes are
“essentially disjoint” even if their overlap is “maximal” (which it is if we translate them in the
above fashion).

Due to the summation over exponentials in (
eq:dualknappeq:dualknapp
14.2), we expect considerable cancellations. If no

cancellation was present, |(Fdσ)∨| would roughly equal R−(d−1)/2 times the `1 sum of the 1Tω .
Because of the cancellations, we expect that the `1 sum should be replaced by a smaller `2 sum.
In fact, randomizing this sequence lets us exploit these cancellations effectively via Khintchine’s
inequality (see, e.g., Stein

Stein1970
[147, Chapter IV, §5, Equation (44) and Appendix D]), i.e.,

‖(
∑
k

|gk|2)1/2‖pp ∼
∫
Rd

E{|
∑
k

εkgk(x)|p} ,

where (εk)k is a Rademacher distributed sequence, i.e., a sequence of statistically independent
and identically distributed random variables with P (εk = ±1) = 1/2 for all k.

Thus, instead of considering a mere sum of Knapp examples, we define the modulated and
randomized sum

F (ξ) =
∑
κ

εκe2πixκ·ξ1κ(ξ)

for some choice of xκ ∈ Rd. Note that

E‖(Fdσ)∨‖
2d
d−1

L
2d
d−1 (Rd)

. RεE‖F‖
2d
d−1

L
2d
d−1 (Pd−1)

= Rε
∫
Pd−1

E{|
∑
κ

εκe2πixκ·ξ1κ(ξ)|
2d
d−1 } ∼ Rε−(d−1)/2 · |Ω|

(14.3) eq:randomizedlp

by the restriction conjecture and since the value of |F | is independent of the outcome of the εκ.
Moreover,

(Fdσ)∨(x) =
∑
κ

εκ(1κdσ)∨(x− xκ) .
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Applying Khintchine’s inequality and the uncertainty principle (
eq:dualknappeq:dualknapp
14.2), we obtain

E‖(Fdσ)∨‖
2d
d−1

L
2d
d−1 (Rd)

∼ ‖(
∑
κ

|(1κdσ)∨(· − xκ)|2)1/2‖
2d
d−1
2d
d−1

& ‖R−(d−1)/2(
∑
ω

1Tω )1/2‖
2d
d−1
2d
d−1

= R−d‖
∑
ω

1Tω‖
d
d−1
d
d−1

Combining this with (
eq:randomizedlpeq:randomizedlp
14.3), we obtain (noting |Tω|

d−1
d ∼ R

(d+1)(d−1)
2d = R(d−1)− (d−1)2

2d )

‖
∑
ω

1Tω‖ d
d−1
. Rε+(d−1)− (d−1)2

2d × |Ω|
d−1
d = Rε (|Tω| · |Ω|)

d−1
d .

We may thus summarize our above findings in the following conjecture which would follow
from the restriction conjecture.

kakeya Conjecture 14.1 (Kakaya maximal conjecture). Let Ω ⊆ Sd−1 be a maximal set of R−1/2-
separated directions and (Tω)ω∈Ω a collection of R1/2 × · · · × R1/2 × R-rectangles where Tω
is oriented in the direction of ω. Then, for any ε > 0, the inequality∥∥∥∥∥∑

ω∈Ω

1Tω

∥∥∥∥∥
Ld/(d−1)(Rd)

.ε R
ε

(∑
ω∈Ω

|Tω|

) d−1
d

(14.4) eq:kakeya

holds.

The reason why the above conjecture is called a maximal conjecture is that it can be refor-
mulated in terms of one, as we shall see in a moment, but see in particular Conjecture

maximalkakeyamaximalkakeya
14.2 and

Lemma
auxkakeyaauxkakeya
14.6. (In short, Lemma

auxkakeyaauxkakeya
14.6 says that Conjecture

kakeyakakeya
14.1 implies Conjecture

maximalkakeyamaximalkakeya
14.2 which is

the maximal Kakeya conjecture stated in the usual form.)
Let us continue with the discussion of Conjecture

kakeyakakeya
14.1. If the rectangles Tω were mutually

disjoint, the above inequality (
eq:kakeyaeq:kakeya
14.4) would of course be an equality, i.e.,∥∥∥∥∥∑

ω∈Ω

1Tω

∥∥∥∥∥
Ld/(d−1)(Rd)

= Rε

(∑
ω∈Ω

|Tω|

) d−1
d

.

This means that (
eq:kakeyaeq:kakeya
14.4) can be interpreted as the statement that the rectangles pointing in

different directions must have small intersection, i.e., they must be “essentially disjoint”. This
heuristic can in fact be made more precise. Let us define the overlap of the tubes Tω by α, i.e.,

|
⋃
ω

Tω| = α
∑
ω∈Ω

1Tω .

Clearly, 0 < α ≤ 1. From Hölder’s inequality, we have∑
ω∈Ω

|Tω| = ‖
∑
ω∈Ω

1Tω‖1 ≤ ‖
∑
ω∈Ω

1Tω‖d/(d−1)|
⋃
ω∈Ω

Tω|1/d .

Combining this with (
eq:kakeyaeq:kakeya
14.4), we obtain

R−ε ≤ α ,
i.e., α is essentially 1 up to extremely small powers of δ.

Let us now finally explain, why the name “maximal conjecture” is appropriate. In the fol-
lowing, we assume 0 < δ � 1 and f be a compactly supported function and define the Kakeya
maximal function by

f∗δ (ω) := sup
Tω

1

|Tω|

∫
Tω

|f | (14.5) eq:defmaximalkakeya
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where the supremum is taken over all 1× δ×· · ·× δ tubes Tω which are oriented in the direction
of ω ∈ Sd−1. Let K(p, ε) denote the estimate

‖f∗δ ‖Lp(Sd−1) . δ
−d/p+1−ε‖f‖Lp(Rd) . (14.6) eq:maximalkakeya

maximalkakeya Conjecture 14.2 (Kakaya maximal conjecture – equivalent formulation). Let 0 < δ � 1, f ,
and f∗δ be as above. Then K(p, ε) holds for all 1 ≤ p ≤ d and ε > 0.

Bourgain
Bourgain1991
[13, Section 2] proved this conjecture, provided 1 ≤ p ≤ p(d) where

p(d) =
p(d− 1)(d+ 2)− d

2p(d− 1)− 1
,

i.e., in particular (d + 1)/2 < p(d) < (d + 2)/2. Below, we shall focus on the case p = d which
corresponds to a “δ−ε-estimate” in the above conjecture. Some remarks on Conjecture

maximalkakeyamaximalkakeya
14.2 are

in order.

remarkmaxkakeya Remarks 14.3. (1) It is clear from the definition that

‖f∗δ ‖∞ ≤ ‖f‖∞ , (14.7) eq:maxkakeyatrivial1

‖f∗δ ‖∞ ≤ δ−(d−1)‖f‖1 . (14.8) eq:maxkakeyatrivial2

(2) If d ≥ 2 and p <∞, then there can be no bounds of the form

‖f∗δ ‖q ≤ C‖f‖p , (14.9) eq:maxkakeyanec

where C is independent of δ. (The role of q is not important here.) To see this, consider a zero
measure Kakeya set E 14, let Eδ be the δ-neighborhood of E, and f := 1Eδ . Then f∗δ (ω) = 1 for
all ω ∈ Sd−1 and hence ‖f∗δ ‖q ∼ 1. But on the other hand, limδ→0 ‖f‖pp = limδ→0 |Eδ| = 0 for
any p <∞.

(3) Let f = 1B0(δ). Then for all ω ∈ Sd−1 the tube T δω(0) contains B0(δ) so that

f∗δ (ω) =
|B0(δ)|
|T δω(0)|

& δ .

Hence, ‖f∗δ ‖p ∼ δ. But on the other hand, we have ‖f‖p ∼ δd/p which ultimately shows that a
“δ−ε-estimate” of the form

∀ε > 0 ∃Cε > 0 : ‖f∗δ ‖Lp(Sd−1) ≤ Cεδ−ε‖f‖Lp(Rd)

can never hold for any p < d. Thus, by interpolation with (
eq:maxkakeyatrivial1eq:maxkakeyatrivial1
14.7), the Kakeya problem therefore

consists in establishing

∀ε ∃Cε : ‖f∗δ ‖Ld(Sd−1) ≤ Cεδ−ε‖f‖Ld(Rd) . (14.10) eq:kakeyaproblem

In fact, this was proved for d = 2 by Córdoba
Cordoba1977
[49] in a somewhat different formulation and

by Bourgain
Bourgain1991
[13] as we stated it here. These results are somewhat easy in d = 2 since the

L2-formalism (with all its measures of orthogonality and oscillations through Plancherel) can be
exploited heavily.

(4) Interpolating (
eq:kakeyaproblemeq:kakeyaproblem
14.10) with (

eq:maxkakeyatrivial2eq:maxkakeyatrivial2
14.8) on the other hand gives a family of conjectured inequal-

ities

‖f∗δ ‖Lq(Sd−1) .ε δ
−d/p+1−ε‖f‖Lp(Rd) , 1 ≤ p ≤ d and q = (d− 1)p′ . (14.11) eq:kakeyaproblem2

Note that if (
eq:kakeyaproblem2eq:kakeyaproblem2
14.11) holds for some p0 > 1, then it also holds for all 1 ≤ p ≤ p0 (by interpolation

with (
eq:maxkakeyatrivial2eq:maxkakeyatrivial2
14.8)). The current best results in this direction are that (

eq:kakeyaproblem2eq:kakeyaproblem2
14.11) holds with p = min{(d+

2)/2, (4d+ 3)/7} and a suitable q, see Wolff
Wolff1995
[176] and Katz–Tao

KatzTao2002N
[104]. In fact, Wolff established

the p(d) = (d + 2)/2 endpoint in Bourgain’s result with q = (d − 1)p′. As we shall see soon

14Such sets can be constructed explicitly, see, e.g., Besicovitch
Besicovitch1928
[8], Perron

Perron1928
[127], Kahane

Kahane1969
[102].
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(Proposition
maximpliessetmaximpliesset
14.13), this implies that Kakeya sets have Hausdorff dimension ≥ (d + 2)/2 (see

also Remark
remstrongkakeyaremstrongkakeya
14.23). In Theorem

universalboundkakeyauniversalboundkakeya
14.19 we shall prove Bourgain’s result. �

Let us now give another proof of the fact that the restriction conjecture implies the Kakeya
maximal conjecture.

restrictionkakeya Proposition 14.4 (Fefferman, Bourgain). Assume that the restriction estimate

‖f̂dσ‖p .p ‖f‖Lp(Sd−1) , p >
2d

d− 1
(14.12) eq:restrictionkakeya1

holds. Then, the Kakeya maximal estimate (
eq:maximalkakeyaeq:maximalkakeya
14.13), i.e.,

‖f∗δ ‖Ld(Sd−1) .ε δ
−ε‖f‖Ld(Rd)

holds true.

Remark 14.5. Note that (
eq:restrictionkakeya1eq:restrictionkakeya1
14.12) is only ostensibly stronger than (

eq:restrictionkakeya2eq:restrictionkakeya2
14.33) below which states

‖f̂dσ‖p .p ‖f‖L∞(Sd−1) for p > 2d/(d − 1). In fact, these estimates are (formally at least)
equivalent, see Bourgain

Bourgain1991
[13].

The proof of Proposition
restrictionkakeyarestrictionkakeya
14.4 relies on the following Lemma, which will come in handy later

in the proof of the two-dimensional Kakeya conjecture (by Córdoba
Cordoba1977
[49]). In what follows, we

denote by

T δe (a) = {x ∈ Rd : |(x− a) · e| ≤ 1

2
, |(x− a)⊥| ≤ δ} , x⊥ = x− (x · e)e

the δ-neighborhood of a unit line segment in the e direction, centered at a.

auxkakeya Lemma 14.6. Let 0 < δ � 1 and 1 < p < ∞ and suppose p has the following property: if

{ek} ⊆ Sd−1 is a maximal δ-separated set, and if δd−1
∑
k y

p′

k ≤ 1, then for any choice of points

ak ∈ Rd, we have

‖
∑
k

yk1T δek (ak)‖p′ ≤ A .

Then, there is a bound

‖f∗δ ‖Lp(Sd−1) . A‖f‖Lp(Rd) .

Remark 14.7. Observe that the maximal δ-separated subset {ek} of Sd−1 has cardinality ≈
δ−(d−1).

Proof. Let {ek}k be a maximal δ-separated subset of Sd−1. Observe that if |ω − ω′| < δ, then
f∗δ (ω) ≤ Cf∗δ (ω′) since any T δω(a) can be covered by a bounded number of tubes T δω′(a

′). There-
fore,

‖f∗δ ‖p ≤

(∑
k

∫
Bek (δ)

|f∗δ (ω)|p dω

)1/p

≤ C

(
δd−1

∑
k

|f∗δ (ek)|p
)1/p

= Cδd−1
∑
k

yk|f∗δ (ek)|

for some sequence yk with
∑
k y

p′

k δ
d−1 = 1, where we used the duality between `p and `p

′

(i.e., ‖f‖`p = 〈g, f〉 for some (gk)k∈N ∈ `p
′

with ‖g‖`p′ = 1; here, fk = δ(d−1)/p|f∗δ (ek)| and

gk = ykδ
(d−1)/p′)) in the last line. Therefore, by the definition of the maximal function,

‖f∗δ ‖p . δd−1
∑
k

yk
1

|T δek(ak)|

∫
T δek

(ak)

|f |
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for a certain choice of {ak}. But since |T δek(ak)| ∼ δd−1, we obtain (using Hölder and the
hypothesis),

‖f∗δ ‖p .
∫ (∑

k

yk1T δek (ak)

)
|f | ≤ ‖

∑
k

yk1T δek (ak)‖p′‖f‖p ≤ A‖f‖p ,

thereby proving the lemma. �

Proof of Proposition
restrictionkakeyarestrictionkakeya
14.4. In view of the above lemma, we chose a maximal δ-separated subset

{ek} of Sd−1 whose cardinality is roughly δ−(d−1), as observed before. Now, for each j, pick a
tube T δej (aj) ≡ Tj and denote by τj the δ−2 rescaled version of Tj , i.e., the tube of length δ−2

and thickness δ−1, oriented along the ej direction. Furthermore, let

Sj = {ω ∈ Sd−1 : |1− ω · ej | ≤ C−1δ2}
be a spherical cap of radius ∼ C−1δ, centered at ej . Here, C is chosen so large that the Sj are
pairwise disjoint. (Note that the Sj are just dual to the τj .) Now, let fj be the associated Knapp
examples, i.e., fj are supported on Sj and satisfy

‖fj‖L∞(Sd−1) = 1

|f̂jdσ| & δd−1 on τj .

Now, let

fε :=
∑
j

εjyjfj ,

where the yj are non-negative weights and the sequence {εj}j is a Rademacher sequence. Since
the fj have disjoint supports, we have on the one hand

‖fε‖qLq(Sd−1)
=
∑
j

yqj‖fj‖
q
Lq(Sd−1)

∼
∑
j

yqj δ
d−1

since |Sd−1 ∩ Sj | ∼ δd−1 for all j. On the other hand, we have by Khintchine’s inequality

‖(
∑
k

|gk|2)1/2‖pp ∼
∫
Rd

E{|
∑
k

εkgk(x)|p} ,

that

E(‖f̂εdσ‖qLq(Rd)
) =

∫
Rd

E(|f̂εdσ(x)|q) dx ∼
∫
Rd

∑
j

y2
j |f̂jdσ(x)|2

q/2

dx

& δq(d−1)

∫
Rd
|
∑
j

y2
j1τj (x)|q/2 dx.

Now, assuming that the restriction estimate (
eq:restrictionkakeya1eq:restrictionkakeya1
14.12) holds true, we can combine the last two

inequalities and obtain for any q > 2d/(d− 1),

δq(d−1)

∫
Rd
|
∑
j

y2
j1τj |q/2 dx .

∑
j

yqj δ
d−1 .

This is almost the estimate that we need to apply Lemma
auxkakeyaauxkakeya
14.6. Introducing zj = y2

j and p′ = q/2,
the above inequality is equivalent to the statement

if δd−1
∑
j

zp
′

j ≤ 1 , then ‖
∑
j

zj1τj‖p′ . δ−2(d−1)
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for any p′ ≥ d/(d− 1). Now, rescaling by δ2, the above is equivalent to

if δd−1
∑
j

zp
′

j ≤ 1 , then ‖
∑
j

zj1Tj‖p′ . δ
2( d
p′−(d−1))

.

Observe that d/p′ − (d− 1)↗ 0 as p′ ↘ d/(d− 1). Thus, for any ε > 0, we have

if δd−1
∑
j

zp
′

j ≤ 1 , then ‖
∑
j

zj1Tj‖p′ . δ−ε

if p′ is close enough to d/(d− 1). So, by Lemma
auxkakeyaauxkakeya
14.6, this implies for any ε > 0

‖f∗δ ‖Lp(Sd−1) .ε δ
−ε‖f‖Lp(Rd) ,

provided p < d is close enough to d. Interpolating this with the trivial L∞ bound yields the
claimed estimate. �

14.2. Relation to the Kakeya set conjecture. One consequence of the Kakeya maximal
conjecture is the following statement concerning Besicovitch sets. Recall that such sets settle the
d-dimensional Kakeya needle problem, i.e., they contain a unit line segment in every direction.
Besicovitch’s construction shows that such sets can have measure zero. However, it is not clear
what their dimension is.

Conjecture 14.8 (Kakeya set conjecture). All Besicovitch sets have Hausdorff dimension and
Minkowski dimension equal to d.

Let us very briefly recall the definition of Hausdorff dimension (which is a bit tricky) and
Minkowski dimension, at least for compact sets. See Appendix

a:hausdorffa:hausdorff
E for more details.

defminkowskidimold Definition 14.9 (Minkowski dimension). Let E be a compact subset of Rd. The set E is said
to have Minkowski dimension n if

lim
δ→0

logδ |Eδ| = d− n

where Eδ is the δ-neighborhood of E.

There are in fact two refined definitions.

Definition 14.10 (Upper Minkowski dimension). The upper Minkowski dimension (or box pack-
ing dimension) dim(E) of a set E ⊆ Rd is defined as the infimum over all exponents n such that
for any 0 < δ � 1, the set E can be covered by O(δ−n) balls of radius δ.

Definition 14.11 (Lower Minkowski dimension). The lower Minkowski dimension dim(E) is
the infimum of all exponents n such that there exists arbitrarily small 0 < δ � 1 for which the
set E can be covered by O(δ−n) balls of radius δ.

Definition 14.12 (Hausdorff dimension). The Hausdorff dimension dimH(E) is defined as the
infimum of all exponents n such that for any 0 < δ � 1, the set E can be covered by a countable
collection of balls B(xi, ri) of radius ri ≤ δ such that

∑
i r
n
i . 1.

Clearly, dimH(E) ≤ dim(E) ≤ dim(E), i.e., the Minkowski forms of the Kakeya conjecture
are easier. For an introduction to Hausdorff measures, we refer to Appendix

a:hausdorffa:hausdorff
E and the references

contained therein.

maximpliesset Proposition 14.13. (1) The Kakeya maximal function conjecture implies the Kakeya set con-
jecture. More precisely, if (for 0 < δ � 1) it holds that

∀ε > 0 ∃Cε : ‖f∗δ ‖Lp(Sd−1) ≤ Cεδ−ε‖f‖Lp(Rd) (14.13) eq:maximalkakeya

for some p <∞, then Besicovitch sets in Rd have Hausdorff dimension d.
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(2) More generally, if

|{ω ∈ Sd−1 : (1E)
∗
δ (ω) > α}| .ε δ−d+p−εα−p|E| (14.14) eq:maximalkakeyaweak

holds for all ε > 0 and 0 < δ < 1, and E ⊆ Rd is a Borel set having the property that for each
ω ∈ Sd−1 there is a unit segment γω in direction ω for which |γω ∩ E|R > 0, then dimH E ≥ p.

Remark 14.14. (1) The inequality

|Eδ| ≥ C−1
ε δε (14.15) eq:boundbesicovitch

for any Kakeya set E (and its δ-neighborhood Eδ) follows immediately from (
eq:maximalkakeyaeq:maximalkakeya
14.13) by the same

argument that was used in (2) in Remark
remarkmaxkakeyaremarkmaxkakeya
14.3. Formula (

eq:boundbesicovitcheq:boundbesicovitch
14.15) says that Besicovitch sets in Rd

have lower Minkowski dimension d.
(2) Note that (

eq:maximalkakeyaweakeq:maximalkakeyaweak
14.14) is a weaker version of (

eq:kakeyaproblem2eq:kakeyaproblem2
14.11) with q = p and f being of the form 1E .

Proof of Proposition
maximpliessetmaximpliesset
14.13. See Wolff

Wolff2003
[179, Proposition 10.2] for the first and Sogge

Sogge2017
[143, Propo-

sition 9.1.5] for the second part.
(1) Let E be a Besicovitch set. Fom Remark

remarkshausdorffremarkshausdorff
E.2 (i.e., Hα(E) = 0 for any α > d) and the

definition of the Hausdorff measure (Lemma
defhausdorffdefhausdorff
E.3), it suffices to show that for a given covering of

E by balls Bj := Bxj (rj) with, say, rj ≤ 1/100, we have
∑
rαj & 1 for any α < d. For this let

Jk := {j : 2−k ≤ rj ≤ 2−(k−1)}
and denote by Iω any unit line segment oriented in the direction ω ∈ S−1 which is contained in
our Kakeya set E. Let further

Sk :=

ω ∈ Sd−1 : |Iω ∩
⋃
j∈Jk

Bj | ≥
1

100k2

 .

Since ∑
k

(100k2)−1 < 1 and
∑
k

|Iω ∩
⋃
j∈Jk

Bj | ≥ |Iω| = 1 ,

we see
⋃
k Sk = Sd−1. (If not, we could find some ω0 /∈ Sk for every k = 1, 2, ... meaning that |Iω0

∩⋃
j∈Jk Bj | ≤ (100k2)−1. But since Iω ⊆

⋃
j Bj we must have 1 = |Iω0

| ≤
∑
k≥1 |Iω0

⋃
j Bj | ≤∑

k≥1(100k2)−1 < 1.) In particular, it is clear that σ(Sk) & 1, where σ denotes the euclidean

surface measure on Sd−1.
Now, let

f = 1Fk , where Fk :=
⋃
j∈Jk

Bxj (10rj) .

Then, for ω ∈ Sk we have (for a tube T δω(a) of length 1 and thickness δ oriented along ω, and
centered at a ∈ Rd),

|T 2−k

ω (aω) ∩ Fk| &
|T 2−k

ω (aω)|
100k2

,

where aω denotes the midpoint of Iω. Hence, after a short computation (see also the ensuing
remark), we see

‖f∗2−k‖p & k
−2σ(Sk)1/p . (14.16) eq:lowerbdmaxkakeya

On the other hand, (
maximalkakeyamaximalkakeya
14.2) implies that

‖f∗2−k‖p ≤ Cε2
kε‖f‖p ≤ Cε2kε(|Jk|2−(k−1)d)1/p . (14.17) eq:upperbdmaxkakeya

Comparing (
eq:lowerbdmaxkakeyaeq:lowerbdmaxkakeya
14.16) and (

eq:upperbdmaxkakeyaeq:upperbdmaxkakeya
14.17) therefore shows

σ(Sk) . 2kpε−kdk2p|Jk| . 2−k(d−2pε)|Jk| .
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Therefore, ∑
j

rd−2pε
j ≥

∑
k

2−k(d−2pε)|Jk| &
∑
k

σ(Sk) & 1 ,

which was asserted at the beginning of the proof (for 0 < α = pε < d with p < ∞ and ε
sufficiently small).

(2) See Sogge
Sogge2017
[143, Proposition 9.1.5]. We proceed similarly as in (1). One of our hypotheses

is slightly weaker since we are not assuming that for each ω ∈ Sd−1 we can find a unit segment
γω in this direction contained in E. However, since

Sd−1 =
⋃

0<α<1

{ω ∈ Sd−1 : ∃γω with |γω ∩ E|R > α} ,

it follows that we can find α0 ∈ (0, 1) and U ⊆ Sd−1 so that |U |Sd−1 > 0 and that for each ω ∈ U
there is a unit line segment in the direction of ω so that

|γω ∩ E|R > α0 .

To use this, suppose that E ⊆ Bxj (rj) is a covering by balls of radius rj ∈ (0, 1/2) and let, as

before, Jk = {j : 2−k ≤ rj < 2−k+1} being the index set of those rj satisfying rj ∈ [2−k, 2−k+1).
Then if now

Uk = {ω ∈ U : |γω ∩
⋃
j∈Jk

Bxj (rj)|R >
α0

π(1 + k2)
} ,

by the earlier argument where we showed Sd−1 =
⋃
k≥1 Sk

15, we must have U =
⋃∞
k=1 Uk. If

Dk :=
⋃
j∈Jk Bxj (2rj), then we also get

(1Dk)
∗
2−k (ω) >

α0

2π(1 + k2)
, ω ∈ Uk .

Consequently, by (
eq:maximalkakeyaweakeq:maximalkakeyaweak
14.14) (with E = Dk, δ = 2−k, Sd−1 replaced by Uk, and α replaced by

α0/[π(1 + k2)]), we have

|Uk|Sd−1 .ε,α0 (1 + k2)p2k(n−p+ε/2)|Dk| .ε,α0 2−k(p−ε)|Jk|

where |Jk| denotes the cardinality of Jk and we used |Dk| . |Jk|rdj ∼ |Jk|2−kd as well as

(1 + k2)p . 2kε/2. Therefore, if 0 < ε < 1, then summing this estimate over all j, we obtain∑
j

rp−εj ≥
∞∑
k=1

∑
j∈Jk

2−k(p−ε)|Jk| &ε,α0

∞∑
k=1

|Uk|Sd−1 &ε,α0 |U |Sd−1 > 0 .

Hence, by Definition
defminkowskidimolddefminkowskidimold
14.9, see also Definition

defhausdorff0defhausdorff0
E.1 and Lemma

defhausdorffdefhausdorff
E.3, we must have dimH E ≥ p as

claimed (cf.
Sogge2017
[143, Lemma 9.1.3]). �

Remark 14.15. Let us quickly justify (
eq:lowerbdmaxkakeyaeq:lowerbdmaxkakeya
14.16). Since f = 1Fk and |T 2−k

ω (a)∩Fk| & k−2|T 2−k

ω (a)|,
whenever ω ∈ Sk, we have

f∗2−k(ω) = sup
a∈Rd

1

|T 2−k
ω (a)|

∫
T 2−k
ω (a)

1Fk(x) & sup
a∈Rd

|T 2−k

ω (a)|
|T 2−k
ω (a)|

· k−21Sk(ω) .

Therefore,

‖f∗2−k‖Lp(Sd−1) & k
−2‖1Sk‖Lp(Sd−1) = k−2σ(Sk)1/p ,

where σ denotes the euclidean surface measure on Sd−1.

15See also the proof of
Sogge2017
[143, Theorem 9.1.4].
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Although appearing quite elementary, the Kakeya conjecture is a major open problem in geo-
metric measure theory which is closely connected to many classical problems in Fourier analysis
regarding estimation of oscillatory integrals. This is a consequence of Fefferman’s solution of the
disk multiplier problem

Fefferman1971
[66] and work of Córdoba (e.g.,

Cordoba1977
[49]) and Bourgain (e.g.,

Bourgain1991,Bourgain1993,Bourgain1995
[13, 17, 25]). So

far, the conjecture was only shown in d = 2 by an elegant argument of Córdoba and Fefferman.
(See also Subsection

ss:2drestrictionss:2drestriction
7.4 and

Tao1999Notes
[159, Lecture 5] for a proof using bilinear estimates.) Of course, the

conjecture is also an immediate consequence of the two-dimensional restriction estimate (that
we outlined in Subsection

ss:2drestrictionss:2drestriction
7.4) and the square function estimate by Córdoba and Fefferman, see

Appendix
s:CordobaFeffermans:CordobaFefferman
B.

For further information on this classical problem, we refer the reader to the excellent reviews
by Wolff

Wolff1999
[177] and Katz and Tao

KatzTao2002
[103]. Here, we shall content ourselves with the treatment of the

problem in d = 2 and review the (direct!) proofs by Córdoba
Cordoba1977
[49] (which is based on geometric

arguments) and Bourgain
Bourgain1991
[13] (which uses Fourier analysis). Here, we follow again Wolff

Wolff2003
[179,

Theorem 10.3].

kakeya2d Theorem 14.16. If d = 2, then we have the bound

‖f∗δ ‖L2(S1) ≤ C(log(1/δ))1/2‖f‖L2(R2) .

Proof of Theorem
kakeya2dkakeya2d
14.16 due to Bourgain. Without loss of generality, we can assume f ≥ 0. In-

troducing

ρωδ (x) :=
1

2δ
1T δω(0) ,

we see that the maximal function can be written as

f∗δ (ω) = sup
a∈R2

(f ∗ ρωδ )(a) .

Now let us find a pointwise upper bound on this function. To this end, we introduce 0 ≤ ϕ ∈ S(R)
such that ϕ̂ is compactly supported and ϕ(x1) ≥ 1 for |x1| ≤ 1. Let us further define

ψ : R2 → R

x 7→ ϕ(x1) · 1

2δ
ϕ(x2/δ) ,

i.e., a smoothed out characteristic function of a δ × 1 tube oriented along the e1-axis. Note
that ψ(x) ≥ ρe1δ (x) and therefore f∗δ (e1) ≤ supa∈R2(f ∗ ψ)(a). Thus, if we similarly define
ψω := ψ ◦pω for some rotation pω ∈ SO(2), we obtain similarly ψω(x) ≥ ρωδ (x). Using this bound
and Cauchy–Schwarz, we can therefore estimate

|f∗δ (ω)|2 ≤ | sup
a∈R2

(f ∗ ψω)(a)|2 ≤ ‖f̂ · ψ̂ω‖21 ≤
(∫

R2

|f̂(ξ)|2|ψ̂ω(ξ)| < ξ > dξ

)
·

(∫
R2

|ψ̂ω(ξ)|
< ξ >

dξ

)
.

Now, since ψ̂ω = ψ̂ ◦ pω, we know that ψ̂ω is supported on the dual rectangle Rω (oriented along

ω) with dimensions |ξ1| ∼ 1 and |ξ2| ∼ δ−1. Combining this with |ψ̂| . 1, we obtain∫
R2

|ψ̂ω(ξ)|
< ξ >

dξ .
∫
Rω

dξ

< ξ >
∼
∫ 1/δ

1

t−1 dt = log(1/δ) .
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(If we considered the d-dimensional problem, we would get a factor δ−(d−2) instead.) Now putting
all estimates together, we obtain

‖f∗δ ‖2L2(S1) . log
1

δ

∫
S1
dω

∫
R2

|ψ̂ω(ξ)||f̂(ξ)|2 < ξ > dξ

= log
1

δ

∫
R2

|f̂(ξ)|2 < ξ >

(∫
S1
|ψ̂ω(ξ)| dω

)
dξ

. log
1

δ

∫
R2

|f̂(ξ)|2 dξ = log
1

δ
‖f‖22 .

To get from the second to the last line, we used that, for fixed ξ ∈ R2, the set of ω ∈ Sd−1

where ψ̂ω(ξ) 6= 0 holds, has measure .< ξ >−1, see also the ensuing remark. This concludes the
proof. �

Remarks 14.17. (1) As we remarked after the estimate of
∫
R2

|ψ̂ω(ξ)|
<ξ> dξ, the above arguments

show

‖f∗δ ‖L2(Sd−1) . δ
−(d−2)/2‖f‖L2(Rd) (14.18) eq:kakeyal2gen

in d ≥ 3 dimensions, which is the best possible L2 bound.
(2) Let us elaborate a bit more on the estimate

|{ω ∈ Sd−1 : |ψ̂ω(ξ)| > 0}| .< ξ >−1 (14.19) eq:anglemeasure

for given (fixed) ξ ∈ Rd. Recall that ψ̂ω was a smoothed out (and compactly supported!)
indicator function of a δ−1 × · · · δ−1 × 1 rectangle, oriented in the direction ω and centered

at the origin. Thus, to prove (
eq:anglemeasureeq:anglemeasure
14.19) we can pretend that ψ̂ω is actually a smoothed indicator

function of a thickened hyperplane with thickness O(1), say, e.g., 10. Moreover, by an elementary
geometrical observation, it suffices to consider only the case d = 2. Next, by the underlying
rotational symmetry, it suffices to consider only R2 3 ξ = (ξ1, 0). Now suppose first that
|ξ| = O(1), say |ξ| ≤ 10000. Then, the left side of (

eq:anglemeasureeq:anglemeasure
14.19) is trivially bounded by |Sd−1| and

so we are done in this case. In conclusion, we are left with estimating the left side of (
eq:anglemeasureeq:anglemeasure
14.19)

in d = 2 when ξ = |ξ|ê1 with |ξ| � 1 (say |ξ| ≥ 10000), and ψ̂ω(ξ) is replaced by the indicator
function of an infinitely elongated tube of thickness 10, oriented along ω and centered at the
origin. Let us for simplicity also assume that the tube is shifted in negative e2-direction such
that the upper border coincides with the e1-axis. Then, as we start rotating the tube in positive
direction with the rotation center being (0,−1/2), there will be a rotation angle ϕ where the
lower border of the tube touches ξ; that’s precisely the angle, we are interested in since

|{ω ∈ S1 : |ψ̂ω(ξ)| > 0}| .
∫
S1

1Tω (ξ) ∼
∫ ϕ

0

dϕ′ = ϕ .
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But by elementary trigonometry, this angle is given by sin(ϕ/2) = 1/(2|ξ|). Since |ξ| � 1, we
may approximate sinϕ ∼ ϕ which shows the claim, see also the following figure.

Figure 4 fig:kakeya2d

As opposed to Bourgain’s proof, Córdoba elegantly exploited a simple geometric fact. Apart
from a technical issue involving small angles, the main point is that two lines intersect in at most
a point, whereas every two thin rectangles intersect in a small parallelogram.

Proof of Theorem
kakeya2dkakeya2d
14.16 due to Córdoba. In view of the auxiliary Lemma

auxkakeyaauxkakeya
14.6, it suffices to prove

that for any subsequence {yk} with δ
∑
y2
k = 1 and any maximal δ-separated subset {ek} of S1,

we have ∥∥∥∥∥∑
k

yk1T δek (ak)

∥∥∥∥∥
2

. (log(1/δ))
1/2

. (14.20) eq:claimcordoba

The relevant geometric fact is

|T δek(a) ∩ T δe`(b)| .
δ2

|ek − e`|+ δ
, (14.21) eq:intersectionrectangles

which is proven in the remark below. Using this, we can estimate the left side of (
eq:claimcordobaeq:claimcordoba
14.20)∥∥∥∥∥∑

k

yk1T δek (ak)

∥∥∥∥∥
2

2

=
∑
k,`

yky`|T δek(ak) ∩ T δ` (a`)| .
∑
k,`

yky`
δ2

|ek − e`|+ δ

=
∑
k,`

√
δyk ·

√
δy`

δ

|ek − e`|+ δ
≤ ‖
√
δyk‖`2k ‖

∑
`

Kk,`

√
δy`‖`2k .

Here we abbreviated

Kk,` :=
δ

|ek − e`|+ δ

and denoted by `2k the usual `2 space where the summation is with respect to k. Now recall that
the set of {ek} is maximal δ-separated. Thus, for fixed k, there are at most δ−1 summands in
the `-summation. Moreover, since the angle between ek and e` is given by δ|k − `|, we have

|ek − e`| =
√

2
√

1− cos(δ|k − `|) ≥
√

2

100
δ|k − `| for |k − `| < 1

δ
.

Therefore, we can estimate

sup
k

∑
`

δ

|ek − e`|+ δ
.
∑
`≤1/δ

δ

δ`+ δ
∼ log

1

δ
.
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Thus, we can apply Schur’s test (Lemma
schurschur
4.18) to the kernel Kk,` (which is symmetric in k and

`) which allows us to estimate the left side of (
eq:claimcordobaeq:claimcordoba
14.20) further by∥∥∥∥∥∑

k

yk1T δek (ak)

∥∥∥∥∥
2

2

. log
1

δ

∑
k

(
√
δyk)2 . log

1

δ
.

In view of the hypothesis δ
∑
y2
k = 1 (recall Lemma

auxkakeyaauxkakeya
14.6), this concludes the proof. �

intersectionrectangles Remark 14.18. Let us shortly elaborate on the measure of the intersection of two thin rectan-
gles in (

eq:intersectionrectangleseq:intersectionrectangles
14.21) which can be reformulated as

|T δek(a) ∩ T δe`(b)| . min

{
δ,

δ2

|ek − e`|

}
.

Clearly, it suffices to consider a = b, e` = e1 ≡ (1, 0), and that the angle θ between ek ≡
(cos θ, sin θ) and e1 is at most π/2. Since |T δek(a)| ≤ δ, the first bound is trivial. Now suppose

|ek − e1| =
√

2
√

1− cos θ ≥ δ, which is (since cos θ ≤ 1− θ2/4) satisfied if θ >
√

2δ. In this case,
sin θ > θ/2 > δ/2 and we have δ/(2 sin θ) < 1. Using cos θ ≥ 1 − θ2 and the formula for the
surface area of a parallelogram, we finally obtain

|T δe1 ∩ T
δ
ek
| = 4

δ

2
· δ

2 sin θ
≤ 2δ2

θ
≤ 2

√
2δ2

√
2
√

1− cos θ
=

2
√

2δ2

|ek − e1|
(14.22) eq:intersectionrectangles2

what had to be proven.

14.3. Universal bounds for the Kakeya maximal operator. We follow Sogge
Sogge2017
[143, Section

9.2]. The reason why these bounds are called “universal” is that they are indeed optimal in
curved spaces. Recall that Wolff

Wolff1995
[176] found improved bounds in the euclidean setting. (He got

the following theorem for p ≤ (d+ 2)/2 instead of p ≤ (d+ 1)/2.) See also Subsection
ss:wolffkakeyass:wolffkakeya
14.4.

The main goal of this subsection is to prove non-trivial bounds for the Kakeya maximal
function in higher dimensions using Bourgain’s bush method. An improved bound is due to
Wolff

Wolff1995
[176] (see also

Sogge2017
[143, Theorem 9.4.1]) who could at least treat p = (d + 2)/2 giving the

critical exponent in d = 2 in the following theorem.

universalboundkakeya Theorem 14.19. Let d ≥ 3. Given ε > 0 and 0 < δ < 1/2, we have

‖f∗δ ‖Lq(Sd−1) .ε δ
− dp+1−ε‖f‖Lp(Rd) (14.23) eq:universalboundkakeya

whenever 1 ≤ p ≤ (d+ 1)/2 and q = (d− 1)p′.

Observe (or recall) that the trivial case p = 1, i.e.,

‖f∗δ ‖L∞(Sd−1) ≤ δ−d+1‖f‖L1(Rd)

If p = (d+ 1)/2, then q = d+ 1. To prove the other estimates, recall

Theorem 14.20 (General Marcinkiewicz interpolation). Suppose T is a subadditive operator of
restricted weak types (pj , qj) with p0 < p1 and q0 6= q1, i.e.,

‖T1E‖Lqj,∞ . ‖1E‖Lpj,1 ∼ |E|
1/pj .

Then one has the estimate

‖Tf‖Lqθ,r . ‖f‖Lpθ,r ,
for all 1 ≤ r ≤ ∞, θ ∈ (0, 1) with qθ > 1. If additionally qθ ≥ pθ and r = qθ, then

‖Tf‖Lqθ . ‖f‖Lpθ .

Proof. See Stein–Weiss
SteinWeiss1971
[151, Chapter V, Theorem 3.15] or Theorem 1.3.4 in harmonic analysis

notes of summer term 2020. �
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Proof of Theorem
universalboundkakeyauniversalboundkakeya
14.19. Since the case p = 1 in (

eq:universalboundkakeyaeq:universalboundkakeya
14.23) is trivial, it suffices, by the above

Marcinkiewicz interpolation, to show the corresponding restricted weak-type ((d + 1)/2, 1) →
(d+ 1,∞) bound

|{ω ∈ Sd−1 : (1E)
∗
δ (ω) > α}|

1
d+1 . α−1δ−

d−1
d+1 |E|

2
d+1 ,

that is

|{ω ∈ Sd−1 : (1E)
∗
δ (ω) > α}| . α−(d+1)δ−(d−1)|E|2 . (14.24) eq:universalboundkakeyaaux1

For a constant A > 1 to be fixed later, we set

Ωα := {ω ∈ Sd−1 : (1E)
∗
δ (ω) > Aα} .

Then we would have (
eq:universalboundkakeyaaux1eq:universalboundkakeyaaux1
14.24) once we prove

|Ωα|Sd−1 . α−(d+1)δ−(d−1)|E|2 , α > 0 , 0 < δ < 1/2 . (14.25) eq:universalboundkakeyaaux2

At the end of the proof we shall see that the case where α . δ is trivial. Thus, let us, for the
moment at least, also assume that α > Aδ.

Now choose a maximal (Aδ/α)-separated subset {ωj}Mj=1 ≡ I in Ωα. Then it follows that

|Ωα|Sd−1 .d (Aδ/α)d−1M . (14.26) eq:universalboundkakeyaaux3

Thus, to get the desired bound on |Ωα|, we need good bounds on the number M .
If ωj ∈ I, then, by definition of Ωα, we have

|E ∩ Tωj | > Aα|Tωj | (14.27) eq:universalboundkakeyaaux4

and so, by summing over j (and recalling |Tω| = δd−1), we have

M∑
j=1

|E ∩ Tωj | ≥ c0(A, d)Mαδd−1

for some c0 = c0(A, d). Thus,

1

|E|

∫
E

M∑
j=1

1Tωj ≥
c0(A, d)Mαδd−1

|E|
.

Since there must be a point a ∈ E where the non-negative function
∑M
j=1 1Tωj equals or exceeds

its average over E16, i.e.,

1

|E|

∫
E

M∑
j=1

1Tωj ≤
M∑
j=1

1Tωj (a) ,

we obtain
M∑
j=1

1Tωj (a) ≥ c0(A, d)Mαδd−1

|E|
, some a ∈ E .

Put differently, by the pigeonhole principle, this point a ∈ E must belong to at least N 3 N ≤M
tubes {Tωj}Mj=1 such that

N ≥ c0(A, d)Mαδd−1

|E|
. (14.28) eq:universalboundkakeyaaux5

16This point a ∈ Rd is a point where a preferably large number of tubes Tωj intersect themselves as well as
the set E. The latter property is not that important for the moment; the former point means that there is a
subcollection of the intersecting Tωj that form a “Bourgain bush”, see Figure

fig:bourgainbushfig:bourgainbush
5.
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Let us collect these tubes from the original collection into the “bush” centered at a ∈ Rd (see
Figure

fig:bourgainbushfig:bourgainbush
5)

{Tωjk }
N
k=1 .

Now, since the points ωj ∈ Sd−1 are (Aδ/α)-separated and since, for the moment, we are
assuming α > Aδ, we conclude that if A is large enough, we must have17(

Tωjk ∩ Tωj`
)
\Ba(α) = ∅ , if k 6= ` .

Therefore, the “tips” of the branches of the bush about a ∈ Rd, denoted by

τjk := Tωjk \Ba(α) , 1 ≤ k ≤ N ,

are disjoint as depicted in Figure
fig:bourgainbushfig:bourgainbush
5.

Figure 5. A Bourgain bush fig:bourgainbush

Since

|Tωj ∩Ba(α)| ≤ C0α|Tωj |

for a uniform constant C0, we conclude that if A ≥ 2C0 as well,

|τjk ∩ E| ≥ Aα|Tωjk | − C0α|Tωjk | ≥ Aα|Tωjk |/2 , 1 ≤ k ≤ N

by (
eq:universalboundkakeyaaux4eq:universalboundkakeyaaux4
14.27). If we use this, the disjointness of the tips of the branches, and (

eq:universalboundkakeyaaux5eq:universalboundkakeyaaux5
14.28), we conclude

|E| ≥
N∑
k=1

|τjk ∩ E| ≥ cdAαδd−1N ≥ c′dMα2δ2(d−1)/|E| ,

or equivalently,

M ≤ Cα−2δ−2(d−1)|E|2 . (14.29) eq:universalboundkakeyaaux6

If we plug this into (
eq:universalboundkakeyaaux3eq:universalboundkakeyaaux3
14.26), we obtain the desired bound

|Ωα|Sd−1 . α−(d+1)δ−(d−1)|E|2 , α > 0 , 0 < δ < 1/2 (14.30) eq:universalboundkakeyaaux7

stated ad the beginning of the proof in (
eq:universalboundkakeyaaux2eq:universalboundkakeyaaux2
14.25).

17This is a simple consequence of the geometrical fact, that if `1 and `2 are two lines crossing each other at
the origin with angle θ ∈ (0, π/2], then dist(`1 ∩ rSd−1, `2 ∩ rSd−1) ∼ rθ. In our case, r = α and θ = Aδ/α, so
the distance on the sphere is roughly Aδ > 0.
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We are left with the case α < Aδ which is a lot easier. For assuming that Ωα 6= ∅, we just use
the fact that we can find a single tube Tω so that

αδd−1 ∼ α|Tω| ≤ |E ∩ Tω| ≤ |E| .

Thus, there must be c0 > 0 such that

c0 ≤ α−2δ−2(d−1)|E|2 .

But since the right side is dominated by the right side of (
eq:universalboundkakeyaaux7eq:universalboundkakeyaaux7
14.30) if α < Aδ, we conclude (

eq:universalboundkakeyaaux7eq:universalboundkakeyaaux7
14.30)

must be valid in this case as the left side of (
eq:universalboundkakeyaaux7eq:universalboundkakeyaaux7
14.30) is at most |Sd−1|. �

ss:wolffkakeya
14.4. Wolff’s bounds for the Kakeya maximal operator in higher dimensions. We
present the proof of Wolff’s

Wolff1995
[176] bound for the Kakeya maximal function in higher dimensions

and follow Sogge
Sogge2017
[143, Section 9.4]. When d = 2, the following theorem is optimal as we have

seen earlier.

Theorem 14.21. Let d ≥ 3 and f∗δ denote the Kakeya maximal function defined in (
eq:defmaximalkakeyaeq:defmaximalkakeya
14.5). Then

given ε > 0 and 0 < δ < 1/2, we have

‖f∗δ ‖Lq(Sd−1) .ε δ
−d/p+1−ε‖f‖Lp(Rd) (14.31)

whenever 1 ≤ p ≤ (d + 2)/2 and q = (d − 1)p′. In particular (by Proposition
maximpliessetmaximpliesset
14.13), we have

that dimH E ≥ (d+ 2)/2 for Besicovitch sets E ⊆ Rd.

14.5. How can Kakeya help in proving the restriction conjecture? In the first subsection
we saw that the restriction conjecture implies the Kakeya maximal conjecture. Bourgain

Bourgain1991
[13,

Section 6] partially reversed this and obtained a restriction theorem beyond Tomas–Stein by
using a Kakeya set estimate that is stronger than the L2 bound stated in Wolff

Wolff2003
[179, Formula

(151)], i.e.,

‖
∑
k

yk1T δek (ak)‖22 . log
1

δ

∑
k

(
√
δyk)2 . log

1

δ
,

used in the proof of the L2 bound (
eq:kakeyal2geneq:kakeyal2gen
14.18) (via Lemma

auxkakeyaauxkakeya
14.6). It is not known whether (either

version of) the Kakeya conjecture implies the full restriction conjecture. Anyway, we have

strongkakeyarestriction Theorem 14.22 (Bourgain
Bourgain1991
[13]). Suppose that we have an estimate

‖
∑
j

1T δej
‖q′ ≤ Cεδ−( dq−1+ε) (14.32) eq:strongkakeya

for any given ε > 0 and for some fixed q > 2. Then

‖f̂dσ‖p .p ‖f‖L∞(Sd−1) (14.33) eq:restrictionkakeya2

for some p < 2(d+ 1)/(d− 1).

remstrongkakeya Remarks 14.23. (1) The geometrical statement corresponding to (
eq:strongkakeyaeq:strongkakeya
14.32) is that Kakeya sets

in Rd have Hausdorff dimension at least q, recall the second assertion in Proposition
maximpliessetmaximpliesset
14.13 and

the ensuing remark.

(2) Note that (
eq:restrictionkakeya1eq:restrictionkakeya1
14.12), which stated ‖f̂dσ‖p .p ‖f‖Lp(Sd−1) for p > 2d/(d − 1). is only

ostensibly stronger than (
eq:restrictionkakeya2eq:restrictionkakeya2
14.33). In fact, these estimates are (formally at least) equivalent, see

Bourgain
Bourgain1991
[13].

We shall sketch the proof only for d = 3 and follow Wolff
Wolff2003
[179, Theorem 10.6]. Recall that in

this case, we already know the bounds

‖f̂dσ‖L4(R3) . ‖f‖L2(S2)
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from the Tomas–Stein theorem, and

‖f̂dσ‖L2(B0(R)) . R
1/2‖f‖L2(S2)

from Theorem
easyl2restrictioneasyl2restriction
4.17 with α = d − 1 = 2. Interpolating between these two estimates yields a

family of estimates

‖f̂dσ‖Lp(B0(R)) . R
2
p−

1
2 ‖f‖L2(S2) , for 2 ≤ p ≤ 4 . (14.34) eq:interpolatedl2restriction

In the following argument we show that the exponent of R can be lowered by an ε if the L2 norm
on the right side is replaced by the L∞ norm.

Proposition 14.24. Let d = 2, 2 < p < 4, and assume (
eq:strongkakeyaeq:strongkakeya
14.32) holds for some q > 2. Then, for

all ε > 0, we have

‖f̂dσ‖Lp(B0(R)) .ε R
α(p)‖f‖L∞(Sd−1) , α(p) <

2

p
− 1

2
. (14.35)

Clearly, this implies (
eq:restrictionkakeya2eq:restrictionkakeya2
14.33) for all p such that α(p) ≤ 0, i.e., in particular, there are p < 4 for

which (
eq:restrictionkakeya2eq:restrictionkakeya2
14.33) holds.

Heuristic proof of the proposition. By homogeneity, we can assume ‖f‖L∞(S2) = 1. Let δ = R−1

and cover S2 by the spherical caps

Sj = {ω ∈ S2 : |1− ω · ej | ≤ δ} ,
where {ej} now forms a maximal δ1/2-separated subset of S2. Then we decompose

f =
∑
j

fj ,

where each fj is a Knapp example supported on Sj . Abbreviate G = f̂dσ and Gj = f̂jdσ so that

G =
∑
j Gj . By the uncertainty principle, the Gj are roughly constant on δ−1/2 × δ−1/2 × δ−1

tubes τj oriented along ej and decaying rapidly away from them. For simplicity, let us assume
in the following that Gj are in fact supported only on the τj

18.

Next, let us cover B0(R) with disjoint cubes Q of sidelength
√
R. For each fixed cube Q let

N(Q) denote the number of tubes τj that intersect Q. Note that G|Q =
∑
j Gj |Q, where we sum

only over those j’s for which τj intersects Q. Using this and the known restriction estimates
(
eq:interpolatedl2restrictioneq:interpolatedl2restriction
14.34), we can estimate ‖G‖Lp(Q) for 2 ≤ p ≤ 4 by

‖f̂dσ‖Lp(Q) = ‖G‖Lp(Q) . R
1
2 ( 2

p−
1
2 )

∥∥∥∥∥∥
∑

j:τj∩Q6=∅

fj

∥∥∥∥∥∥
L2(S2)

. R
1
2 ( 2

p−
1
2 ) (N(Q)‖f‖)1/2

∼ δ
3
4−

1
pN(Q)1/2

where we used that the fj are essentially disjointly supported and ‖fj‖L2(S2) ∼ |Sj |1/2 ∼
δ(d−1)/4 = δ1/2. Summing over all Q then yields

‖f̂dσ‖pLp(B0(R)) . δ
3p
4 −1

∑
Q

N(Q)p/2 ∼ δ
3p
4 + 1

2 ‖
∑
j

1τj‖
p/2
p/2 (14.36) eq:boundG

where we used

‖
∑
j

1τj‖
p/2
p/2 =

∑
Q

N(Q)p/2|Q| = δ−3/2
∑
Q

N(Q)p/2 .

18It is precisely because of this assumption that our proof is merely heuristic. Clearly, the Fourier transform
of a compactly supported measure cannot be compactly supported; the rigorous proof uses Schwartz decay of the
Gj instead
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Now let p = 2q′, where q′ is the exponent in (
eq:strongkakeyaeq:strongkakeya
14.32), and assume that p is sufficiently close to

4 (and interpolate between (
eq:strongkakeyaeq:strongkakeya
14.32) and (

eq:kakeyal2geneq:kakeyal2gen
14.18), i.e., ‖f∗δ ‖L2(S2) . log(1/δ)1/2‖f‖2 if necessary).

For any ε > 0, we have from the hypothesized, strengthened Kakeya set estimate (
eq:strongkakeyaeq:strongkakeya
14.32),

‖
∑
j

1T
√
δ

ej

‖q′ ≤ Cεδ−
1
2 ( 3

q−1+ε) .

Rescaling this inequality by δ−1 yields

‖
∑
j

1τj‖q′ ≤ Cεδ
−( 3

q−1+ε) · δ−3/q′ = δ−1−3/p−ε .

Plugging this into (
eq:boundGeq:boundG
14.36) shows

‖f̂dσ‖Lp(B0(R)) . δ
1
4−

1
p−ε = R

1
p−

1
4 +ε

and thereby the assertion since 1/p− 1/4 < 2/p− 1/2 for p < 4. �

In the next subsection, we will review Tao’s surprising finding
Tao1999
[160] that the Bochner–Riesz

conjecture actually implies the restriction conjecture, thereby implying of course the Kakeya
conjecture. In that context, we shall also review older work by Bourgain who directly proved the
implication Bochner–Riesz⇒Kakeya. The latter is frequently used to construct counterexamples
to Lp-boundedness of certain multipliers. The most prominent example being the failure of Lp-
boundedness of the disk multiplier when p 6= 2 (Fefferman

Fefferman1971
[66]).

15. Connection to the Bochner–Riesz conjecture
s:BR

Historically, the first connection between – apparently purely geometrically involving consid-
erations – the Kakeya conjecture and (Fourier) analysis arose in the 1970s. Considering the
classical Fourier transform of a test function f in Rd, one may ask whether the truncation

(SRf)(x) :=

∫
|ξ|≤R

f̂(ξ)e2πix·ξ dξ (15.1)

converges as R → ∞ to f in a certain sense, e.g., in Lp, or even pointwise almost everywhere.
The above operator is usually referred to as the ball multiplier (disk multiplier in d = 2). Proofs
of such assertions typically lie in proving the assumptions of the following two classical functional
analytic results. Their proofs can be found, e.g., in Krantz

Krantz1999
[110, p. 27].

fap1 Lemma 15.1 (Functional analysis principle 1). Let X be a Banach space and S a dense subset.
Let TR : X → X be a sequence of linear operators (bounded on X) such that TRf → Tf in X
norm as R → ∞ for test functions f ∈ S and some linear operator T that is also bounded on
X. Then, in order to have TRf → Tf in X norm for all functions in X (and not only test
functions), it is a necessary and a sufficient condition to have the estimate

‖TRf‖X . ‖f‖X for all sufficiently large R and f ∈ X .

fap2 Lemma 15.2 (Functional analysis principle 2). Let 1 ≤ p <∞, TR : Lp → Lp be a sequence of
linear (Lp bounded) operators, and denote by

(T ∗f)(x) = sup
R
|(TRf)(x)|

the maximal function associated to TR. Let S ⊆ Lp be a dense subset. Assume that

(1) For each s ∈ S, the limit limR→∞(TRs)(x) ≡ (Ts)(x) exists in C for almost all x ∈ Rd
and another Lp bounded operator T .
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(2) The associated maximal operator T ∗ has weak type (p, p), i.e. for each α > 0,

|{x ∈ Rd : (T ∗f)(x) > α}| . α−p‖f‖p for all f ∈ Lp .

Then, for each f ∈ Lp, limR→∞(TRf)(x) exists for almost all x ∈ Rd.

Remark 15.3. The above two lemmas are by now standard tools to establish norm or pointwise
almost everywhere convergence theorems. It is therefore natural to ask whether they are also
strictly necessary. In particular, is it possible to have a convergence result limR→∞ TRf = Tf
without being able to obtain uniform operator norm bound or a weak-type maximal inequality
of the above forms?

In case of norm convergence, the answer is “no”, thanks to the uniform boundedness principle,
which among other things shows that norm convergence is only possible if one has the uniform
bound

‖TRf‖X . ‖f‖X for all f ∈ X ,

see the proof of Lemma
fap1fap1
15.1.

Returning to the pointwise almost everywhere convergence, the answer is in general “yes”.
Consider for instance the rank one operators

(Tnf)(x) :=

∫
R

1[n,n+1](x− y)f(y) dy

from L1(R) to L1(R). It is clear that limn→∞(Tnf)(x) = 0 almost everywhere for f ∈ L1(R) and
that the operators Tn are uniformly bounded in L1. However, the maximal function T ∗f does
not belong to L1,∞(R). One can modify this example in a number of ways to defeat almost any
reasonable conjecture that something like the maximal weak-type estimate should be necessary
for pointwise almost everywhere convergence. In spite of this, a remarkable observation of Stein
Stein1961
[144], now known as Stein’s maximal principle, asserts that the maximal weak-type inequality
is necessary to prove pointwise almost everywhere convergence, if one is working on a compact
group, the operators Tn are translation invariant, and the exponent p is at most 2.

Theorem 15.4 (Stein maximal principle). Let G be a compact group, X be a homogeneous
space of G with finite Haar measure µ, 1 ≤ p ≤ 2, and Tn : Lp(X) → Lp(X) be a sequence of
bounded linear operators commuting with translations such that Tnf converges pointwise almost
everywhere for each f ∈ Lp(X). Then T ∗ has weak type (p, p).

On the other hand, the theorem does fail for p > 2, and almost everywhere convergence results
in Lp for p > 2 can be proven by other methods than weak (p, p) estimates. For instance, the
convergence of Bochner–Riesz multipliers in Lp(Rd) for any d and for p in the range predicted
by the Bochner–Riesz conjecture was verified by Carbery, Rubio de Francia, and Vega

Carberyetal1988
[37] (see

Carbery
Carbery1983
[33] for d = 2 where, however, he proves a maximal weak-type inequality) despite

the fact that the weak-type (p, p) estimate of even a single Bochner–Riesz multiplier, let alone
the maximal function, has still not been completely verified in this range, especially for 1 <
p < 2, but see Tao

Tao2002
[163] and Li and Wu

LiWu2019
[114] for maximal weak-type estimates in this range.

(Carbery et al use weighted L2 estimates for the maximal Bochner–Riesz operator, rather than
Lp type estimates.) For p ≤ 2 though, Stein’s principle (after localizing to a torus) does apply,
and pointwise almost everywhere convergence of the Bochner–Riesz means is equivalent to the
maximal weak-type (p, p) estimate.

Stein’s principle is restricted to compact groups (such as the torus (R/Z)d or the rotation group
SO(d)) and their homogeneous spaces (such as the torus (R/Z)d again, or the sphere Sd−1), i.e.,
the principle fails in the non-compact setting (as in R, as we have seen it before when dealing with
Tnf := f ∗ 1[n,n+1]; the Tnf converge pointwise almost everywhere to zero for every f ∈ L1(R),
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but the maximal function does not obey the weak-type (1, 1) estimate). However, in many appli-
cations on non-compact domains, the Tn are somewhat “localized” enough that one can transfer
from a non-compact setting to a compact setting and then apply Stein’s maximal principle. (For
instance, Carleson’s theorem

Carleson1966
[39] (see also Fefferman

Fefferman1973
[67] for an alternative proof, Grafakos’

book
Grafakos2014C
[85, Section 3.6.5] and https://en.wikipedia.org/wiki/Carleson%27s_theorem for ref-

erences of expositions of Carleson’s paper) on pointwise almost everywhere convergence of the

partial Fourier series
∑N
n=−N f̂(n)e2πinx for f ∈ L2(R) is equivalent to Carleson’s theorem on

the circle R/Z (due to the localization of the Dirichlet kernels) which is, due to Stein’s principle,
equivalent to a maximal weak-type (2, 2) estimate on the circle R \ Z. By a scaling argument in
turn, this is equivalent to the analogous weak-type (2, 2) estimate on R.)

See also Guzmán
Guzman1981
[56] for a systematic discussion of this and other maximal principles as well

as www.terrytao.wordpress.com/2011/05/12/steins-maximal-principle/ for more details.
�

At this stage, it is also reasonable to remind the reader of the following sledge hammer whose
proof can be found in Dunford and Schwartz

DunfordSchwartz1988I
[63] (Section XIII.6: Lemma 7 (p. 676), Theorem

8 (p. 678); Section XIII.8: Lemma 6 (p. 690) Theorem 7 (p. 693); Section XIII.9: Exercise 3
(p. 717)). The form which we shall use the theorem is as in

Stein1970T
[148, p. 48].

Lemma 15.5 (Hopf–Dunford–Schwartz ergodic theorem). Let {T t}t≥0 be (measurable) semi-
group of operators on Lp(Rd). Suppose that ‖T tf‖p ≤ ‖f‖p for any p ∈ [1,∞]. Then the maximal
function

(Mf)(x) = sup
s>0

(
1

s

∫ s

0

|(T tf)(x)| dt
)

satisfies the inequalities

(1) ‖Mf‖p .p ‖f‖p for all p ∈ (1,∞];
(2) |{x ∈ Rd : (Mf)(x) > α}| . α−1‖f‖1 for each α > 0 and f ∈ L1.

Proof of Lemma
fap1fap1
15.1. Let f ∈ X and suppose ε > 0. Then there exists an s ∈ S such that

‖f − s‖ < ε. Now select J so large that if j, k ≥ J , then ‖Tjs − Tks‖ < ε. For such j, k, we
calculate

‖Tjf − Tkf‖ ≤ ‖Tjf − Tjs‖+ ‖Tjs− Tks‖+ ‖Tks− Tkf‖
≤ ‖Tj‖ ‖f − s‖+ ε+ ‖Tk‖ ‖s− f‖ ≤ 3ε(1 + sup

`≥J
‖T`‖)→ 0 as ε→ 0 ,

i.e., Tjf is Cauchy. Since X was supposed to be a Banach space, this establishes the result. The
converse follows from the uniform boundedness principle, see, e.g., Rudin

Rudin1987
[130, p. 98] or Lieb

and Loss
LiebLoss2001
[116, Theorem 2.12]. �

Proof of Lemma
fap2fap2
15.2. The proof parallels that of Lemma

fap1fap1
15.1 but is a bit more technical.

Let f ∈ Lp and suppose that δ > 0 is given. Then there is an s ∈ S such that ‖f − s‖pp < δ.
For simplicity, we assume that both f and Tjf are real-valued (the complex-valued case then

https://en.wikipedia.org/wiki/Carleson%27s_theorem
www.terrytao.wordpress.com/2011/05/12/steins-maximal-principle/
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follows from linearity). Fix ε > 0, independent of δ. Then

|{x : | lim sup
j→∞

(Tjf)(x)− lim inf
j→∞

(Tjf)(x)| > 3ε}|

≤ |{x : | lim sup
j→∞

(Tj(f − s))(x)| > ε}|+ |{x : | lim sup
j→∞

(Tjs)(x)− lim inf
j→∞

(Tjs)(x)| > ε}|

+ |{x : | lim sup
j→∞

(Tj(s− f))(x)| > ε}|

≤ |{x : sup
j
|(Tj(f − s))(x)| > ε}|+ 0 + |{x : sup

j
|(Tj(s− f))(x)| > ε}|

= |{x : (T ∗(f − s))(x) > ε}|+ |{x : (T ∗(s− f))(x) > ε}|
. 2ε−p‖f − s‖pp < 2ε−pδ .

Since this estimate holds no matter how small δ, we conclude

|{x : | lim sup
j→∞

(Tjf)(x)− lim inf
j→∞

(Tjf)(x)| > 3ε}| = 0 .

This concludes the proof of Lemma
fap2fap2
15.2 since it shows that the desired limit exists almost

everywhere (see also Grafakos
Grafakos2014C
[85, Theorem 1.1.11] for the fact that convergence in measure

(what we just showed) implies convergence almost everywhere up to a subsequence). �

In the context of these notes, we shall be concerned with the Lp convergence of Bochner–Riesz
means. (For pointwise almost everywhere convergence, see, e.g., Carbery

Carbery1983
[33] and Carbery et al

Carberyetal1988
[37] where a maximal weak type (p, p) inequality is proven for p > 2, see Tao

Tao2002
[163] and Li and

Wu
LiWu2019
[114] for 1 < p < 2; it is easy to see that SδRf converges to f uniformly if f is a test function.)

By scaling invariance, it suffices to prove the uniform Lp boundedness for R = 1. In d = 1, it
follows from the weak L1-boundedness of the Hilbert (Riesz) transform and interpolation with
the obvious L2 estimate that SR is Lp-bounded for all p ∈ (1,∞). For d ≥ 2, one has an explicit
kernel representation, namely

brkernel Lemma 15.6. Let δ ≥ 0 and f ∈ S(Rd). Then

(Sδ1f)(x) :=

∫
Rd

(
1− |ξ|2

)δ
+

e2πix·ξ f̂(ξ) dξ =
Γ(1 + δ)

πδ

∫
Rd

Jd/2+δ(2π|x− y|)
|x− y|−d/2−δ

f(y) dy

∼
∫
Rd

∑
± e±2πi|x−y| + o(1)

1 + |x− y|(d+1)/2+δ
f(y) dy as |x| → ∞ .

(15.2) eq:brkernel

For a generalization of the |x| → ∞ asymptotics for general q(ξ) (homogeneous of degree one,
C∞, and non-negative in Rd \ {0}) instead of ξ2, see

Sogge2017
[143, Lemma 2.3.3]. Note also that this

formula is very similar to the one for (dσ)∨; morally speaking the kernel of (dσ)∨ is comparable
to the one of S−1

1 . This is akin to the heuristic that the delta function is “of the same strength
as” the distribution 1/x. Note that every time as δ is lowered by 1, (

eq:brkerneleq:brkernel
15.2) predicts that the

kernel Sδ1 is multiplied by roughly |x|. This is consistent with the heuristic observation that the
derivative of the symbol mδ = (1− |ξ|2)δ+ is roughly comparable to mδ−1.

Proof. See Stein and Weiss
SteinWeiss1971
[151, Chapter IV, Theorem 4.15], and Tao’s notes

Tao1999Notes
[159, Lecture 3].

Since the symbol (1 − |ξ|2)δ+ is radially symmetric, we only need to compute (with r = |x|)
the right side of∫

Rd
(1− ξ2)δ+e2πix·ξ dξ = 2π

∫ ∞
0

(1− k2)δ+(kr)−(d−2)/2J(d−2)/2(2πkr)kd−1 dk
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by the Fourier–Bessel transform, see, e.g., Stein and Weiss
SteinWeiss1971
[151, Chapter IV, Theorem 3.3]. Using

the identity

Jµ+ν+1(r) =
rν+1

2νΓ(ν + 1)

∫ 1

0

Jµ(kr)kµ+1(1− k2)ν dk

for µ > −1/2, ν > −1, and t > 0 (see, e.g., Stein–Weiss
SteinWeiss1971
[151, Chapter IV, Lemma 4.13]), we

have (with ν = δ and µ = (d− 2)/2)),∫
Rd

(1− ξ2)δ+e2πix·ξ dξ = (2π)1−δ−1 · 2δΓ(1 + δ)r−(d−2)/2−δ−1J(d−2)/2+δ+1(2πr)

=
Γ(1 + δ)

πδ
r−d/2−δJ(d−2)/2+δ+1(2πr)

which yields the first assertion. The asymptotic behavior as |x| → ∞ follows from

J(d−2)/2+δ+1(2πr) = π−1r−1/2 cos

(
2πr − (d+ 1 + 2δ)π

4

)
+O(r−3/2) , r →∞ ,

see, e.g.,
SteinWeiss1971
[151, Chapter IV, Lemma 3.11] or Olver

Olver1968
[125, Formula 9.2.1]. Note also that the kernel

is finite as |x| → 0 since |Jν(x)| . |x|ν for ν ≥ −1/2, see, e.g.,
Olver1968
[125, Formula 9.1.62]. (In fact the

kernel is complex analytic since the symbol is compactly supported.)
Although the above proof yields the exact formula for the integral kernel, its method is not

very robust. Let us therefore now sketch an alternative, somewhat fuzzier, but more robust
proof. Since mδ is radial, we let ξ = λed without loss of generality and evaluate in the following∫

|ξ|≤1

(1− ξ2)δe2πiλξd dξ .

We decompose this smoothly into three pieces, i.e., the north pole |ξ − en| � 1, the south pole
|ξ + en| � 1, and the rest where |ξn| ≤ 1− ε for some ε > 0.

Let’s deal with the rest first. By stationary phase, the core part |ξ| � 1 is rapidly decaying in
λ and so it suffices to consider the surface part |ξ| ∼ 1. In this case, we can use polar coordinates
and reduce to ∫

r∼1

(1− r2)δ+r
d−1

∫
Sd−1:|ωd|≤1−ε

e2πiλrωd dω .

But the inner integral is Or(λ−N ) for any N ∈ N by stationary phase, and so is the total integral.
Thus, we are left to study the north pole (as the south pole is treated analogously). Let us

decompose further

(1− ξ2)δ+ = fdω ∗ dµ+ error ,

where f ∈ C∞c (Rd) is supported on a cap of the north pole, and

dµ(ξ′, ξd) = δ(ξ′)η(ξd)(−ξd)δ+
is a measure supported on the ξd axis. Here, η ∈ C∞c (R) is a bump function which equals 1 at
the origin. Indeed, one can easily work out that

(fdω ∗ dµ)(ξ′, ξd) =

∫
Rd
f(ψ′, ψd)δ(1− ψ2)δ(ξ′ − ψ′)η(ξd − ψd)(−(ψd − ξd))δ+ dψ

=

∫
R
f(ξ′, ψd)δ(1− ξ′2 − ψ2

d)η(ξd − ψd)(−(ψd − ξd))δ+ dψd

= f(ξ′,Φ(ξ′))η(ξd − Φ(ξ′))J(ξ′)(Φ(ξ′)− ξd)δ+ ,
where J is some Jacobian factor. By choosing f properly, one can make this a good approximation
to the kernel of mδ near the north pole. The error vanishes to order δ+ 1 or more at the sphere.
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One can then do a similar decomposition of this error, with a new error term which vanishes to
order δ+ 2. Continuing this procedure shows that one can make the error term as smooth as we
like and absorb it into the error term of (

eq:brkerneleq:brkernel
15.2).

Let us now consider the contribution of main term, i.e.,

(f̂dω · d̂µ)(λed) .

By the computation of the Fourier transform of surface measures of curved surfaces, the first
factor is Ce2πiλλ−(d−1)/2 + o(λ−(d−1)/2). We claim that the second factor is (C + o(1))λ−1−δ.
Since the ξ′ variable is pretty much irrelevant here, this claim is equivalent to

d̂µ(λen) ∼ F [η(ξd)(−ξd)δ+](λ) = (C + o(1))λ−1−δ .

Recalling that F [(ξd)
δ
+](λ) = Cλ−1−δ (in the distributional sense, see, e.g., Gelfand–Shilov

GelfandShilov1964
[83,

Chapter II, Section 2.4 or p. 360]) by homogeneity, the claim follows, since the convolution with
the Schwartz function η̂ does not perturb the decay and merely smoothens out F [(ξd)

δ
+](λ). �

The above representation leads to a necessary condition for the Lp-boundedness of SδR.

Herz Theorem 15.7 (Herz
Herz1954
[93]). In order for ‖Sδ1f‖p . ‖f‖p to hold, one must have

|1
p
− 1

2
| < 2δ + 1

2d
. (15.3) eq:necbr

In particular, we see that the larger δ gets, the larger the interval on which one has a shot at
convergence.

Proof. This is shown by convolving the Bochner–Riesz kernel with a test function of the form

f(x) :=

{
1 if |x| < 1/10

0 if |x| ≥ 1/10
.

In this case, (Sδ1f)(x) ∼ |x|−(d+1+2δ)/2 as |x| → ∞ by Lemma
brkernelbrkernel
15.6. Moreover, a moment’s

thought will convince the reader that the oscillating factor in the Bochner–Riesz kernel produces
no significant cancellation in Sδ1f . Thus, Sδ1f does not belong to any Lp if

d

p
<
d+ 1

2
+ δ

which is a rearrangement of (
eq:necbreq:necbr
15.3). �

We see that the Bochner–Riesz kernel is in Lp for δ = 0 only if p > 2d/(d+ 1). By duality, it
is therefore natural to conjecture that SRf converges if p ∈ (2d/(d+ 1), 2d/(d− 1)). Let us see
whether S1 is bounded in d = 1. In this case

S1f = F−1(1[−1,1]f̂) =
1

2
F−1

(
(sgn(x+ 1)− sgn(x− 1))f̂

)
.

By the invariance of multipliers under affine transformations, it thus suffices to prove the Lp-

boundedness of f 7→ F−1(sgn(x)f̂). But this operator is just the Hilbert transform multiplied
by i/π, i.e,

i

π
(Hf)(x) =

i

π
p.v.

∫
f(x− y)

dy

y

which well-known to be Lp-bounded.
Now what about d ≥ 2? Surprisingly, Fefferman

Fefferman1971
[66] disproved this conjecture, i.e., the ball

multiplier is in fact Lp-bounded only for p = 2! What is the reason for this dramatic failure of
Lp-boundedness?
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The previous discussion indicates that Fourier analysis, orthogonality, cancellations and so on
should be involved in the analysis of SR. Fefferman’s proof, which was of course via contradic-
tion, involved pure size estimates (he refers to them as Meyer’s lemma) and a clever geometric
construction. And here is where the Kakeya conjecture comes into the play.

Before we review Fefferman’s disproof, let us discuss whether certain regularizations of SR
have a chance of convergence. And indeed, it is conjectured (and in certain cases, such as in
d = 2, already proven) that the so-called Bochner–Riesz means

(SδRf)(x) :=

∫
Rd

(
1− |ξ|2/R2

)δ
+

e2πix·ξ f̂(ξ) dξ

do converge for all δ > 0 if p lies in the conjectured range. This the content of

Conjecture 15.8 (Bochner–Riesz conjecture). Let δ > 0 and 1 ≤ p ≤ ∞ be such that (
eq:necbreq:necbr
15.3)

holds. Then SδRf converges to f in Lp norm as R→∞ for all f ∈ Lp.

If p lies outside of the above range, one may still get convergence if δ is chosen to be p-
dependent in the right way. As is the case for the restriction conjecture, the Bochner–Riesz
conjecture is fully resolved in d = 2. (The reason will become clear in a moment.) Observe that
for δ → 0, one recovers the ball multiplier. For higher δ, SδR can indeed be seen as a mollification
of the ball multiplier.

Before we continue, let us dispose some easy cases first. Clearly, the conjecture is true when
p = 2 because of Plancherel’s theorem. On the other hand, if δ > (d−1)/2, then, the asymptotics
(
eq:brkerneleq:brkernel
15.2) of the Bochner–Riesz kernel imply that the convolution kernel SδR is integrable. (Note that

there is no singularity near zero in x-space; in fact, F [(1 − ξ2)δ+](x) must be complex analytic
since the multiplier is compactly supported.) So the claim follows by Young’s inequality in this
case.

Now, what is the connection between the restriction and the Bochner–Riesz conjecture? On
the one hand, the implication Restriction ⇒ Bochner–Riesz was shown for the paraboloid by
Carbery

Carbery1992
[34]. For general surfaces, Fefferman

Fefferman1970
[65] proved that if the (p, p) restriction hypothesis

is strengthened to a (p, 2) estimate, then the Bochner–Riesz conjecture holds.
On the other hand, the reverse direction Bochner–Riesz⇒ Restriction was shown by Tao

Tao1999
[160]

for the sphere.

In the following subsections we shall fill in the details in the above discussion. We start
by showing the Lp-boundedness of Sδ1 using solely the knowledge of the Bochner–Riesz kernel,
Lemma

brkernelbrkernel
15.6. Afterwards, we review Fefferman’s disproof of the Lp-boundedness of the ball

multiplier. We will then review the equivalence Restriction ⇔ Bochner–Riesz. Finally, we shall
see the implication Bochner–Riesz ⇒ Kakeya. We will mainly follow

Tao1999Notes
[159, Lecture 3], but see

also Fefferman
Fefferman1973
[67].

15.1. Lp-boundedness of Sδ1 via Carleson–Sjölin oscillatory integral estimates. See also
Sogge

Sogge2017
[143, Section 2.3] for a generalization of the to general q(ξ) (homogeneous of degree one,

C∞, and non-negative in Rd \ {0}) instead of ξ2. See also Bourgain
Bourgain1991,Bourgain1991L,Bourgain1991O
[13, 14, 24] and his review

Bourgain1995
[25]. See also Fefferman

Fefferman1973
[67].

From Lemma
brkernelbrkernel
15.6 (note that the integral kernel of Sδ1 is complex analytic since the symbol is

compactly supported) and Young’s inequality it follows immediately that Sδ1 is Lp bounded for
all δ > (d−1)/2. The problem gets significantly more difficult in the case δ ≤ (d−1)/2 since the
kernel is not integrable any more and we need to exploit its oscillatory behavior. Let us recall
the necessary condition (Theorem

HerzHerz
15.7)

2d

d− 1− 2δ
< p <

2d

d+ 1 + 2δ
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and the known positive result. When d = 2, matters are completely settled: We shall see below
that when δ > 0, Sδ1 is Lp(R2) bounded for 4/3 ≤ p ≤ 4. There is also the companion result that
it actually holds in the range 4/(3 + 2δ) < p < 4/(1 − 2δ), whenever 0 < δ ≤ 1/2. Our goal in
this section is to prove

BRLp Proposition 15.9. The operator Sδ1 , initially defined for f ∈ S, extends to a Lp(Rd) bounded
operator whenever

2d

d+ 1 + 2δ
< p <

2d

d− 1− 2δ

and

1 ≤ p ≤ 2(d+ 1)

d+ 3
or

2(d+ 1)

d− 1
≤ p ≤ ∞ .

Note that the first restriction is equivalent to

δ > δ(p) where δ(p) = n|1
p
− 1

2
| − 1

2

which is the only known necessary condition for the boundedness of Sδ1 . As mentioned above,
when d = 2 this condition is in fact sufficient, i.e., we may drop the second assumption on p. We
will prove this fact shortly afterwards.

Let us start with an Lp → Lp estimate for a certain oscillatory integrals (compare with Theo-
rem

oscintnondegoscintnondeg
4.3). Let ψ ∈ C∞c (Rd) be a smooth cutoff function such that ψ vanishes in a neighborhood

of the origin, and set

(Gλf)(x) =

∫
Rd

eiλ|x−y|ψ(x− y)f(y) dy . (15.4)

Invoking the Lp → Lq Carleson–Sjölin estimates for oscillatory integrals related to the restric-
tion conjecture (see Theorem

carlesoncarleson
4.6 or Theorem

carlesonsteincarlesonstein
A.7) and freezing one variable, we obtain

Lemma 15.10. We have that

‖Gλf‖Lp(Rd) . λ
−d/p′‖f‖Lp(Rd) (15.5)

whenever 1 ≤ p ≤ 2(d+ 1)/(d+ 3).

Proof. Let us first modify Gλ by setting

(G̃λf)(x) =

∫
Rd

eiλ|x−y|ψ̃(x, y)f(y) dy

where now ψ̃ ∈ C∞c (Rd × Rd) is a smooth cutoff function for (x, y) ∈ Rd × Rd whose support
does not intersect the diagonal {(x, y) : x = y}.

For x = (x′, xd), we keep xd fixed and write

(G̃λf)(x′, xd) = (T ∗λf)(x′)

where

(T ∗λf)(x′) =

∫
Rd

e−iλϕ(x′,y)ψ(x′, y)f(y) dy .

(i.e., the restriction operator, recall also Theorem
carlesoncarleson
4.6 and Appendix

a:carlesona:carleson
A.2). This leads us to the

phase function ϕ(x′, y) on Rd−1 × Rd given by

ϕ(x′, y) = −(|x′ − y′|2 + |xd − yd|2)1/2 ,
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with xd fixed and y = (y′, yd). It is not difficult to verify directly that ϕ satisfies the conditions
of Theorem

carlesonsteincarlesonstein
A.7. Indeed, the vector u arising in the curvature hypothesis (

eq:curvueq:curvu
A.11) may be taken

to be u = (x− y)/|x− y|. We can therefore invoke Theorem
carlesonsteincarlesonstein
A.7 and obtain(∫

Rd−1

|(G̃λf)(x′, xn)|q dx′
)1/q

. λ−d/p
′
‖f‖Lp(Rd) .

Next observe that q ≥ p and that the integration in x′ above is only over a compact set. Thus,∫
Rd−1

|(G̃λf)(x′, xd)|p dx′ . λ−dp/p
′
‖f‖p

Lp(Rd)

and a final integration in xd (again over a compact set) gives

‖G̃λf‖Lp(Rd) . λ
−d/p′‖f‖Lp(Rd) .

The passage from the inequality for G̃λ to that for Gλ (i.e., to go back to a C∞c (Rd) function ψ

from a C∞c (Rd × Rd) function ψ̃) is then accomplished by a familiar argument, see, e.g., Stein
Stein1993
[149, Chapter VI, Section §2.3]. Indeed, the last estimate implies∫

|x−x0|≤1

|(Gλf)(x)|p dx . λ−dp/p
′

∫
|x−x0|≤c

|f(x)|p dx

for each x0, where the constant c is determined by the size of the support of ψ. An integration
in x0 ∈ Rd (which only yields a multiple of the volume of the unit ball) then proves the assertion
of the lemma. �

Proof of Proposition
BRLpBRLp
15.9. Recall that Sδ1f = Kδ ∗ f with Kδ as in Lemma

brkernelbrkernel
15.6 where the

principal term is given by a constant multiple of∫
|y|≥1

e±2πi|y|f(x− y)|y|−(d+1)/2−δ dy ≡ (Tf)(x) .

Then there are finitely many terms of the same kind, but where the factor |y|−(d+1)/2−δ is
replaced by |y|−(d+1)/2−δ−j (and hence improved) with j > 0. Finally there is an error term
which corresponds to the convolution with an L1 kernel. Thus, we only need to deal with the
principal term.

Let us now decompose

|y|−(d+1)/2−δ =
∑
k≥0

2−[(d+1)/2+δ]k ·
(
|y|
2k

)−(d+1)/2−δ

ψ
( y

2k

)
dyadically where (as before) ψ(x) = ϕ(x)−ϕ(2x) is a smooth function supported in 1/2 < |x| < 2
(when ϕ is a bump function at the origin). Thus, we may write T =

∑
k≥0 Tk where

(Tkf)(x) = 2−[(d+1)/2+δ]k

∫
Rd

e2πi|y|f(x− y)

(
|y|
2k

)−(d+1)/2−δ

ψ
( y

2k

)
.

Now, scaling y 7→ 2ky shows that, whenever 1 ≤ p ≤ 2(d+ 1)/(d+ 3),

‖Tk‖p,p = 2−[(d+1)/2+δ]k‖G2π·2k‖p,p · 2dk . 2−[(d+1)/2+δ]k · 2−dk/p
′
· 2dk

with G as in the previous lemma where ψ(y) is replaced by |y|−(d+1)/2−δψ(y). If

−
[
d+ 1

2
+ δ

]
− d

p′
+ d < 0 ,
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which is equivalent to p > 2d/(d + 1 + 2δ) (i.e., the asserted range for p), then ‖T‖p,p .∑
k≥0 ‖Tk‖p,p converges which concludes the proof. �

We shall now review Carleson’s and Sjölin’s proof
CarlesonSjolin1972
[42] of the Bochner–Riesz conjecture in

d = 2. We emphasize that the following estimate extends Theorem
carlesonsteincarlesonstein
A.7 to the full range 1 ≤ p < 4

(instead of 1 ≤ p ≤ 2).

Theorem 15.11. Under the assumptions of Theorem
carlesonsteincarlesonstein
A.7, when d = 2, we have

‖Tλf‖Lq(R2) . λ
−2/q‖f‖Lp(R1) (15.6)

where q = 3p′ and 1 ≤ p < 4.

Proof. See
Stein1993
[149, p. 412]. �

As a corollary, one obtains the full Bochner–Riesz and restriction conjectures in d = 2. The
latter is essentially contained in Fefferman

Fefferman1970
[65] (joint with E. M. Stein). For an alternative proof

of the Bochner–Riesz conjecture in d = 2, see also Fefferman
Fefferman1973
[67].

Corollary 15.12. Suppose S ⊆ R2 is a curve whose curvature is nowhere zero and S0 is a
compact subset of S. Then(∫

S0

|f̂(ξ)|q dσ(ξ)

)1/q

.S0
‖f‖Lp(R2) , f ∈ S ,

whenever 3q = p′ and 1 ≤ p < 4/3.

For an alternative proof of this, we refer to Subsection
ss:2drestrictionss:2drestriction
7.4 (which followed

Tao1999Notes
[159, Lecture 5]).

Corollary 15.13. The operator Sδ1 extends to a Lp(R2) bounded operator for 4/3 ≤ p ≤ 4
whenever δ > 0 and more generally to the range

4

3 + 2δ
< p <

4

1− 2δ
,

whenever 0 < δ ≤ 1/2.

15.2. The multiplier problem for the ball. We review Fefferman’s disproof of the bounded-
ness of the disk multiplier using a variant of the Kakeya conjecture

Fefferman1971
[66]. Nice expositions can

also be found in Krantz
Krantz1999
[110, Section 3.5] and Grafakos

Grafakos2014M
[86, Section 5.1].

As we have already mentioned several times, Carleson and Sjölin
CarlesonSjolin1972
[42] made heartening progress

in 1972 when they proved that the disc multiplier is almost Lp bounded in the sense that Sδ1
is Lp bounded for any δ > 0 and 4/3 ≤ p ≤ 4 using the theory of oscillatory integrals. In this
section, we shall show that this is indeed the best that one can get. Writing Sδ ≡ Sδ1 , we show

discmultiplier Theorem 15.14. S0 is bounded only in L2(Rd) for d ≥ 2.

Indeed it suffices to disprove Lp boundedness for p > 2 (by duality, we also obtain the case
p < 2) in two dimensions since Lp boundedness in Rd implies boundedness in Rd−1 by an
observation of de Leeuw.

Lemma 15.15 (de Leeuw). Suppose that m is a smooth Fourier multiplier on Rd and that the
operator T defined by

T̂ f(ξ) = m(ξ)f̂(ξ)

is bounded on Lp(Rd). Then the operator T0 defined by

T̂0g(ξ′) = m(ξ′, 0)ĝ(ξ′)

for ξ′ ∈ Rd−1 is bounded on Lp(Rd−1).
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Proof. From the invariance of Lp multiplier bounds under affine transformations (to see this,
just scale), we see that we may replace m(ξ) by

mR(ξ′, ξd) = m(ξ′, ξd/R)

in the definition of T without affecting the Lp boundedness property. Letting R→∞ and taking
limits, we may replace m by

m∞(ξ′, ξd) = m(ξ′, 0) ,

i.e., the operator

T̂∞f(ξ′, ξd) = m(ξ′, 0)f̂(ξ′, ξd)

is bounded on Lp(Rd). If we now apply this fact to a function of the form f(x′, xd) = g(x′)ψ(xd)

and observe that f̂(ξ′, ξd) = ĝ(ξ′)ψ̂(ξd), we obtain the desired result. �

There are two key insights in the disproof of the disc conjecture. The first is that the disc
conjecture would imply a vastly improved Kakeya conjecture (Meyer’s lemma) where the “tubes”
will not have to be separated anymore. The second key is that such a strengthened Kakeya
estimate can indeed never hold. The proof of the latter is inspired by Besicovitch’s (or rather
Schönberg’s simplified) construction of Besicovitch sets (that contain a unit line segment in every
direction). Let us start with the first insight.

Lemma 15.16 (Y. Meyer). Let (vj)j∈N be a sequence of unit vectors in R2 and let Hj be the
half-plane {x ∈ R2 : x ·vj ≥ 0}. Defined the “half plane multipliers” (Tj)j∈N on Lp(R2) by setting

T̂jf(ξ) = 1Hj (ξ)f̂(ξ). If the disc conjecture holds, then for any sequence (fj)j∈N, we have the
square function estimate

‖(
∑
j

|Tjfj |2)1/2‖p . ‖(
∑
j

|fj |2)1/2‖p . (15.7) eq:lphalfplane

Proof. The idea is to approximate the half-planes by gigantic discs and to use the standard
randomization argument to obtain the above square function estimate from the supposed Lp

boundedness of the disc multiplier. More precisely, let TDrj be the operator defined by T̂Drj f(ξ) =

1Drj f̂(ξ) where Dr
j is the disc of radius r centered at rvj . For f ∈ C∞c , we have the uniform

convergence
(Tjf)(x) = lim

r→∞
(TDrj f)(x)

which is easy by going to Fourier space since

‖(1Hj − 1Drj )f̂‖1 ≤ ‖(1Hj − 1Drj )‖∞‖f̂‖1 → 0 .

Thus, by Fatou’s lemma

‖(
∑
j

|Tjfj |2)1/2‖p ≤ lim inf
r→∞

‖(
∑
j

|TDrj fj |
2)1/2‖p

By dilating R2 it therefore suffices to set r = 1 and prove

‖(
∑
j

|TD1
j
fj |2)1/2‖p . ‖(

∑
j

|fj |2)1/2‖p .

Since translating in Fourier space corresponds to multiplying by phases in position space, we
have (recalling that S0 was the disc multiplier)

(TD1
j
f)(x) = e2πivj ·xS0[e−2πivj ·yf ](x) ,

and so it suffices to prove

‖(
∑
j

|S0[e−2πivj ·yfj ]|2)1/2‖p . ‖(
∑
j

|fj |2)1/2‖p .



112 K. MERZ

But by the Marcinkiewicz–Zygmund theorem (see, e.g., Grafakos
Grafakos2014C
[85, Theorem 5.5.1]), this

estimate holds because of the assumed Lp boundedness of S0. �

To disprove the disc conjecture, we shall find a counterexample to the square function estimate
(
eq:lphalfplaneeq:lphalfplane
15.7) for half planes. The example is based on a slight variant of (Schönberg’s improvement of)

Besicovitch’s construction for the Kakeya needle problem.

constrbesicovitch Lemma 15.17. Fix a small number η > 0. Then there is a set E ⊆ R2 and a collection
R = {Rj}j∈N of pairwise disjoint rectangles with the properties that

(1) |E ∩ R̃j | ≥ |R̃j |/10, i.e., at least one-tenth of the area of each R̃j lies in E and
(2) |E| ≤ η

∑
j |Rj |

where R̃j is the shaded region in Figure
fig:counterexamplefig:counterexample
6.

Figure 6 fig:counterexample

Let us now see how the half-plane multiplier acts on functions supported on rectangles whose
long side is oriented along the normal of the half plane.

Lemma 15.18. Let R be a a× b rectangle in the plane with arbitrary position and orientation
and let R̃ be the rectangle of the same length which is shifted over by c ·a for some constant c ≥ 1
in the direction of the long axis of R. Then there exists a function fR supported on R such that
|fR| ≤ 1 on R and |(TjfR)(x̃)| ∼ 1 for any vj ∈ S1 and x̃ ∈ R̃.

Observe that for c = 1, we recover the setup of Figure
fig:counterexamplefig:counterexample
6. The following arguments can easily

be generalized to treat also the case 0 < c < 1, which is left as an exercise.

Proof. Let us assume vj = (−1, 0), i.e., we consider the half-plane ξ1 ≤ 0, i.e., T̂jf(ξ) ≡ χ(ξ)f̂(ξ)
where

χ(ξ) =
1

2
− 1

2
sgn(ξ1) .

By the formula for the Fourier transform of the Hilbert transform, we have (in the sense of
distributions)

(Tjf)(x) =

∫
R2

(
1

2
δ(y) +

1

2πi

1

y1
δ(y2)

)
f(y − x) dy .
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Now, let 0 ≤ ψ ∈ C∞c (R2) be supported on [0, 1]2 with ψ > 0 on [1/3, 2/3]2 and symmetric with
respect to reflections with respect to the coordinate axes. Let furthermore R be the rectangle
centered at z ∈ R2 whose long side a lies in the x1 direction and whose short side b lies along
the x2 direction. If we define

fR(x) = ψ

(
x1 − z2

a
,
x2 − z2

b

)
,

then the action of the half-plane multiplier on fR evaluated at the center x̃ = (z1 + ca, z2) of the

translated R̃ is given by

(TjfR)(x̃) =
1

2

∫
R2

(
δ(y) +

1

iπ
δ(y2)y−1

1

)
ψ

(
y1 −

x̃1 − z1

a
, y2 −

x̃2 − z2

b

)
dy

=
1

2
ψ

(
c,
x̃2 − z2

b

)
+

1

2πi

∫
R

dy1

y1
ψ

(
y1 − c,

x̃2 − z2

b

)
.

The first summand vanishes since c > 1, whereas the second one, in absolute modulus at least, is
clearly bounded from below by some positive constant. The computation where x̃ is an arbitrary
point in R̃ is completely analogous. �

With this at hand, we can disprove the disc conjecture by contradicting the square function
estimate (

eq:lphalfplaneeq:lphalfplane
15.7) for half-planes.

Proof of Theorem
discmultiplierdiscmultiplier
15.14. Set fj = 1Rj with Rj as in Figure

fig:counterexamplefig:counterexample
6 and vj being parallel to the longer

sides of Rj . Direct computation shows that |(Tjfj)(x)| ≥ 1/2 for x ∈ R̃j , so that∫
E

(
∑
j

|(Tjfj)(x)|2) dx =
∑
j

∫
E

|(Tjfj)(x)|2 dx ≥ 1

4

∑
j

|E ∩ R̃j | ≥
1

40

∑
j

|R̃j | =
1

20

∑
j

|Rj |

(15.8) eq:lowerboundhalfplane

by the fact |E ∩ R̃j | ≥ |R̃j |/10 for our constructed set E. On the other hand, if the square
function estimate (

eq:lphalfplaneeq:lphalfplane
15.7) were true, Hölder’s inequality would show that the left side of (

eq:lowerboundhalfplaneeq:lowerboundhalfplane
15.8) is

bounded from above by∫
E

(
∑
j

|(Tjfj)(x)|2) dx ≤ |E|(p−2)/p ‖(
∑
j

|Tjfj |2)‖2p . |E|(p−2)/p ‖(
∑
j

|fj |2)‖2p

= |E|(p−2)/p (
∑
j

|Rj |)2/p ≤ η(p−2)/p
∑
j

|Rj |
(15.9) eq:upperboundlp

where we first used the square function estimate, then the fact that the Rj are pairwise disjoint,
i.e., there are no mixed terms appearing in the summation over j, and finally the size assumption
|E| ≤ η

∑
j |Rj | on the constructed set E. For sufficiently small η the bounds in (

eq:lowerboundhalfplaneeq:lowerboundhalfplane
15.8) and (

eq:upperboundlpeq:upperboundlp
15.9)

contradict each other which disproves the square function estimate (
eq:lphalfplaneeq:lphalfplane
15.7). This shows the failure

of the Lp boundedness of the disc multiplier and concludes the proof of Theorem
discmultiplierdiscmultiplier
15.14. �

We are thus left to give the

Proof of Lemma
constrbesicovitchconstrbesicovitch
15.17. We shall closely follow the excellent exposition of Cunningham

Cunningham1971
[54]

(where the minimal area for a plane, simply connected, or star-shaped, set within which a unit
segment can be rotated continuously to return to its original position with its ends reversed, is
determined; in fact, it is shown that star-shaped Kakeya sets cannot have area less than π/108,
although it was not known whether this is the best value), but see also the classic paper of
Busemann and Feller

BusemannFeller1934
[32].

Consider the following process: we are given a triangle T as in the left drawing in Figure
fig:sproutingfig:sprouting
7,

with horizontal base ab and height h. Extend the lines ac and bc to points a′ and b′ of height
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h′ > h. Let d be the midpoint of ab, see the right drawing in Figure
fig:sproutingfig:sprouting
7.

Figure 7 fig:sprouting

We say that the two triangles T ′ = ada′ and T ′′ = bdb′ arise as sprouts from height h to height
h′.

Now we can construct the Besicovitch set E. Begin with an equilateral triangle T 0 whose base
is the interval [0, 1] on the x-axis, and pick an increasing sequence of numbers h0, h1, h2, ..., hk,

where h0 =
√

3/2 denotes the height of the initial triangle T 0. Now sprout T 0 from height h0

to height h1 to obtain two new triangles T ′ and T ′′. Now sprout both T ′ and T ′′ from height
h1 to height h2 to obtain four new triangles T 1, T 2, T 3, T 4, all of height h2. Continue sprouting,
obtaining at stage n, 2n triangles of height hn with base length 2−n. Finally, set E equal to the

union the final 2k triangles T 1, T 2, ..., T 2k which arose at stage k.
For the special case, where h0 =

√
3/2, we obtain the sequence of heights

h0 =

√
3

2
, h1 =

√
3

2

(
1 +

1

2

)
, h2 =

√
3

2

(
1 +

1

2
+

1

3

)
, ... , hk = h1 =

√
3

2

k∑
n=1

n−1 ∼ log k

Buseman and Feller
BusemannFeller1934
[32] showed that |E| ≤ 17. (Actually, Busemann and Feller use a sprouting

procedure slightly different from this. However, since their sprouted triangles are strictly larger
than these, their estimates apply here, too.)

Having built E and computed its measure, we are left to construct the collection of disjoint
rectangles which satisfied |E ∩ R̃j | ≥ |R̃j |/10 and |E| ≤ η

∑
j |Rj | for any given (small) η > 0.

To do so note that each dyadic interval I ⊆ [0, 1], of length 2−k, is the base of exactly one
Tj =: T (I). Let us call its upper vertex P (I). We then construct the rectangle R(I) as in Figure
fig:constrrectfig:constrrect
8.
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Figure 8 fig:constrrect

It does not matter how R(I) is placed, as long as it stays inside the triangle P (I)BA. Now define

R = {R(I) : I is a dyadic subinterval of [0, 1] of length 2−k} .

Now let us check the claimed properties. First, |E ∩ R̃j | ≥ |R̃j |/10 is trivially satisfied by
construction since T (I) ⊆ E. To check the upper bound |E| ≤ η

∑
I |RI |, we note that the area

of each R(I) is roughly 2−k log k. Since there are altogether 2k of such rectangles, we have∑
I

|RI | ∼ 2k · 2−k log k = log k .

Clearly, the left side is greater than |E|/η if we pick k = k(η) so large that log k > 17/η.
Finally, it remains to show that the rectangles are pairwise disjoint. But this just follows from

the elementary geometric observation that P (I ′) lies to the left of P (I) whenever I ′ lies to the
left of I. �

15.3. Restriction ⇒ Bochner–Riesz. This is essentially contained in Fefferman
Fefferman1970
[65, Theorem

3] but we will follow the exposition in
Tao1999Notes
[159, Lecture 3].

Let us fix δ > 0 such that the necessary condition (
eq:necbreq:necbr
15.3) holds. Then, as in the proof of the

Tomas–Stein theorem, we will decompose the convolution kernel Kδ = F [(1 − ξ2)δ+] dyadically

using the ψk(x) := ϕ(2−kx) − ϕ(2−k+1x) where ϕ was a bump function supported around the
origin. Then, we break up

Kδ = ϕKδ +
∑
k>0

ψkKδ .

As opposed to the proof of the Tomas–Stein theorem, we do not need to impose any fancy
moment conditions on ϕ or ψ since we inequality on p is strict, i.e., we do not need to care about
any subtleties concerning endpoints.
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First, since ϕKδ is a bump function, the convolution is clearly an Lp-bounded operator by
Young’s inequality. So, as before, we are left with showing that

‖
∑
k

f ∗ (ψkKδ)‖p . ‖f‖p .

Since we have a bit of room in the condition (
eq:necbreq:necbr
15.3) on p, we may just use the triangle inequality.

In fact, we shall show

‖f ∗ (ψkKδ)‖p . 2[d( 1
p−

1
2 )− 1

2−δ]k‖f‖p (15.10) eq:brloc

which is just summable in k if (
eq:necbreq:necbr
15.3) holds.

The first observation that we shall use to prove (
eq:brloceq:brloc
15.10) is that the kernel ψkKδ is compactly

supported on an annulus {x : |x| ∼ 2k}, i.e., the operator is somewhat localized. In fact, the
values of f at a point x only influence points which are in a 2k neighborhood. The following
useful lemma allows us to reduce our study of such “local” operators to a compact set.

almostlocal Lemma 15.19. Let T be a linear operator taking functions on Rd to functions on Rd. Suppose
T is local in the sense that the support of Tf always remains within R of the support of f for
some R > 0. Then, for any 1 ≤ p ≤ q ≤ ∞, the bound

‖Tf‖q . ‖f‖p for all f ∈ Lp(Rd) (15.11) eq:almostlocal1

is equivalent to the bound

‖Tf‖Lq(Bx(2R)) . ‖f‖p for all f ∈ Lp(Bx(R)) , (15.12) eq:almostlocal2

holding uniformly in x.

In other words, to show (
eq:almostlocal1eq:almostlocal1
15.11), it suffices to test it for functions supported on an R-ball.

Intuitively, the idea is that functions on distinct R-balls basically do not interfere too much with
each other.

Proof. Clearly, we only need to show (
eq:almostlocal2eq:almostlocal2
15.12) ⇒ (

eq:almostlocal1eq:almostlocal1
15.11). For this purpose let f ∈ Lp(Rd),

choose a finitely overlapping collection of balls {B} that cover Rd and denote a partition of unity
1 =

∑
B ψB subordinate to that cover. Then, we write

‖Tf‖qq =

∫
|T (
∑
B

ψBf)|q =

∫
|
∑
B

T (ψBf)|q .

Since T is local in the above sense, the functions T (ψBf) are just supported on the double 2B
of B. These balls are still only finitely overlapping, so we have the pointwise estimate

|
∑
B

T (ψBf)|q .
∑
B

|T (ψBf)|q .

Putting this back into the previous estimate, simplifying, applying the assumed Lp → Lq-
boundedness (

eq:almostlocal2eq:almostlocal2
15.12), and the elementary inequality(∑

B

aqB

)1/q

≤

(∑
B

apB

)1/p

for a sequence {aB}B of non-negative numbers and (crucially) q ≥ p, we obtain

‖Tf‖q .

(∑
B

‖T (ψBf)‖qq

)1/q

.

(∑
B

‖ψBf‖qp

)1/q

≤

(∑
B

‖ψBf‖pp

)1/p

.

Again, since the balls are only finitely overlapping, it is easy to see that the right side is essentially
‖f‖p. �
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The condition q ≥ p in the above lemma is absolutely necessary. This is an example of one of
Littlewood’s principles: “the higher exponents are always to the left”. More precisely, we have

littlewoodprinciple Lemma 15.20. Let 1 ≤ p, q < ∞ and T be a non-zero translation invariant operator on Rd.
Then, the estimate ‖Tf‖q . ‖f‖p is only possible, if q ≥ p.

Proof. Let ϕ be any bump function such that Tϕ is non-zero. Let N > 0 be a large number,
and let x1, ..., xN be N very widely separated points. Define f by

f(x) =

N∑
i=1

ϕ(x− xi) .

If the above estimate held for f , we would have

‖
N∑
i=1

Tϕ(x− xi)‖q . ‖
N∑
i=1

ϕ(x− xi)‖p

since T is translation invariant. However, the right side is bounded from above by a constant
(‖ϕ‖p) times N1/p, whereas the left side can in fact be bounded from below (by forgetting about

the overlaps of Tϕ(x − xi)) by a constant (‖Tϕ‖q) times N1/q. Letting N → ∞, we have
necessarily 1/q ≤ 1/p, i.e., q ≥ p. �

Now, let us return to the proof of (
eq:brloceq:brloc
15.10), i.e.,

‖f ∗ (ψkKδ)‖p . 2[d( 1
p−

1
2 )− 1

2−δ]k‖f‖p .

From the above discussion, it suffices to prove

‖f ∗ (ψkKδ)‖Lp(Bx(a2k)) . 2[d( 1
p−

1
2 )− 1

2−δ]k‖f‖p

for all f supported on a ball Bx(a2k−1). By translation invariance, we may take x = 0.
We are supposed to apply the Tomas–Stein theorem which is an Lp → L2 theorem. Indeed,

using Hölder’s inequality (since we are on a finite domain) on the left side of the last formula
and using Plancherel, we have

‖f ∗ (ψkKδ)‖Lp(Bx(a2k)) . 2dk( 1
p−

1
2 )‖f ∗ (ψkKδ)‖2 = 2dk( 1

p−
1
2 )‖f̂ · (ψ̂k ∗mδ)‖2

where we have denoted mδ(ξ) = (1− ξ2)δ+. Thus, we are left to show

‖f̂ · (ψ̂k ∗mδ)‖2 . 2−( 1
2 +δ)k‖f‖p .

We will shortly prove the key estimate

|ψ̂k ∗mδ(ξ)| . 2−δk(1 + 2kd(ξ, S))−N , N ∈ N . (15.13) eq:brkey

Assuming this for a moment, we see that it suffices to prove

‖f̂(1 + 2kd(ξ, S))−N‖22 =

∫
|f̂(ξ)|2

(1 + 2kd(ξ, S))2N
dξ . 2−k‖f‖2p

to finish the proof. We distinguish between d(ξ, S) > 1/2 and d(ξ, S) < 1/2 and start with the
former case, which is an error term. In this case, we crudely estimate

|f̂ | . 2ak‖f‖p

by the definition of f̂ , Hölder’s inequality, and the fact that f is compactly supported. On the
other hand, the denominator in the integral is 2−Nk for any N and rapidly decreasing as ξ →∞.
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This decay beats all other factors, and the bound is easy to prove. Thus, it suffices to prove∫
1/2≤|ξ|≤3/2

|f̂(ξ)|2

(1 + 2kd(ξ, S))2N
. 2−k‖f‖2p .

Discarding the Jacobian arising from passing to polar coordinates, we rewrite this as∫ 3/2

1/2

dr (1 + 2k|r − 1|)−2N

∫
rSd−1

dω |f̂ |2 . 2−k‖f‖2p .

15.4. Bochner–Riesz ⇒ Restriction. We review Tao’s proof
Tao1999
[160] that the Bochner–Riesz

conjecture implies the restriction conjecture.

15.5. Bochner–Riesz⇒ Kakeya. We review the argument Bochner–Riesz⇒ Kakeya. We dis-
cuss Bourgain’s works

Bourgain1991,Bourgain1991O,Bourgain1992
[13, 24, 15] that progress on Kakeya is connected to progress for Bochner–

Riesz (and thereby for Restriction by Tao
Tao1999
[160])

15.6. How does Kakeya help in proving Bochner–Riesz? The key observation is that
every function can be decomposed into a linear combination of wave packets by applying stan-
dard cutoffs both in physical space (by pointwise multiplication) and in frequency space (using
the Fourier transform). After applying the Bochner–Riesz operator to these wave packets in-
dividually, one has to reassemble the wave packets and obtain estimates for the sum. Kakeya
estimates play an important role in this since the wave packets are essentially supported on
tubes; however, this is not the full story since these packets also carry some oscillation that can
be exploited. Thus, one must develop tools to deal with the possible cancellation between wave
packets. The known techniques to deal with this cancellation, mostly based on L2 methods,
are imperfect, so that even if one had a complete solution to the Kakeya conjecture, one could
not then completely solve the Bochner–Riesz conjecture. Nevertheless, the best-known results
on Bochner–Riesz (e.g., in d = 3 the conjecture is known, see Tao and Vargas

TaoVargas2000,TaoVargas2000A
[157, 158] for

p > 26/7 and for p < 26/19 using also bilinear methods) have been obtained by utilizing the
best-known quantitative estimates of Kakeya type.

16. Connection to spectral multipliers

16.1. Eigenfunction estimates for −∆. We start with the basic observation

dE√−∆(λ) = λd−1R∗λSd−1RλSd−1 dλ

in the sense that for f ∈ S(Rd),

dE√−∆(λ)f(x) = λd−1

∫
Sd−1

e2πix·(λω)f̂(λω) dσ(ω) =

∫
λSd−1

e2πix·ξ f̂(ξ) dσλSd−1(ξ) .

Here dEA(λ) denotes the spectral projection associated to some self-adjoint operator A. This
follows immediately from∫ ∞

0

F (λ)〈ψ, dE√−∆(λ)ψ〉 = 〈ψ, F (
√
−∆)ψ〉 =

∫ ∞
0

dk F (k) ·
(
kd−1

∫
Sd−1

|ψ̂(kω)|2 dσ(ω)

)
for appropriate measurable functions F : [0,∞)→ R. In particular, the (rescaled) Tomas–Stein
estimate

kd−1

∫
Sd−1

| f̂(kω)︸ ︷︷ ︸
=:ĝk(ω)

|2 dω . kd−1‖gk‖2pc = kd−1‖k−df(·/k)‖2pc = kd−1−2d+2d/pc‖f‖2pc

= k−d+2d/pc−1‖f‖2pc ,
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with pc = 2(d+ 1)/(d+ 3) immediately yields∥∥∥∥dE√−∆(λ)

dλ

∥∥∥∥
pc→p′c

. λ−d+2d/pc−1 = λ
d( 1
pc
− 1
p′c

)−1
(16.1) eq:specprojbd1

By a change of variables and the rescaled Tomas–Stein estimate, i.e.,∫ ∞
0

F (λ)〈ψ, dE−∆(λ)ψ〉 = 〈ψ, F (−∆)ψ〉 =

∫ ∞
0

dk F (k2) ·
(
kd−1

∫
Sd−1

|ψ̂(kω)|2 dσ(ω)

)
=

1

2

∫ ∞
0

dk F (k) ·
(
kd/2−1/2−1/2

∫
Sd−1

|ψ̂(
√
kω)|2 dσ(ω)

)
.
∫ ∞

0

dk F (k) · kd/2−1−d+d/pc‖ψ‖2Lpc
(16.2) eq:specprojbdaux

for any F : [0,∞)→ [0,∞) (such as a characteristic function), we obtain analogously∥∥∥∥dE−∆(λ)

dλ

∥∥∥∥
pc→p′c

. λ
d
2

(
1
pc
− 1
p′c

)
−1
. (16.3) eq:specprojbd2

We remark that the above change of variables is just saying

dE−∆(λ) =
1

2
λ
d
2−1R∗√

λSd−1R√λSd−1 dλ .

One could have obtained (
eq:specprojbd2eq:specprojbd2
16.3) also from Stone’s formula

1

2
((E(Λ)f, f) + (E(Λ)f, f)) = lim

ε↘0

1

2πi

∫
Λ

([R(λ+ iε)−R(λ− iε)]f, f) dλ ,

or equivalently (in the weak sense)

dEA(λ)

dλ
=

1

2πi

(
(A− (λ+ i0))−1 − (A− (λ− i0))−1

)
=

1

π
Im
(
(A− (λ+ i0))−1

)
,

(recall also that Im(F (E + iε)) dE ⇀ dµ(E) where F (z) =
∫

(λ − z)−1 dµ(λ) denotes the Borel
transformation of the (spectral) measure µ) and the “uniform” (in Im(z)) resolvent bound of
Kenig–Ruiz–Sogge

Kenigetal1987
[106, Theorem 2.3], i.e.,

sup
Im(z)∈(0,1)

‖(−∆− z)−1‖p→p′ .d,p |z|−(d+2)/2+d/p = |z|
d
2

(
1
p−

1
p′

)
−1

(16.4) eq:resbd

for all 2d/(d+2) ≤ p ≤ 2(d+1)/(d+3) = pc which, in turn, is obtained via complex interpolation
between the L2 boundedness of

Tζ =
eζ

2

Γ(d/2 + ζ)
(−∆− z)ζ

for Re(ζ) = 0 and the L1 → L∞ boundedness for Re(ζ) ∈ [−(d+ 1)/2,−d/2]. In turn, the latter
follows from the explicit expression of the Fourier transform of the symbol of Tζ .

We will now upgrade (
eq:specprojbd2eq:specprojbd2
16.3)19 using the observation

dEA(λ) = 22k

(
1 +

A

λ

)−2k

dEA(λ)

19This is no upgrade as the restriction estimate in (
eq:specprojbd2eq:specprojbd2
16.3) already holds for all p ∈ [1, pc].
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and the estimate

‖(1−∆/λ)−k‖p→q =
1

Γ(k)
‖
∫ ∞

0

e−t(1−∆/λ)tk−1 dt‖p→q ≤
1

Γ(k)

∫ ∞
0

e−t(t/λ)−
d
2 ( 1

p−
1
q )tk−1 dt

. λ
d
2 ( 1

p−
1
q )

for 2k > d(1/p− 1/q). Indeed, this estimate and (
eq:specprojbd2eq:specprojbd2
16.3) yield∥∥∥∥dE−∆(λ)

dλ

∥∥∥∥
1→∞

= 22k

∥∥∥∥(1−∆/λ)−k
dE−∆(λ)

dλ
(1−∆/λ)−k

∥∥∥∥
1→∞

.k ‖(1−∆/λ)−k‖1→pc‖(1−∆/λ)−k‖p′c→∞
∥∥∥∥dE−∆(λ)

dλ

∥∥∥∥
pc→p′c

. λd/2−1 .

Thus, by interpolation, (
eq:specprojbd2eq:specprojbd2
16.3) can be upgraded to∥∥∥∥dE−∆(λ)

dλ

∥∥∥∥
p→p′

. λ
d
2

(
1
p−

1
p′

)
−1

(16.5) eq:specprojbd3

for all 1 ≤ p ≤ pc.
Let us finally mention that (

eq:specprojbd2eq:specprojbd2
16.3) respectively (

eq:specprojbd3eq:specprojbd3
16.5) should have always be more precisely

written as

‖1[λ,λ+1](−∆)‖p→p′ . λ
d
2

(
1
p−

1
p′

)
−1

(16.6)

which just follows from setting F (k) = 1[λ,λ+1](k) in (
eq:specprojbdauxeq:specprojbdaux
16.2). Formulae (

eq:specprojbd2eq:specprojbd2
16.3) respectively (

eq:specprojbd3eq:specprojbd3
16.5)

correspond to the choice F (k) = δ(k − λ).

16.2. Restriction theorems and multiplier theorems for Schrödinger operators. By
perturbation theory, the resolvent estimate (

eq:resbdeq:resbd
16.4) and the spectral projection estimate (

eq:specprojbd3eq:specprojbd3
16.5)

can be further upgraded to treat −∆ + V for 0 ≤ V ∈ Ld/2 ∩ Ld/2+ε for some ε > 0, see
Ionescu–Schlag

IonescuSchlag2006
[101] (for uniform resolvent estimates which imply spectral measure estimates by

Stone) or Huang et al
Huangetal2018R
[99]. (In fact, the non-negativity of V is only used to prove the bound on

‖(1 − ∆/λ)−k‖p→q when one applies Trotter’s formula, i.e., ultimately to prove the L1 → L∞

bound on dE∆(λ); neither the resolvent bound, nor the Lpc → Lp
′
c bound on dE∆(λ) use that

V is non-negative.) It is for this very reason that estimates like (
eq:specprojbd1eq:specprojbd1
16.1) and (

eq:specprojbd1eq:specprojbd1
16.1) are sometimes

called Tomas–Stein estimates as well, see, e.g.,
Sikoraetal2018
[137, p. 3073-3074].

For further generalizations of the above theme, we refer to the works by Guillarmou et al
Guillarmouetal2013
[88],

Sikora et al
Sikoraetal2014,Sikoraetal2018
[136, 137], and Chen et al

Chenetal2016,Chenetal2020
[43, 44].

16.3. Distorted Fourier transform. In the following we consider Schrödinger operators of the
form

H = P0(D) + V (x,D) in L2(Rd)

where P0 is real and simply characteristic (see Hörmander
Hormander1983
[96, Definition 14.3.1]), σpp(P0) = {0},

and V (x,D) is a symmetric short range perturbation of P0 in the sense of Hörmander
Hormander1983
[96,

Definition 14.4.1]. Recall the Agmon–Hörmander spaces B and B∗ (see, e.g., Hörmander
Hormander1983
[96,

Section 14.1]) and let

Z(P0) := {λ ∈ R : P0(ξ) = λ and dP0(ξ) = 0 for some ξ ∈ Rd} and

Sλ := {ξ ∈ Rd : P0(ξ) = λ} .
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Recall that ∫
1Ω(λ)(dE

(0)
λ f, f) = ± lim

ε↘0

1

π

∫
R

1Ω(λ)Im(R0(λ± iε)f, f) dλ

=

∫
R
dλ1Ω(λ)

∫
Sλ

|f̂(ξ)|2 dσSλ(ξ) , f ∈ L2 .

Recall the resolvent formula R(λ ± i0)f = R0(λ ± i0)fλ±i0 where fz = (1 + V R0(z))−1f is a
continuous function of z ∈ C± \ (σpp(H) ∪ Z(P0)) with values in B. Thus, we have∫

1Ω(λ)(dE
(V )
λ f, f) =

∫
R
dλ1Ω(λ)

∫
Sλ

|f̂λ±i0(ξ)|2 dσSλ(ξ) , f ∈ B ,

whenever Ω ∩ (σpp(H) ∪ Z(P0)) = ∅. This motivates

defdistortedft Definition 16.1. If f ∈ B, then the L2 functions defined by

(F±f)(ξ) = F [(1 + V R0(λ± i0))−1f ](ξ) , ξ ∈ Sλ
= F [(1− V R(λ± i0))f ](ξ)

(16.7) eq:defdistortedft

almost everywhere in Sλ are called distorted Fourier transforms of f .

We recall the following properties of solutions of scattering states. Let B∗P0
= {u : P

(α)
0 u ∈

B∗ for every α}.

Lemma 16.2 (Hörmander
Hormander1983
[96, Lemma 14.6.6]). If u ∈ B∗P0

, λ /∈ Z(P0), and (P0(D)+V −λ)u =
0, then u is given by the solution of the Lippmann–Schwinger equation

u = u± −R0(λ∓ i0)V u (16.8) eq:lseq

= (1−R(λ∓ i0)V )u± , (16.9)

where
û± = v±δ(P0 − λ) = v±dσSλ(ξ) , v± ∈ L2(Sλ, dΣSλ)

and ∫
Sλ

(|v+|2 − |v−|2) dσSλ(ξ) = 0 (16.10)

where dσSλ(ξ) = |∇P0(ξ)|−1dΣSλ(ξ) and dΣSλ(ξ) is the euclidean surface measure on Sλ. More-
over, if λ /∈ (Z(P0) ∪ σpp(P0 + V )), then

(F+f, û+) = (F−, û−) = (f, u) , if f ∈ B . (16.11)

Let us also recall

Theorem 16.3 (Hörmander
Hormander1983
[96, Lemma 14.6.4 and Theorem 14.6.5]). F± : EcL2(Rd)→ L̂2(Rd)

is an isometric operator, which vanishes on EppL2(Rd), with

‖Ecf‖22 =

∫
Rd
|F±f(ξ)|2 dξ .

Moreover, the intertwining property

F±eitH = eitP0(ξ)F±
holds for all t ∈ R. In particular, the restriction of H to EcL2 is absolutely continuous (since
P0 has purely absolutely continuous spectrum).

Moreover, F± : EcL2(Rd)→ L̂2(Rd) is actually unitary, i.e., the restriction of H to EcL2 is
unitarily equivalent to P0, i.e., σc(H) = σac(H) = σ(P0). In particular, for f ∈ Ec(L2(Rd)), we
have

(F±Hf)(ξ) = P0(ξ)(F±f)(ξ) , i.e., (Hf)(x) = (F∗±P0(·)F±f)(x) .



122 K. MERZ

In particular, it follows that

F∗±F± = Ec and F±F∗± = 1
L̂2 .

The distorted Fourier transform (
eq:defdistortedfteq:defdistortedft
16.7) can be conveniently represented using the solutions

ϕξ(λ)(x) (for ξ(λ) ∈ Sλ) of the Lippmann–Schwinger equation (
eq:lseqeq:lseq
16.8). In fact, we have (see also

Ikebe
Ikebe1960
[100] and Yafaev

Yafaev2010
[181, Sections 6.6-6.8])

(F±f)(ξ) = 〈ϕξ, f〉 , ξ ∈
⋃

λ∈σac(H)

Sλ (16.12)

(F∗±g)(x) =

∫
Rd
ϕξ(x)g(ξ) dξ =

∫
σac(H)

dλ

∫
Sλ

dσSλ(ξ) ϕξ(x)g(ξ) . (16.13)

Moreover, we have the following expansion theorem (see also Ikebe
Ikebe1960
[100, Theorem 5])

f =
∑

λ∈σpp(H)

|ψλ〉〈ψλ, f〉+

∫
Rd
|ϕξ〉〈ϕξ, f〉 dξ (16.14)

where {ψλ}λ∈σpp(H) denote the L2-normalized eigenfunctions of H, i.e., Hψλ = λψλ. Moreover,

Hf =
∑

λ∈σpp(H)

λ|ψλ〉〈ψλ, f〉+

∫
Rd
P0(ξ)|ϕξ〉〈ϕξ, f〉 dξ . (16.15)

The above results motivate in particular the following definition of the distorted Fourier re-
striction and extension operators

(FSλf)(ξ) = 〈ϕξ, f〉 = (F±f)(ξ) , ξ ∈ Sλ (16.16)

(F ∗Sλg)(x) =

∫
Sλ

dσSλ(ξ) ϕξ(λ)(x)g(ξ) (16.17)

which are defined with respect to the canonical measure dσSλ . In particular, we have for any
Λ ⊆ σac(H),

EH(Λ) =

∫
P−1

0 (Λ)

|ϕξ〉〈ϕξ| dξ =

∫
Λ

dλ

∫
Sλ

dσSλ(ξ) |ϕξ(λ)〉〈ϕξ(λ)| =
∫

Λ

dλ F ∗SλFSλ

in a suitable weak sense and in particular, for λ ∈ σac(H),

dEH(λ)

dλ
=

∫
Sλ

dσSλ(ξ) |ϕξ(λ)〉〈ϕξ(λ)| = F ∗SλFSλ .

16.4. Eigenfunction estimates for F (−∆). The theme in the first subsection can clearly be
generalized. We are picking up the discussion from Remark

rem:dispersionsurfacesrem:dispersionsurfaces
2.1.

Suppose, we are given a continuous function a : Rd → [0,∞) with

∇a(ξ) 6= 0 for ξ ∈ a−1(Λ) ,Λ ⊆ R .
Then we can define the Fourier multiplier H0 = F∗AF , where A is multiplication by the symbol
a(ξ) and X ⊆ R is some Borel set. It is well known that its spectral projection is given by

E(X) = F∗1{a−1(X)}F .
Now consider the “cospheres” associated to a,

Sλ := {ξ ∈ Rd : a(ξ) = λ}
with the associated Lebesgue surface measure dσλ(ξ). We may then define the canonical measure
associated to a by

dΣλ(ξ) =
dσλ(ξ)

|∇a(ξ)|
,
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which is, however, not intrinsic to Sλ. (See also Strichartz
Strichartz1977
[153, p. 705].) In particular, the

elementary volume dξ in Rd satisfies

dξ = dλdΣλ(ξ) .

Thus, by the above discussion, we can write the spectral projection E as

〈ψ,E(X)ψ〉 =

∫
Rd

1{ξ∈Rd:a(ξ)∈X}(ξ)|ψ̂(ξ)|2 dξ =

∫
a−1(X)

|ψ̂(ξ)|2 dξ =

∫
X

dλ

∫
Sλ

|ψ̂(ξ)|2 dΣλ(ξ) .

(16.18) eq:specmeasuresurf

Thus, a(D) has absolutely continuous spectrum and the spectral projection-valued measure is
given by dE(λ) = F ∗SλFSλdλ, where FSλ denotes the Fourier restriction operator associated to
the measure dΣλ (see below) and we have

dE(λ)

dλ
f(x) =

∫
Sλ

e2πix·ξ f̂(ξ) dΣλ(ξ) .

In particular, for a given measurable function F : [0,∞)→ R, we have

〈ψ, F (H0)ψ〉 =

∫
R+

dλ F (λ)

∫
Sλ

|ψ̂(ξ)|2 dΣλ(ξ) .

It follows from (
eq:specmeasuresurfeq:specmeasuresurf
16.18) that the space E(Λ)H, in which H0 becomes diagonal, is given by the

direct integral

E(Λ)H ↔
∫ ⊕

Λ

L2(Sλ) dλ ,

where Sλ is endowed with the measure dΣλ. A vector f ∈ E(Λ)H is mapped in this direct

integral into an element f̃(λ) which, for every fixed λ ∈ Λ, is the restriction of f̂ on Sλ.
Let us now denote the Fourier restriction and extension operators on Sλ by FSλ and F ∗Sλ and

abbreviate FS , respectively F ∗S if λ = 0. In particular,

F ∗Sλϕ(x) =

∫
Sλ

e2πix·ξϕ(ξ) dΣλ(ξ) .

Now, if Sλ=0 has non-vanishing curvature and a is sufficiently smooth, it follows again by the
Tomas–Stein theorem that the associated spectral projection

dE(λ)

dλ
(λ = 0) = F ∗SFS

satisfies ∥∥∥∥dE(λ)

dλ
(λ = 0)

∥∥∥∥
pc→p′c

. 1 ,

where pc = 2(d+ 1)/(d+ 3). One may now ask how these estimates behave, when one varies λ.
Clearly, the bounds depend heavily on the restriction estimates for Sλ, and thus, it is inevitable
to control the behavior of the surface measure dΣλ as λ varies.

Since the spectral measure dE is absolutely continuous, we have

dE(λ) =
dE(λ)

dλ
dλ = F ∗SλFSλ dλ =

(
d̂ΣSλ∗

)
dλ ,

i.e., it suffices to control ‖d̂ΣSλ‖r for 1/r = 1+1/p′−1/p (and possibly p = pc = 2(d+1)/(d+3)).
For a given diffeomorphism ψ(λ) : S → Sλ, the Radon–Nikodým derivative is given by

τ(λ, ζ) :=
dΣSλ(ψ(λ)ζ)

dΣS(ζ)
= exp

(∫ λ

0

dµ (div j)(ψ(µ)ζ)

)
, ζ ∈ S ,
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where j(ξ) = |∇P (ξ)|−2∇P (ξ), see, e.g., Yafaev
Yafaev2010
[181, Lemma 2.1.9]. Thus, we have

d̂ΣSλ(x) =

∫
Sλ

e2πix·ξ dΣSλ(ξ) =

∫
S

e2πix·ψ(λ)ζτ(λ, ζ) dΣS(ζ) ,

and therefore

‖d̂ΣSλ‖r ≤ sup
ζ∈S

τ(λ, ζ)‖d̂ΣS(ψ̃(λ)·)‖r ,

where ψ̃(λ) : Rd → Rd is defined by

〈ψ̃(λ)x, ζ〉 = 〈x, ψ(λ)ζ〉 .

Example 16.4. (1) For P (ξ) = ξ2 (i.e., P (D) = −∆), we take S = Sd−1, and Sλ =

{ξ ∈ Rd : ξ2 = λ} =
√
λSd−1. We reparameterize λ = 1 ± ρ for ρ > 0, i.e., Sλ(ρ) =

{ξ ∈ Rd : |ξ2 − 1| = ρ}. (For the “inner” surface, we restrict to ρ < 1 of course.)
Thus, for our “new symbol” P (ξ) = ξ2 − 1 defining Sρ(λ), we have j(ξ) = ξ/(2|ξ|2) and

div j(ξ) = (d− 2)/(2|ξ|2). We will now construct a C1-diffeomorphism ψ : S → Sλ with
ψ(0)ζ = ζ and ψ(ρ)ζ =

√
1± ρζ. For t ≥ 0, we define ψ(t)ζ =

√
1± tζ. Thus,

τ(ρ, ζ) = exp

(∫ ρ

0

dµ
d− 2

2(1± µ)

)
= (1± ρ)(d−2)/2 = λ(d−2)/2

and we obtain

‖d̂ΣSλ‖r = λ(d−2)/2 · λ−d/(2r)‖d̂ΣS‖r . λd/2−1−d/2+d(1/p−1/p′)/2 = λd(1/p−1/p′)/2−1 ,

thereby recovering (
eq:specprojbd2eq:specprojbd2
16.3).

(2) For P (ξ) = |ξ|, i.e., P (D) =
√
−∆, we take S = Sd−1 and Sλ = {ξ ∈ Rd : |ξ| = λ} =

λSd−1. The situation is pretty clear since

d̂ΣSλ(x) =

∫
Sλ

e2πix·ξ dΣSλ(ξ) = λd−1

∫
S

e2πix·(λξ) dΣS(ξ) = λd−1d̂ΣS(λx) .

Thus, we immediately obtain

‖d̂ΣSλ‖r = λd−1 · λ−d/r‖d̂ΣS‖r . λd−1−d+d(1/p−1/p′) = λd(1/p−1/p′)−1 ,

thereby recovering (
eq:specprojbd1eq:specprojbd1
16.1). In principle, one could go through the above steps and ex-

plicitly construct a diffeomorphism ψ(λ) : S → Sλ and compute the Radon–Nikdým
derivative; but since the situation here is so simple, we refrain from doing so.

ss:lapschatten
16.5. An application of the observation of Frank and Sabin. We follow

FrankSabin2017
[79, Section 4].

Our goal is to prove uniform Sobolev estimates and limiting absorption principles (LAPs) for
Schrödinger operators in Schatten ideals. We begin with the former which is an extension to the
uniform Sobolev estimate by Kenig–Ruiz–Sogge

Kenigetal1987
[106, Theorem 2.3].

uniformsobolevschatten Theorem 16.5 (Uniform Sobolev estimate in Schatten spaces). Let d ≥ 2 and assume that{
q ∈ [4/3, 3/2] if d = 2 ,

q ∈ [d/2, (d+ 1)/2] if d ≥ 3 .

Then for all z ∈ C \ [0,∞), we have the estimates

‖W1(−∆− z)−1W2‖S(d−1)q/(d−q)(L2(Rd)) . |z|−1+d/(2q)‖W1‖L2q‖W2‖L2q (16.19) eq:uniformsobolevschatten

and, for γ ≥ 1/2, δ(z) := dist(z, [0,∞)), and all z ∈ C \ [0,∞),

‖W1(−∆− z)−1W2‖S2(γ+d/2)(L2(Rd)) . δ(z)
−1+

(d+1)/2
2(γ+d/2) |z|−

1
2(γ+d/2) ‖W1‖L2(γ+d/2)‖W2‖L2(γ+d/2) .

(16.20) eq:uniformsobolevschatten2
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Proof. We begin with the proof of (
eq:uniformsobolevschatteneq:uniformsobolevschatten
16.19). By scaling it suffices to consider z ∈ C \ {1} with

|z| = 1. For such z we will prove the bounds

‖W−it1 (−∆− z)itW−it2 ‖L2→L2 ≤ ‖W1‖∞‖W2‖∞ , t ∈ R (16.21) eq:uniformsobolevschattenaux1

and

‖W a−it
1 (−∆− z)−a+itW a−it

2 ‖S2 ≤Md,aeCd,at
2

‖W1‖a
L

4ad
d−1+2a

‖W2‖a
L

4ad
d−1+2a

, t ∈ R (16.22) eq:uniformsobolevschattenaux2

where a is an arbitrary parameter satisfying 1 ≤ a ≤ 3/2 if d = 2 and d/2 ≤ a ≤ (d + 1)/2 if
d ≥ 3. Obviously, these estimates imply

‖W1(−∆− z)itW2‖L2→L2 ≤ ‖W1‖∞‖W2‖∞
‖W1(−∆− z)−a+itW2‖S2 ≤Md,aeCd,at

2

‖W1‖
L

4d
d−1+2a

‖W2‖
L

4d
d−1+2a

for all t ∈ R. Thus, complex interpolation for Schatten ideals20 (cf. Simon
Simon2005
[138, Theorem 2.9])

applied to the family W1(−∆− z)−ζW2 then gives

‖W1(−∆− z)−1W2‖S2a . ‖W1‖
L

4ad
d−1+2a

‖W2‖
L

4ad
d−1+2a

.

Up to the change of variables a = q(d− 1)/(2(d− q)) this is just the claimed estimate. In fact,
if d = 2, 3 and a = 1, then (

eq:uniformsobolevschattenaux2eq:uniformsobolevschattenaux2
16.22) is already the desired bound and complex interpolation is not

necessary.
So let us prove (

eq:uniformsobolevschattenaux1eq:uniformsobolevschattenaux1
16.21) and (

eq:uniformsobolevschattenaux2eq:uniformsobolevschattenaux2
16.22). The former estimate is an immediate consequence of

Plancherel. For the latter, we will estimate |(−∆− z)−a+it(x− y)| and apply either

• the Hardy–Littlewood–Sobolev inequality if it is bounded by a constant times |x− y|−ζ
for some ζ ∈ (0, d) or

• Hölder’s inequality if it is uniformly bounded in |x− y|. (This is the case when 4d/(d−
1 + 2a) = 2, i.e., a = (d+ 1)/2. In this case the L2 norms of |W1|a and |W2|a are taken
on the right side of (

eq:uniformsobolevschattenaux2eq:uniformsobolevschattenaux2
16.22), as expected.)

To that end recall
Kenigetal1987
[106, Formulae (2.21), (2.23), (2.25)], i.e.,

(−∆− z)λ(x− y) =
2λ+1

(2π)d/2Γ(−λ)

(
z

|x− y|2

) d/2+λ
2

K d
2 +λ

(√
z |x− y|

)
and, with ν ∈ C,

|eν
2

νKν(w)| ≤ C|w|−|Re(ν)| for |w| ≤ 1, Re(w) > 0 ,

|Kν(w)| ≤ CRe(ν)e
−Re(w)|w|−1/2 for |w| ≥ 1, Re(w) > 0, Re(ν) ≥ 0 .

Setting λ = −a+ it, ν = d/2 + λ = d/2− a+ it, we have Re ν ∈ [0, 1/2] for a ∈ [d/2, (d+ 1)/2].
Thus, for w =

√
z |x− y| with z 6= 1 but |z| = 1, i.e., |w| = |x− y|, we can estimate in this case

|Kν(w)| .a,d ecd,at
2
[
|w|−|Re(ν)| ∧ |w|−1/2

(
1 ∧ Re(w)−N

)]
, Re(w) > 0, N ∈ N

.a,d ecd,at
2

|x− y|−1/2 , |w| = |x− y|, |Re(ν)| ≤ 1/2 .

Combining the previous estimates therefore gives

|(−∆− z)−a+it(x− y)| .a,d
21−a

(2π)d/2|Γ(a− it)|

(
|z|

|x− y|2

) d/2−a
2

ecd,at
2

|x− y|−1/2

.a,d ecd,at
2

|x− y|a−
d+1
2 .

20Note that although (
eq:uniformsobolevschattenaux2eq:uniformsobolevschattenaux2
16.22) deteriorates super-exponentially, it is still sub-double-exponential in t, so Stein

interpolation is indeed applicable.
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Thus, by the Hardy–Littlewood–Sobolev inequality, we obtain

‖W a−it
1 (−∆− z)−a+itW a−it

2 ‖2S2 ≤Md,aeCd,at
2

‖W1‖2a4ad
d−1+2a

‖W2‖2a4ad
d−1+2a

if a ∈
[
d− 1

2
,
d+ 1

2

]
for all t ∈ R. This is precisely (

eq:uniformsobolevschattenaux2eq:uniformsobolevschattenaux2
16.22) and concludes the proof of (

eq:uniformsobolevschatteneq:uniformsobolevschatten
16.19).

The second estimate (
eq:uniformsobolevschatten2eq:uniformsobolevschatten2
16.20) follows from complex interpolation between (

eq:uniformsobolevschatteneq:uniformsobolevschatten
16.19) for γ = 1/2

respectively q = (d+ 1)/2, i.e.,

‖W1(−∆− z)−1W2‖Sd+1 . |z|−1/(d+1)‖W1‖Ld+1‖W2‖Ld+1 (16.23)

and the trivial bound for γ =∞, i.e.,

‖W1(−∆− z)−1W2‖ ≤ δ(z)−1‖W1‖∞‖W2‖∞ . (16.24)

This concludes the proof. �

We will now use and upgrade arguments of Ionescu–Schlag
IonescuSchlag2006
[101] to obtain a LAP in Schatten

spaces for V ∈ Lq. As in their arguments, a crucial ingredient is a deep result of Koch and
Tataru

KochTataru2006
[109, Theorem 3] about absence of embedded eigenvalues for such potentials.

lapschatten Theorem 16.6 (LAP for V ∈ Lq in Schatten spaces). Let d ≥ 2 and assume that V ∈ Lq(Rd :
R) with {

q ∈ (1, 3/2] if d = 2 ,

q ∈ [d/2, (d+ 1)/2] if d ≥ 3 .

Define αq := 2 ∨ (d− 1)q/(d− q). Then

(1) V 1/2(−∆ + V − z)−1|V |1/2 ∈ Sαq (L2(Rd)) for every z ∈ C \ [0,∞).
(2) the mapping C \ [0,∞) 3 z 7→ V 1/2(−∆ + V − z)−1|V |1/2 ∈ Sαq is analytic and extends

continuously to (0,∞) (with possibly different boundary values from above and below).
(3) under the additional assumption q > d/2, there is a constant Cd,q (independent of V )

such that for |z|−1+d/(2q)‖V ‖Lq ≤ Cd,q, one has

‖V 1/2(−∆ + V − z)−1|V |1/2‖Sαq ≤ 2Cd,q|z|−1+d/(2q)‖V ‖Lq . (16.25) eq:lapschatten

If q = d/2 and d ≥ 3, the bound (
eq:lapschatteneq:lapschatten
16.25) holds provided |z| ≥ C(V ) for some constant

C(V ) only depending on V .

The proof of this theorem relies on detailed information of the Birman–Schwinger operator
V 1/2(−∆− z)−1|V |1/2.

complexbirmanschwingerschatten Lemma 16.7. Let d ≥ 2 and assume V ∈ Lq(Rd) where q satisfies the assumptions in Theorem
lapschattenlapschatten
16.6. Let I ⊆ (0,∞) be a compact interval. Then

(1) the family

A(z) := V 1/2(−∆− z)−1|V |1/2 ∈ Sαq (L2(Rd))
is analytic on the half strips S± := {z ∈ C : Re(z) ∈ I̊ , ±Im(z) > 0} .

(2) On each S±, the family A(z) is continuous up to S± and we denote by V 1/2(−∆− λ±
i0)−1|V |1/2 its extensions at λ > 0.

(3) For all z ∈ S± we have the estimate

‖A(z)‖Sαq ≤ C|z|−1+d/(2q)‖V ‖Lq , (16.26) eq:complexbirmanschwingerschatten

where C is the implicit constant in (
eq:uniformsobolevschatteneq:uniformsobolevschatten
16.19) which is, in particular, independent of I.

(4) for all z ∈ S± the operator 1 +A(z) is invertible and the map S± 3 z 7→ (1 +A(z))−1 is
an analytic family of bounded operators on L2(Rd) which is continuous on S±.
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It is precisely this lemma which relies on the absence of embedded eigenvalues
KochTataru2006
[109, Theorem

3]. The proof of Theorem
lapschattenlapschatten
16.6 is then a simple combination of the uniform Sobolev inequalities

of Theorem
uniformsobolevschattenuniformsobolevschatten
16.5 and this lemma (together with the resolvent identity).

Proof of Lemma
complexbirmanschwingerschattencomplexbirmanschwingerschatten
16.7. (1) The family C \ [0,∞) 3 z 7→ V 1/2(−∆− z)−1|V |1/2 is indeed analytic

as can be seen by invoking the resolvent formula. We obtain for any z, z0 ∈ C \ [0,∞),

V 1/2(−∆− z)−1|V |1/2 −
N∑
n=0

(z − z0)nV 1/2(−∆− z0)−n−1|V |1/2

= V 1/2(−∆− z)−1(z − z0)N+1(−∆− z0)−N−1|V |1/2 .

By the Seiler–Simon inequality and the constraint q ≥ d/2, the right side is bounded in Sαq
norm by

‖V 1/2(−∆− z)−1(−∆− z0)−N−1|V |1/2‖Sαq

≤ ‖|V |1/2(−∆− z0)−1‖2S2αq ‖(−∆− z0)−1‖N−1‖(−∆− z)−1‖ ≤ CN‖V ‖q
and hence vanishes as N →∞ if |z− z0| is small enough (such that |z− z0| � C−1 for instance).
This shows that the entire series converges in Sαq with a nonzero convergence radius and thereby
the asserted analyticity of A(z) in Sαq .

(2) Next, we notice that one can rely on the arguments and results of Ionescu–Schlag
IonescuSchlag2006
[101] as

V is an admissible potential in their sense, see also
FrankSabin2017
[79, p. 1676]. In particular,

IonescuSchlag2006
[101, Lemma 4.1

b)] yields that for each λ > 0 there exists an operator (−∆−λ± i0)−1 ∈ B(L2q(q+1) → L2q(q−1)),
i.e.,

‖(−∆− λ± i0)−1‖L2q(q+1)→L2q(q−1) ≤ CI for any λ ∈ I̊
such that z 7→ A(z) can be extended as a continuous family on the strips S± in weak operator

topology, i.e., there are sequences I̊ 3 λn → λ and εn → 0 such that

lim
n→∞

((−∆− λn ± iεn)−1f, ϕ) = ((−∆− λ± i0)−1f, ϕ) , f ∈ L2q/(q+1), ϕ ∈ S(Rd) .

We will now show that this family is indeed continuous in Sαq . To that end let z ∈ S± and
(zn) ⊆ S± such that zn → z. Since the Schatten spaces are Banach, so in particular complete,
it suffices to show that A(zn) is Cauchy in Sαq norm to show Schatten norm continuity of A(z)
up to the real axis. To that end, we decompose

√
V = W1 +W1 , |V |1/2 = W̃1 + W̃2 ,

where W1, W̃1 are bounded, compactly supported functions and

‖W2‖q/2 + ‖W̃2‖q/2 ≤ ε .

Using the uniform Sobolev inequality (
eq:uniformsobolevschatteneq:uniformsobolevschatten
16.19), we then obtain

‖A(zn)−A(zm)‖Sαq ≤ ‖W1((−∆− zn)−1 − (−∆− zm)−1)W̃1‖Sαq + Cε .

The first term is easily bounded using the classic LAP in trace ideals for potentials that are
short-range in pointwise sense, cf. Yafaev

Yafaev2010
[181, Proposition VII.1.22]. (See also

Yafaev2010
[181, Proposi-

tion VI.2.1] for Hölder continuity of the Birman–Schwinger in operator norm.) Anyway, that

proposition asserts that the family z 7→ W1(−∆ − z)−1W̃1 is analytic in S± and continuous on
S± in Sαq topology. In particular, it implies for n,m large enough

‖W1((−∆− zn)−1 − (−∆− zm)−1)W̃1‖Sαq ≤ ε

for any given ε. Thus, (A(zn))n is Cauchy in Sαq and hence z 7→ A(z) ∈ Sαq is continuous
up to the real line, i.e., the boundary of S±. Let us repeat that this implies in particular that
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V 1/2(−∆−λ± i0)−1|V |1/2 ∈ Sαq for all λ > 0 and that the asserted estimate (
eq:complexbirmanschwingerschatteneq:complexbirmanschwingerschatten
16.26) continuous

carries over to the real axis.
(3) We apply analytic Fredholm theory (cf. Yafaev

Yafaev1992
[180, Lemma I.8.1 and Theorems I.8.2-3])

to the family (of compact operators) A(z) in the strips S± and infer that z 7→ (1 + A(z))−1

is a meromorphic family of operators on S± with poles at those points z where −1 ∈ σ(A(z)).
Moreover, this family is continuous up to the real axis, except at those points λ ∈ I where
−1 ∈ σ(A(λ)).

This almost finishes the proof, as we are left to show that no such points z ∈ S± exist such
that −1 ∈ σ(A(z)). Recall that our potential V is assumed to be real-valued.

Case Im(z) 6= 0. This follows from a simple argument similar to the one at the beginning
of the proof of

IonescuSchlag2006
[101, Lemma 4.6]. We present the argument for the sake of completeness. We

sandwich 1 +A(z) from the left with |V |1/2f and from the right with V 1/2f . Then, also the the
imaginary part of

(f, V f) + (f, V (−∆− λ± i0)−1f) = 0

vanishes. Since the first summand is zero for real-valued V , so must be the second one, i.e.,

0 = Im

∫
Rd
|V̂ f |2(ξ2 − λ± iε)−1 dξ = ε

∫
Rd
|V̂ f |2

[
ε2 + (ξ2 − λ)2

]−1

Since ε > 0, the integral must vanish, so the integrand is zero almost everywhere, i.e., f ≡ 0. So
1 +A(z) is invertible for all z with Im(z) > 0 if V is real-valued.

Case z > 0. This is where the result on absence of embedded eigenvalue of Koch and Tataru
comes in. So suppose there are λ > 0, a sign ±, and f ∈ L2(Rd) such that (for (−∆−λ± i0)−1 ≡
R0(λ))

V 1/2R0(λ)|V |1/2f = −f .

We will now show f ≡ 0. So let us define g := R0(λ)|V |1/2f . Since f ∈ L2 and V ∈ Lq,
we have |V |1/2f ∈ L2q/(q+1) and by the classic uniform Sobolev inequality

Kenigetal1987
[106, Theorem 2.3]

g ∈ L2q/(q−1)(Rd). Moreover, V g ∈ L2q/(q+1) and the above equation reads

R0(λ)V g = −g .

By the integrability properties of g and V g, we can rewrite the equation as the well-defined
Schrödinger equation (−∆ + V )g = zg in the sense of distributions on Rd. Since g ∈ L2q/(q−1)

and V g ∈ L2q/(q+1), we have g ∈ H2q/(q+1)
loc ⊆ H1

loc. Once we show that g ∈ L2 (or |x|−1/2+εg ∈
L2 for some ε > 0), we can apply

KochTataru2006
[109, Theorem 3] and conclude g ≡ 0 and therefore also

f = −V 1/2R0(λ)|V |1/2 = −
√
V g ≡ 0 and therefore −1 /∈ σ(A(z)).

So we are left to show g ∈ L2. Since V g ∈ L2q/(q+1), we have V g ∈ X where X denotes
the Banach space defined in the introduction of Ionescu–Schlag

IonescuSchlag2006
[101] (that plays a similar role

than the Agmon–Hörmander spaces). By
IonescuSchlag2006
[101, Lemma 4.1 a,b)], we know R0(λ) : X → X∗

boundedly. Thus, g = −R0(λ)V g ∈ X∗. Using R0(λ)V g = −g and
IonescuSchlag2006
[101, Lemma 4.4], we obtain

‖(1 + |x|2)Mg‖X∗ <∞ , M ≥ 0 .

Writing g =< x >−2M< x >2M g and recalling X∗ ⊆ L2q/(q−1), we see g ∈ L2. This finally
concludes the proof of Lemma

complexbirmanschwingerschattencomplexbirmanschwingerschatten
16.7. �

We are now ready to prove Theorem
lapschattenlapschatten
16.6. It basically uses the resolvent identity to upgrade

the results of Lemma
complexbirmanschwingerschattencomplexbirmanschwingerschatten
16.7 on V 1/2(−∆− z)−1|V |1/2 to V 1/2(−∆ + V − z)−1|V |1/2.
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Proof of Theorem
lapschattenlapschatten
16.6. We rewrite the operator of interest as

V 1/2(−∆ + V − z)−1|V |1/2 =
1

1 + V 1/2(−∆− z)−1|V |1/2
V 1/2(−∆− z)−1|V |1/2 . (16.27) eq:lapschattenaux

By Lemma
complexbirmanschwingerschattencomplexbirmanschwingerschatten
16.7, we know that the maps

z 7→ 1

1 + V 1/2(−∆− z)−1|V |1/2
∈ B(L2(Rd)) , z 7→ V 1/2(−∆− z)−1|V |1/2 ∈ Sαq (L2(Rd))

are analytic on C \ [0,∞) and extend continuously to (0,∞) with possibly different boundary
values from above and below. This settles (1) and (2).

Thus, we are left to prove the uniform Schatten bound (
eq:lapschatteneq:lapschatten
16.25). Indeed, for q > d/2 and

z ∈ C \ [0,∞) such that C|z|−1+d/(2q)‖V ‖Lq ≤ 1/2 we obtain (by (
eq:lapschattenauxeq:lapschattenaux
16.27), the Schatten bound

for the Birman–Schwinger operator in (
eq:complexbirmanschwingerschatteneq:complexbirmanschwingerschatten
16.26), and the uniform resolvent estimate for Schatten

spaces in Theorem
uniformsobolevschattenuniformsobolevschatten
16.5)

‖V 1/2(−∆ + V − z)−1|V |1/2‖Sαq

≤
∥∥∥∥(1 + V 1/2(−∆− z)−1|V |1/2

)−1
∥∥∥∥ · ‖V 1/2(−∆− z)−1|V |1/2‖Sαq

≤

∑
n≥0

‖V 1/2(−∆− z)−1|V |1/2‖n
 · C|z|−1+d/(2q)‖V ‖Lq

≤ 2C|z|−1+d/(2q)‖V ‖Lq , for C|z|−1+d/(2q)‖V ‖q ≤ 1/2 .

Finally, let q = d/2 and d ≥ 3. Similarly as in the proof of Lemma
complexbirmanschwingerschattencomplexbirmanschwingerschatten
16.7 we decompose

V 1/2 = W1 + W2 and |V |1/2 = W̃1 + W̃2 with W1, W̃1 ∈ Cc bounded and W2, W̃2 ∈ Lq/2 with
Lq/2 norm < ε. Then, again by the uniform Sobolev estimate in Schatten spaces (Theorem

uniformsobolevschattenuniformsobolevschatten
16.5),

‖V 1/2(−∆− z)−1|V |1/2‖ ≤ ‖W1(−∆− z)−1W̃1‖+ Cε , z ∈ C \ [0,∞) .

But since W1, W̃1 also belong to Lq/2 for any q > d/2, we can apply our previous result and infer

‖W1(−∆− z)−1W̃1‖ → 0 as |z| → ∞ .

Thus, there is a C(V ) such that for all |z| ≥ C(V ) we obtain the same bound (
eq:lapschatteneq:lapschatten
16.25). This

concludes the proof of Theorem
lapschattenlapschatten
16.6. �

17. Stationary phase and microlocal analysis

We start with a classic review of the technique of stationary phase and apply it to obtain
estimates on the Fourier transform of surface measures of curved, smooth surfaces. This material
is classic and is covered exhaustively, e.g., in Stein

Stein1993
[149, Chapter VIII]. Here, we will actually

inspect the proofs a bit more closely and seek sufficient conditions on the smoothness of the
manifold in question. Afterwards we will connect the stationary phase techniques to analyze
certain distributions defined by oscillatory integrals and review the lattice counting problem.
Then, we review some facts from pseudodifferential operators and microlocal analysis on Rd
and transfer them to the setting of compact manifolds. Finally, we study the propagation of
singularities and prove Egorov’s theorem.

Concerning the first problem of obtaining bounds on d̂σ, let S ⊂ Rd be a CNϕ manifold
of codimension one with non-vanishing Gaussian curvature and surface measure dσ(ξ). Let

ψ ∈ C
Nψ
c (Rd) whose support intersects S in a compact subset of S. Denoting dµ = ψdσ, we

wish to obtain the smallest Nϕ, Nψ ∈ N such that

|(dµ)∨(x)| . < x >−(d−1)/2 .
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In Proposition
minimalregularityminimalregularity
17.5, we show that Nϕ ≥ 4 + dd/2e and Nψ ≥ 2 + dd/2e are sufficient conditions.

Herz
Herz1962
[92] showed that this regularity condition can even be relaxed to Nϕ ≥ [(d − 1)/2 + 2], if

one sets ψ = 1 on S. (If Nϕ ≥ [(d − 1)/2 + 4], he obtained the leading term in the asymptotic
expansion for (dσ)∨ as |x| → ∞.)

The decay estimate for (dµ)∨ is often proved using a stationary phase argument. Here, we
follow the presentation of Stein

Stein1993
[149, Chapter VIII] and start with a repetition on oscillatory

integrals of the first kind.

17.1. Oscillatory integrals of the first kind in one dimension. In this section we consider
integrals of the form

I(λ) :=

∫
R

eiλϕ(x)ψ(x) dx (17.1) eq:oscint1d

for λ� 1, ψ ∈ CNψc (R), ϕ ∈ CNϕ(R), and certain Nϕ, Nψ ∈ N.

localization1d Proposition 17.1. Let N ∈ N. If ψ ∈ CNc (R) and ϕ ∈ CN+1(R) with ϕ′(x) 6= 0 on suppψ,
then

|I(λ)| . λ−N .
Proof. We define the “covariant derivative” D and its adjoint by

(Df)(x) :=
1

iλϕ′(x)
f ′(x) and (tDf)(x) := − d

dx

(
f(x)

iλϕ′(x)

)
.

Since DNeiλϕ = eiλϕ, integration by parts yields∣∣∣∣∫
R

eiλϕ(x)ψ(x) dx

∣∣∣∣ =

∣∣∣∣∫
R

eiλϕ(x)(tD)Nψ(x) dx

∣∣∣∣ . λ−N
what was asserted. �

We will now consider the situation where ϕ′ vanishes somewhere on suppψ. The case where
also higher derivatives vanish can be found in

Stein1993
[149, Chapter VIII, Proposition 3]. In particular,

an asymptotic expansion is derived whose coefficients can be computed explicitly for certain
phase functions ϕ, see also

Stein1993
[149, Chapter VIII, Section 5.1].

asymptotics1d Proposition 17.2. Assume ψ ∈ C
Nψ
c (R), ϕ ∈ CNϕ(R) with Nψ ≥ 3 and Nϕ ≥ 5. Let x0 ∈

suppϕ be such that ϕ(x0) = ϕ′(x0) = 0, but ϕ′′(x0) 6= 0. Assume further that ψ is supported in
a sufficiently small neighborhood around x0. Then

|I(λ)| . λ−1/2 .

Proof. We split the proof into four steps.
Step 1. We show that∫

R
eiλx

2

x`e−x
2

dx ∼ λ−(`+1)/2
∞∑
j=0

c
(`)
j λ−j ` ∈ N0 . (17.2) eq:quadraticphase11d

The proof is contained in
Stein1993
[149, Chapter VIII, Formula (9)].

Step 2. Let η ∈ Cd(`+1)/2e+1
c (R). We will then show∣∣∣∣∫

R
eiλx

2

x`η(x) dx

∣∣∣∣ . λ−(`+1)/2 ` ∈ N0 . (17.3) eq:quadraticphase21d

To prove this, let α ∈ C∞ with

α(x) =

{
1 for |x| ≤ 1 ,

0 for |x| ≥ 2
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and decompose, for some ε > 0 to be chosen in a moment,∫
R

eiλx
2

x`η(x) dx =

∫
R

eiλx
2

x`η(x)α(x/ε) dx+

∫
R

eiλx
2

x`η(x)(1− α(x/ε)) dx

Clearly, the first summand is bounded by a constant times ε`+1. To estimate the second sum-
mand, recall the covariant derivative D from Proposition

localization1dlocalization1d
17.1 which, in this context, acts as

(Df)(x) =
1

2iλx
f ′(x) and (tDf)(x) =

i

λ

d

dx

(
f(x)

2x

)
.

Thus, we have for N > (`+ 1)/2,∣∣∣∣∫
R

eiλx
2

x`η(x)(1− α(x/ε)) dx

∣∣∣∣ =

∣∣∣∣∫
R

eiλx
2

(tD)N
[
x`η(x)(1− α(x/ε))

]
dx

∣∣∣∣
. λ−N

∫
|x|≥ε

|x|`−2N dx = const λ−Nε`+1−2N .

Choosing ε = λ−1/2 shows (
eq:quadraticphase21deq:quadraticphase21d
17.3). Similarly, one obtains for any g ∈ S(R) vanishing near the

origin, ∣∣∣∣∫
R

eiλx
2

g(x) dx

∣∣∣∣ =

∣∣∣∣∫
R

eiλx
2

(tD)Ng(x) dx

∣∣∣∣ . λ−N , N ∈ N0 . (17.4) eq:localizationquadratic1d

Step 3. We will now prove the assertion for ϕ(x) = x2 and ψ ∈ CNψc (R) with Nψ ≥ 3. Let

ψ̃ ∈ C∞c (Rd) with ψ̃(x) = 1 on suppψ, write∫
R

eiλx
2

ψ(x) dx =

∫
R

eiλx
2

e−x
2
(

ex
2

ψ(x)
)
ψ̃(x) dx ,

and Taylor expand to zeroth order

ex
2

ψ(x) = b0 + h0(x) · x

where h0(x) = o(x) belongs to CNψ−1(R). Plugging this this into the above integral gives three
terms, namely

b0

∫
R

eiλx
2

e−x
2

dx ∼ b0λ−1/2
∑
m

cmλ
−m (17.5a)∣∣∣∣∫

R
eiλx

2

xh0(x)e−x
2

ψ̃(x) dx

∣∣∣∣ . λ−1 (17.5b)∣∣∣∣∫
R

eiλx
2

b0e−x
2
(
ψ̃(x)− 1

)
dx

∣∣∣∣ . λ−N (17.5c)

where we used (
eq:quadraticphase11deq:quadraticphase11d
17.2) for the first summand, (

eq:quadraticphase21deq:quadraticphase21d
17.3) for the second one (since h0 ∈ CNψ−1(R) ⊆

C2(R)), and (
eq:localizationquadratic1deq:localizationquadratic1d
17.4) for the third one.

Step 4. We finally consider general phase functions ϕ ∈ CNϕ(R) with Nϕ ≥ 5. We expand ϕ
near x0, i.e., ϕ(x) = c(x−x0)2[1+ε(x)] for some c 6= 0 and ε ∈ CNϕ−2(R) with ε(x) = O(|x−x0|),
i.e., |ε(x)| ≤ 1 for x sufficiently close to x0. For such x, one has in particular ϕ′(x) 6= 0. Thus,
let us fix a neighborhood U around x0 so small such that these conditions hold. Since we
assumed that the support of ψ was small enough, we can in particular assume suppψ ⊆ U .
Now, let y := (x − x0)[1 + ε(x)], i.e., x 7→ y(x) is a CNϕ−2(R) diffeomorphism from U to some
neighborhood of the origin. Since ϕ(x) = cy2, we have∫

R
eiλϕ(x)ψ(x) dx =

∫
R

eicλy
2

ψ̃(y) dy
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for some ψ̃ ∈ CNψ (R) ∩ CNϕ−2(R) whose support intersects any neighborhood of the origin.
Thus, we can apply the results of the third step and conclude the proof. �

17.2. Oscillatory integrals of the first kind in higher dimensions. We will now generalize
Propositions

localization1dlocalization1d
17.1 and

asymptotics1dasymptotics1d
17.2 to Rd with d ≥ 2. We will say that phase function ϕ defined in a

neighborhood of a point x0 ∈ Rd has x0 as a critical point if

(∇ϕ)(x0) = 0 .

Similarly as before, let

I(λ) :=

∫
Rd

eiλϕ(x)ψ(x) dx .

localization Proposition 17.3. Let N ∈ N. If ψ ∈ CNc (Rd) and ϕ ∈ CN+1(Rd) has no critical points in
suppψ, then

|I(λ)| . λ−N .

Proof. For each x0 ∈ suppψ there is a ξ ∈ Sd−1 and a ball Bx0
(δ) for some δ � 1 such that

ξ · (∇ϕ)(x) ≥ c > 0 for all x ∈ Bx0
(δ) .

Decompose ψ =
∑
k ψk into a finite sum where each ψk ∈ CNc (Rd) is supported in one of these

balls. Now choose a coordinate system x1, ..., xd such that x1 lies along ξ. Then∫
Rd

eiλϕ(x)ψk(x) dx =

∫
Rd−1

dx2...dxd

(∫
R

eiλϕ(x1,...,xd)ψk(x1, ..., xd) dx1

)
and we can apply Proposition

localization1dlocalization1d
17.1 to the x1 integral to conclude the proof. �

Next, suppose ϕ has a critical point at x0 but is non-degenerate. By that we mean that the
d× d matrix

∂2ϕ

∂xj∂xk

is invertible. Using a Taylor expansion (e.g., for ϕ ∈ CNϕ(Rd) with Nϕ ≥ 3), one sees that
non-degenerate critical points are in fact isolated.

asymptotics Proposition 17.4. Suppose ϕ ∈ CNϕ(Rd) with Nϕ ≥ 4 + d(d+ 1)/2e, and x0 ∈ Rd is a non-

degenerate, critical point of ϕ where additionally ϕ(x0) = 0. If ψ ∈ C
Nψ
c (Rd) with Nψ ≥

2 + d(d+ 1)/2e is supported in a sufficiently small neighborhood of x0, then

|I(λ)| . λ−d/2 . (17.6) eq:asymptotics1

Moreover, for each j = 1, 2, 3, ...∣∣∣∂jλ [e−iλϕ(y0)I(λ)
]∣∣∣ .j λ−j−d/2 , λ ≥ 1 (17.7) eq:asymptotics2

and additionally

|I(λ)| . λ−1−d/2 , λ ≥ 1 , if ψ(y0) = 0 . (17.8) eq:asymptotics3

Proof. The proof follows closely the lines of that of Proposition
asymptotics1dasymptotics1d
17.2. First, let Q(x) denote the

unit quadratic form given by

Q(x) =

m∑
j=1

x2
j −

d∑
j=m+1

x2
j

for some fixed m ∈ {0, 1, ..., d}. The analogue of (
eq:quadraticphase11deq:quadraticphase11d
17.2) is∫

Rd
eiλQ(x)e−|x|

2

x` dx ∼ λ−d/2−|`|/2
∞∑
j=0

cj(m, `)λ
−j , (17.9) eq:quadraticphase1
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whose proof can be found in
Stein1993
[149, p. 345].

Next, the analogue of (
eq:quadraticphase21deq:quadraticphase21d
17.3) is the statement that∣∣∣∣∫

Rd
eiλQ(x)x`η(x) dx

∣∣∣∣ . λ−d/2−|`|/2 (17.10) eq:quadraticphase2

if η ∈ C
d(`+d)/2e+1
c (Rd). (As in the proof of Proposition

asymptotics1dasymptotics1d
17.2, we will apply this estimate for

` = 1 with h0(x)ψ̃ ∈ CNψ−1(Rd) in place of η, i.e., Nψ ≥ 2 + d(1 + d)/2e.) To prove it, we
consider the cones

Γj := {x ∈ Rd : |xj |2 ≥ |x′|2/(2d)}

and the smaller

Γ0
j := {x ∈ Rd : |xj |2 ≥ |x′|2/d} ,

where x′ = (x1, ..., xj−1, xj+1, ..., xd). Then, since

d⋃
j=1

Γ0
j = Rd ,

we can find functions Ω1, ...,Ωd with suppΩj ⊆ Γj which are homogeneous of degree zero and
smooth away from the origin such that

d∑
j=1

Ωj(x) = 1 for all x 6= 0 .

Thus, we can write ∫
Rd

eiλQ(x)x`η(x) dx =

d∑
j=1

∫
Rd

eiλQ(x)x`η(x)Ωj(x) dx .

Now, as in the proof of (
eq:quadraticphase21deq:quadraticphase21d
17.3), let α ∈ C∞c (Rd) be a radial function such that

α(x) =

{
1 for |x| ≤ 1 ,

0 for |x| ≥ 2 ,

and decompose∫
Rd

eiλQ(x)x`η(x)Ωj(x) dx =

∫
Rd

eiλQ(x)x`η(x)Ωj(x)α(x/ε) dx

+

∫
Rd

eiλQ(x)x`η(x)Ωj(x)(1− α(x/ε)) dx .

As before, the first summand is bounded by a constant times ε`+d. To treat the second summand,
we integrate by parts in the cone Γj , using the covariant derivative

Dje
iλQ(x) = eiλQ(x) with (Djf)(x) = ± 1

2iλxj

∂f(x)

∂xj
.

This, together with the fact that |xj | ≥ |x′|/
√

2d in Γj , and

|(tDj)
NΩj(x)| .N λ−N |x|−2N ,



134 K. MERZ

allows us to estimate∣∣∣∣∫
Rd

eiλQ(x)x`η(x)Ωj(x)(1− α(x/ε)) dx

∣∣∣∣
=

∣∣∣∣∫
Rd

eiλQ(x)(tDj)
N
[
x`η(x)Ωj(x)(1− α(x/ε))

]
dx

∣∣∣∣
. λ−N

∫
|x|≥ε,|xd|≥|x′|/

√
2d

|x|`−2N dx . λ−Nε`−2N+d

for N > (`+ d)/2. Choosing ε = λ−1/2 as before shows (
eq:quadraticphase2eq:quadraticphase2
17.10).

A similar argument shows that whenever g ∈ S(Rd) and g vanishes near the origin, then∣∣∣∣∫
Rd

eiλQ(x)g(x) dx

∣∣∣∣ . λ−N , N ∈ N0 , (17.11) eq:localizationquadratic

which is the analog of (
eq:localizationquadratic1deq:localizationquadratic1d
17.4). Combining this with (

eq:quadraticphase1eq:quadraticphase1
17.9) and (

eq:quadraticphase2eq:quadraticphase2
17.10) as in the proof of Propo-

sition
asymptotics1dasymptotics1d
17.2 yields the assertion in the special case ϕ(x) = Q(x).

To pass to the general case, one can appeal to the change of variables guaranteed by Morse’s
lemma. Since ϕ(x0) = ∇ϕ(x0) = 0, and the critical point is assumed to be non-degenerate,
there exists a CNϕ−2(Rd) diffeomorphism from a small neighborhood of x0 in x-space to a small
neighborhood of the origin in y-space under which ϕ is transformed into

m∑
j=1

y2
j −

d∑
j=m+1

y2
j ,

for some m ∈ {0, ..., d}. The index m is the same as that of the quadratic form corresponding to[
∂2ϕ

∂xj∂xk

]
(x0) .

The proof of this can found in
Stein1993
[149, p. 346-347]. Combining this with the findings in the special

case where ϕ(x) = Q(x), concludes the proof. �

17.3. Fourier transforms of measures supported on surfaces. Let ϕ ∈ C
Nϕ
c (Rn) with

Nϕ ≥ 4 + d(n+ 1)/2e, and ϕ(0) = ∇ϕ(0) = 0. Let us further assume that the determinant of
the n× n matrix (

∂2ϕ

∂ξj∂ξk

)
(ξ = 0)

never vanishes. Then ϕ describes a n-dimensional CNϕ surface S, which is given by the graph
ξn+1 = ϕ(ξ1, ..., ξn) and has non-zero Gaussian curvature at every point. Let dσ denote the

measure on S induced by the Lebesgue measure on Rn+1, and fix a function ψ ∈ CNψc (Rn+1)
with Nψ ≥ 2 + d(n+ 1)/2e whose support intersects S in a compact subset of S. Let us now
consider the finite Borel measure dµ(ξ) = ψ(ξ)dσ(ξ) on Rn+1, which is of course carried on S.
We wish to discuss the behavior of the Fourier transform

(dµ)∨(x) =

∫
S

e2πix·ξψ(ξ) dσ(ξ)

for large |x|. For convenience, we relabel d = n+ 1 in the following

minimalregularity Proposition 17.5. Suppose S is a CNϕ surface in Rd of codimension one with Nϕ ≥ 4 + dd/2e,
whose Gaussian curvature is non-zero everywhere. Let further dµ = ψdσ be as above. Then

|(dµ)∨(x)| . |x|−(d−1)/2 .
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Proof. For the purpose of the proof (in applying Proposition
asymptoticsasymptotics
17.4), we will work with n = d− 1

as in the beginning of this section and assume, by compactness, that S is given by the graph

ξn+1 = ϕ(ξ1, ..., ξd) ,

so dσ(ξ) =
√

1 + |∇ϕ(ξ)|2dξ1...dξn. Thus, we can reduce matters to showing that, if ψ̃ ∈
C
Nψ
c (Rn) with Nψ ≥ 2 + d(n+ 1)/2e is supported in a small neighborhood of the origin,∣∣∣∣∫

Rn
eiλΦ(ξ,η)ψ̃(ξ) dξ

∣∣∣∣ . λ−n/2 (17.12) eq:oscint

where λ = |x| > 0, x = λη, and η = (η1, ..., ηn+1) is a unit vector, and

Φ(ξ, η) = ξ · η =

n∑
j=1

ξjηj + ϕ(ξ1, ..., ξn)ηn+1 .

Also, we have that ϕ(0) = ∇ϕ(0) = 0, and

det
1≤j,k≤n

(
∂2ϕ

∂ξj∂ξk

)
(0) 6= 0 .

We divide the proof into three cases, depending on the position of η ∈ Sn, namely

(1) η is sufficiently close to the “north pole” ηN = (0, 0, ..., 1),
(2) η is sufficiently close to the “south pole” ηS = (0, 0, ...,−1), and
(3) η lies in the complementary set on the unit sphere.

The first and second case are analogous. We have that ∇ξΦ(ξ, ηN )|ξ=0 = 0 and want to see that
for each η sufficiently close to ηN , there is a unique ξ = ξ(η) so that

∇ξΦ(ξ, η)|ξ=ξ(η) = 0 .

The latter is a series of n equations, and one can find the desired solution by the implicit function
theorem, which requires that we check that the Jacobian determinant

det

[
∂2ϕ

∂ξj∂ξk

]
(0, ηN ) 6= 0 ,

but this is of course our assumption of the non-vanishing curvature. In particular, if the η-
neighborhood of ηN is sufficiently small, then also

det

[
∂2ϕ

∂ξj∂ξk

]
(ξ(η), η) 6= 0 ,

and we can invoke Proposition
asymptoticsasymptotics
17.4 (with x0 = ξ(η)) as long as the support of ψ̃ is small enough.

This shows that the left side of (
eq:oscinteq:oscint
A.8) is bounded by a constant times λ−n/2 and concludes the

discussion in the first two cases.
Thus, we are left with the third class of η. By definition,

∇ξΦ(ξ, η) = (η1, ..., ηn) + ηn+1∇ϕ(ξ) .

However, (η2
1 + ...+ η2

n)1/2 ≥ c > 0 for η away from the poles, and

∇ϕ(ξ) = O(ξ) as ξ → 0 .

Thus, |∇ξΦ(ξ, η)| ≥ c′ > 0, if the support of ψ̃ is a sufficiently small neighborhood of the origin.
We may now invoke Proposition

localizationlocalization
17.3 (with N = 2 + d(n+ 1)/2e) which shows that the left side

of (
eq:oscinteq:oscint
A.8) is bounded by a constant times λ−2−d(n+1)/2e ≤ λ−n/2. �
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17.4. Oscillatory integrals and wave front sets. Here, we follow Sogge
Sogge2014
[142, Section 4.1.1]

but refer also to the classic exposition of Hörmander
Hormander1990
[98, Section 7.8 and Chapter VIII].

We now apply the “nonstationary phase lemma” (Proposition
asymptoticsasymptotics
17.4) to analyze certain distri-

butions defined by oscillatory integrals. Specifically, let us consider integrals of the form

IΦ(x) =

∫
RN

eiΦ(x,θ)a(x, θ) dθ ≡ lim
ε→0

∫
RN

eiΦ(x,θ)a(x, θ)ρ(εθ) dθ (17.13) eq:defiphi

where in this definition ρ ∈ C∞c (RN ) is a bump that equals one near the origin. In fact, for the
oscillatory integrals that we consider here, we will see that the definition does not depend on the
particular choice of ρ.

Here, we assume x ∈ Ω ⊆ Rd where Ω is an open subset of Rd with d possibly different from
N . Moreover, we assume Φ ∈ C∞(Ω× RN \ {0}) is real, homogeneous of degree one, i.e.,

Φ(x, λθ) = λΦ(x, θ) , λ > 0 (17.14)

and, additionally, if d denotes the differential with respect to all variables, we assume

dΦ 6= 0 on Ω× RN \ {0} . (17.15)

As an example, one may think of Φ(x, θ) = x′ · θ + xN+1θ
2 with x = (x′, xN+1) ∈ RN+1 and

ξ ∈ RN . Finally, we shall also assume that the amplitude a(x, θ) is a standard symbol of order
m, i.e., for all multi-indices α and γ, we have

|Dγ
xD

α
θ a(x, θ)| .α,γ (1 + |θ|)m−|α| , (17.16) eq:defsymbolm

whenever x belongs to a fixed compact subset of Ω and θ ∈ RN . In this case, we shall abbreviate

a ∈ Sm ⇔ (
eq:defsymbolmeq:defsymbolm
17.16) is valid.

We will now give a sufficient condition when IΦ in (
eq:defiphieq:defiphi
17.13) is smooth.

iphismooth Theorem 17.6. If Φ is as above and a ∈ Sm, then IΦ ∈ D′(Ω) and its definition (
eq:defiphieq:defiphi
17.13) does

not depend on the choice of ρ. Additionally, if x0 ∈ Ω and

∇θΦ(x0, θ) 6= 0 for all θ ∈ RN \ {0} ,

then IΦ is smooth in a neighborhood of x0.

Before we turn th the proof, we restate the last part of the theorem. We recall

Definition 17.7. Let v ∈ D′(Ω). Then the singular support sing supp v of v is defined as the
complement of the set of points x0 ∈ Ω which have the property that v restricts as an element
of C∞(Nx0

) for some neighborhood Nx0
of x0.

Using this notion, the last part of Theorem
iphismoothiphismooth
17.6 says

sing supp IΦ ⊆ {x ∈ Ω : ∇θΦ(x, θ) = 0 for some θ ∈ RN \ {0}} . (17.17) eq:iphismooth

Proof. We first show IΦ ∈ D′(Ω). To do so, we decompose IΦ dyadically. So, let β ∈ C∞c (RN )
be a bump function with

β(θ) = 0 if |θ| /∈ [1/2, 2] , and

∞∑
j=−∞

β(θ/2j) = 1 , θ 6= 0 .

We then define for u ∈ C∞c (Ω),

IjΦ[u] =

∫
Ω

dx

∫
RN

dθ eiΦ(x,θ)β(θ/2j)a(x, θ)u(x)
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and

I0
Φ[u] =

∫
dx

∫
dθ eiΦ(x,θ)

1−
∞∑
j=1

β(θ/2j)

 a(x, θ)u(x) .

Clearly, each IjΦ is a distribution on Ω for j = 0, 1, 2, ... (which is just integration against a
smooth function on Ω, depending on j). To prove that also IΦ belongs to D′(Ω), we show, for a
given relatively compact subset K ∈ Ω and a number M ∈ N there is k(M) such that

|IjΦ[u]| .M 2−Mj sup
|α|≤k(M)

sup |Dαu| , u ∈ C∞(K) for all j = 1, 2, ... (17.18) eq:iphiDistro

Setting λ = 2j , one obtains

IjΦ[u] = λN
∫∫

eiΦ(x,θ)β(θ/2j)a(x, θ)u(x) dθ dx .

But since a ∈ Sm, we have

|Dγ
xD

α
θ (β(θ)a(x, λθ))| .α,γ,K λm , for x ∈ K .

Consequently, (
eq:iphiDistroeq:iphiDistro
17.18) follows from stationary phase (Proposition

localizationlocalization
17.3) and the assumption dΦ 6=

0. Moreover, (
eq:iphiDistroeq:iphiDistro
17.18) implies that the definition (

eq:defiphieq:defiphi
17.13) is indeed independent of ρ since we

assumed that ρ ∈ C∞c (RN ) equals one near the origin; consequently, if ρ̃ were another function
with this property, then ρ̃− ρ ∈ C∞c (RN \ {0}).

To prove (
eq:iphismootheq:iphismooth
17.17), let x0 ∈ Ω have the property that ∇θΦ(x0, θ) 6= 0 for θ ∈ RN \ {0}. We

will now show that there is a δ > 0 such that IΦ(x) is smooth on {x : |x− x0| < δ}. Since Φ is
homogeneous of degree one, we see that there is δ > 0 and c > 0 such that

|∇θΦ(x, θ)| ≥ c if |x− x0| < δ .

Therefore, if

L :=
∇θΦ(x, θ)

iλ|∇θΦ(x, θ)|
· ∇θ ,

we have that for every M and {x : |x− x0| ≤ δ} that

IjΦ(x) = λN
∫
RN

eiλΦ(x,θ)(L∗)M (β(θ)a(x, λθ)) dθ = O(λN+m−M ) .

Thus, if M > N +m and χ(θ) =
∑∞
j=1 β(θ/2j), then

IΦ(x)− I0
Φ(x) =

∫
RN

eiΦ(x,θ)(L∗)M (χ(θ)a(x, θ)) dθ

is an absolutely convergent integral. But that shows that IΦ−I0
Φ is continuous on {x : |x−x0| ≤

δ} and, by similar arguments, that this difference is indeed smooth on this set. Since I0
Φ ∈ C∞(Ω),

this shows (
eq:iphismootheq:iphismooth
17.17). �

While this theorem locates the possible locations of the singularities of IΦ, it does not yet
assert anything about the “directions of propagation” of these singularities.

Example 17.8. Let x′ = (x1, ..., xd−1) and δ0(xd) = dx′ be the induced Lebesgue measure on
the hyperplane xd = 0. Then the distributions v = ρdx′ with ρ ∈ C∞c (Rd) satisfy sing supp v ⊆
suppρ ∩ {x ∈ Rd : xd = 0}. On the other hand, since δ0(xd) is a distribution that does not
depend on the x′ variables, the “directions of the singularities of v” is just those spanned by the
unit vectors (0, ..., 0,±1). (We will make this saying precise below.) This fact is captures by the
Fourier transform, v̂(ξ), which is rapidly decreasing in any closed cone through the origin which
does not contain (0, ..., 0,±1). For a generalization of this example, see Hörmander

Hormander1990
[98, Theorem

8.1.5].
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Let us now consider more general u ∈ E ′(Rd) (compactly supported distributions). By a
Paley–Wiener–Schwartz theorem, we have u ∈ C∞c (Rd) if and only if û(ξ) is rapidly decreasing,
i.e., |û(ξ)| .N< ξ >−N eH(Im(ξ)) for any ξ ∈ Cd where H(ξ) = supx∈suppu〈x, ξ〉 is the supporting
function (see Sogge

Sogge2014
[142, §A.2] or Hörmander

Hormander1990
[98, Theorem 7.3.1]). However, the above example

indicates that it is possible that û ∈ C∞ is rapidly decreasing in some directions but not in the
others, i.e., only some high-frequency components of û may contribute to the singularities of u.
The wave front set, which we are about to define unifies these along with the singular support.
Recall that a conic neighborhood of a set Σ ⊆ Rd \{0} is an open set N containing Σ and having
the property that if ξ ∈ N , then so is λξ for every λ > 0.

Definition 17.9. For u ∈ E ′ let Γ(u) ⊆ Rd \{0} be the closed cone consisting of all η ∈ Rd \{0}
such that η has no conic neighborhood in which

|û(ξ)| .N< ξ >−N , N ∈ N

holds.

Note that if u ∈ E ′(Rd), then, by Paley–Wiener, we have u ∈ C∞c if and only if Γ(u) = ∅.
We may therefore interpret sing suppu as measuring the location of the singularities of u and
Γ(u) as measuring the the directions of the singularities of u. Keeping this in mind, we have the
following natural result.

Lemma 17.10. If ρ ∈ C∞c (Rd) and u ∈ E ′(Rd), then

Γ(ρu) ⊆ Γ(u) .

Proof. Our goal is to control

ρ̂u(ξ) =

∫
ρ̂(ξ − η)û(η) dη .

Since u ∈ E ′(Rd), we know that û is smooth and satisfies

|û(η)| . (1 + |η|)m

for some m (by integration by parts, see also
Hormander1990
[98, Theorem 7.3.1]). Next, we note that if ξ is

outside of a fixed conic neighborhood of Γ(u) and η is inside a slightly smaller conic neighborhood,
then |ξ − η| ≥ c(|ξ|+ |η|) for some c > 0. In this case, we obtain

|ρ̂(ξ − η)û(η)| .N (1 + |ξ|+ |η|)−N (1 + |η|)m .N (1 + |ξ|+ |η|)−N+m , N ∈ N .

On the other hand, if η is outside of a fixed small conic neighborhood of Γ(u), we obtain for any
ξ ∈ Rd,

|ρ̂(ξ − η)û(η)| .N (1 + |ξ − η|)−N (1 + |η|)−N .
Combining these two observations gives

|ρ̂u| .N
∫

(1 + |ξ|+ |η|)−N+m dη +

∫
(1 + |ξ − η|)−N (1 + |η|)−N dη

= O(|ξ|−N+m+d + |ξ|−N+d) ,

thereby showing Γ(ρu) ⊆ Γ(u). �

This lemma affords us a further localization.

Definition 17.11. Let Ω ⊆ Rd be open and u ∈ D′(Ω). For x ∈ Ω, let

Γx(u) :=
⋂

{ρ∈C∞c : ρ(x)6=0}

Γ(ρu) .
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One easily verifies Γ(ρju) → Γx(u) if ρj is a sequence of C∞c (Ω) functions with ρj(x) 6= 0
and supp ρj → {x}, see also

Hormander1990
[98, pp. 253-254]. The set Γx(u) ⊆ Rd \ {0} essentially captures

the directions of the singularities of u at x. This allows us to define a basic object in microlocal
analysis.

defwf Definition 17.12 (Wave front set). For u ∈ D′(Ω), the wave front set of u is defined as

WF (u) := {(x, ξ) ∈ Ω× Rd \ {0} : ξ ∈ Γx(u)} .

Since u ∈ D′(Ω) is smooth near x if and only if Γx(u) = ∅ (by Paley–Wiener), it follows
that the projection of WF (u) onto Ω is exactly sing suppu. Similarly, one shows (see also

Hormander1990
[98,

Proposition 8.1.2]) that the projection of WF (u) onto the frequency component is precisely Γ(u).
In particular, this shows that WF (u) is conic in the sense that it is invariant under multiplication
by positive scalars in the second variable. It could therefore be considered as a subset of Ω×Sd−1.

Theorem 17.13. Let Ω be a linear subspace of Rd and u = u0 dΣ where u0 ∈ C∞(Ω) and dΣ is
the Euclidean surface measure. Then

WF (u) = suppu× (Ω⊥ \ {0}) .

As an example, think of u = u0 dx
′, i.e., where dx′ = δ(xd) dx and Ω = {x ∈ Rd : xd = 0}.

Proof. See Hörmander
Hormander1990
[98, Theorem 8.1.5]. �

The following theorem naturally extends Theorem
iphismoothiphismooth
17.6 and gives a first localization ofWF (IΦ).

iphiwavefront Theorem 17.14. Let IΦ ∈ D′(Ω) be as in (
eq:defiphieq:defiphi
17.13). Then

WF (IΦ) ⊆ {(x,∇xΦ(x, θ)) : (x, θ) ∈ Ω× RN \ {0} and ∇θΦ(x, θ) = 0} . (17.19) eq:iphiwavefront

Proof. The proof is very similar to the one of Theorem
iphismoothiphismooth
17.6. Let u ∈ C∞c (Ω). To prove (

eq:iphiwavefronteq:iphiwavefront
17.19),

it therefore suffices to show that

I(ξ) :=

∫∫
eiΦ(x,θ)−ix·ξu(x)a(x, θ) dθ dx

is rapidly decreasing when ξ is outside of an open cone Γ0 containing

{∇xΦ(x, θ) : (x, θ) ∈ suppu× RN \ {0}, ∇θΦ(x, θ) = 0} .
Repeating the previous arguments, this amounts to showing that for such ξ we have∣∣∣∣∫∫ eiλΦ(x,θ)−ix·ξu(x)β(θ)a(x, λθ) dx dθ

∣∣∣∣ .M (λ+ |ξ|)−M , M ∈ N (17.20) eq:iphiwavefrontclaim1

whenever β ∈ C∞c (RN \ {0}). Let us define

Ψ(x, θ) :=
λΦ(x, θ)− x · ξ

λ+ |ξ|
.

Then we claim that

|∇x,θΨ(x, θ)| ∼ |λ∇xΦ(x, θ)− ξ|+ λ|∇θΦ(x, θ)|
λ+ |ξ|

≥ c > 0 , ξ /∈ Γ0 , (17.21) eq:iphiwavefrontclaim2

on the support of u(x)β(θ)a(x, λθ). This would show (
eq:iphiwavefrontclaim1eq:iphiwavefrontclaim1
17.20) after an application of the nonsta-

tionary phase lemma (Proposition
localizationlocalization
17.3).

To verify that claim, first note that (
eq:iphiwavefrontclaim2eq:iphiwavefrontclaim2
17.21) clearly holds, unless

c ≤ λ/|ξ| ≤ C
for certain constants 0 < c < C <∞, since dΦ 6= 0. So let us assume this in the following. Also,
if ∇θΦ = 0, then |λ∇xΦ(x, θ) − ξ| ≥ c′(|λ∇xΦ(x, θ)| + |ξ|) for some c′ > 0 if ξ is outside of Γ0.
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Thus, the claim holds when |∇θΦ(x, θ)| is small and β(θ) 6= 0. Since (
eq:iphiwavefrontclaim2eq:iphiwavefrontclaim2
17.21) also clearly holds

for such θ when |∇Φ(x, θ)| is bounded from below, the proof is complete. �

We conclude this subsection by showing that WF (u) is invariant under diffeomorphisms. Let

κ : Ω→ Ω̃

be a diffeomorphism between two open sets. Then if, say, u is a L1
loc(Ω̃) function, then it defines

a distribution in D′(Ω̃), defined via

u(Ψ) :=

∫
Ω̃

u(y)Ψ(y) dy , Ψ ∈ C∞c (Ω̃) .

Likewise, the pullback of u via κ, i.e., (κ∗u)(x) ≡ u(κ(x)), defines an element of D′(Ω). In this
case, if ψ ∈ C∞c (Ω), we get

(κ∗u)(ψ) =

∫
Ω

u(κ(x))ψ(x) dx =

∫
Ω̃

u(y)ψ(κ−1(y))

∣∣∣∣det
dκ−1

dy
(y)

∣∣∣∣ dy , ψ ∈ C∞c (Ω) .

To be consistent, we must then define the pullback of a general u ∈ D′(Ω̃) by the formula

(κ∗u)(ψ) = u(Ψ) , Ψ(y) = ψ(κ−1(y))

∣∣∣∣det
dκ−1

dy
(y)

∣∣∣∣ dy , ψ ∈ C∞c (Ω) . (17.22) eq:defpullbackdistro

Note that if κ : Rd → Rd is a linear transformation, then (
eq:defpullbackdistroeq:defpullbackdistro
17.22) immediately gives the change

of variables formula for wave front sets, i.e.,

WF (κ∗u) = κ∗WF (u) , u ∈ D′(Ω̃) , (17.23) eq:coordchangewf

whenever the pullback of a subset Λ ⊆ Ω̃×Rd \{0} is defined via the pullback map for cotangent
bundles, i.e.,

κ∗Λ := {(x, ξ) : (κ(x), (tκ′)−1ξ) ∈ Λ} . (17.24) eq:defpullbackset

The following result says that this fact remains true for general diffeomorphisms.

coordchangewf Theorem 17.15. Let κ : Ω → Ω̃ be a diffeomorphism between two open subsets of Rd. Then
(
eq:coordchangewfeq:coordchangewf
17.23) is valid.

rempullbackwfset Remark 17.16. Note that the pullback formula (
eq:defpullbackseteq:defpullbackset
17.24) is exactly the change of variables for

the cotangent bundle that one encounters in dealing with C∞ manifolds. Thus, if M is a smooth
d-dimensional manifold and u ∈ D′(M), then its wave front set WF (u) can be defined as a subset
of T ∗M \ {0} using local coordinates.

Proof of Theorem
coordchangewfcoordchangewf
17.15. �

17.5. The lattice counting problem. The goal of this section is to prove a primitive result
concerning lattice counting in Rd. Specifically, we show that

#{j ∈ Zd : |j| ≤ λ} = |B0(1)|λd +O(λd−2+ 2
d+1 ) , λ ≥ 1. (17.25) eq:latticeweyl

Using the decay of the Fourier transform of surface measures (Proposition
minimalregularityminimalregularity
17.5) which in

particular applies to the sphere, we obtain the following estimate on the Fourier transform of the
ball multiplier.

ftballmultiplier Corollary 17.17. Let χ(x) denote the characteristic function of the unit ball in Rd, i.e., χ(x) =
1B0(1)(x). Then it satisfies

|χ̂(ξ)| .< ξ >−
d+1
2 . (17.26) eq:ftballmultiplier
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Proof. First, since χ(x) is compactly supported, its Fourier transform is bounded (in fact even
real analytic), i.e., it suffices to consider |ξ| ≥ 1, say. Next, we reduce the problem to that region
where χ(x) lacks continuity, i.e., an annulus around the unit sphere. For that purpose, let

C∞(R) 3 β(r) :=

{
0 for r ≤ 1/4

1 for r ≥ 1

and smooth in [1/4, 1]. Then (1 − β(|x|))χ(x) ∈ C∞c (Rd), i.e., it has rapidly decaying Fourier
transform. Thus, it suffices to prove∫

Rd
χ(x)β(|x|)e−2πix·ξ dx =

∫ 1

1/4

dr rd−1β(r)

∫
Sd−1

e−2πirω·ξdσ(ω) = O(|ξ|−(d+1)/2)

where dσ(ω) denotes the usual Lebesgue measure on Sd−1. We already saw that the Fourier
transform of measures supported on curved surfaces is of the form (see, e.g., Stein

Stein1993
[149, p. 360]

or Sogge
Sogge2014
[142, Theorem 4.1.10]) ∑

±
e±2πir|ξ|a±(r|ξ|) ,

where

dj

dsj
a±(s) = O(s−

d−1
2 −j) , j = 0, 1, 2, ... , s > 1 .

Plugging this in and integrating by part gives∫
Rd
χ(x)β(|x|)e−2πix·ξ dx =

∑
±

1

±2πi|ξ|

∫ 1

1/4

dr rd−1β(r)a±(r|ξ|) d
dr

e±2πir|ξ| = O(|ξ|−
d+1
2 ) ,

where the main contribution in the last step comes from the boundary term of the integration
by parts. �

The other ingredient in the proof of (
eq:latticeweyleq:latticeweyl
17.25) is

Theorem 17.18 (Poisson summation). If ϕ ∈ S(Rd), then∑
j∈Zd

ϕ(j) =
∑
j∈Zd

ϕ̂(j) .

Proof. See, e.g., Grafakos
Grafakos2014C
[85, Theorem 3.2.8]. �

Proof of (
eq:latticeweyleq:latticeweyl
17.25). If χ(x) ≡ 1B0(1)(x), then we can rewrite the assertion (

eq:latticeweyleq:latticeweyl
17.25) as

N(λ) =
∑
j∈Zd

χ(j/λ) = |B0(1)|λd +O(λd−2+ 2
d+1 ) , λ ≥ 1 . (17.27) eq:latticeweylalt

To prove this, we replace χ(x) by a smoother function that can be controlled using the Fourier
transform and Poisson summation. To do so, fix β ∈ C∞c (Rd) satisfying

β ≥ 0 ,

∫
Rd
β(y) dy = 1 , and β(y) = 0 , for |y| ≥ 1/2 .

Then, for some ε > 0, depending on λ and to be specified later, we shall compare the sum in
(
eq:latticeweylalteq:latticeweylalt
17.27) to the smoothened version

Ñ(ε, λ) :=
∑
j∈Zd

χ̃λ(ε, j) , (17.28) eq:latticeweylsmooth
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where

χ̃λ(ε, x) :=
(
ε−dβ(·/ε) ∗ χ(·/λ)

)
(x) =

∫
Rd
ε−dβ ((x− y)/ε)χ(y/λ) dy .

Note that 0 ≤ χ̃λ, and, by the support properties of β, we also have χ(x/λ) = χ̃λ(ε, x) whenever
|x| /∈ [λ− ε, λ+ ε]. Therefore,

χ̃λ−ε(ε, x) ≤ χ(x/λ) ≤ χ̃λ+ε(ε, x) ,

i.e.,

Ñ(ε, λ− ε) ≤ N(λ) ≤ Ñ(ε, λ+ ε) . (17.29) eq:smoothn

Since x 7→ χ̃λ(ε, x) is Schwartz with Fourier transform given by

λdχ̂(λξ)β̂(εξ) ,

Poisson summation gives (recalling
∫
χ = |B0(1)| and

∫
β = 1)

Ñ(ε, λ) = λd
∑
j∈Zd

χ̂(λj)β̂(εj) = |B0(1)|λd + λd
∑

{j∈Zd: j 6=0}

χ̂(λj)β̂(εj) . (17.30) eq:smoothnpoisson

Since |β̂(ξ)| .N (1 + |ξ|)−N (for any N ∈ N) and |χ̂(ξ)| . (1 + |ξ|)− d+1
2 (by Corollary

ftballmultiplierftballmultiplier
17.17), the

second term in (
eq:smoothnpoissoneq:smoothnpoisson
17.30) is bounded by

λd
∑

{j∈Zd: j 6=0}

(1 + |λj|)−
d+1
2 (1 + |εj|)−N ∼ λd

∫
|ξ|≥1

(1 + |λξ|)−
d+1
2 (1 + |εξ|)−N dξ .

for any N ∈ N. But since for 0 < ε ≤ 1 and N > d one has∫
|ξ|≥1

(1 + |λξ|)−
d+1
2 (1 + |εξ|)−N dξ

.
∫

1≤|ξ|≤ε−1

(1 + |λξ|)−
d+1
2 dξ +

∫
|ξ|≥ε−1

(1 + |λξ|)−
d+1
2 (1 + |εξ|)−N dξ

. λ−
d+1
2 ε−

d−1
2 + (λ/ε)−

d+1
2 ε−d = λ−

d+1
2 ε−

d−1
2 ,

one concludes

Ñ(ε, λ) = |B0(1)|λd +O(λ
d−1
2 ε−

d−1
2 ) .

Combining this with (
eq:smoothneq:smoothn
17.29) thus yields

N(λ) = |B0(1)|λd +O(ελd−1) +O(λ
d−1
2 ε−

d−1
2 ) ,

since (λ± ε)d = λd +O(ελd−1) (coming from the |B0(1)| term). Optimizing in ε (i.e., choosing

ε = λ−
d−1
d+1 so that both remainders are of the same order), finally shows the asserted (

eq:latticeweylalteq:latticeweylalt
17.27). �

17.6. Pseudodifferential operators.

17.6.1. Basics from the calculus of pseudodifferential operators.
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17.6.2. Microlocal properties. We shall now go over various microlocal properties of ΨDOs that
we shall need later on. Among others, we shall give an equivalent definition of wave front sets
that will be useful later on.

First, it will be useful to have microlocal versions of the existence of parametrices (i.e., ap-
proximate inverses) for elliptic pseudodifferential operators (satisfying |P (x, ξ)| ≥ c|ξ|m for some
c > 0, m > 0, and sufficiently large |ξ|). Recall that a parametrix of an elliptic ΨDO of order m is
another ΨDO of order −m, say E(x,D) having the property that, modulo smoothing operators
in S−∞,

P ◦ E = E ◦ P = 1 .

Any other operator with this property differs from E only via a smoothing operator. (See, e.g.,
Sogge

Sogge2014
[142, Theorem 4.2.5].)

To state a microlocal version of this fact 21, we need to denote the characteristic set of a ΨDO
P (x,D) of order m, which is a subset of Rd × Rd \ {0} = T ∗Rd \ {0}.

Definition 17.19. Let P (x,D) be an elliptic ΨDO of order m. Then CharP , the characteristic
set of P (x,D), is that closed subset of T ∗Rd \ {0} whose complement is all points (x0, ξ0) ∈
T ∗Rd \ {0} for which there is a conic neighborhood Nx0,ξ0 ⊆ T ∗Rd \ {0} of (x0, ξ0) on which
lower bounds of the form

|P (x, ξ)| ≥ c|ξ|m

hold for large |ξ| with c > 0 possibly depending on Nx0,ξ0 .

Remark 17.20. Alternatively (as is standard in the analysis of differential operators P (x,D) =∑
|α|≤m aα(x)Dα), one could have simply defined

CharP := {(x, ξ) ∈ T ∗(Rd) \ {0} : Pm(x, ξ) = 0} ,
where Pm(x, ξ) is the principal part defined by Pm(x, ξ) =

∑
|α|=m aα(x)ξα.

The following is the microlocal version of the existence of parametrices for ΨDOs which are
elliptic only in certain directions. For a symbol a(x, ξ) and a conic neighborhood N , we write
a ∈ S−∞(N ), whenever we have for any N , α, and β that∣∣∣∣∣

(
∂

∂x

)α(
∂

∂ξ

)β
a(x, ξ)

∣∣∣∣∣ .N,α,β (1 + |ξ|)−N , if (x, ξ) ∈ N .

microlocalparametrix Theorem 17.21. Let P (x,D) be a ΨDO of order m and assume that (x0, ξ0) ∈ T ∗Rd \ {0} is
noncharacteristic for P , i.e.,

(x0, ξ0) /∈ Char(P ) .

Then there is a ΨDO E(x,D) of order −m so that

(P ◦ E)(x, ξ)− 1 , (E ◦ P )(x, ξ)− 1 ∈ S−∞(N )

for some conic neighborhood N of (x0, ξ0).

Next, let us recall that ΨDOs are in general (as opposed to differential operators) non-local.
Nonetheless, there remain certain remnants of locality in the sense that ΨDOs leave the singular
support invariant. This fact is called pseudolocality. It means that if P ∈ Sm, then

sing suppP (x,D)u ⊆ sing suppu , u ∈ H−∞ . (17.31)

This just follows from the fact that the kernel of P (x,D) is smooth away from the diagonal.
Similar considerations lead to the stronger microlocal property of P (x,D), namely

WF (P (x,D)u) ⊆WF (u) , u ∈ H−∞ . (17.32) eq:wfpdo1

21that distinguishes between directions where P (x,D) is elliptic and where not
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Later on we shall show the almost inverse inclusion

WF (u) ⊆WF (P (x,D)u) ∪ Char(P ) ,

see, e.g., Hörmander
Hormander1990
[98, Theorem 8.3.1] or Sogge

Sogge2014
[142, Corollary 4.2.11].

Remark 17.22. A final side remark is that if P is an elliptic differential operator, i.e., Pm(x, ξ) 6=
0 in T ∗(Rd) \ {0}, then we indeed have the reverse inclusion, i.e.,

WF (Pu) = WF (u) , u ∈ D′(Rd)
and in particular sing suppPu = sing suppu for u ∈ D′(Rd) (Hörmander

Hormander1990
[98, Corollary 8.3.2]).

Another fundamental object in microlocal analysis of ΨDOs is the notion of essential support.

Definition 17.23. Let P be a ΨDO. Then the essential support of P (x, ξ), denoted by ess sup P
is that closed subset of T ∗(Rd) \ {0} whose complement consists of points (x0, ξ0) having the
property that P (x, ξ) ∈ S−∞(Nx0,ξ0) for some conic neighborhood Nx0,ξ0 of (x0, ξ0) in T ∗(Rd) \
{0}.

Thus, if u ∈ H−∞(Rd), we have

WF (P (x,D)u) ⊆ ess sup P .

Our next goal is to give an alternative characterization of WF (u) whenever u ∈ H−∞. First,
we note also that, by the definition of WF (u), the statement (x0, ξ0) /∈ WF (u) means that
P (x,D)u ∈ C∞ for certain ΨDOs P (x, ξ) ∈ S0 that are non-characteristic at (x0, ξ0). Specifi-
cally, let

C∞c (Rd) 3 ρ(x) =

{
1 for |x| < 1/2

0 for |x| ≥ 1

and smooth in between, and,

C∞c (Rd) 3 χ(ξ) =

{
0 for |ξ| � 1

1 for |ξ| � 1
.

Let us furthermore set

Qδ(x,D)v(x) :=

∫
dξ e2πix·ξρ(|x− x0|/δ)ρ

((
ξ

|ξ|
− ξ0
|ξ0|

)
/δ

)
χ(ξ)v̂(ξ) .

Then (x0, ξ0) /∈ WF (u) if and only if Q∗δu ∈ C∞ when δ > 0 is small. This is due to the fact
that the Fourier transform of Q∗δu equals

ρ((
ξ

|ξ|
− ξ0
|ξ0|

)/δ)χ(ξ)[ρ((· − x0)/δ)u]∧(ξ) .

Based on this, one checks that (x0, ξ0) /∈WF (u) if and only if Q∗δ(x,D)u ∈ S(Rd) when δ > 0 is
sufficiently small.

Moreover, since P (x,D) = Q∗δ(x,D) is also not characteristic at (x0, ξ0) and we let for m ∈ R
Rm(u) := {P (x, ξ) ∈ Sm : P (x,D)u ∈ C∞} , u ∈ H−∞ (17.33)

denote the set of regularizing operators for a given u ∈ H−∞ 22, then by the above arguments,

(WF (u))c ⊆
⋃

P∈R0(u)

(CharP )c .

The main result here is, however, that we actually have equality and not only for m = 0, but
for all m ∈ R. This provides a useful equivalent definition of WF (u) (Definition

defwfdefwf
17.12).

22also including operators that may be characteristic at (x0, ξ0) /∈WF (u)
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defwfalt Theorem 17.24. Let u ∈ H−∞ and m ∈ R. Then

WF (u) =
⋂

P∈Rm(u)

CharP .

In particular, we have for a given P ∈ Sm,

WF (u) ⊆ CharP , if P (x,D)u ∈ C∞ .

The following corollary provides a nice complement of the microlocal property (
eq:wfpdo1eq:wfpdo1
17.32) of

ΨDOs.

Corollary 17.25. If P ∈ Sm and u ∈ H−∞, then

WF (u) ⊆WF (P (x,D)u) ∪ CharP . (17.34) eq:wfpdo2

In particular, if u solves P (x,D)u = 0, then WF (u) ⊆ CharP .

Proof. We prove the equivalent assertion

(WF (Pu))c ∩ (CharP )c ⊆ (WF (u))c .

If (x0, ξ0) /∈WF (Pu), then, by Theorem
defwfaltdefwfalt
17.24, there must be a Q ∈ S0 with Q(x,D)◦P (x,D)u ∈

C∞ and (x0, ξ0) /∈ CharQ. If also (x0, ξ0) /∈ CharP , then, by the Kohn–Nirenberg formula (cf.
Sogge2014
[142, Theorem 4.2.2])

(P ◦Q)(x, ξ) ∼
∑
α

1

α!
Dα
ξ P (x, ξ)

(
∂

∂x

)α
Q(x, ξ) ,

we also have (x0, ξ0) /∈ Char(Q ◦ P ) and so (x0, ξ0) /∈WF (u) also by Theorem
defwfaltdefwfalt
17.24. �

The proof of Theorem
defwfaltdefwfalt
17.24 relies on the following lemma, which is more or less equivalent to

the theorem.

defwfaltaux Lemma 17.26. Let u ∈ H−∞. Then (x0, ξ0) /∈ WF (u) if and only if there is a conic neigh-
borhood N of (x0, ξ0) in T ∗Rd \ {0} so that P (x,D)u ∈ C∞ whenever P (x,D) is a ΨDO with
symbol P (x, ξ) supported in N .

Let us first see how the Lemma implies the above theorem.

Proof of Theorem
defwfaltdefwfalt
17.24. Let (x0, ξ0) /∈WF (u). Then by the lemma if Q(x, ξ) ∈ Sm is supported

in a small conic neighborhood of (x0, ξ0) and equals |ξ|m for |ξ| ≥ 1 with |ξ/|ξ| − ξ0/|ξ0|| and
|x− x0| small then Qu ∈ C∞. Since Q(x, ξ) is non-characteristic at (x0, ξ0), we conclude

(x0, ξ0) ∈
⋃

P∈Rm(u)

(CharP )c ,

and thus ⋂
P∈Rm(R)

CharP ⊆WF (u) .

Conversely, suppose that P (x, ξ) ∈ Sm, P (x,D)u ∈ C∞, and (x0, ξ0) /∈ CharP . We then must
show that (x0, ξ0) /∈ WF (u). By Theorem

microlocalparametrixmicrolocalparametrix
17.21 we know that for such (x0, ξ0) there exists a

microlocal parametrix Q ∈ S−m such that

(Q ◦ P )(x, ξ)− 1 ∈ S−∞(Nx0,ξ0)

for some conic neighborhood Nx0,ξ0 of (x0, ξ0). But then if A ∈ Sµ and A(x, ξ) = 0 for (x, ξ) /∈
Nx0,ξ0 we have that A(x,D)(Q ◦ P − 1) is smoothing by the Kohn–Nirenberg theorem (i.e.,
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P (x,D)◦Q(x,D) is a ΨDO of order m+µ whenever P and Q are ΨDOs of order m, respectively
µ, cf.

Sogge2014
[142, Theorem 4.2.2]). Since

u = Q(Pu) + (1−Q ◦ P )u

and Q(Pu) ∈ C∞ (since Pu ∈ C∞), we conclude A(x,D)u ∈ C∞. Thus (x0, ξ0) /∈ WF (u) by
the lemma which concludes the proof. �

Proof of Lemma
defwfaltauxdefwfaltaux
17.26. �

17.6.3. Pseudodifferential operators on manifolds. Before we define ΨDOs on manifolds and dis-
cussing some of their properties, we prove a preliminary result showing how certain types of
ΨDOs on Rd transform under changes of coordinates.

We consider operators of the form

(Pϕu)(x) =

∫
e2πiϕ(x,y,ξ)P (x, y, ξ)u(y) dξ dy (17.35)

where the compound symbol P belongs to Sm, i.e., satisfies∣∣∣∣∣
(
∂

∂ξ

)α(
∂

∂x

)β1
(
∂

∂y

)β2

P (x, y, ξ)

∣∣∣∣∣ .α,β (1 + |ξ|)m−|α|

and ϕ ∈ C∞(R2d × Rd \ {0}) is real-valued, homogeneous of degree one in ξ, and satisfies

ϕ(x, x, ξ) ≡ 0 and ∇xϕ(x, y, ξ)
∣∣
x=y
≡ ξ . (17.36) eq:condphase1

In particular this means that eiϕ behaves like a plane wave near the diagonal, i.e., one has

ϕ(x, y, ξ) = 〈(x− y), ξ〉+O(|x− y|2||ξ|) .
Thus, if suppx,yP is contained in a sufficiently small neighborhood of the diagonal, we have that

|∇ξ(ϕ(x, y, ξ)− 〈x− y, ξ〉| ≤ 1

2
|x− y| on suppP . (17.37) eq:condphase2

Under these hypotheses, we have the following

pdogeneralphase Proposition 17.27. Suppose P ∈ Sm as above vanishes when x or y is outside of a fixed
compact set in Rd and that ϕ satisfies (

eq:condphase1eq:condphase1
17.36) and (

eq:condphase2eq:condphase2
17.37)23. Then Pϕ is a ΨDO of order m.

Moreover, if we set P (x, ξ) = P (x, x, ξ), then Pϕ − P (x,D) is a ΨDO of order m− 1.

Proof. See Sogge
Sogge2014
[142, Proposition 4.2.12]. �

We will now apply this result to see how ΨDOs in Rd behave under changes of variables. For
simplicity, we assume for the moment that the operators have symbols satisfying P (x, ξ) = 0 for
x outside of a compact set K. Recall that if κ : Rd → Rd is a diffeomorphism, then the pullback
of a function u ∈ C∞ via κ is κ∗u = uκ, defined by

uκ(x) = u(κ(x)) .

pdodiffeo Proposition 17.28. Let κ : Rd → Rd be a diffeomorphism and assume that P (y, ξ) ∈ Sm

vanishes when y is outside of a compact set K. Then there is a symbol Pκ(x, ξ) ∈ Sm such that,
modulo smoothing operators,

(Pκ(x,D)uκ)(x) = (P (y,D)u)(y) , y = κ(x) ,

and

Pκ(x, tκ′(x)ξ)− P (κ(x), ξ) ∈ Sm−1 . (17.38) eq:pullbackpdo

23As we have seen above, the second condition is actually a consequence of the former, but we nevertheless
include it in the statement for the sake of clarity.
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rempullbacksymbol Remark 17.29. Note that (
eq:pullbackpdoeq:pullbackpdo
17.38) says that, modulo symbols of one order less, the symbols of

ΨDOs pull back according to the pullback map

(κ(x), ξ) 7→ (x, κ′(x)tξ)

which is the change of variables formula for the cotangent bundle coming from changes of coor-
dinates in the base. This fact will momentarily tell us that the principal symbol of a ΨDO on a
manifold M is invariantly defined as a function on T ∗M \ 0.

Proof of Proposition
pdodiffeopdodiffeo
17.28. Choose ρ ∈ C∞c (Rd) satisfying ρ(y) = 1 near y = 0. Then if we set

y = κ(x), z = κ(w) and ξ =t κ′(x)η, we obtain, modulo a smoothing operator, that P (y,D) is
given by ∫

e2πi〈y−z,η〉P (y, η)ρ(z − y)u(z) dη dz =

∫
e2πiϕ(x,ω,ξ)Q(x,w, ξ)uκ(w) dξ dw ,

where

ϕ(x,w, xi) = 〈κ(x)− κ(w), (tκ′(x))−1ξ〉

and

Q(x,w, ξ) = ρ(κ(w)− κ(x))P (κ(x), (tκ′(x))−1ξ)|κ′(w)||tκ′(x)|−1 .

Since ϕ is as in (
eq:condphase1eq:condphase1
17.36) and since

Q(x,w,t κ′(x)η)
∣∣
w=x

= P (κ(x), η) ,

the claim follows from Proposition
pdogeneralphasepdogeneralphase
17.27. �

We may now define ΨDOs on a smooth compact manifold M .

Definition 17.30. A map P : C∞(M) → C∞(M) is called a ΨDO of order m if its kernel is
smooth away from the diagonal ∆ = {(x, y) ∈ M ×M : x = y}, and, whenever Ων ⊆ M is a
coordinate patch with coordinates

y = κν(x) ∈ Ω̃ν := κν(Ων) ⊆ Rd , x ∈ Ων ,

and ψν , ψ̃ν ∈ C∞c (Ω̃ν), the operators

Pνu(y) = ψ̃ν(κν(x))P ((ψνu) ◦ κν(·)) (x) , y = κν(x) ∈ κν(Ων) ⊆ Rd , u ∈ C∞(Rd) (17.39) eq:defpdomanifold

are (usual) ΨDOs of order m.

In this formula (ψνu)◦κν is understood to be the C∞(M) function which equals ψν(κν(x))u(κν(x))
when κν(x) ∈ suppψν and zero otherwise. If

⋃
ν Ων = M is a finite covering of M by coordinate

patches and {Ψν} is a smooth partition of unity subordinate to this covering, i.e.,
∑
ν Ψν ≡ 1

and supp Ψν ⊆ Ων , and if Ψ̃ν ∈ C∞(M) equals one on supp Ψν and is supported in Ων for
each ν, then, modulo an operator with smooth kernel (i.e., a smoothing operator), we have

Pv =
∑
ν Ψ̃νP (Ψνv). Consequently, we can use (

eq:defpdomanifoldeq:defpdomanifold
17.39) with ψν and ψ̃ν being the pushfor-

wards of Ψν and Ψ̃ν respectively, to write the symbol of P in local coordinates as a function
P (y, η) = Pν(y, η) ∈ Sm.

Definition 17.31. We say that P is a classical ΨDO of order m and write P ∈ Ψm
cl (M) if in

every local coordinate system, we have

P (y, η) ∼
∞∑
j=0

Pm−j(y, η) ,

where Pm−j is homogeneous of degree m− j in η.
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We shall restrict ourselves to such polyhomogeneous operators from now on since operators
such as

√
−∆g always have this form. As usual, ∆g denotes the Laplace–Beltrami operator on

M endowed with a Riemannian metric g.
If we use local coordinates (cf. Sogge

Sogge2014
[142, Section §2.3])

T ∗M 3 (x, ξ) 7→ (κν , ξ
ν) ∈ Rd × Rd \ {0} , x ∈ Ων ⊆M ,

then we can define the principal part of a classical ΨDO P by setting

p(x, ξ) = Pm(κν(x), ξν) .

By Remark
rempullbacksymbolrempullbacksymbol
17.29, this gives a well-defined function on C∞(T ∗M \ 0) which is homogeneous of

degree m. Naturally, we say that P is elliptic if its principal symbol never vanishes on T ∗M \ 0.
Moreover, we define the characteristic set of P as

CharP = {(x, ξ) ∈ T ∗M \ 0 : p(x, ξ) = 0} .

As we indicated in Remark
rempullbackwfsetrempullbackwfset
17.16, the wave front set of V ∈ H−∞(Rd) transforms according

to the change of variables formula (a.k.a. the pullback formula for the cotangent bundle)

(κ(x), ξ) 7→ (x, κ′(x)tξ)

for the cotangent bundle. That means that we can use local coordinates to define the wave front
set of a given u ∈ H−∞(M) =

⋃
sH

s(M). For such u it is also clear that, if Rm(u) denotes
those P ∈ Ψm

cl (M) for which Pu ∈ C∞(M), then, by Theorem
defwfaltdefwfalt
17.24, for each m ∈ R we have

WF (u) =
⋂

P∈Rm(u)

CharP . (17.40)

In particular, by using local coordinates, we see that the notion of essential support of P (x, ξ) ∈
Ψm
L (M) is a well-defined subset of T ∗M \ 0, and so, as in the euclidean case (Theorem

defwfaltdefwfalt
17.24) we

have

WF (P (x,D)u) ⊆ ess suppP , u ∈ H−∞(M) .

If we are working on a Riemannian manifold (M, g), then P ∈ Ψm
cl (M) is said to be self-adjoint

if

(Pu, v) = (u, Pv) :=

∫
M

uPv dVg , u, v ∈ C∞(M) .

Recall that P (x, ξ)−Re(P (x, ξ)) ∈ Sm−1 for m-th order, self-adjoint ΨDOs P (cf.
Sogge2014
[142, Corollary

4.2.8]). Thus, if P ∈ Ψm
cl (M) is self-adjoint and elliptic, then its principal symbol must be real

and either be always positive or always negative on T ∗M \ 0.
As usual, we can define Sobolev saces of order s on M by setting

‖f‖Hs(M) =
∑
ν

‖fν‖Hs(Rd) , fν(y) = (Ψνf)(x) , y = κν(x) , x ∈ supp Ψν

where, as before {Ψν} is a smooth partition of unity coming from a finite covering of M by the
coordinate patches (Ων , κν). It is straightforward to check that different partitions of unity give
comparable Sobolev norms. Thus, there is no loss in just defining the Sobolev norms via one of
them. Moreover, in view of classical ΨDO calculus, we have

P : Hs(M)→ Hs−m(M) , P ∈ Ψm
cl (M) .

If m > 0 and P ∈ Ψm
cl (M) is elliptic, then

‖u‖Hm . ‖Pu‖L2(M) + ‖u‖L2(M) .
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If m = 1 and Q ∈ Ψ1
cl(M) is self-adjoint and elliptic, then, as noted above, after possibly

multiplying by −1, we may assume its principal symbol, q(x, ξ), to be positive. Then if A ∈
Ψ

1/2
cl (M) has principal symbol

√
q(x, ξ), the previous inequality shows

‖u‖H1/2(M) . ‖Au‖2L2(M) + ‖u‖2L2(M) .

Since Q−A∗A ∈ Ψ0
cl(M), Cauchy–Schwarz gives

|(u,Qu)− (u,A∗Au)| . ‖u‖2L2(M)

and therefore, by combining the last two inequalities and noting (u,A∗Au) = ‖Au‖2,

‖u‖2H1/2(M) . (u,Qu) + ‖u‖2 = (u, (Q+ 1)u) .

Thus, Q+c is a positive self-adjoint operator, and, by Rellich–Kondrachov, has compact resolvent,
so purely discrete spectrum consisting of eigenvalues 0 < µ1 ≤ µ2 ≤ ...µj possibly accumulating
at infinity. In particular, Q has also purely discrete spectrum, possibly accumulating at +∞
with only finitely many negative eigenvalues (if any).

We are now prepared to study
√
−∆g and show that it belongs to Ψ1

cl(M) with principal
symbol

p√−∆g
(x, ξ) =

√√√√ d∑
j,k=1

gjk(x)ξjξk (17.41) eq:hwprincsymbol

whenever −
∑d
j,k=1 g

jk(x)ξjξk is the principal symbol of the Laplace–Beltrami operator ∆g on

our Riemannian manifold (M, g).
Recall that if 0 = λ2

0 < λ2
1 ≤ λ2

2 ≤ ... are the eigenvalues of −∆g with corresponding eigen-
projections Ej , then

−∆gu =
∑
j≥0

λ2
jEju , u ∈ C∞(M)

so naturally (by functional calculus), we define P =
√
−∆g by

Pu =
∑
j≥0

λjEju , u ∈ C∞

which satisfies P 2 = P ◦ P = −∆g.
Because of the zero-eigenvalue λ0, the operator −∆g is not invertible. However, by modifying

it by the rank-one projection E0, i.e., setting

Lu = E0u+
∑
j≥1

λ2
jEju , u ∈ C∞(M) ,

we see that L > 0 is invertible and that L only differs from −∆g by E0, i.e., a smoothing operator
with kernel (volg(M))−1 on M ×M .

We now show that P ∈ Ψ1
cl(M). To do so, we first construct a positive first order self-adjoint,

elliptic operator Q ∈ Ψ1
cl(M) that satisfies

L−Q2 = R (17.42)

for some smoothing operator R. Working in local coordinates, we first set

Q̃1(x, ξ) = χ(ξ)

 d∑
j,k=1

gjk(x)ξjξk

1/2

,
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where χ ∈ C∞ vanishes near 0 but equals 1 when, say, |ξ||geq1. If we let Q1(x,D) = (Q̃1(x,D)+

Q̃∗1(x,D))/2, then Q1 is self-adjoint, and in Ψ1
cl(M). Moreover (by the Kohn–Nirenberg theorem

Sogge2014
[142, Theorem 4.2.2]) (Q1)2−L ∈ Ψ1

cl(M). We can now continue inductively choosing self-adjoint

Qj ∈ Ψ2−j
cl (M) (j = 2, 3., , ,) so that L − (Q2

1 + · · · + QN )2 ∈ Ψ2−N
cl (M). As a result, if we let

Q ∈ Ψ1
cl(M) be a representative of the formal series

∑
j≥1Qj , we would get that L − Q2 is

smoothing. Since each Qj is self-adjoint, Q equals its adjoint by a smoothing error. Thus, after
possibly adding such a smoothing error operator, we may indeed assume Q to be self-adjoint.
By what we did before, Q then has discrete spectrum accumulating at +∞. Thus, after possibly
modifying it on a one- (or finite-) dimensional set, we may also assume that Q is positive and
that L−Q2 = R indeed holds, as claimed.

Summarized, we found an approximation, i.e., Q2, of L = −∆g +E0. We now claim that also√
L − Q ≡ R0 is smoothing. To see this let γ ⊆ C be a contour encircling all eigenvalues of L.

Then by Cauchy’s integral formula,

L−1/2 = − 1

2πi

∫
γ

z−1/2(L− z)−1 dz

and

Q−1 = − 1

2πi

∫
γ

z−1/2(Q2 − z)−1 dz = − 1

2πi

∫
γ

z−1/2(L−R− z)−1 dz

and therefore,

L−1/2 −Q−1 = − 1

2πi

∫
γ

z−1/2
[
(L− z)−1 − (L−R− z)−1

]
dz

=
1

2π

∫
γ

z−1/2
[
(L− z)−1R(L−R− z)−1

]
dz .

Since R is smoothing, the whole integrand is smoothing and the integral in particular converges
and defines a smoothing operator. Thus

√
L−Q =

√
L−

√
−∆g +

√
−∆g −Q = Q(Q−1 − L−1/2)L1/2 ≡ R0

is then smoothing as well, we obtain the claim. Since
√
L−

√
−∆g is a rank-one projection onto

constant functions, it follows from
√
L−Q being smoothing that

√
−∆g −Q is smoothing, too.

In summary, we have proven

fraclaplacebeltramipdo Theorem 17.32. Let ∆g be the Laplace–Beltrami operator on a compact Riemannian manifold

(M, g). Then P :=
√
−∆g ∈ Ψ1

cl(M) is a self-adjoint, first-order classical ΨDO with principal

symbol p(x, ξ) =
√∑d

j=k=1 g
jk(x)ξjξk.

Similar arguments show that the operators defined by

(1−∆g)
s/2f =

∑
j≥0

(1 + λ2
j )
s/2Ejf , f ∈ C∞(M) , s ∈ R

belong to Ψm
cl (M) with principal symbol1 +

d∑
j,k=1

gjk(x)ξjξk

s/2

.

Moreover, for each s ∈ R we have

‖u‖Hs(M) ∼ ‖(1−∆g)
s/2u‖L2(M)

which just follows from (1−∆g)
s/2 : Hs → L2 and (1−∆g)

−s/2 : L2 → Hs boundedly.
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17.7. Propagation of singularities and Egorov’s theorem. We follow Sogge
Sogge2014
[142, Section

4.3].
Throughout this section we always take

P =
√
−∆g

and are concerned with the associated Schrödinger (or in this case, the half-wave) equation{
(∂t − iP (x,D))u(t, x) = F (x, t) , 0 < t < T

u
∣∣
t=0

= f .
(17.43) eq:halfwaveeq

Clearly, its solution is given by the Duhamel formula

u(x, t) = (eitP )f(x) + i

∫ t

0

ei(t−s)PF (s, x) ds .

Before we discuss the solution operator eitP in more detail, let us go over some basic properties
of the solution directly via energy estimates. The following lemma resembles that for the usual
wave equation, cf. Sogge

Sogge2014
[142, Formula (3.1.17)].

Lemma 17.33. Let s ∈ R. If

u ∈ C1([0, T ] : Hs) ∩ C([0, T ] : Hs+1) ,

then there is a constant Cs, independent of T such that

sup
t∈[0,T ]

‖u(t, ·)‖Hs(M) ≤ Cs

(
‖u(0, ·)‖Hs(M) +

∫ T

0

‖(∂t − iP )u(t, ·)‖Hs(M) dt

)
. (17.44) eq:hwenergyest

Proof. �

These energy estimates allow one to prove an existence and uniqueness theorem for the half-
wave equation (

eq:halfwaveeqeq:halfwaveeq
17.43).

Theorem 17.34. Let s ∈ R. Then for every F ∈ L1([0, T ] : Hs) and f ∈ Hs there is a unique
solution u ∈ C([0, T ] : Hs) of the Cauchy problem (

eq:halfwaveeqeq:halfwaveeq
17.43) and it must satisfy (

eq:hwenergyesteq:hwenergyest
17.44).

Proof. �

This result gives the following

Corollary 17.35. Let F ≡ 0 and suppose u satisfies (
eq:halfwaveeqeq:halfwaveeq
17.43) with f ∈ Hs for every s ∈ R. Then

if u ∈ C1([0, T ] : Hs0(M)) for some s0 ∈ R, it follows that u ∈ C1([0, T ] : Hs(M)) for every s

and the same is true for ∂jt u for any j ∈ N. Thus, u ∈ C∞(R×M).

The main interest of this section is the propagation of singularities for the half-wave equation
(
eq:halfwaveeqeq:halfwaveeq
17.43). The analysis relies on the following

hwflow Proposition 17.36. Let Q ∈ Ψm
cl (M). Then there exists a one-parameter family of ΨDOs

t 7→ E(t) ∈ Ψm
cl (M) depending smoothly on t and satisfying

[∂t − iP,E(t)] = 0 , E(0) = Q , (17.45)

and having for each t ∈ R the principal symbol

E0(t;x, ξ) = q0(Φt(x, ξ)) (17.46)

with q0(x, ξ) being the principal symbol of Q and where Φt : T ∗M \ 0 → T ∗M \ 0 being the
Hamiltonian flow for to the Hamiltonian vector field

Hp :=
∂p

∂ξ

∂

∂x
− ∂p

∂x

∂

∂ξ
(17.47)
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associated to the principal symbol p(x, ξ) of P (cf. (
eq:hwprincsymboleq:hwprincsymbol
17.41)).

Before turning to the proof, we state some immediate consequences thereof. The first concerns
Hörmander’s theorem about propagation of singularities of solutions to (

eq:halfwaveeqeq:halfwaveeq
17.43).

propsingularitieshw Theorem 17.37. Let f ∈ H−∞(M) and let u ∈ C([0, T ] : H−∞(M)) be the solution of the
homogeneous Cauchy problem

(∂t − iP )u = 0 , u
∣∣
t=0

= f . (17.48)

Then for each fixed t ∈ R, we have Φt(WF (u(t, ·))) = WF (f), i.e.,

WF (u(t, ·)) = {(y, η) ∈ T ∗M \ 0 : Φt(y, η) = (x, ξ) for some (x, ξ) ∈WF (f)} . (17.49)

Besides the above propagation of singularities result, we have the following special case of
Egorov’s theorem as a consequence of Proposition

hwflowhwflow
17.36.

Theorem 17.38 (Egorov (special case)). If Q ∈ Ψm
cl (M) with principal symbol q0(x, ξ) then

eitPQe−itP (17.50)

is a one-parameter family of ΨDOs EQ(t) ∈ Ψm
cl (M) depending smoothly on t ∈ R. Their

principal symbol is given by q0(Φt(x, ξ)) where Φt is the Hamiltonian flow associated to the
principal symbol of P =

√
−∆g.

Proof. �

Remark 17.39. One can easily prove that the principal symbol of

Q(t;x,D) = eitPQ(x,D)e−itP

is q0(Φt(x, ξ)) if one just assumes that the evolved Q(t;x,D) is a ΨDO. The latter in turn can be
verified for small |t| using the Hadamard parametrix (cf. Sogge

Sogge2014
[142, Theorem 2.4.1]), Theorem

fraclaplacebeltramipdofraclaplacebeltramipdo
17.32 (on the fact that

√
−∆g ∈ Ψ1

cl(M)), and the proof of
Sogge2014
[142, Lemma 5.2.2]. Once the small

|t| result is established, the large result continues to hold for all t ∈ R by iteration using the
group property

ei(t1+t2)P = eit1P eit2P .

Now we verify the initial claim assuming Q(t) ≡ Q(t;x,D) is a ΨDO with principal symbol q0(t).
First note

∂tQ(t) = i[P,Q(t)]

and recall that the commutator of two ΨDOSs is of one order lower than their sum and that its
symbol is given by the Poisson bracket of their symbols (cf.

Sogge2014
[142, Corollary 4.2.3]). Thus, the

principal symbol ∂tq0(t) of ∂tQ(t) = i[P,Q(t)] is given by

∂tq0(t) = {p, q0(t)} = Hpq0(t) =
∂p

∂ξ
· ∂q0(t)

∂x
− ∂p

∂x
· ∂q0(t)

∂ξ
.

This equation has a unique solution which satisfies the initial condition

q0(0;x, ξ) = q0(x, ξ) .

Since q0(Φt(x, ξ))
∣∣
t=0

= q0(x, ξ) and (by the classical Hamiltonian equations of motion Φt(x, ξ) =

(x(t), ξ(t)) with ẋ(t) = ∂ξp and ξ̇(t) = −∂xp)

∂tq0(Φt(x, ξ)) =
∂q0(Φt(x, ξ))

∂x
· dx(t)

dt
+
∂q0(Φt(x, ξ))

∂x
· dξ(t)
dt

=
∂q0(Φt(x, ξ))

∂x
· ∂p
∂ξ
− ∂q0(Φt(x, ξ))

∂ξ
· ∂p
∂x

= Hpq0(Φt(x, ξ)) ,

we indeed conclude q0(t;x, ξ) = q0(Φt(x, ξ)).
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17.8. Friedrichs’ quantization and the sharp G̊arding inequality. A procedure that as-
signs to a function P (x, ξ) ∈ Sm (a symbol) an operator on H−∞(Rd) is called a quantization.
The Kohn–Nirenberg quantization

P (x,D)u =

∫
e2πi(x−y)·ξP (x, ξ)u(y) dy dξ =

∫
e2πix·ξP (x, ξ)û(ξ) , u ∈ S(Rd) (17.51)

is simple and natural as it closely resembles Fourier multiplier operators.
In application to quantum mechanics one would like the quantization of P (x, ξ) to be self-

adjoint if the symbol is real. However, this is not the case for the Kohn–Nirenberg quantization
but at least for the Weyl quantization

PWu(x) =

∫
e2πi(x−y)·ξP

(
x+ y

2
, ξ

)
u(y) dy dξ . (17.52)

We will not make use of this quantization but excellent references describing it and the result-
ing calculus include Martinez

Martinez2002
[119, Theorem 2.7.1] (showing how to change between different

quantizations), as well as Folland
Folland1989
[71], Muscalu–Schlag

MuscaluSchlag2013
[124], and Hörmander

Hormander1985III
[97].

Another desirable feature – that is lacking in the Kohn–Nirenberg quantization too – is that the
quantized operators are non-negative whenever their symbols are. The Friedrichs quantization
Friedrichs1970
[81] that we are about to discuss now remedies this failure. It is particularly useful in the study
of quantum ergodicity, see also Sogge

Sogge2014
[142, Chapter 6].

Example 17.40. The following example illustrates that the Kohn–Nirenberg quantization does
not preserve non-negativity. Consider, e.g., a(x, ξ) := a(x)ξ2 with 0 ≤ a(x) ∈ C∞c (R). Then
the associated operator −a(x)d2

x is in general not non-negative. For instance, if u ∈ C∞c (R) is
such that u(x) = u′′(x) for all x ∈ supp(a(x)), then (u, a(x,D)u) = −

∫
R |u(x)|2a(x) < 0. On

the other hand, the operator −dxa(x)dx is indeed non-negative and it agrees with the Kohn–
Nirenberg quantizaed a(x,D) up to an operator of lower order.

We will now consider a similar construction for general ΨDOs. Specifically, we show that if
0 ≤ a(x, ξ) ∈ Sm, then, up to an operator of one order less, a(x,D) is also nonnegative.

friedrichsquantization Theorem 17.41 (Friedrichs). Let a ∈ Sµ and assume that a(x, ξ) ≥ 0. Then one can write

a(x, ξ) = aF (x, ξ) + r(x, ξ) (17.53) eq:friedrichsquantization1

where r ∈ Sµ−1 and

(u, aF (x,D)u) ≥ 0 , u ∈ S . (17.54) eq:friedrichsquantization2

In particular, one choice for such an aF (x, ξ) is

aF (x, ξ) =

∫
ψ ((x− y)q(η), (ξ − η)/q(η)) a(y, η) dy dη (17.55) eq:friedrichsquantization3

where q(η) = (1+|η|2)1/4 and ψ(x, ξ) ∈ S(R2d) is the integral kernel of ψ(x,D) = ϕ(x,D)∗ϕ(x,D)
where ϕ ∈ C∞c (R2d) is even with ‖ϕ‖2 = 1.

Proof. See Sogge
Sogge2014
[142, Theorem 4.4.1]. �

Importantly, this result (and ‖u‖Hm . ‖Pu‖2 +‖u‖2 for any ΨDO P of order m) immediately
gives

Corollary 17.42 (Sharp G̊arding inequality). If a ∈ S2m+1 and Re(a(x, ξ)) ≥ 0, then

Re(u, a(x,D)u) & −‖u‖2Hm , u ∈ S . (17.56)
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Proof. We write

(Re a)(x,D) =
a(x,D) + a(x,D)∗

2
+

(
(Re a)(x,D)− a(x,D) + a(x,D)∗

2

)
and notice that the term in parantheses is a ΨDO of order 2m. Since ‖u‖Hm . ‖Pu‖2 + ‖u‖2
for any ΨDO P of order m, it suffices to prove the assertion for a(x,D) instead of (Re a)(x,D).
Thus, we can without loss of generality assume a(x, ξ) ≥ 0. But now we can apply Friedrichs’
theorem and are done since r ∈ S2m. �

The following generalizes Theorem
friedrichsquantizationfriedrichsquantization
17.41 to Riemannian manifolds.

friedrichsquantizationriemann Theorem 17.43. Let (M, g) be a Riemannian manifold of dimension d. Then there is a linear
map

a(x, ξ) 7→ aF (x,D)

sending each function a ∈ C∞(T ∗M \ 0) which is homogeneous of degree zero in ξ to a ΨDO
aF (x,D) such that the principal part of aF (x,D) equals a(x, ξ) and, moreover,

(h, aF (x,D)h) ≥ 0 , h ∈ L2(M) , if a(x, ξ) ≥ 0 . (17.57) eq:friedrichsquantizationriemann

Moreover, if A(x,D) ∈ ψ0
cl(M) is a classical ΨDO with principal symbol a(x, ξ), then aF (x,D)−

A(x,D) is of order −1.

Proof. After a partition of unity involving non-negative functions, we may assume that a(x, ξ)
vanishes when x is outside of a compact subset of a coordinate patch. We may also supppose
that the support of a(x, ξ) is so small that coordinates can be chosen so that |h| ≡ 1 in the
coordinate patch. If we then work in local coordinates and let ãF (x, ξ) denote the right side
of (

eq:friedrichsquantization3eq:friedrichsquantization3
17.55), we obtain a ΨDO ãF (x,D) with principal symbol a(x, ξ) which is non-negative on

L2(Rd) if a(x, ξ) ≥ 0. If 0 ≤ ϕ ∈ C∞(Rd) and ϕ(x) = 1 on the x-support of a, then the same is
true for the operator ϕãF (x,D)ϕ. If we assume as well that ϕ is supported in the image of our
coordinate patch, then the pullback, i.e., aF (x,D), of this operator to M will have the desired
properties. �

Let us finally denote by p(x, ξ) the principal symbol of
√
−∆g and define its unit cotangent

bundle

S∗M = {(x, ξ) ∈ T ∗M : p(x, ξ) = 1} .

Then to every a0 ∈ C∞(S∗M) we can naturally associate a homogeneous of degree zero function
(extension) a(x, ξ) ∈ C∞(T ∗M \ 0) given by a(x, ξ) = a0(x, ξ/p(x, ξ)). Then, using Theorem
friedrichsquantizationriemannfriedrichsquantizationriemann
17.43 we can easily obtain the following result saying that (

eq:friedrichsquantizationriemanneq:friedrichsquantizationriemann
17.57) associates to each h ∈ L2(M)

a natural distribution on S∗M .

naturaldistrocosphere Corollary 17.44. Let (M, g) be as above and fix h ∈ L2(M). Also given a0 ∈ C∞(S∗M)
as above, let a ∈ C∞(T ∗M \ 0) denote its homogeneous of degree zero extension and aF its
corresponding Friedrichs quantization in Theorem

friedrichsquantizationriemannfriedrichsquantizationriemann
17.43. Then the map

C∞(S∗M) 3 a0 7→ uh(a0) = (h, aF (x,D)h)

defines a non-negative distribution uh ∈ D′(S∗M). Consequently, there is a non-negative Borel
measure µh on S∗M such that

uh(a0) =

∫
S∗M

a0 dµh , a0 ∈ C∞(S∗M) .
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Proof. Since the map a0 7→ uh(a0) is a linear map from C∞(S∗M) to C, we would conclude
that uh ∈ D′(S∗M) if we could show that there is a constant Ch depending only on our fixed
h ∈ L2(M) such that whenever a0 ∈ C∗∞(S∗M) is real-valued, we had

|uh(a0)| ≤ Ch sup
(x,ξ)∈S∗M

|a0(x, ξ)| . (17.58) eq:naturaldistrocosphereaux

To prove this we note that

a±0 (x, ξ) := sup |a0|+ a0(x, ξ) ≥ 0 .

If a± ∈ C∞(T ∗M \ 0) denotes the homogeneous of degree zero extension of a±0 , then, by (
eq:friedrichsquantizationriemanneq:friedrichsquantizationriemann
17.57)

(h, a±F (x,D)h) ≥ 0 . (17.59) eq:naturaldistrocosphereaux2

Let 1F (x,D) denote the ΨDO of order zero given by Theorem
friedrichsquantizationriemannfriedrichsquantizationriemann
17.43 when the symbol is identically

one. Then

a±F (x,D) = sup |a0|1F (x,D)± aF (x,D) .

Therefore, by (
eq:naturaldistrocosphereaux2eq:naturaldistrocosphereaux2
17.59)

sup |a0|(h,1Fh)± uh(a0) ≥ 0 ,

and so

|uh(a0)| ≤ (h,1F (x,D)h) sup |a0| . (17.60) eq:naturaldistrocosphereaux3

Since zero-order ΨDOs are L2 bounded, we obtain by Cauchy–Schwarz

|(h,1F (x,D)h)| . ‖h‖2L2(M) ,

which means that (
eq:naturaldistrocosphereauxeq:naturaldistrocosphereaux
17.58) is indeed valid. Thus, uh ∈ D′(S∗M).

Since (
eq:friedrichsquantizationriemanneq:friedrichsquantizationriemann
17.57) implies that uh is non-negative, the last part of the assertion follows from

Schwartz’ theorem saying that non-negative distributions coincide with Borel measures. �

Note that if µh is the above Borel measure, associated to h, then, by (
eq:naturaldistrocosphereaux3eq:naturaldistrocosphereaux3
17.60) with a0 ≡ 1, we

have the following bound for its mass, namely

µh(S∗M) =

∫
S∗M

dµh ≤ ‖1F (x,D)‖L2→L2‖h‖2L2(M) .

18. Introduction to `2 decoupling and some applications
s:decoupling

In Section
s:LPs:LP
8 we already saw that the square function conjecture (Conjecture

reverselpconjreverselpconj
8.2)

‖f‖L2d/(d−1)(Rd) .ε R
ε

∥∥∥∥∥∥∥
 ∑
θ:R−1/2−slab

|fθ|2
1/2

∥∥∥∥∥∥∥
L2d/(d−1)(Rd)

(18.1) eq:reverselpconjnew

for all f ∈ Ŝ(Rd) with Fourier support in NR−1(Pd−1), together with the Kakeya conjecture
(Conjecture

kakeyakakeya
14.1 in the form (

eq:kakeyasquarefcteq:kakeyasquarefct
8.2)) implies the restriction conjecture. Although we did not discuss

this so far, an argument of Carbery
Carbery2015
[36] in fact shows that the hypothesized square function

estimate (
eq:reverselpconjneweq:reverselpconjnew
18.1) implies the Kakeya conjecture and, consequently, the restriction conjecture. 24

24Attempting to prove the whole restriction conjecture from this point seems a quite optimistic strategy as
(
eq:reverselpconjeq:reverselpconj
8.1) appears to be very powerful and in all likelihood considerably more difficult than the restriction conjecture.
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In this section, we will therefore consider a weaker “analog” of (
eq:reverselpconjneweq:reverselpconjnew
18.1) which is known as

`2-decoupling inequality

‖f‖Lp(Rd) .ε R
ε

 ∑
θ:R−1/2−slab

‖fθ‖2Lp(Rd)

1/2

, (18.2) eq:decprelim

where the order of the mixed-norms on the right sides of (
eq:reverselpconjneweq:reverselpconjnew
18.1) are now interchanged. The idea

of this inequality is similar to the usual square function inequality, namely, it tries to separate or
decouple the different frequency portions fθ (contributing to ‖f‖p) from each other. This is done
in an efficient as possible way to take the cancellations between the fθ into account. In this regard
however, (

eq:decprelimeq:decprelim
18.2) is clearly weaker than (

eq:reverselpconjneweq:reverselpconjnew
18.1) by the triangle inequality for 2 ≤ p(≤ 2d/(d− 1)),

since

‖(
∑
θ

|fθ|2)1/2‖2Lp = ‖
∑
θ

|fθ|2‖Lp/2 ≤
∑
θ

‖fθ‖2Lp .

Moreover, we emphasize that (
eq:decprelimeq:decprelim
18.2) does not act as a substitute for (

eq:reverselpconjneweq:reverselpconjnew
18.1) in the sense that it is

not clear that it would imply the Kakeya or even the restriction conjecture. However, besides the
fact that the right side of (

eq:decprelimeq:decprelim
18.2) is much easier to compute than the right side of (

eq:reverselpconjneweq:reverselpconjnew
18.1) (as only

size considerations will have to be made), decoupling theory does have a plethora of applications
in PDE, additive combinatorics and number theory, see, e.g, the discussion in Carbery

Carbery2015
[36].

To simplify the upcoming notation, we make the following

defdecouplingnorms Definition 18.1 (Decoupling norms). For 1 ≤ p ≤ ∞ and f ∈ Ŝ(Rd), we denote the p-th
decoupling norm by

‖f‖Lp,R−1 (Rd) :=

 ∑
θ:R−1/2−slab

‖fθ‖2Lp(Rd)

1/2

.

For Ω ⊆ Rd with finite Lebesgue measure, we analogously define the local decoupling norms

‖f‖Lp,R−1 (Ωd) :=

 ∑
θ:R−1/2−slab

‖fθ‖2Lp(Ωd)

1/2

.

and

‖f‖
Lp,R

−1
avg (Ωd)

:=

 ∑
θ:R−1/2−slab

‖fθ‖2Lpavg(Ωd)

1/2

.

where we recall ‖f‖Lpavg(Ω) = ‖f‖Lp(Ω,|Ω|−1dx) = |Ω|−1/p‖f‖Lp(Ω).

In this notation, (
eq:decprelimeq:decprelim
18.2) takes the following form.

l2dec Theorem 18.2 (`2-decoupling). With the above notation,

‖f‖Lp(Rd) .ε R
ε+α(p)‖f‖Lp,R−1 (Rd) (18.3) eq:l2dec

holds for all f ∈ S(Rd) with Fourier support in NR−1(Pd−1) and 2 ≤ p ≤ ∞ where

α(p) :=

{
0 if 2 ≤ p ≤ 2(d+ 1)/(d− 1)

(d− 1)/4− (d+ 1)/(2p) if p > 2(d+ 1)/(d− 1)
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This theorem was already somewhat anticipated by Wolff
Wolff2000
[175] (in `p with p not necessarily

2) and proven for the first time by Garrigós–Seeger
GarrigosSeeger2010
[82]. Bourgain

Bourgain2013
[20] obtained the result for

2 ≤ p ≤ 2d/(d− 1) and later, Bourgain and Demeter
BourgainDemeter2015
[27] (see also their study guide

BourgainDemeter2017
[28]) proved

the inequality for the total “super-critical regime” p ≥ 2(d+1)/(d−1) (i.e., exponents above the
Tomas–Stein restriction endpoint) 25. Partial results in the super-critical regime were already
obtained earlier by Demeter

Demeter2014
[58].

Albeit the exponent 2d/(d − 1) plays a major role in the proof of the restriction conjecture,
it turned out that this exponent is no longer optimal when considering the weaker decoupling
inequalities; in fact, a more appropriate endpoint is the Tomas–Stein endpoint 2(d+ 1)/(d− 1).
For larger values of p, the obtained decoupling inequalities necessarily deteriorate when R→∞.
(In fact, the polynomial behavior in R is optimal!) In applications it is often necessary to have
the full power of Theorem

l2decl2dec
18.2 and, after discussing the preliminary estimate (

eq:decprelimeq:decprelim
18.2), we will

detail how the complete range of estimates was proved later.
They key tool in the proof of Theorem

l2decl2dec
18.2 is multilinear restriction theory, which is well

developed thanks to the work of Bennett–Carbery–Tao
Bennettetal2006
[6], see also Subsection

ss:multilinearrestrss:multilinearrestr
7.7. Before we

discuss the proof in detail, let us have a brief look at some applications.

18.1. A first glimpse at applications.

18.1.1. The discrete restriction phenomenon. Recall the Tomas–Stein estimate for the paraboloid

‖f̂‖L2(Pd−1) . ‖f‖Lp(Rd) , 1 ≤ p ≤ 2(d+ 1)

d+ 3

which is, via localization theory, equivalent to

‖F‖Lp(B(R1/2)) . R
−1/4‖F̂‖L2(N

R−1/2 (Pd−1)) , p ≥ 2(d+ 1)

d− 1

for any F with F̂ ∈ C∞(NR−1/2(Pd−1)) (see Lemma
fatlocext2fatlocext2
6.3). Since F is localized to a ball of radius

R1/2 it is natural to expect that F̂ is constant on the scale R−1/2 and to approximate F̂ by a
weighted sum of indicator functions of balls of radius R−1/2, i.e.,

F̂ ∼
∑
η∈Λ

F̂ (η)1Bη(R−1/2) ,

where Λ ⊆ Pd−1 is a maximal R−1/2-separated subset (think of a lattice as a first approximation).

Since we are only really interested in the values of F̂ at the vertices of Λ, we can push this further
and consider expressions of the form ∑

η∈Λ

a(η)δη

where a(η) ∈ C are coefficients (weights) and δη is a Dirac δ mass concentrated at η. The inverse
Fourier transform of such an expression therefore becomes a trigonometric polynomial, and so
we see, heuristically at least, that the original Tomas–Stein estimate has the following discrete
analog corresponding to an exponential sum estimate.

discts Corollary 18.3 (Discrete Tomas–Stein restriction theorem). For any maximal δ1/2 := R−1/2

separated set Λ ⊆ Pd−1 and any a : Λ→ C, the extension estimate∥∥∥∥∥∥
∑
η∈Λ

a(η)e2πi〈·,η〉

∥∥∥∥∥∥
Lpavg(B(R1/2))

. δ
d
2p−

d−1
4 ‖a‖`2(Λ) , p ≥ 2(d+ 1)

d− 1
. (18.4) eq:discts

25The subcritical estimates follow from the p = 2(d+ 1)/(d−1) case together with the trivial p = 2 inequality.
The details of this argument will be discussed later.
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Remarks 18.4. (1) In fact, the discrete restriction estimate (
eq:disctseq:discts
18.4) is equivalent to the classical

Tomas–Stein estimate, see, e.g., Demeter
Demeter2020
[57, Propositions 1.29 and 1.37] for the converse of what

we proved here. Thus, the Tomas–Stein estimate measures the Lp-average of frequency-separated
exponential sums at a spatial scale which is reciprocal to the separation of the frequencies.
Observe also that (

eq:disctseq:discts
18.4) gives an improvement of δd/(2p) over the Cauchy–Schwarz inequality

(which corresponds to the situation when no oscillation/cancellation is present).
(2) In the early 90s, Vega already proved a discrete analog of the Stein–Tomas–Strichartz

restriction theorem. We recall

Theorem 18.5 (Vega
Vega1992
[172, Theorem 3]). Let N ∈ N and m ∈ Zd−1, d ≥ 2. Then(∫

|t|≤N−1

∫
Td−1

∣∣∣∣∣
d−1∑
i=1

N∑
mi=1

ameit|m|
2

eim·x

∣∣∣∣∣
p

dx dt

)1/p

≤ Cp,N

(∑
m

|am|2
)1/2

holds where

Cp,N =


CpN

d−1
2 −

d+1
p if p > 2(d+1)

d−1 ,

C if p = 2(d+1)
d−1 ,

CpN
− 1

2 + d+1
2 ( 1

2−
1
p ) if 2 ≤ p < 2(d+1)

d−1 ,

and Cp are constants independent of N .

(3) This corollary and the ensuing Theorem
disctsdiscts
18.3 also hold when Pd−1 is replaced by Sd−1,

but see also Bourgain–Demeter
BourgainDemeter2015
[27, Theorem 2.2].

Proof of Corollary
disctsdiscts
18.3. Without loss of generality, we assume that B(R1/2) is centered at the

origin. Let us now fix ψ ∈ Ĉ∞c (Rd) with supp ψ ⊆ B0(1) and |ψ̌(x)| & 1 for x ∈ B0(1). As usual,
let ψR−1/2(ξ) := Rd/2ψ(R1/2ξ). Abbreviating

F :=
∑
η∈Λ

a(η)e2πi〈·,η〉 ,

applying the localized Tomas-Stein estimate, and observing that the summands in

̂Fψ̌R−1/2(ξ) =
∑
η∈Λ

a(η)ψR−1/2(ξ − η)

have pairwise disjoint Fourier support (by the separation hypothesis on Λ and the definition of
ψ) contained in NR−1/2(Pd−1), yields∥∥∥∥∥∥

∑
η∈Λ

a(η)e2πi〈·,η〉

∥∥∥∥∥∥
Lp(B(R1/2))

. ‖Fψ̌R−1/2‖Lp(B(R1/2)) . R
−1/4‖ ̂Fψ̌R−1/2‖L2(N

R−1/2 (Pd−1))

= R−1/4

∑
η∈Λ

|a(η)|2
∫
R̂d
|ψR−1/2(ξ − η)|2 dξ

1/2

= R−1/4+d/4

∑
η∈Λ

|a(η)|2
∫
R̂d
|ψ(ξ − η)|2 dξ

1/2

. R(d−1)/4‖a‖`2(Λ) = δ−(d−1)/4‖a‖`2(Λ) .

(The scaling ξ 7→ R−1/2 from the second to the third line yields a factor of R−d/2. Moreover, the
support of ψR−1/2 , i.e., roughly NR−1/2(Pd−1), is transformed into N1(Pd−1).) The claim follows
now from the definition of the Lpavg norm which yields the “missing” δd/(2p) factor. �
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Now, Bourgain and Demeter made the fundamental observation that, as soon as one averages
in physical space over much larger balls, one obtains improvements over the classical Tomas–
Stein inequality because of additional cancellations (through oscillations). These cancellations
are a consequence of the `2-decoupling as we will see now.

discts2 Theorem 18.6 (Discrete restriction phenomenon). Let Λ ⊆ Pd−1 be a maximal δ1/2-separated
subset, a : Λ→ C, and R ≥ δ−1. Then, for all ε > 0, we have the extension estimate∥∥∥∥∥∥

∑
η∈Λ

a(η)e2πi〈·,η〉

∥∥∥∥∥∥
Lpavg(B(R))

.ε δ
d
2p−(d−1)/4+1/(2p)−ε‖a‖`2(Λ) , p ≥ 2(d+ 1)

d− 1
. (18.5) eq:discts2

Remark 18.7. Observe two things.

(1) R ≥ δ−1 is now rather variable. But more importantly,
(2) we are now averaging over balls with the much larger radius R (instead of R1/2). This

averaging over larger balls is precisely the source of the δ1/2p-improvement over the
classical Tomas–Stein inequality.

Proof. Let us prepare the proof with some preliminaries. Fix an R-ball BR = Bx0
(R) and

let ψ ∈ Ĉ∞c (Rd) be as in the previous proof with Fourier support contained in B0(1) and
ψR(ξ) = Rdψ(Rξ). Let furthermore g : Pd−1 → R be a nice function and observe that (gdσ)∗ψR
has Fourier support contained in the R−1-neighborhood NR−1(Pd−1) ⊆ Nδ(Pd−1). Clearly, the
left side of the classical, localized, Thomas–Stein estimate can be bounded by∫

BR

|(gdσ)∨(x)|p dx .
∫
BR

|((gdσ) ∗ ψR)∨(x)|p dx =

∫
BR

|(gdσ)∨ · ψ̌R(x)|p dx .

Now, applying the `2-decoupling inequality (
eq:l2deceq:l2dec
18.3) to f := ((gdσ) ∗ ψR)∨, we obtain (with the

previous estimate)(
1

|BR|

∫
BR

|(gdσ)∨(x)|p dx
)1/p

.ε R
ε−d/p · δ

d+1
2p −(d−1)/4

 ∑
θ:δ1/2−cap

‖(gθdσ)∨ · ψ̌R‖2p

1/2

(18.6) eq:auxdiscrestr

where gθ := g1θ is the restriction of g onto the cap θ∩Pd−1. (Recall that for p ≥ 2(d+1)/(d−1),
we had α(p) = (d − 1)/4 − (d + 1)/(2p) in the decoupling inequality, which is just the negative
exponent of δ on the right side of this formula.)

For a given ε > 0 and η ∈ Pd−1, let P (η, ε) := Pd−1 ∩ Bη(ε) be an arbitrary ε-cap, centered
at η of the paraboloid and consider the function

gε :=
∑
η∈Λ

a(η)
1

σ(P (η, ε))
1P (η,ε) ,

where we recall that σ(P (η, ε)) was the euclidean surface measure of the set P (η, ε) on Pd−1.
Now, observe first that (gεdσ)∨(x) converges pointwise to the function on the left side of our
assertion (e.g., by Lebesgue’s differentiation theorem), i.e.,

lim
ε→0

(gεdσ)∨(x) = lim
ε→0

∑
η∈Λ

a(η)
1

σ(P (η, ε))

∫
P (η,ε)

e2πix·ξ dσ(ξ) =
∑
η∈Λ

a(η)e2πix·η .

Thus, by Fatou’s lemma, i.e.,

‖
∑
η∈Λ

a(η)e2πi〈·,η〉‖p ≤ lim inf
ε→0

‖(gεdσ)∨‖p
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it suffices to estimate further the right side of (
eq:auxdiscrestreq:auxdiscrestr
18.6) with gθ replaced by gεθ. First, for ε� δ1/2

(think of ε = R−1), we have the pointwise estimate

|(gεθdσ)∨(x)| =

∣∣∣∣∣∣
∑
η∈Λ

a(η)
1

σ(P (η, ε))

∫
P (η,ε)∩θ

e2πix·ξ dσ(ξ)

∣∣∣∣∣∣ ≤
∑

η∈Λ ,P (η,ε)∩θ 6=∅

|a(η)|

.

 ∑
η∈Λ ,P (η,ε)∩θ 6=∅

|a(η)|2
1/2

where we used Cauchy–Schwarz together with the fact that

#{η ∈ Λ : P (η, ε) ∩ θ 6= ∅} = O(1) ,

because Λ is a maximal δ1/2-separated set, θ is an δ1/2-cap, and P (η, ε) can intersect with at
most one such slab as ε � δ. Plugging this estimate in the Lp norm of the right side of (

eq:auxdiscrestreq:auxdiscrestr
18.6)

yields ∑
θ:δ1/2−cap

‖(gεθdσ)∨ψ̌R‖2Lp(Rd)

1/2

.

 ∑
θ:δ1/2−cap

∑
η∈Λ, P (η,ε)∩θ 6=∅

|a(η)|2‖ψ̌R‖2Lp(Rd)

1/2

. Rd/p

 ∑
θ:δ1/2−cap

∑
η∈Λ, P (η,ε)∩θ 6=∅

|a(η)|2
1/2

. Rd/p‖a‖`2(Λ)

where we used in the final inequality that the cardinality of the θ-sum is of order O(1) for fixed
η because ε� δ1/2 and θ is a δ1/2-cap. This concludes the proof of the theorem. �

sss:strichartztorus
18.1.2. Strichartz estimates for the Schrödinger equation on the torus. We follow the notes of
Hickman and Vitturi

HickmanVitturi
[94, p. 22, Lecture 2, Section 2.2].

As we have already seen in Subsection
ss:strichartzss:strichartz
12.1, restriction estimates immediately imply estimates

for solutions of dispersive PDE posed in Rd. It is natural to generalize these ideas to PDEs
posed on finite domains with certain boundary conditions. Here, we focus on the unit cube
with periodic boundary conditions, more precisely on the Schrödinger equation on the torus
Td = Rd \Zd. In the early 90’s Bourgain

Bourgain1993F
[16] (but see also

Bourgain2007
[19] for irrational tori and a “survey”)

found that the solution of the Schrödinger equation includes waves which travel with different
directions around the torus. As one may imagine, it is very challenging to estimate how these
different waves interfere with each other and to find estimates on them. At that time Bourgain
could prove sharp estimates only in d = 2, 3. Surprisingly, the analysis required many tools from
number theory. For instance, it uses unique factorization of integers in order to estimate the
number of solutions of some diophantine equations. For higher dimensions, the problem seemed
out of reach and it was supposed that the solution required both Fourier analysis and number
theory. Bourgain and Demeter found that decoupling inequalities were the crucial tool to obtain
dispersive estimates in higher dimensions.

Clearly, dispersive estimates for the solution

u(x, t) := e−i(2π)−1t∆ϕ(x) :=
∑
ξ∈Zd

ϕ̂(ξ)e2πi(x·ξ+tξ2)

of the Schrödinger equation on Td × R are obtained using the previously discussed discrete
restriction estimates. Now, due to the above discussion, i.e., the fact that a general solution
consists of many waves traveling in different directions, we can certainly not expect the original
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Strichartz estimates for the equation on Rd to hold. In fact, Bourgain
Bourgain1993F
[16] proved the failure of

Strichartz estimates on T1. (Observe that the exponent q = 6 really is the Strichartz exponent
in d = 1, see Theorem

strichartzfreeschroedingerstrichartzfreeschroedinger
12.1.)

Theorem 18.8 (Failure of Strichartz on T1 × [0, 1]). For every N ∈ N there exists a smooth
function ϕN on T with supp ϕ̂N ⊆ [−N,N ] such that

‖e−i(2π)−1t∆ϕN‖L6(T×[0,1]) & (logN)1/6‖ϕN‖L2(T) . (18.7) eq:failurestrichartz

In particular, we could take ϕ̂N (ξ) = 1{0,1,...,N}(ξ) (i.e., ϕN is a trigonometric polynomial) so
that we are in the situation of discrete restriction phenomena, i.e.,

e−i(2π)−1t∆ϕN (x) =

N∑
n=0

e2πi(xn+tn2) .

This solution is known as a Weyl sum (or Gauss sum, see also Bourgain’s counterexample
Bourgain2016
[21]

for the a.e. convergence of solutions to the Schrödinger equation) and it is of considerable
interest in number theory. In fact, the lower bound in (

eq:failurestrichartzeq:failurestrichartz
18.7) can be obtained by appealing to

number-theoretic techniques (such as the Hardy–Littlewood–Ramanujan circle method).
Now, the question is whether one can nevertheless establish Strichartz estimates with a sharp

dependence on the size of the frequency support of the initial data. For instance, in view of the
above counterexample, we may pose the

Question: “Can one prove an L2
x(T) → L6

x,t(T × [0, 1]) Strichartz estimate for initial data
ϕN with supp ϕN ⊆ [−N,N ] but with a sub-polynomial dependence on N?”

Fortunately, with the help of the discrete restriction estimates proved above, we have

periodicstrichartz Theorem 18.9 (Strichartz on Td
BourgainDemeter2015
[27]). Let ϕ ∈ L2(Td) with supp ϕ̂ ⊆ [−N,N ]d. Then for any

time interval I ⊆ R with |I| & 1, we have for any ε > 0,

‖e−i(2π)−1t∆ϕ‖Lp(Td×I) .ε N
d/2−(d+2)/p+ε|I|1/p‖ϕ‖L2(Td) , p ≥ 2(d+ 2)

d
. (18.8)

Up to the subpolynomial loss, Theorem
periodicstrichartzperiodicstrichartz
18.9 is sharp. As we have outlined in the beginning

of this subsubsection, the earlier partial results in higher dimensions were crucially based on
number theoretic arguments which will not be able in the following argument. In particular, it
seems that the current techniques are more robust; in particular, one can apply the following
argument also to the analogous problem posed on “irrational tori”, see Bourgain–Demeter

BourgainDemeter2015
[27].

Proof of Theorem
periodicstrichartzperiodicstrichartz
18.9. To ease the notation and make the connection with Theorem

discts2discts2
18.6 clear,

we set n = d + 1. For ξ′ ∈ Zn−1 with |ξ′|∞ ≤ N , let η′ := N−1ξ′ and ηn := |η′|2 so that the
collection Λ of all η = (η′, ηn) becomes a (maximal) N−1-separated subset of Pn−1. Defining
a(η) := ϕ̂(Nη′) and scaling (x 7→ x/N and t 7→ t/N2), we obtain(∫

Tn−1×I
|e−i(2π)−1t∆ϕ(x)|p dx dt

)1/p

= N−(n+1)/p

∫
D

∣∣∣∣∣∣
∑
η∈Λ

a(η)e2πiy·η

∣∣∣∣∣∣
p

dy

1/p

(18.9) eq:periodicstrichartzaux

where the domain of integration D is given by

D := {y ∈ Rn : |yj | ≤ N/2 for 1 ≤ j ≤ n− 1 and yn ∈ N2I} ,

and we identified T with [−1/2, 1/2] for convenience.
We will now estimate the right side of (

eq:periodicstrichartzauxeq:periodicstrichartzaux
18.9) from above by a localized Lp norm on some ball of

radius ∼ N2 to apply (
eq:discts2eq:discts2
18.5). Since η′ ∈ N−1Zn−1 for each η ∈ Λ, the above integrand is periodic

with period N in the variables y′. Now, let R := N2|I| & N2 =: δ−1 and BR := BN2|I|
2 en

(R).
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Note that BR can be covered by O((|I|N)n−1) sets of the form D + N(k′, 0) where k′ ∈ Zn−1.
These observations allow us to estimate (

eq:periodicstrichartzauxeq:periodicstrichartzaux
18.9) from above by

|I|1/p
 1

|BR|

∫
BR

∣∣∣∣∣∣
∑
η∈Λ

a(η)e2πiy·η

∣∣∣∣∣∣
p

dy

1/p

.ε |I|1/pN (n−1)/2−(n+1)/p+ε‖a‖`2(Λ)

where we used the discrete restriction phenomenon (
eq:discts2eq:discts2
18.5) with δ = N−2. Since ‖a‖`2(Λ) =

‖ϕ̂‖L2(Zn−1) by the definition of a(η) and Plancherel, the theorem is proved. �

18.2. Some preliminary observations.

Definition 18.10. Let p ∈ [1,∞] and U = {U1, ..., Un} be a finite collection of non-empty
subsets of Rd for some n ≥ 1. (We permit repetitions, so U is in fact U may rather be a multi-set
than a set.) We define the decoupling constant Decp(U) to be the smallest constant for which
there is an inequality

‖
∑
j

fj‖Lp(Rd) ≤ Decp(U)(
∑
j

‖fj‖2Lp(Rd))
1/2 (18.10) eq:defdecconstant

whenever f ∈ S(Rd) has Fourier support in Uj .

Remarks 18.11. (1) We have the trivial bounds

1 ≤ Decp(U) ≤ n1/2 . (18.11) eq:trivialdecbounds

The upper bound follows from applying the triangle inequality and then Cauchy–Schwarz whereas
the lower bound comes from taking just one fj to be non-zero. Clearly, it would be very desirable
to show Decp(U) = Op,d(1), uniformly in n. However, the best, one can do at the moment is
(because all so-far known proofs use an induction of scales argument) a subpolynomial loss, i.e.,
for any ε > 0, one has Decp(U) .ε nε.

(2) In Proposition
reverselpl2l4reverselpl2l4
8.4 we observed that the reverse square function estimate holds in L2 and

L4 when we assume that the Uj (respectively the set-sums Ui + Uj) overlap only finitely. Thus,

by the triangle inequality, we obtain in these cases that Dec2(U) ≤ A
1/2
2 and Dec4(U) ≤ A

1/4
4

where A2, A4 are defined in Proposition
reverselpl2l4reverselpl2l4
8.4.

(3) In the literature, the Uj are often assumed to be pairwise disjoint. However, here it is
convenient to allow them to be finitely overlapping to circumvent some minor technicalities.

Proposition 18.12 (Elementary properties of decoupling constants). Let 1 ≤ p ≤ ∞ and d ≥ 1.
Then, the decoupling constant has the following properties.

(1) (Monotonicity) We have Decp(U) ≤ Decp(U ′) whenever U ′ = {U ′j}nj=1 is a collection
whose elements contain Uj, i.e., Uj ⊆ U ′j for all j = 1, ..., n.

(2) (Triangle inequality) We have

Decp(U),Decp(U ′) ≤ Decp(U ∪ U ′) ≤ (Decp(U)2 + Decp(U ′)2)1/2

for all non-empty collections U ,U ′ of open, non-empty subsets of Rd.
(3) (Affine invariance) Let U1, ..., Un be non-empty, open subsets of Rd and L : Rd → Rd be

an invertible affine transformation. Then, we have Decp(LU1, ..., LUn) = Decp(U1, ..., Un).
(4) (Interpolation) Let 1/p = (1 − θ)/p0 + θ/p1 for 1 ≤ p0 ≤ p ≤ p1 ≤ ∞ and 0 ≤ θ ≤ 1.

Suppose that we have for U = {U1, ..., Un} (with Uj ⊆ Rd non-empty, open) the projection
bounds

‖PUjf‖Lpi (Rd) .pi,d ‖f‖Lpi (Rd) , i = 0, 1 , j = 1, ..., n , f ∈ S(Rd) ,
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where the Fourier multiplier PUj is defined by

P̂Ujf(ξ) := 1Uj (ξ)f̂(ξ) .

Then we have

Decp(U) .p0,p1,d,θ Decp0(U)1−θDecp1(U)θ .

(5) (Multiplicativity) Suppose that U = {U1, ..., Un} is a collection of non-empty open subsets
of Rd where each Uj is partinitioned (up to null-sets) into Uj =

⋃mj
`=1 Uj,` for some

disjoint non-empty open subsets of Rd. If p ≥ 2, then

Decp({Uj,` : j = 1, ..., n , ` = 1, ...,mj}) ≤ Decp(U)× sup
j∈{1,...,n}

Decp({Uj,1, ..., Uj,mj})

(6) (Adding trivial dimensions) Suppose that {U1, ..., Un} is a collection of non-empty open
subsets of Rd and p ≥ 2. Then, for any d′ ≥ 1, we have

Decp(U1, ..., Un) = Decp(U1 × Rd
′
, ..., Un × Rd

′
)

where the right side is the decoupling constant in Rd × Rd′ = Rd+d′ .

Proof. �

The following observation shows that there can be no `2 decoupling for an infinite partition
in Fourier space, i.e., when n→∞.

Proposition 18.13. Let U = {U1, .., Un} be a collection of non-empty open subsets in Rd. Then,

we have Decp(U) & n
1
p−

1
2 . Equivalently, there exist smooth fj with supp fj contained in compact

subsets of Uj such that

‖
n∑
j=1

fj‖Lp(Rd) & n
1
p−

1
2 (

n∑
j=1

‖fj‖2Lp(Rd))
1/2

for any 1 ≤ p ≤ 2 and the implicit constant does not depend on U or n.

Proof. Set supp f̂j ⊆ Bηj (δ) for some ηj ∈ Uj and 0 < δ � 1 and Lp-normalize the fj . Next, we

modulate the f̂j such that the fj are concentrated on balls Bxj (δ
−1) and decay rapidly away from

these balls. That is, the f̂j are of the form f̂j(ξ) = ψ(δ−1(ξ − ηj))e2πixj ·ξ for some ψ ∈ C∞c (Rd)
with supp ψ ⊆ B0(1). Moreover, we modulate the fj such that |xj − xi| ∼ δ−1 for any i 6= j.
Therefore, we can bound

‖
n∑
j=1

fj‖p & n1/p

But since (
∑n
j=1 ‖fj‖2Lp(Rd))

1/2 . n1/2, this establishes the claim. �

Instead of modulating the fj , we could have also randomized them in the spirit of Subsection
ss:restrimplieskakeyass:restrimplieskakeya
14.1.

Note that the the reverse triangle inequality in Lp/2 for p < 2 would have merely lead us to

(E‖
∑
j

εjfj‖pp)2/p ∼ ‖(
∑
|fj |2)1/2‖2p = ‖

∑
|fj |2‖p/2 ≥

∑
j

‖|fj |2‖p/2 =
∑
j

‖fj‖2p .

Remark 18.14. The above proof sheds also some light on why the Hausdorff–Young inequality

‖f̂‖q . ‖f‖p fails when p > 2, even when q = p′ (which is easily seen to be necessary by
“dimensional analysis”). The idea is to have f “spread out” in physical space to keep the Lp the
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norm low. However, we would also like to spread out f̂ in Fourier space to prevent the Lp
′

norm
from dropping too much. To this end, let

f(x) =

n∑
j=1

εjϕ(x− xj)

for random signs ε1, ..., εn and a non-zero bump function ϕ ∈ C∞c (Rd) with supp ϕ ⊆ B0(1).
Here, we merely need that the centers xj are sufficiently separated; |xi − xj | ≥ 2 would do, for
example. Since the summands are disjointly supported, we have on the one hand

‖f‖p ∼ n1/p .

Thus, if Hausdorff–Young were true for p > 2, we would have the (probabilistic) bound ‖f̂‖p′ .
n1/p. But on the other hand, the Fourier transform is given by

f̂(ξ) =

n∑
j=1

εje
2πixj ·ξϕ̂(ξ)

and so by Khintchine’s inequality E‖f̂‖p
′

p′ ∼ ‖(
∑
j |e2πi〈xj ,·〉ϕ̂|2)1/2‖p

′

p′ , we have

‖f̂‖p′ ∼ ‖(
n∑
j=1

|ϕ̂|2)1/2‖p′ ∼ n1/2

which clearly contradicts ‖f̂‖p′ . n1/p unless p ≤ 2. The point of the randomization argument is
that it allows us to get rid of the phases e2πixj ·ξ in Fourier space which could lead to substantial

cancellations, thereby suppressing the Lq norm of f̂ .

Hence, we focus on `2-decoupling for p ≥ 2 in what follows. We already saw that for p = 2, we
obtained decoupling when the sets overlap only finitely. For larger p this constraint is insufficient
as the next observation reveals. In particular, it tells us that we should require that the Uj are
somewhat curved (in analogy to the restriction phenomenon).

Proposition 18.15. If U = {(j, j + 1) : 0 ≤ j < n}, and p ∈ [2,∞], then

Decp(U) ∼ n
1
p−

1
2

Proof. �

18.3. Uncertainty principles related to `2-decoupling. Weighted estimates will be a com-
mon feature of our future analysis which motivates the following

Definition 18.16 (Smooth localization). We denote by wBc(R) ≥ 0 rapidly decaying weights
concentrated on a ball Bc(R), i.e., wBc(R) satisfies wBc(R)(x) ∼ 1 for x ∈ Bc(R) and

wBc(R)(x) .

(
1 +
|x− c|
R

)−N
for some large N = O(1) .

The precise choice of wBc(R) may vary from line to line or, indeed, within a single line. For
various technical reasons it is preferable to work with this fairly general class of weights rather
than with Schwartz functions. Let us also introduce the corresponding weighted norms.

Definition 18.17 (Smoothly localized norm). For p ∈ [1,∞], let

‖ · ‖Lp(wBc(R)) and

‖ · ‖Lpavg(wBc(R)) = ‖ · ‖Lp(|Bc(R)|−1wBc(R)) = |Bc(R)|−1/p‖ · ‖Lp(wBc(R))

(18.12)

denote the Lp norms defined with respect to the measures wBc(R)(x) dx, respectively |Bc(R)|−1wBc(R)(x) dx.
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Let us state and prove the following local Bernstein inequality (cf. Proposition
lpbernsteinlpbernstein
D.5) and

orthogonality principles that will be invoked frequently later on.

locallpbernstein Lemma 18.18 (Local Bernstein inequality). Let r ≥ R ≥ 0. If f satisfies supp f̂ ⊆ Bc(1/R),
then

‖f‖Lqavg(Bc(r)) . (rR)d(1/p−1/q)‖f‖Lpavg(wBc(r))

holds for all 1 ≤ p ≤ q ≤ ∞.

Proof. For any such f we have the global Bernstein inequality (Proposition
lpbernsteinlpbernstein
D.5)

‖f‖Lq(Rd) . R
d(1/p−1/q)‖f‖Lp(Rd) .

The local version follows by replacing f by fψBc′ (r) where ψBc′ (r) is a modulated Schwartz

function adapted to Bc′(r) such that supp ψ̂Bc′ (r) ⊆ Bc(1/r) ⊆ Bc(1/R) and it holds that

supp f̂ ∗ ψ̂Bc′ (r) ⊆ Bc(2/R). �

localorthogonality Proposition 18.19 (Local orthogonality). For r ≥ R1/2 we have

(1) ‖f‖L2
avg(B(r)) . ‖f‖L2,R−1

avg (wB(r))
and

(2) ‖f‖L2
avg(wB(r)) . ‖f‖L2,R−1

avg (wB(r))
,

whenever supp f̂ ⊆ NR−1(Pd−1).

This means, we can both control smoothly and non-smoothly localized L2-averages by smoothly
weighted decoupling norms (recall Definition

defdecouplingnormsdefdecouplingnorms
18.1).

Proof. (1) Let ψ2r ∈ S(Rd) such that ψ2r(x) & 1 for x ∈ B(2r) and supp ψ̂2r ⊆ B0(1/(2r)).
Therefore,

‖f‖L2
avg(B(r)) . r

−d/2‖fψ2r‖L2(Rd) = r−d/2‖
∑

θ:R−1/2−slab

f̂θ ∗ ψ̂2r‖L2(Rd) .

This is already almost what we want. Now note that each f̂θ ∗ ψ̂2r is supported in

NR−1/2(θ). Moreover, since r−1 ≤ R−1/2, we have that supp(f̂θ ∗ ψ̂2r) is contained in

the union of only O(1) many R−1/2-slabs. Thus, the supp(f̂θ ∗ ψ̂2r) overlap only finitely
and therefore, we have

‖f‖L2
avg(B(r)) .

r−d ∑
θ:R−1/2−slab

‖f̂θ ∗ ψ̂2r‖L2(Rd)

1/2

.

Using Plancherel and taking wB(r) := |ψ2r|2 yields the desired estimate.
(2) We reduce to the first case by observing that

‖f‖2L2
avg(wB(r))

.
∑
k∈Zd

(1 + |k|)−N‖f‖2L2
avg(B(r)+kr)

due to the rapid decay of wB(r). (Here N = Od(1) is a large integer.) This allows us to
apply part (1) of the proposition to each of the ‖f‖L2

avg(B(r)+kr) to deduce

‖f‖2L2
avg(wB(r))

.
∑
k∈Zd

(1 + |k|)−N‖f‖2
L2,R−1

avg (wB(r)+kr)
.

Now, the right side is given by∑
θ:R−1/2−slab

r−d
∫
Rd
|fθ(x)|2

∑
k∈Zd

(1 + |k|)−NwB(r)+kr(x)

 dx .
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But since the expression in parentheses is just another weight adapted to Br, the right
side equals ∑

θ:R−1/2−slab

r−d
∫
Rd
|fθ(x)|2wB(r)(x) dx = ‖f‖2

L2,R−1
avg (wB(r))

and we are done.
�

19. Summary

[Proof of the restriction conjecture relies partly on understanding oscillatory

integrals and on set theoretic problems, e.g., of Kakeya’s type. See Tao
Tao2001
[162, p.

298ff]]

There are three “classic” (i.e., outdated) approaches to prove restriction estimates.

(1) Compute (dσ)∨(x), perform a dyadic partition of unity of the kernel, and use interpola-
tion to bound ‖f ∗ (dσ)∨‖p′ . ‖f‖p. This is the classic Tomas–Stein approach.

(2) Follow Strichartz’ approach and compute the kernel of (Q(−i∇) − z)−ζ where Q is the
(quadratic?) form associated to S (e.g., Q(ξ) = ξ2 or Q(ξ) = −ξ2

1 − ...− ξ2
j + ξ2

j+1 + ...ξ2
d

for wave- (or Klein–Gordon)-like problems) for Re(ζ) ≥ 1 (often Reζ ∈ [d/2, (d+ 1)/2]).
(3) Go through the theory of inhomogeneous oscillatory integrals (see Theorem

carlesoncarleson
4.6) where

the Carleson–Sjölin conditions may not be met (Stein’s and Bourgain’s approach) and
obtain the dual restriction (i.e., the extension) estimate as a corollary.

Appendix A. Selection of omitted proofs
s:proofs

A.1. The ε-removal lemma. We review the proof of Theorem
epsilonremovalTaoepsilonremovalTao
6.5 which is due to Tao

Tao1999
[160,

Theorem 1.2].

epsilonremoval Theorem A.1. Assume |(dσ)∨(x)| . (1 + |x|)−ρ for some ρ > 0. If RS(p → p;α) holds for
some p < 2 and 0 < α� 1, then one has RS(q → q) whenever

1

q
>

1

p
+

Aρ
log(1/α)

.

The first step is to bootstrap the localized restriction estimate so that it applies to functions
which are supported on a sparse union of balls of constant radius. The idea is to exploit the
estimate (

eq:quasiorthogonaleq:quasiorthogonal
6.6), i.e., that the Fourier transforms of functions which are widely separated from

each other in physical space, are quasiorthogonal to each other. For completeness, recall estimate
(
eq:quasiorthogonaleq:quasiorthogonal
6.6), namely

| < f̂0|S , f̂1|S >L2(S,dσ) | . R−ρ‖f0‖L1(B(x0,R))‖f1‖L1(B(x1,R)) . (A.1) eq:quasiorthogonalagain

Let us make these considerations now more precise by defining what we mean by sparse
collections of balls.

Definition A.2. A collection {B(xi, R)}Ni=1 of R-balls is sparse if the centers xi are RCNC

separated.

The observation (
eq:quasiorthogonalagaineq:quasiorthogonalagain
A.1) then leads to the following restriction estimate for functions supported

on a sparse collection of R-balls.

restrictionsparseballs Lemma A.3. Suppose RS(p→ p;α) holds for some α > 0 and 1 < p < 2. Then

‖f̂ |S‖Lp(S,dσ) . R
α‖f‖Lp(Rd)

whenever supp f ⊆
⋃
iB(xi, R) where {B(xi, R)} is a sparse collection of R-balls.
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The proof of this lemma will be given at the end of this subsection. Let us now continue with
the proof of Theorem

epsilonremovalepsilonremoval
A.1. Suppose that RS(p→ p;α) holds for some p < 2 and α > 0. By the

trivial (L1, L∞) restriction estimate, Hölder’s inequality, and Marcinkiewicz interpolation (see
also Remark

lorentzinterpolationlorentzinterpolation
A.5), it suffices to prove the Lorentz space estimate

‖f̂ |S‖Lp(S,dσ) . ‖f‖q0,1 , (A.2) eq:restLorentz

where
1

q0
=

1

p
+

Aρ
log(1/α)

.

and Lp,q are the Lorentz spaces (which are Banach spaces, see, e.g., Stein and Weiss
SteinWeiss1971
[151, Chapter

V, §3, Theorem 3.22]) which are equipped with the norm

‖g‖Lp,q(X,dµ) := p1/q
∥∥∥tµ{|g| > t}1/p

∥∥∥
Lq(R+,dt/t)

where 1 < p ≤ ∞ and 1 ≤ q ≤ ∞ .

(Note that the Lp,q spaces can also be defined for 0 < p ≤ 1 and 0 < q < 1; however, they are
not Banach spaces anymore, as they cannot be normed, see also

SteinWeiss1971
[151, Chapter 5, §5.12]).

By averaging over translations, it suffices to show (
eq:restLorentzeq:restLorentz
A.2) when f is a measure supported on

a discrete lattice Zd and the Lq0,1 norm is replaced by the discrete norm `q0,1. One may then
replace f by f ∗χ (and come back to the continuous norm on Lq0,1) where χ is the characteristic
function of the cube of size c, and c ∼ 1 is chosen such that χ̂ is positive on the unit sphere.
Combining these two reductions we see that it suffices to verify (

eq:restLorentzeq:restLorentz
A.2) when f is constant on

c-cubes.
Since we are working in Lq0,1, we may take f = 1E for some set E which we can assume to

be the union of c-cubes. Thus, we are left to prove

‖1̂E |S‖Lp(S,dσ) ≤ Aα‖1E‖Lq0,1 ∼ Aα|E|
1
p+

Aρ
log(1/α) . (A.3) eq:restredLorentz

This will be accomplished with the help of the following Calderón–Zygmund type lemma which
covers such a set E by a reasonably small number of sparse collections of balls where one has
some modest control on the size of the balls.

czlemma Lemma A.4. Let E be a union of c-cubes and N ≥ 1. Then there exist O(N |E|1/N ) sparse
collections of balls which cover E such that the radius of the balls in each collection is of order

O(|E|AN ).

Deferring the proof of this lemma to the end of this subsection, we may now conclude the
proof of the ε-removal lemma. If E is a union of c-cubes, then by Lemma

czlemmaczlemma
A.4, one can cover

E with O(N |E|1/N ) sets Ej which are each the union of a sparse collection of balls of radius

O(|E|AN ). By Vitali’s covering lemma, one may assume |Ej | . |E|. Applying now Lemma
restrictionsparseballsrestrictionsparseballs
A.3

to each such Ej , one obtains

‖1̂Ej |S‖Lp(S,dσ) . (|E|A
N

)α|E|1/p ,
and therefore, by the triangle inequality,

‖1̂E |S‖Lp(S,dσ) . N |E|1/N (|E|A
N

)α|E|1/p .
Thus, (

eq:restredLorentzeq:restredLorentz
A.3) follows by taking N = A−1 log(1/α) for a sufficiently large A.

Proof of Lemma
restrictionsparseballsrestrictionsparseballs
A.3. Our first step is to modify the restriction hypothesis slightly, namely de-

note by R̃ the restriction operator to the annulus AR of thickness R−1 around the sphere Sd−1.
(Recall that we denoted the classical restriction operator by R). The restriction hypothesis
RS(p→ p;α) then implies

‖R̃f‖Lp(Rd) = ‖f̂ |AR‖Lp(Rd) . R
−1/p+α‖f‖Lp(Rd) whenever supp f ⊆ B(x0, R) (A.4) eq:modrest
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(for any x0 by translational symmetry) by averaging the restriction hypothesis over all (1 +
O(R−1))-dilations.

Now, take f =
∑
i fiϕi with supp fi ⊆ B(xi, R) (where {B(xi, R)}Ni=1 is the sparse collection

of R-balls) and ϕ ∈ S(Rd) satisfies

supp ϕ̂ ⊆ B(0, 1) , ϕ|B(0,1) ≥ 0 , ϕi(x) = ϕ

(
x− xi
R

)
.

Since the fi are disjointly supported, i.e., ‖f‖pp =
∑
i ‖fi‖pp, and Rf =

∑
i R̃fi ∗ ϕ̂i

∣∣
Sd−1 (because

frequency is on the scale R−1 and translations in physical space become merely phases in Fourier

space, i.e., f̂i(ξ − η)ϕ̂i(η)
∣∣
ξ∈Sd−1 = f̂i(ξ − η)

∣∣
AR
ϕ̂i(η)

∣∣
ξ∈Sd−1), the assertion follows from∥∥∥∥∥∑

i

Fi ∗ ϕ̂i
∣∣
Sd−1

∥∥∥∥∥
Lp(Sd−1,dσ)

. R1/p

(∑
i

‖Fi‖pp

)1/p

for all Fi ∈ Lp(Rd) ,

taking Fi = R̃fi, and using the modified restriction hypothesis (
eq:modresteq:modrest
A.4). This estimate follows

immediately for p = 1, since

‖
∑
i

Fi ∗ ϕ̂i|Sd−1‖1 ≤
∑
i

∫
Sd−1

dξ

∫
Rd
dη |Fi(η)||ϕ̂i(ξ − η)| . R

∑
i

‖Fi‖1 .

By real interpolation, it therefore suffices to prove the estimate for p = 2. Renaming f̂i = Fi
and applying Plancherel’s theorem, the estimate is equivalent to

‖
∑
i

f̂i ∗ ϕ̂i|Sd−1‖2 = ‖
∑
i

R(fiϕi)‖2 . R1/2

(∑
i

‖fi‖22

)1/2

= R1/2‖{‖fi‖L2(Rd)}i‖`2 . (A.5)

where we may interpret ~f = (f1, ..., fN ) and ~ϕ = (ϕ1, ..., ϕN ) as elements of `2. Introducing

T : `2(L2(Rd)) → L2(Rd), Tf = R〈~ϕ, ~f〉`2 (i.e., the left side of the last estimate equals ‖T ~f‖2
and the operator norm of T is bounded by a constant times R1/2) and applying the T ∗T -method,
the estimate is equivalent to∑

j

‖ϕjR∗R
∑
i

(ϕifi)‖22

1/2

. R

(∑
i

‖fi‖22

)1/2

. (A.6)

This will follow from self-adjointness of T ∗T and the Schur test (recall Lemma
schurschur
4.18)

sup
j

∑
i

‖ϕjR∗Rϕi‖2→2 . R

which in turn will follow from the estimates

‖ϕiR∗Rϕi‖2→2 . R (A.7a) eq:schur1

‖ϕjR∗Rϕi‖2→2 . (RN)−C for j 6= i . (A.7b) eq:schur2

To prove the former estimate, it suffices to prove

‖ϕ̂i ∗ (dσ(ϕ̂i ∗ g))‖2 . R‖g‖2
by Plancherel’s theorem. This estimate, however, follows from the corresponding L∞ → L∞

estimate (which is trivial), duality (since the operator is self-adjoint) and interpolation. Similarly,
it suffices to prove the L∞ → L∞ analog of (

eq:schur2eq:schur2
A.7b) to prove (

eq:schur2eq:schur2
A.7b) itself. This estimate follows

from the rapid decay of ϕj and ϕi for |xi− xj | � R (which is the case due to the sparsity of the

collection) and the decay |d̂σ(xi − xj)| . (1 + |xi − xj |)−(d−1)/2 . (RN)−C (for some other C)
again because of the sparsity of the collection. �
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Proof of Lemma
czlemmaczlemma
A.4. For 0 ≤ k ≤ N , we define radii by R0 = 1 and Rk+1 = |E|CRCk , i.e.,

Rk = O(|E|CK ) for each k. (In particular, R1 = |E|C).
For k ≥ 1, we recursively set

Ek := {x ∈ E : x /∈ Ej for j < k and |E ∩B(x,Rk)| ≤ |E|k/N}

and note that
⋃N
k=1Ek = E 26. By construction and the hypothesis, we have for every 1 ≤ k ≤ N

and x ∈ Ek,

|E ∩B(x,Rk)| & |E|(k−1)/N .

Thus, for every x ∈ Ek, the set Ek ∩ B(x,Rk) can be covered by O(|E|1/N ) Rk−1-balls which
implies that the entire set Ek can be covered by O(|E|1/N ) Rk−1-balls which are Rk-separated.
Since the cardinality of these collections can be at most O(|E|), the definition of Rk shows that
the collections are indeed sparse what had to be shown. �

lorentzinterpolation Remark A.5. Let us shortly convince ourselves that it indeed suffices to prove the Lorentz

type estimate (
eq:restLorentzeq:restLorentz
A.2), i.e., ‖f̂ |S‖Lp(S,dσ) . ‖f‖q0,1 and the trivial estimate ‖f̂ |S‖∞ . ‖f‖1 to

deduce ‖f̂ |S‖Lq(S,dσ) . ‖f‖Lq(Rd). Recall the numerology of the problem, i.e., q < q0 < p
where 1/q0 = 1/p + Aρ/ log(1/α). We make use of the following result, which can, e.g., be
found in [Theorem 4.6 in https://www.guillermorey.me/documents/Lorentz.pdf] which
is in fact based on Tao’s notes [Course 245C, https://terrytao.wordpress.com/2009/03/

30/245c-notes-1-interpolation-of-lp-spaces/] on interpolation of Lp spaces.

Theorem A.6 (Marcinkiewicz). Let T be a sublinear operator and suppose 0 < pi, qi ≤ ∞
(i = 1, 2) and q1 6= q2. If T satisfies

‖Tf‖Lqi,∞ .i ‖f‖Lpi,1 i = 1, 2

for all f in an appropriate dense function space, then for all 1 ≤ r ≤ ∞ and 0 < θ < 1 such that
qθ > 1, we have

‖Tf‖Lqθ,r .p1,p2,q1,q2,r,θ ‖f‖Lpθ,r .

In our case, q1 =∞, p1 = 1, q2 = p, p2 = q0 ∈ (q, p), and pθ = qθ = r (since ‖f‖Lp,p = ‖f‖p,
see also

SteinWeiss1971
[151, p. 192]). As usual, 1/pθ := (1− θ)/p1 + θ/p2 and qθ is defined analogously.

The condition of the former theorem is obviously satisfied for i = 1 (because of the trivial
restriction estimate) whereas the condition for i = 2 follows from Lp,r1 ⊆ Lp,r2 for any 0 < r1 ≤
r2 (see

SteinWeiss1971
[151, Theorem 3.11]) and the assumed Lorentz type estimate ‖f̂ |S‖Lp(S,dσ) . ‖f‖q0,1.

Finally, θ is determined by

θ =

(
2− 1

p
− Aρ

log(1/α)

)−1

which is contained in (0, 1) if α satisfies α < exp(−Aρp/(p− 1)). �
a:carleson

A.2. Oscillatory integrals related to the Fourier transform. We follow
Stein1993
[149, Section IX.1].

Let us discuss the oscillatory integral (the extension operator)

(Tλf)(x) =

∫
Rd−1

eiλϕ(ξ,x)ψ(ξ, x)f(ξ) dξ , λ > 0 , (A.8) eq:oscint

26One might imagine that, for a connected, star-shaped set E, E1 is the union of very small sets sitting at the
boundary, E2 is the union of a bit bigger sets sitting at the inner boundary of E1 and so on when finally only a
“bubble” EN sitting at the center is going to be left.

https://www.guillermorey.me/documents/Lorentz.pdf
https://terrytao.wordpress.com/2009/03/30/245c-notes-1-interpolation-of-lp-spaces/
https://terrytao.wordpress.com/2009/03/30/245c-notes-1-interpolation-of-lp-spaces/
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mapping functions on Rd−1 to functions on Rd. We simultaneously consider the dual operator
(the restriction operator)

(T ∗λf)(ξ) =

∫
Rd

e−iλϕ(ξ,x)ψ(ξ, x)f(x) dx . (A.9) eq:oscintdual

[Note that x and ξ are interchanged in
Stein1993
[149] which is somewhat abusing the standard

convention.] Here, ψ ∈ C∞c (Rd−1 × Rd) is a fixed smooth function of compact support in x
and y. The phase function ϕ is real-valued and smooth. We assume that, on the support of
ψ, the phase function satisfies a non-degeneracy and a curvature condition (the Carleson–Sjölin
conditions).

Let us start with the non-degeneracy condition. We require that for each (ξ0, x0) ∈ suppψ ⊆
Rd−1 × Rd, the bilinear form B(u, v) on Rd−1 × Rd, defined by

B(u, v) = 〈v,∇ξ〉〈u,∇x〉ϕ(ξ, x)
∣∣
(ξ0,x0)

=

d−1∑
j=1

d∑
k=1

vj · uk
∂2ϕ(ξ, x)

∂ξj∂xk

 (ξ0, x0) (A.10)

has maximal rank d− 1 (cf. (
eq:nondeg3eq:nondeg3
4.7)).

As a result, there exists a (unique up to sign) vector u ∈ Rd, |u| = 1, so that the scalar
function

ξ 7→ 〈u,∇xϕ(ξ, x0)〉
has a critical point at ξ = ξ0. Our further assumption is that this critical point is nondegenerate,
i.e., we suppose that the associated (d− 1)× (d− 1) quadratic form is nonsingular, i.e.,

det

(
∂2

∂ξi∂ξj
〈u,∇xϕ(ξ, x0)〉

)
6= 0 (A.11) eq:curvu

at ξ = ξ0. Note that this is precisely the curvature condition (
eq:curvhypeq:curvhyp
4.8) that we imposed earlier in

Theorem
carlesoncarleson
4.6. The above two conditions are therefore just the Carleson–Sjölin conditions.

carlesonstein Theorem A.7. Under the above assumptions on ϕ, the operator (
eq:oscinteq:oscint
A.8) satisfies the estimate

‖Tλf‖Lq(Rd) . λ
−n/q‖f‖Lp(Rd−1) (A.12)

where

q =

(
d+ 1

d− 1

)
p′ and 1 ≤ p ≤ 2 .

Remark A.8. In several applications however, the above oscillatory integrals arise in combina-
tions with kernels of singular integral operators. Phong and Stein

PhongStein1986
[128] (see also

PhongStein1986H
[129]) considered

the following situation. Let T be a L2 bounded operator that is representable by a distribu-
tion kernel K, i.e., (Tf)(x) =

∫
K(x, y)f(y) dy for f ∈ S, where K satisfies |∂βy ∂αxK(x, y)| .

|x−y|−d−|α|−|β|. Let ϕ(x, y) be a real smooth phase function, let ψ ∈ C∞c (Rd×Rd), and assume
det(∂xi∂xjϕ) has no zeros on the support of ψ. Consider the operator

(Tλf)(x) =

∫
Rd

eiλϕ(x,y)K(x, y)ψ(x, y)f(y) dy ,

defined by

〈g, Tλf〉 =

∫
Rd
dx

∫
Rd
dy g(x)eiλϕ(x,y)K(x, y)ψ(x, y)f(y) .

Then the L2 operator norm of Tλ remains bounded as λ→∞.
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Proof. See Stein
Stein1993
[149, Chapter IX, Section §1.2, Theorem 1] or

Stein1986
[146, Theorem 10].

It suffices to prove the case p = 2 since the case p = 1 is trivial and the rest follows by
interpolation. By duality, the asserted bound for p = 2 is equivalent to

‖T ∗λF‖L2(Rd−1) . λ
−d/r′‖F‖Lr(Rd) for r =

2(d+ 1)

d+ 3

where

(T ∗λF )(ξ) =

∫
Rd

e−iλϕ(ξ,x)ψ(ξ, x)F (x) dx , ξ ∈ Rd−1 .

Let us now rewrite the squared L2 norm as

‖T ∗λF‖2L2(Rd−1) = 〈F, TT ∗F 〉 =

∫
Rd

∫
Rd
Kλ(x, y)F (x)F (y) dy dx

with the kernel

Kλ(x, y) =

∫
Rd−1

eiλ[ϕ(ξ,x)−ϕ(ξ,y)]ψ(ξ, x)ψ(ξ, y) dξ . (A.13)

Thus, it suffices to see that Kλ is the kernel of an Lr(Rd) → Lr
′
(Rd) bounded operator whose

norm does not exceed a constant times λ−2d/r′ .
Our plan is to use Theorem

oscintnondegoscintnondeg
4.3 for the L2-boundedness of non-degenerate oscillatory integrals

(in Rd). To apply this theorem, we construct an appropriate new phase function ϕ̃ on Rd × Rd.
Because of our assumptions on ϕ, we can construct it in such a way that it indeed satisfies the
following two (non-degeneracy) conditions. Writing Ξ = (ξ, ξd) with ξ = (ξ1, ..., ξd−1) ∈ Rd−1,
the constructed ϕ̃ shall then obey

(1) ϕ̃(Ξ, x) = ϕ(ξ, x) + ϕ0(x)ξd and
(2) det(∇Ξ∇xϕ̃) 6= 0.

In fact, ∇ξ∇xϕ already has rank d− 1 by the non-degeneracy condition, i.e., we need only chose
ϕ0(x) such that 〈u,∇x〉ϕ0(x) 6= 0 to increase the rank of the matrix ∇Ξ∇xϕ̃ to d.

Now, as in the shortest proof of the Tomas–Stein theorem (see Subsection
ss:complexintagainss:complexintagain
4.3), we construct

an analytic family of kernels Ks
λ on Rd × Rd by setting

Ks
λ(x, y) =

es
2

Γ(s/2)

∫
Rd

eiλ[ϕ̃(Ξ,x)−ϕ̃(Ξ,y)]ψ(ξ, x)ψ(ξ, y)|ξd|−1+sν(ξd) dΞ

with dΞ = dξ dξd and where ν ∈ C∞c (R) is a bump function at the origin. Let T sλ be the associated
integral operator. By an integration by parts, setting s = 0, and applying the fundamental
theorem of calculus along with ϕ̃(Ξ, x)|Ξ=(ξ,0) = ϕ(ξ, x), we have

K0
λ(x, y) = Kλ(x, y) . (A.14)

Remember that we want to estimate ‖T 0
λ ‖r→r′ . λ−2d/r′ via complex interpolation. Next, by

Theorem
oscintnondegoscintnondeg
4.3 for non-degenerate oscillatory integral operators, we have ‖T 1+it

λ ‖2→2 . λ−d/2 for
all t ∈ R because of the non-degeneracy condition on ϕ̃. Finally, we claim the following L1 → L∞

estimate, namely

|K−(d−1)/2+it
λ (x, y)| . 1 . (A.15)

To see this, recall ϕ̃(Ξ, x) = ϕ(ξ, x) + ϕ0(x)ξd and write

Ks
λ(x, y) = Kλ(x, y) · ν̃s(λ(ϕ0(y)− ϕ0(x)))

where

ν̃s(λ(ϕ0(y)− ϕ0(x))) =
es

2

Γ(s/2)

∫ ∞
−∞

eiξd·λ(ϕ0(y)−ϕ0(x))ν(ξd)|ξd|−1+s dξd .
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Since

|ν̂−(d−1)/2(λ(ϕ0(y)− ϕ0(x)))| . |λ(ϕ0(y)− ϕ0(x))|
d−1
2 ≤ ‖∇ϕ0‖

d−1
2∞ · (λ|x− y|)

d−1
2

for large arguments (i.e., large λ), we are left to show

|Kλ(x, y)| . (λ|x− y|)−(d−1)/2 .

In proving this, we may assume that the integrand is supported in a sufficiently small neigh-
borhood around some ξ = ξ0 (for otherwise we can write it as a finite sum of such integrals).
Then, we observe that ϕ(ξ, x) − ϕ(ξ, y) = ∇xϕ(ξ, z) · (x − y) + O(|x − y|2). So, the claimed
bound on |Kλ(x, y)| just follows from the estimates for non-degenerate oscillatory integrals in
d−1 dimensions (Theorem

oscintnondegoscintnondeg
4.3) because of the non-degeneracy condition for ϕ which clearly still

holds when we freeze one variable (see also the remark before Theorem
carlesoncarleson
4.6). (In fact, if x − y

does not point in the “critical direction” of u, which arises in the non-degeneracy condition, we
even get |Kλ(x, y)| . (λ|x− y|)−N for any N ∈ N since we can integrate by parts as often as we
wish.) This concludes the proof of the theorem. �

Bourgain
Bourgain1991L
[14] proved that the theorem can in fact not be improved beyond the range 1 ≤ p ≤ 2

when d ≥ 3. To see this, let d = 3. Then there is an appropriate ϕ and a bounded f having
compact support such that

‖Tλf‖q & λ−1/2−1/q as λ→∞ .

This is however only consistent with the assertion of Theorem
carlesonsteincarlesonstein
A.7 if q ≥ 4 (i.e., p ≤ 2). To prove

this lower bound, take

ϕ(ξ, x) = ξ · x′ + 1

2
〈A(x3)ξ, ξ〉

for ξ ∈ R2, x = (x′, x3) ∈ R3 and A(x3) is a real, symmetric 2 × 2 matrix, depending smoothly
on x3. We will now impose two conditions on x3 7→ A(x3).

(1) dA(x3)/dx3 is invertible for each x3. This condition guarantees the curvature condi-
tion at the critical point, namely that the (d − 1) × (d − 1) quadratic form satisfies
det(∂xi∂xj 〈u,∇xϕ(ξ, x0)〉) 6= 0 at ξ = ξ0.

(2) rank(A(x3)) ≡ 1 for all x3, i.e., the non-degeneracy condition is satisfied.

It is easy to check that these two conditions are compatible, and that indeed there are smooth
functions x3 7→ A(x3) that satisfy both simultaneously. Now let f(x) = 1 on the support of ψ.
Then

(Tλf)(x) =

∫
R2

eiλϕ(ξ,x)ψ(ξ) dξ .

Let S = {x ∈ R3 : x′ ∈ Ran(A(x3))}. In view of our assumptions on rank(A(x3)), we see that S
is a smooth hypersurface. Note that if x ∈ S, the quadratic function ξ 7→ ϕ(ξ, x) has a critical
point, and moreover the rank of ∂xi∂xjϕ(ξ, x) is exactly 1. Thus if x ∈ S, we can show, using
stationary phase, that

|(Tλf)(x)| ∼ λ−1/2 as λ→∞ .

The estimate also holds in a tubular neighborhood of S whose radius is a small multiple of λ−1.
The result is that

‖Tλf‖q & λ−1/2λ−1/q ,

and the result is proved.
See also Bourgain

Bourgain1991L
[14] where it is also shown that for a certain class of phases ϕ, one does

have

‖Tλf‖q . λ−d/q‖f‖∞
for some q with q < 2(d+ 1)/(d− 1).
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Appendix B. Reverse Littlewood–Paley inequality for slabs in d = 2
s:CordobaFefferman

In this section we will describe an argument of Córdoba and Fefferman
CordobaFefferman1977
[48] (see also Córdoba

Cordoba1977,Cordoba1982
[49, 50]) yielding the reverse Littlewood–Paley inequality (

eq:reverselpconjeq:reverselpconj
8.1) in d = 2 if p = 4. Combining this

with the analysis of Section
s:LPs:LP
8 yields a full proof of the restriction conjecture in this case.

The heart of the argument is the fact that the Minkowski sums of all pairs of slabs θ + θ′ =
{ξ+ ξ′ : ξ ∈ θ , ξ′ ∈ θ′} have only bounded overlap (which in turn is somewhat a consequence of
the fact that two circles in R2 intersect in at most two points).

Proposition B.1. Let f be a smooth function with supp f̂ ⊆ N1/R(P1). With the notation of
Section

s:LPs:LP
8, the inequality

‖f‖L4(R2) .

∥∥∥∥∥∥∥
 ∑
θ:R−1/2−slab

|fθ|2
1/2

∥∥∥∥∥∥∥
L4(R2)

holds.

Proof. By the Fourier support condition, we have

‖f‖44 = ‖|f |2‖22 ∼
∫
R2

∣∣∣∣∣∑
θ

fθ(x)

∣∣∣∣∣
2 ∣∣∣∣∣∑

θ

fθ′(x)

∣∣∣∣∣
2

dx =

∥∥∥∥∥∥
∑
θ,θ′

fθfθ′

∥∥∥∥∥∥
2

2

(B.1) eq:l4norm

We distinguish now between the cases dist(θ, θ′) ≶ constR−1/2 and start with dist(θ, θ′) . R−1/2.
By Cauchy–Schwarz,∣∣∣∣∣∣

∑
θ,θ′:dist(θ,θ′).R−1/2

fθfθ′

∣∣∣∣∣∣ ≤ 2
∑
θ

|fθ|2
∑

θ′:dist(θ,θ′).R−1/2

1 .
∑
θ

|fθ|2 ,

i.e., it suffices to estimate the right side of (
eq:l4normeq:l4norm
B.1) where the summation is restricted to slabs which

are at least R−1/2-separated. In particular, it suffices to show∥∥∥∥∥∥
∑

θ,θ′:dist(θ,θ′)&R−1/2

fθfθ′

∥∥∥∥∥∥
2

2

.
∑

θ,θ′:R−1/2−slab

‖fθfθ′‖22

which can be interpreted as the statement that fθfθ′ are pairwise almost orthogonal. (Observe
that this right side just agrees with the right side of the statement of the proposition).

Observing that the left side of the claimed inequality equals∥∥∥∥∥∥
∑

θ,θ′:dist(θ,θ′)&R−1/2

f̂θ ∗ f̂θ′

∥∥∥∥∥∥
2

2

by Plancherel’s theorem and that

supp f̂θ ∗ f̂θ′ ⊆ θ − θ′ ,

it suffices to prove that the number of overlaps of θ − θ′ is bounded, i.e.,∣∣∣{θ, θ′ : R−1/2 − slab : dist(θ, θ′) & R−1/2 and ξ ∈ θ − θ′
}∣∣∣ . 1 for all ξ ∈ R2 .

To prove this, consider the pairs θ1, θ′1 and θ2, θ′2 which are such that θ1 − θ′1 ∩ θ2 − θ′2 6= ∅
and dist(θj , θ

′
j) & R−1/2 (for j = 1, 2). In particular, that means that there are yj ∈ θj and
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y′j ∈ θ′j such that y1 − y′1 = y2 − y′2. Moreover, since θj and θ′j belong to N1/R(P1), there are

tj , t
′
j ∈ [0, 1]d−1 such that

|yj − (tj , t
2
j )| . R−1 and |y′j − (t′j , (t

′
j)

2)| . R−1 for j = 1, 2 .

Defining tj = (tj , t
2
j ), adding and subtracting (y1 − y′1) − (y2 − y′2) = 0, and using the above

estimate yields
|(t1 − t′1)− (t2 − t′2)| . R−1

which means in particular

|(t1 − t′1)− (t2 − t′2)| . R−1 and |(t21 − (t′1)2)− (t22 − (t′2)2)| . R−1 .

From these estimates, it can be inferred [by expanding everything?]

|t1 − t′1| · |(t1 + t′1)− (t2 + t′2)| . R−1 .

Since dist(θ1, θ
′
1) & R−1/2, it follows that

|(t1 + t′1)− (t2 + t′2)| . R−1/2

and in particular

|t1 − t2| . R−1/2 and |t′1 − t′2| . R−1/2

⇒ |y1 − y2| . R−1/2 and |y′1 − y′2| . R−1/2 .

But that means that for a given pair θ1, θ
′
1 there are only O(1) choices of pairs θ2, θ

′
2 such that

θ1 − θ′1 ∩ θ2 − θ′2 6= ∅ which means∣∣∣{θ, θ′ : R−1/2 − slab : dist(θ, θ′) & R−1/2 and ξ ∈ θ − θ′
}∣∣∣ . 1 for all ξ ∈ R2

as asserted. �

Appendix C. Interpolation theorems

See, e.g., Tao’s notes on harmonic analysis or Grafakos
Grafakos2014C
[85, Section 1.4].

C.1. Repetition on Lorentz spaces. See, e.g., Folland
Folland1999
[72, Section 6.4], Adams–Fournier

AdamsFournier2003
[1, pp. 221], the notes by G. Rey https://www.guillermorey.me/documents/Lorentz.pdf,
Grafakos

Grafakos2014C
[85, Section 1.4], Triebel

Triebel2001
[170], and Bennett and Sharpley

BennettSharpley1988
[4]. For interpolation theory,

consider Bennett–Sharpley (once more) and in particular Bergh and Löfström
BerghLofstrom1976
[7].

Let (X,σ, µ) be a measure space, i.e., a set X equipped with a σ-algebra of subsets of it and
a function µ from the σ-algebra to [0,∞] that satisfies µ(∅) = 0 and

µ

 ∞⋃
j=1

Bj

 =

∞∑
j=1

µ(Bj)

for any sequence Bj of pairwise disjoint elements of the σ-algebra. The function µ is called a
(positive) measure on X and elements of the σ-algebra of X are called measurable sets.

Definition C.1. Let f be a measurable function on X. Its distribution function λf : R+ →
[0,∞] is defined by

λf (α) := µ ({x ∈ X : |f(x)| > α})

We collect some classic properties, see, e.g., Grafakos
Grafakos2014C
[85, Propositions 1.1.3 and 1.1.4].

Proposition C.2.

(1) λf is non-increasing and right-continuous.
(2) If |f | ≤ |g|, then λf ≤ λg.

https://www.guillermorey.me/documents/Lorentz.pdf
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(3) If |fn| increases to |f |, then λfn increases to λf .
(4) If f = g + h, then λf (α+ β) ≤ λg(α) + λh(β).
(5) We have the layer cake representation

f(x) =

∫ ∞
0

1λf (α)(x) dα =

∫ ∞
0

1[0,f(x)](α) dα .

(6) We have ∫
X

|f(x)|p dx = p

∫ ∞
0

αpλf (α)
dα

α
.

(7) We have ‖f‖∞ = inf{α ≥ 0 : λf (α) = 0}.
Chebyshev’s inequality asserts

λf (α) ≤ α−p‖f‖pp
which leads to the definition of weak Lp spaces.

Definition C.3. Let 0 < p < ∞. Then we denote by Lp,∞(X) the class of all functions whose
quasi-norm (i.e., the triangle inequality only holds up to some constant)

‖f‖pp,∞ := sup
α>0

αpλf (α)

= inf
{
C > 0 : λf (α) ≤ α−pC for all α > 0

}
is finite.

Remarks C.4.

(1) Check that both definitions actually coincide!
(2) By Chebyshev’s inequality, we immediately see ‖f‖p,∞ ≤ ‖f‖p, i.e., Lp ⊆ Lp,∞.
(3) By construction, L∞,∞ isometrically coincides with L∞.
(4) Since λg+h(α) ≤ λg(α/2) + λh(α/2), it is easy to see that ‖g + h‖p,∞ ≤ 2Cp(‖g‖p,∞ +
‖h‖p,∞).

Example C.5. Let p ∈ [1,∞) and f(x) = |x|−d/p, then f /∈ Lp(Rd) for any p, but f ∈ Lp,∞
since

|{x ∈ Rd : |x|−d/p > α}| =
∫

|x|<α−p/d

dx ∼ α−p .

The equimeasurable decreasing rearrangement of f is the function f∗ on [0,∞), defined by

f∗(t) := inf
α>0
{λf (α) ≤ t} = inf

α≥0
{λf (α) ≤ t} ,

which is a non-increasing function since λf is non-increasing. In particular, λf∗(α) = λf (α). Let
us now define the Lorentz quasi-norm.

Definition C.6. Let f be a measurable function on X and 0 < p, q ≤ ∞. We define the Lorentz
quasi-norm as

‖f‖p,q :=


(∫∞

0

(
t1/pf∗(t)

)q dt
t

)1/q

if q <∞ ,

supt>0 t
1/pf∗(t) if q =∞ .

By definition, Lp,p coincides isometrically with Lp.

Proposition C.7. Let f be a measurable function on X and 0 < p, q ≤ ∞. Then

‖f‖p,q =

p1/q
(∫∞

0

(
αλf (α)1/p

)q dα
α

)1/q

if q <∞ ,

supα>0 αλf (α)1/p if q =∞ .
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Proof. See Grafakos
Grafakos2014C
[85, Proposition 1.4.9]. �

We collect some useful properties.

Lemma C.8 (Monotone convergence). Let (fn)n∈N be a sequence of measurable functions with
|fn| ↗ |f | almost everywhere. Then ‖f‖p,q = limn→∞ ‖fn‖p,q.

Proof. See Lemma 1.3 in Rey’s notes. �

Lemma C.9 (Fatou). Let {fn}n∈N be a sequence of measurable functions. Then

‖ lim inf
n→∞

fn‖p,q ≤ lim inf
n→∞

‖f‖p,q .

Proof. See Lemma 1.9 in Rey’s notes. �

Theorem C.10. Let 0 < p < ∞ and 0 < q ≤ ∞, then Lp,q is a quasi Banach space, i.e., it
is complete and satisfies the quasi triangle inequality. For p, q > 1, they are normable and in
particular actual Banach spaces.

Proof. See Grafakos
Grafakos2014C
[85, Theorem 1.4.11]. �

Proposition C.11 (Nestedness). Let 0 < p ≤ ∞ and 0 < q < r ≤ ∞. Then ‖f‖p,r .p,q,r ‖f‖q,
i.e., Lp,q ⊆ Lp,r.

Proof. See Grafakos
Grafakos2014C
[85, Proposition 1.4.10]. �

Proposition C.12 (Hölder’s inequality). Let 0 < p1, p2, p <∞ and 0 < q1, q2, q ≤ ∞ obey

1

p
=

1

p1
+

1

p2
and

1

q
=

1

q1
+

1

q2
.

Then ‖fg‖p,q . ‖f‖p1,q1‖g‖p2,q2 .

Proof. See Tao
Tao2006Notes
[165, Lecture 1, Theorem 6.9]. �

More details concerning the following proposition can be found in Grafakos
Grafakos2014C
[85].

Proposition C.13 (Dual characterization). Let 1 < p < ∞ and 1 ≤ q ≤ ∞. Then for any
f ∈ Lp,q,

‖f‖p,q ∼p,q sup

{∣∣∣∣∫ g(x)f(x) dµ(x)

∣∣∣∣ ‖g‖p′,q′ ≤ 1

}
.

Proof. See Tao
Tao2006Notes
[165, Lecture 1, Theorem 6.12]. �

C.2. Marcinkiewicz interpolation. Typically, the Marcinkiewicz interpolation theorem is
stated under the condition that an operator satisfies two weak-type estimates. Recall that if
X and Y are two measure spaces and T is a linear operator from functions of X to functions of
Y , then T is said to be of strong-type (p, q) if

‖Tf‖Lq(Y ) . ‖f‖Lp(X) for all f ∈ Lp(X) .

We say that T is of weak-type (p, q) if

|{y ∈ Y : |(Tf)(y)| ≥ λ}| . ‖f‖qpλ−q for all λ > 0 , f ∈ Lp(X) .

Clearly, the strong-type estimate implies the weak-type estimate. One can weaken this concept
even further by only considering functions f which are characteristic functions of a set. This
leads to the notion of restricted weak-type estimates. We say that T is of restricted weak type
(p, q) if

|{y ∈ Y : |(T1E)(y)| ≥ λ}| . |E|q/pλ−q for all λ > 0 , E ⊆ X . (C.1) eq:restrwt1
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Note that every characteristic function belongs to Lp,1 with

‖1E‖p,1 = const |E|1/p

The enhanced Marcinkiewicz interpolation theorem (see, e.g., Tao’s notes
Tao1999Notes
[159, Lecture 2, Lemma

2.3] or Grafakos
Grafakos2014C
[85, Theorem 1.4.19] and Tao

Tao2006Notes
[165, Lecture 1, Lemma 8.5]) therefore says that

if T is Lpj ,1 → Lqj ,∞ bounded for j ∈ {0, 1}, then T is Lpθ,r → Lqθ,r bounded for all 0 < r ≤ ∞.

Remark C.14. There is also a result by Bourgain
Bourgain1985
[23] (see also Grafakos

Grafakos2014C
[85, p. 71]), but see

also Carbery et al
Carberyetal1999
[38, Section 6.2] saying that if the sequence of linear operators Tj maps

‖Tj‖Ai→Bi .i 2jαi

for i ∈ {0, 1} and normed vector spaces Ai, Bi with α0 < 0 < α1, then T =
∑
j Tj extends

to a bounded operator mapping Aθ,1 to Bθ,∞. (Recall A = (A0, A1) and Aθ,1 and Bθ,∞ are
the Lions–Peetre interpolation spaces.) A more precise and explicit version is formulated in the
following proposition.

Proposition C.15 (Bourgain interpolation (Grafakos’ version
Grafakos2014C
[85])). Let 0 < p0 < p1 < ∞

and 0 < β0, β1,M0,M1 < ∞. Suppose that for k ∈ Z a family of sublinear operators {Tk}
is of restricted weak-type (p0, p0) with constant M02−kβ0 and of restricted weak-type (p1, p1)
with constant M12kβ1 for all k ∈ Z. Then there is a constant C = C(β0, β1, p0, p1) such that∑
k∈Z Tk is of restricted weak-type (p, p) with constant CM1−θ

0 Mθ
1 where θ = β0/(β0 + β1) and

p−1 = (1− θ)/p0 + θ/p1.

Proposition C.16 (Bourgain interpolation (Carbery et al version
Carberyetal1999
[38])). Let 0 < p0, p1, q0, q1 <

∞ and 0 < β0, β1,M0,M1 < ∞. Suppose that for k ∈ Z a family of sublinear operators {Tk}
satisfies

‖Tj‖Lp0→Lq0 ≤M02−β0j and ‖Tj‖Lp1→Lq1 ≤M12+β1j .

Then there is a constant C = C(β0, β1, p0, p1, q0, q1) such that

‖
∑
k∈Z

Tkf‖Lq,∞ ≤ CM1−θ
0 Mθ

1 ‖f‖Lp,1

where θ = β0/(β0 + β1) and p and q are as usual.

It is convenient to reformulate (
eq:restrwt1eq:restrwt1
C.1) in a more symmetric, dual formulation.

restrwteq Lemma C.17. Let 1 < p, q <∞. Then, one has (
eq:restrwt1eq:restrwt1
C.1) if and only if

|〈1F , T1E〉| . |E|1/p|F |1/q
′

(C.2) eq:restrwt2

for all E ⊆ X and F ⊆ Y .

This should be compared to the dual strong-type estimate

|〈g, Tf〉| . ‖f‖p‖g‖q′ .

Proof. For our purposes, we only need the implication (
eq:restrwt1eq:restrwt1
C.1)⇒(

eq:restrwt2eq:restrwt2
C.2). (To prove the reverse direc-

tion, one sets F = {Re(T1E) > λ}.) Using the triangle inequality, the layer cake representation,
and Fubini to do the x-integration first, we have

|〈1F , T1E〉| ≤
∫
F

|(T1E)(x)| dx =

∫
F

∫ ∞
0

1{|T1E |>λ}(λ) dλ dx

=

∫ ∞
0

|{x ∈ F : |(T1E)(x)| > λ}| dλ .
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We have two estimates for the integrand. The first is just |F |. The second is O(|E|q/pλ−q) by
assumption. Thus, the integral can be estimated by

O
(∫ ∞

0

min{|F |, |E|q/pλ−q} dλ
)

which yields the assertion after an elementary calculation. �

C.3. Stein interpolation. See Stein and Weiss
SteinWeiss1971
[151, Chapter V, Theorem 4.1].

Appendix D. Some remarks on the uncertainty principle
a:uncertainty

We follow the nice exposition of Wolff
Wolff2003
[179, Chapter 5] and the survey of Folland and Sitaram

FollandSitaram1997
[73]. For the following discussion it will be helpful to remember that for an invertible linear map
T : Rd → Rd, one has

f̂ ◦ T = |det(T )|−1f̂ ◦ T−t

where T−t denotes the inverse transpose of T .
For us, most of the time, the uncertainty principle is the following heuristic statement. If a

measure µ is supported on an ellipsoid E, then for many purposes µ̂ may be regarded as being
constant on any dual ellipsoid E∗.

The simplest rigorous statement is as follows.

l2bernstein Proposition D.1 (L2 Bernstein inequality). Assume that f ∈ L2 and supp f̂ ⊆ B0(R) for
some R > 0. Then f is C∞ and it holds that

‖Dαf‖2 ≤ (2πR)|α|‖f‖2 .

Proof. Since f̂ is compactly supported, f is in fact holomorphic and the claimed estimate just
follows from Plancherel. �

A corresponding statement is also true in Lp, but proving this and other related results needs
a different argument (namely, the Mikhlin–Hörmander theorem) since there is no Plancherel the-
orem. In this context we state somme lemmas that are helpful to construct compactly supported
functions in Fourier space from Schwartz functions in physical space.

smoothenft Lemma D.2. There is a fixed Schwartz function ϕ such that if f ∈ L1+L2 and supp f̂ ⊆ B0(R),
then

f = ϕR
−1

∗ f

where ϕR
−1

(x) = Rdϕ(Rx).

Proof. Take ϕ ∈ S such that ϕ̂|B0(1) = 1, i.e., ϕ̂R−1 |B0(R) = 1. Thus, (ϕR
−1 ∗ f − f)∧ ≡ 0 which

shows the assertion. �

smoothenft2 Lemma D.3. There are radial bump functions χ̂ that satisfy χ ≥ 0 and χ > 1B0(1).

Proof. If g is an even bump function, then take χ̂(ξ) = AdB(g ∗ g)(Aξ) for some A,B > 0. �

smoothenft3 Lemma D.4. There exists a radial 0 < ϕ ∈ S(Rd) such that supp ϕ̂ ⊆ (−1/2, 1/2)d and with
the property that ∑

n∈Zd
ϕ(x− n) = 1 , x ∈ R .



SOME NOTES ON RESTRICTION THEORY 179

Proof. See Schlag–Shubin–Wolff
Schlagetal2002
[133, Lemmas 2.4 and Lemma 3.1]. We only present the proof

for d = 1. The proof for higher dimensions is almost identical.
In Fourier space the claimed partition of unity reads

ϕ̂(ξ)
∑
n∈Z

e−2πinξ =
∑
k∈Z

ϕ̂(k)δk(ξ) = δ0(ξ) (D.1) eq:smoothenft3aux

where the first equality follows from Poisson summation (
∑
n f(n) =

∑
k f̂(k)). To ensure the

second equality, it suffices to take supp ϕ̂ ⊆ (−1/2, 1/2) and set ϕ̂(0) = 127. To obtain the
positivity, start with any even Schwartz function ϕ0 with supp ϕ̂0 ⊆ (−1/4, 1/4) and ϕ̂0(0) = 1.
Since ϕ2

0 extends to an entire function on C, one has

mes[ϕ2
0 = 0] = 0 .

Therefore, ϕ = ϕ2
0 ∗ ϕ2

0 > 0 everywhere, whereas

ϕ̂ = [ϕ̂0 ∗ ϕ̂0]2

has support in (−1/2, 1/2). Finally observe that

ϕ̂(0) =

(∫
ϕ̂0(ξ)ϕ̂0(−ξ) dξ

)2

=

(∫
ϕ̂0(ξ)2 dξ

)2

> 0 .

The second equation in (
eq:smoothenft3auxeq:smoothenft3aux
D.1) uses that ϕ̂0 is even whereas positivity follows since ϕ̂0 is real.

Hence, ∑
n∈Z

ϕ(x− n) = ϕ̂(0) , x ∈ R

by the preceeding argument. Dividing by the right-hand side finishes the proof. �

lpbernstein Proposition D.5 (Lp Bernstein inequality). Suppose that f ∈ L1 + L2 and supp f̂ ⊆ B0(R).
Then the following assertions hold.

(1) For any α and p ∈ [1,∞],

‖Dαf‖p . R|α|‖f‖p .
(2) For any 1 ≤ p ≤ q ≤ ∞,

‖f‖q . Rd( 1
p−

1
q )‖f‖p .

With the help of the second assertion it becomes obvious that Bernstein inequalities are an
invaluable tool in the analysis of (nonlinear) PDEs. The inequalities say that, for localized
frequency, low Lebesgue integrability can be upgraded to higher integrability (i.e., smoothness)
at the cost of certain powers of N . In fact, this cost is a gain when the frequency is small.

Proof. As before, let ψ = ϕR
−1

such that f = ψ ∗ f . Then the first claim just follows from

‖∇ψ‖1 = ‖ϕ‖1 ·R
and Young’s inequality. To prove the second assertion, we note

‖ψ‖r = ‖ϕ‖r ·Rd/r
′

for any r ∈ [1,∞]. Thus, for r being defined by 1 + 1/q = 1/p+ 1/r, Young’s inequality yields

‖f‖q = ‖ψ ∗ f‖q ≤ ‖ψ‖r‖f‖p . Rd/r
′
‖f‖p = Rd( 1

p−
1
q )‖f‖p ,

thereby showing the second claim. �

27One could have also obtained this directly since
∑
n∈Z e−2πinξ = δξ,0.
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With this warm-up, we are ready to extend the above Lp → Lq bounds to ellipsoids instead
of balls using change of variables. An ellipsoid is a set of the form

E = {x ∈ Rd :
∑
j

|(x− a) · ej |2

r2
j

≤ 1} (D.2) eq:defellipsoid

for some a ∈ Rd (the center of E), some choice of orthonormal basis vectors {ej} (the axes), and
some choice of positive numbers rj (the axis lengths). We define the dual ellipsoid E∗ to E as
the ellipsoid having the same axes as E but with reciprocal axis lengths, i.e., if E is given by
(
eq:defellipsoideq:defellipsoid
D.2), then E∗ should be of the form

{x ∈ Rd :
∑
j

r2
j |(x− b) · ej |2 ≤ 1} (D.3)

for some choice of the center point b.

Proposition D.6 (Lp Bernstein inequality for an ellipsoid). Suppose that f ∈ L1 + L2 and

supp f̂ ⊆ E for some ellipsoid E. Then

‖f‖q . |E|
1
p−

1
q ‖f‖p

if 1 ≤ p ≤ q ≤ ∞.

This statement reflects the heuristic fact that faster decay of the Fourier transform (i.e., the
smaller the ellipsoid E is) yields better smoothness properties (in terms of integrability) of the
function.

One could similarly extend the gradient bounds of the previous statements to ellipsoids cen-
tered at the origin, but that statement is awkward since one has to weight different directions
differently, so we ignore this here.

Proof. Let k be the center of E and T be a linear map taking the unit ball onto E − k. Let
S = T−t be the inverse transpose of T , i.e., also T = S−t. Let furthermore f1(x) = e−2πik·xf(x)

and g = f1 ◦ S. Since f̂ ◦ T = |det(T )|−1f̂ ◦ T−t, we have

ĝ(ξ) = |detS|−1f̂1(S−t(ξ)) = |detS|−1f̂(S−t(ξ + k)) = |detT |f̂(T (ξ + k)) .

Thus, ĝ is supported in the unit ball, so by the Lp Bernstein inequality for balls, ‖g‖q . ‖g‖p.
On the other hand,

‖g‖q = |detS|−1/q‖f‖q = |detT |1/q‖f‖q = |E|1/q‖f‖q

and likewise with q replaced by p. So

|E|1/q‖f‖q . |E|1/p‖f‖p

as claimed. �

Finally, we will also prove a “pointwise statement”, roughly saying that if supp f̂ ⊆ E for
some ellipsoid E, then f is roughly constant on the dual ellipsoid E∗ (and rapidly decreasing

away from it if f̂ is assumed to be smooth). In fact, we shall show that the values of f on E∗

can morally(!) be controlled by the average over E∗.
To formulate this precisely, let N be a large number and let ϕ(x) = (1 + |x|2)−N . Suppose an

ellipsoid E∗ is given. Then define ϕE∗(x) = ϕ(T (x− k)), where k is the center of E∗ and T is a
self-adjoint linear map taking E∗ − k onto the unit ball. If T1 and T2 are two such maps, then
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T1 ◦T−1
2 is an orthogonal transformation, so ϕE∗ is well defined. Essentially ϕE∗ roughly equals

1 on E∗ and decays rapidly as one moves away from E∗. We could also write more explicitly

ϕE∗(x) =

1 +
∑
j

|(x− k) · ej |2

r2
j

−N .

Proposition D.7 (Locally constant lemma). Suppose that f ∈ L1 + L2 and supp f̂ ⊆ E for
some ellipsoid E. Then for any dual ellipsoid E∗ and any z ∈ E∗,

|f(z)| .N |E∗|−1

∫
Rd
|f(x)|ϕE∗(x) dx ≡ |E∗|−1‖f‖L1(ϕE∗ (x)dx) . (D.4)

Proof. Assume first that E is the unit ball so that E∗ is also the unit ball. Then f is the
convolution of itself with a fixed Schwartz function ψ. Accordingly,

|f(z)| ≤
∫
Rd
|f(x)||ψ(x− z)| dx .N

∫
Rd
|f(x)|(1 + |x− z|2)−N dx

.N

∫
Rd
|f(x)|(1 + |x|2)−N dx

where we used the rapid decay of ψ and 1 + |x − z|2 & 1 + |x|2 uniformly in |x| when |z| ≤ 1.
This proves the assertion when E = E∗ is the unit ball.

Next, suppose E is centered at zero but E and E∗ are otherwise arbitrary. Let k and T be as
above (T took E∗ − k to the unit ball, i.e., T t maps the unit ball to E, and T−1 maps E onto
the unit ball, i.e., T−t maps the unit ball onto E∗ − k; more precisely, these maps also take any
translate of one set to the according translate of the other!), and consider

g(x) = f(T−1x+ k) ⇔ ĝ(ξ) = |detT | e2πik·ξ f̂(T tξ) .

Thus, ĝ is supported on T−1E, i.e., a unit ball. According to our above findings for the unit
ball, we have

|g(y)| ≤
∫
Rd
ϕ(x)|g(x)| dx

if y belongs to any unit ball. Hence, it follows that

f(T−1z + k) ≤
∫
Rd
ϕ(x)|f(T−1x+ k)| dx = |detT |

∫
Rd
ϕE∗+k(x)|f(x+ k)| dx

= |E∗|−1

∫
Rd
ϕE∗(x)|f(x)| dx

by a change of variables and the fact |detT | = |E∗|−1. This shows the assertion since the above
estimate holds for z in some unit ball which we may identify with T (E∗−k) (since T took E∗−k
to the unit ball) which however means that the argument T−1z + k belongs to E∗. �

When E is not centered at zero, one merely needs to replace f(x) by e−2πik·xf(x) where k is
the center of E.

Remark D.8.

(1) The above proposition is an example of an estimate “with Schwartz tails”. It is not
possible to make the stronger conclusion that, say, |f(x)| is bounded by the average of f
over the double of E∗ when x ∈ E∗ (even in the one dimensional case with E = E∗ being
the unit interval); i.e., taking the average over Rd is necessary! To see this, consider
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a fixed Schwartz function g with g(0) 6= 0 whose Fourier transform is supported in the
“unit interval” [−1, 1]. Consider also the functions

fN (x) =

(
1− x2

4

)N
g(x) .

Since f̂N are linear combinations of ĝ and its derivatives, they have the same support as
ĝ. Moreover, they converge pointwise boundedly to zero on [−2, 2], except at the origin.
It follows that there can be no estimate of the value of fN at the origin by its average
over [−2, 2].

(2) All the estimates related to Bernstein’s inequality are sharp except for the values of the
constants. For instance, if E is an ellipsoid, E∗ a dual ellipsoid, and N <∞, then there

is a function f with supp f̂ ⊆ E∗ and with

‖f‖1 ≥ |E| ,
|f(x)| ≤ AϕE(x) ,

where ϕE = ϕ
(N)
E was defined above. In the case E = E∗ being the unit ball, this is

obvious; take f to be any Schwartz function with Fourier support in the unit ball and
with the appropriate L1 norm. The general case then follows as above by making a
change of variables.

(3) The name “locally constant lemma” is motivated by the following counterexample. Con-

sider f ∈ S(R : R) with suppf̂ ⊆ [0, 1]. Then one might wonder whether f could not
actually look like a sequence of peaks whose distance to each other is extremely small.
The locally constant lemma says that this cannot occur. On the one hand, due to the
pointwise bound ‖f‖∞ . ‖f‖L1(ϕE∗ dx), one sees that the peaks must not be too big.

However, these peaks then cannot add up to the given L1 norm. Hence, f cannot be a
sequence of narrow peaks, but must actually be roughly constant on the dual interval
(which is just [0, 1] again).

The last two estimates imply that ‖f‖p ∼ |E|1/p for any p which shows that the last proposition
is also sharp.

D.1. Preliminaries for the wave packet decomposition. If f̂ was smooth and real-valued
and supported on some ellipsoid E, then (by an integration by parts argument, say) f ∈ S(Rd)
is concentrated on E∗ with center of mass at the origin. In general, when f̂ is complex-valued,

one should expand f̂ in a Fourier series where one samples at the centers of masses of all E∗

tiling Rd. Let us make this more precise and assume for simplicity that supp f̂ ⊆ θω where
θω ⊆ Rd is a rectangle centered at the origin with side lengths R−1/2 × · · · × R−1/2 × R−1,
oriented along ω ∈ Sd−1. To make the computations more accessible, let ϕ ∈ C∞c (Rd) with
suppϕ ⊆ [−1/2, 1/2]d and

T : θω → [−1/2, 1/2]d

T = D ◦R , R ∈ SO(d) , D = diag(R1/2, ..., R1/2, R)

where R ∈ SO(d) rotates θω to θed , and D scales the rectangle to the unit box [−1/2, 1/2]d.
Let us denote by T aω a dual rectangle with side lengths R1/2 × · · · × R1/2 × R, oriented along
ω ∈ Sd−1, and centered at a ∈ Rd. Let us collect all centers of masses of these dual rectangles
that tile Rd by Tω. Then

f̂ = ϕ ◦ T
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and we wish to expand

f̂(ξ) =
∑
a∈Tω

fω(a)e2πia·ξ1θω (ξ)

for certain Fourier coefficients fω(a) that we shall now compute. We prepare for a ∈ Tω,

〈e2πi〈a,·〉, f̂〉 =

∫
dξ (ϕ ◦ T )(ξ)e2πia·ξ =

1

|det(T )|

∫
dξ ϕ(ξ)e2πi〈T−ta,ξ〉

=
1

|det(T )|
〈e2πi〈T−ta,·〉, ϕ〉 .

Since T−ta ∈ Zd whenever a ∈ Tω, we obtain by summing the equality over a ∈ Tω,∑
a∈Tω

|det(T )|〈e2πi〈a,·〉, f̂〉e2πi〈T−ta,ξ〉 = ϕ(ξ) .

Hence, replacing ξ 7→ Tξ, we obtain

f̂(ξ) = (ϕ ◦ T )(ξ) = |det(T )|
∑
a∈Tω

〈e2πi〈a,·〉, f̂〉e2πia·ξ1θω (ξ) . (D.5) eq:wpdecompprelim1

Taking the inverse Fourier transform, we observe

f(x) ∼
∑
a∈Tω

〈e2πi〈a,·〉, f̂〉e2πia·ξχTω (x− a) (D.6) eq:wpdecompprelim2

where (recall |detT | = R(d+1)/2) χTω := R(d+1)/2F(1θω ) which is focused on Tω and obeys
‖χTω‖∞ ∼ 1. Finally observe that we do not immediately get a Plancherel identity, but

‖f̂‖22 = |det(T )|2
∑

a,b∈Tω

〈e2πi〈a,·〉, f̂〉 · 〈f̂ , e2πi〈b,·〉〉
∫
dξ e2πiξ·(a−b)|1θω (ξ)|2(δa,b + 1− δa,b)

= |det(T )|
∑
a∈Tω

|〈e2πi〈a,·〉, f̂〉|2 +
∑

a6=b∈Tω

〈e2πi〈a,·〉, f̂〉〈f̂ , e2πi〈b,·〉〉
∫
Rd
χTω (a− b− y)χTω (y) dy .

(D.7) eq:almostplancherel1

Since (χTω ∗ χTω )(a − b) is a Schwartz function adapted to, say, a doubly dilated tube Tω with

‖χTω ∗ χTω‖∞ ∼ R(d+1)/2, we have (with the abbreviation fω(a) := 〈e2πi〈a,·〉, f̂〉) for any N ∈ N,∑
a6=b∈Tω

|fω(a)||fω(b)|(χTω ∗ χTω )(a− b) ∼N R
d+1
2

∑
a6=b∈Tω

|fω(a)||fω(b)|(1 + |a− b|)−N

.N R
d+1
2

∑
a∈Tω

|〈e2πi〈a,·〉, f〉|2 .
(D.8) eq:almostplancherel2

Therefore,

‖f̂‖22 ∼ R(d+1)/2
∑
a∈Tω

|〈e2πi〈a,·〉, f̂〉|2 (D.9) eq:almostplancherel3

which reflects the almost orthogonality of the 〈e2πi〈a,·〉, f〉χTω for different a ∈ Tω.
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D.2. Wave packet decomposition for the truncated paraboloid. The following is taken
from Demeter

Demeter2020
[57, Chapter 2].

Let Υ ∈ C∞c ([−4, 4]d−1) with ∑
j∈Zd

Υ(ξ − j) = 1 .

Now let us refine the mesh a bit. Let R� 1 and rescale the lattice Zd−1 to R−1/2Zd−1. Then∑
|j|.R1/2

Υ(R1/2ξ − j) ∼ 1|ξ|.1

where Υ(R1/2ξ−j) equals roughly an indicator function on a cube ω := cω+[−R−1/2, R−1/2]d−1

with cω = R−1/2j. The cω denote the centers of those cubes which are roughly R−1/2 distant
from each other and overlap at most O(1) many times. We collect these center of masses in the
set ΩR ⊆ R−1/2Zd−1. Then, as in (

eq:wpdecompprelim1eq:wpdecompprelim1
D.5) it is reasonable to decompose f in a Fourier series

f(ξ) =
∑

cω∈ΩR

∑
cq∈QR

R
d−1
2 〈e2πi〈cq,·〉, f1ω〉e2πicq·ξΥ(R1/2(ξ − cω)) (D.10)

≡
∑

cω∈ΩR

∑
cq∈QR

〈e2πi〈cq,·〉, f1ω〉e2πicq·cωΥq,ω(ξ) (D.11)

where cq ∈ R1/2Zd−1 are centers of dual cubes cq + [−R1/2, R1/2]d−1 which are R1/2-separated
and collected in the set QR, and

Υq,ω(ξ) = R
d−1
2 e2πicq·(ξ−cω)Υ(R1/2(ξ − cω)) , ‖Υq,ω‖22 ∼ R

d−1
2 . (D.12)

For future use, let us record the following almost orthogonality property, valid for any weight
wq,ω ∈ C (such as wq,ω = wqδω,ω0

for instance),

‖
∑

cω∈ΩR

∑
cq∈QR

wq,ωΥq,ω‖2 ∼ R
d−1
4

 ∑
cω∈ΩR

∑
cq∈QR

|wq,ω|2
1/2

(D.13) eq:upsilonalmostorthogonal

which is a consequence of the fact that the cubes ω are only finitely overlapping (for the
∑
cω∈ΩR

summation) and similar computations as in (
eq:almostplancherel1eq:almostplancherel1
D.7)-(

eq:almostplancherel3eq:almostplancherel3
D.9) (for the

∑
cq∈QR summation). Our goal is

to understand F ∗Sf in the case of the truncated paraboloid S = Pd−1 = {(ξ, ξ2) : ξ ∈ [−1, 1]d−1}.
To that end, we first record

(F ∗SΥq,ω)(x) = e−2πix·(cω,c2ω)

∫
Υq,ω(η)e2πiϕx,q,ω(η) dη

with a complicated expression for the phase (which just comes from exploiting the galilean
symmetries of Pd−1)

ϕx,q,ω(η) = η · x
′ − cq + 2cωxd

R1/2
+ η2xd

R
.

By stationary phase, we anticipate that F ∗SΥq,ω will be concentrated on a R1/2 × · · · ×R1/2 ×R
tube centered at (cq, 0) pointing in the direction (−2cω, 1) (which just follows from the observation
that the old x′ = 0 point gets mapped to the new point x′ which satisfies x′ + 2cωxd = 0). That
is, F ∗SΥq,ω(x) decays rapidly whenever (x′, xd) is no critical point in the sense that ∇ηϕx,q,ω = 0.
More precisely, recall Theorem

iphiwavefrontiphiwavefront
17.14 which says

WF (F ∗SΥq,ω) = {(x,∇xϕx,q,ω(η)) : (x, η) ∈ Rd \ {0} × supp(Υq,ω), ∇ηϕx,q,ω(η) = 0} .
That is, the singularities will propagate along rays pointing in the direction ∇xϕx,q,ω. To make
these statements more precise we introduce the following definitions.
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Definition D.9 (Tubes and wave packets). (1) We denote by Tq,ω the spatial tube in Rd given
by

Tq,ω = {x = (x′, xd) ∈ Rd : |x′ − cq + 2cωxd| ≤ R1/2, |xd| < R} (D.14)

The collection of these tubes for fixed ω is denoted by Tω. The collection of all tubes is denoted
by T.

(2) For M ≥ 1, let

MTq,ω = {x = (x′, xd) ∈ Rd : |x′ − cq + 2cωxd| ≤MR1/2, |xd| ≤ R} (D.15)

denote the dilate of Tq,ω around its central axis.
(3) For each tube T = Tq,ω we write Υq,ω ≡ ΥT and F ∗SΥT ≡ ϕT . The latter function (or any

scalar multiple thereof) is called wave packet.

The following theorem (see
Demeter2020
[57, Theorem 2.2]) summarizes the main features of the wave

packet decomposition.

Theorem D.10 (Wave packet decomposition). Let f ∈ C∞([−4, 4]d−1), then there is a decom-
position

f =
∑
T∈T

fT (D.16)

with supp fT ⊆ ωT for some ωT = cω,T +[−R−1/2, R−1/2]d−1 with cω,T ∈ ΩR. Let F ∗SfT = aTϕT
with aT ∈ C so that

F ∗Sf =
∑
T∈T

aTϕT . (D.17)

Then the ϕT obey for any k ≥ 1,

‖ϕT ‖∞ . 1 , ‖ϕT ‖2 . R(d+1)/4 (D.18)

‖ϕT ‖L∞(Rd−1×[−R,R]\MT ) .k M
−k , M ≥ 1 (D.19)

supp ϕ̂T ⊆ {(ξ, ξ2) : ξ ∈ ωT } , (D.20)

the aT obey the Plancherel similarity (recall ‖ΥT ‖22 ∼ R
d−1
2 )

‖f‖2 ∼ R
d−1
2

∑
T∈T
|aT |2 (D.21)

‖f1ω‖22 ∼ R
d−1
2

∑
T∈Tω

|aT |2 , (D.22)

and the coefficients fT obey the Plancherel similarity

‖f‖22 ∼
∑
T∈T
‖fT ‖22 . (D.23)

In particular, th choices

aT = e2πicq·cω · 〈e2πi〈cq,·〉, f1ω〉 and fT = aTΥT

are admissible.

Proof. Taking aT and fT as above, then the bound

‖ϕT ‖L∞(Rd−1×[−R,R]\MT ) .k M
−k , M ≥ 1

follows from non-stationary phase arguments since

inf
η∈supp(Υ), x∈(Rd−1×[−R,R])\MT

|∇ηϕx,q,ω(η)| &M .
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The bound ‖ϕT ‖L∞(Rd) . 1 is immediate while

‖f1ω‖22 ∼ R
d−1
2

∑
T∈Tω

|aT |2 ,

follows from the almost orthogonality of the Υq,ω (
eq:upsilonalmostorthogonaleq:upsilonalmostorthogonal
D.13) or Parseval’s identity∑

cq∈QR

|〈e2πi〈cq,·〉, f〉|2 = R−
d−1
2 ‖f1ω‖22 .

Summing this over all ω ∈ ΩR and using the fact that these cubes overlap at most O(1) many
times (to exploit almost orthogonality), one infers

‖f‖2 ∼ R
d−1
2

∑
T∈T
|aT |2 .

Note also that

‖f‖22 ∼
∑
T∈T
‖fT ‖22 .

follows from the bound ‖ΥT ‖22 ∼ R(d−1)/2 and

supp ϕ̂T ⊆ {(ξ, ξ2) : ξ ∈ ωT } ,

which in turn follows from a direct computation. Note that ϕ̂T is a measure supported on a
hypersurface. �

D.3. Other interesting uncertainty principles. Another interesting variant of the uncer-
tainty principle was found by Shubin–Vakilian–Wolff

Shubinetal1998
[135, Theorem 2.1].

Definition D.11. Let ρ(x) = min{1, 1/|x|}. Then a set E ⊆ Rd is called ε-thin if

|E ∩Bx(ρ(x))| ≤ ε |Bx(ρ(x))| , x ∈ Rd .

Theorem D.12 (
Shubinetal1998
[135, Theorem 2.1]). There are ε > 0 and C < ∞ such that if E and F are

two ε-thin sets in Rd, then for any f ∈ L2(Rd), it holds that

‖f‖2 ≤ C
(
‖f‖L2(Ec) + ‖f̂‖L2(F c)

)
.

Clearly, the theorem says that f and f̂ cannot both be concentrated on small sets at the
same time. There are numerous related results in the literature, see, e.g., Fefferman

Fefferman1983
[69] or

Havin–Jöricke
HavinJoricke1994
[91].

We keep track of the following lemma which says that sharp cut-offs in spatial variables
automatically lead to frequency smearings on the inverse scale.

Lemma D.13. Let N1, N2 > 0, N > N1 +N2, and F : Rd → Rd be measurable. Let γ1/N (ξ) :=

Ndγ(Nξ) where γ̌ is a smooth bump function on Rd such that γ̌(x) = 1 for |x| ≤ 1, i.e., γ1/N is

a smoothing operator in frequency space on scale N−1. Then

1|x|≤N1
F (D)1|x|≤N2

= 1|x|≤N1
F−1

(
F (ξ) ∗ γ1/N

)
F 1|x|≤N2

. (D.24)

Analogously, for any surface measure dσ on a codimension one manifold S that is embedded in
Rd, we have

1|x|≤N1
F ∗SFS1|x|≤N2

= 1|x|≤N1
F−1

(
dσ ∗ γ1/N

)
F 1|x|≤N2

(D.25)

where FS and F ∗S are the usual Fourier restriction and extension operators.
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Proof. Let f ∈ S(Rd), then(
1|x|≤N1

F (D)1|x|≤N2
f
)

(x) = 1|x|≤N1

∫
F̌ (x− y)1|y|≤N2

f(y) dy .

Since |x| ≤ N1 and |y| ≤ N2, we automatically have |x − y| ≤ N1 + N2 < N . Thus, with the
smooth bump function γ̌, we obtain(

1|x|≤N1
F (D)1|x|≤N2

f
)

(x) = 1|x|≤N1

∫
F̌ (x− y)γ̌(|x− y|/N)1|y|≤N2

f(y) dy

=
(
1|x|≤N1

F−1
(
F (ξ) ∗ γ1/N

)
F 1|x|≤N2

f
)

(x) ,

which is the first part of the assertion.
Since F ∗SFS acts as convolution with (dσ)∨, we obtain analogously(

1|x|≤N1
F ∗SFS1|x|≤N2

f)
)

(x) = 1|x|≤N1

∫
(dσ)∨(x− y)γ̌(|x− y|/N)1|y|≤N2

f(y) dy

=
(
1|x|≤N1

F−1
(
dσ ∗ γ1/N

)
F 1|x|≤N2

f
)

(x)

since (
dσ ∗ γ1/N

)∨
(x− y) =

∫
Rd
dξ e2πiξ·(x−y)

∫
S

dσ(η) γ1/N (ξ − η)

=

∫
S

dσ(η) e2πiη(x−y)γ̌(|x− y|/N)

= (dσ)∨(x− y)γ̌(|x− y|/N) .

This concludes the proof. �

Appendix E. Hausdorff measures
a:hausdorff

In the following we summarize some properties of Hausdorff measures following Wolff’s notes
Wolff2003
[179, Chapter 8].

defhausdorff0 Definition E.1. Fix α > 0 and let E ⊆ Rd. For ε > 0, we define

Hε
α(E) := inf{

∞∑
j=1

rαj }

where the infimum is taken over all countable coverings of E by balls Bxj (rj) with rj < ε.

Clearly, Hε
α(E) decreases when ε↘ 0 and so we define the (spherical) Hausdorff measure

Falconer1986
[64,

p. 7]

Hα(E) := lim
ε↘0

Hε
α(E) . (E.1)

It is also clear that for β < α we have Hε
α(E) ≤ Hε

β(E) whenever ε ≤ 1, i.e.,

Hα(E) is a non-increasing function in α . (E.2) eq:hausdorffmonotone

Remarks E.2. (1) If H1
α(E) = 0, then Hα(E) = 0. This follows from the definition since aremarkshausdorff

covering showing that H1
α(E) < δ will necessarily consist of balls of radius δ1/α.

(2) It is also clear that Hα(E) = 0 whenever α > n since one can then already cover Rd by
balls Bxj (rj) such that

∑∞
j=1 r

α
j is arbitrarily small.

defhausdorff Lemma E.3. Let E ⊆ Rd. Then there is a unique number α0, called the Hausdorff dimension
of E or dim(E) such that Hα(E) =∞ if α < α0 and Hα(E) = 0 if α > α0.
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Proof. Define α0 to be the supremum of all α such that Hα(E) = ∞. Thus, Hα(E) = ∞ if
α < α0 by (

eq:hausdorffmonotoneeq:hausdorffmonotone
E.2). Now suppose α > α0, let β ∈ (α0, α), and define M := 1 + Hβ(E) < ∞. For

given ε ∈ (0, 1), we can therefore find a covering of balls with
∑
j r

β
j ≤M and rj ≤ ε. Thus,∑

j

rαj ≤ εα−β
∑
j

rβj ≤ ε
α−βM

which goes to zero as ε→ 0. Thus, Hα(E) = 0 for α > α0. �

Remarks E.4. (1) The set function Hα may seen to be countably additive on Borel sets, i.e.,
Hα defines a Borel measure. In particular, Hα(E ∪ F ) = Hα(E) +Hα(F ) for compact, disjoint
sets E,F . This is part of the reason one considers Hα instead of any other Hε

α (e.g., H1
α). We

refer to standard references in the area like Carleson’s survey
Carleson1976
[40], Falconer

Falconer1986
[64], or Mattila

Mattila1995
[120].

(2) The Borel measure Hd coincides with |B0(1)|−1 times the Lebesgue measure. If α < d,
then Hα is non-sigma finite. The follows, e.g., by Lemma

defhausdorffdefhausdorff
E.3 which implies that any set of

non-zero Lebesgue measure will have infinite Hα measure.

Example E.5. (1) The canonical example is the usual 1/3-Cantor set on [0, 1] This has a
covering of 2n intervals of length 3−n, so it has finite H log 2

log 3
measure. It is not hard to show that

in fact its H log 2
log 3

measure is non-zero. This can be done geometrically (cf.
Falconer1986
[64, Theorem 8.6]28

with similitudes ψ1(x) = x/3 and ψ2(x) = (x+ 2)/329), or one can apply Proposition
hausdorffprobhausdorffprob
E.7 below

to the Cantor measure. In particular, the Hausdorff dimension of the Cantor set is log 2/ log 3.

There are various other notions of dimension. Let us mention only one of them, namely the
Minkowski dimension which we define here only for compact sets.

Definition E.6 (Minkowski dimension). Suppose E ⊆ Rd is compact, then let Eδ = {x ∈ Rd :
dist(x,E) < δ} be the δ-neighborhood of E.

Let α0 be the supremum of all α > 0 such that, for some constant C,

|Eδ| ≥ Cδd−α

for all δ ∈ (0, 1]. Then, α0 is called the lower Minkowski dimension of E, denoted by dL(E).
Let α1 be the supremum of all α > 0 such that, for some constant C,

|Eδ| ≥ Cδd−α

for a sequence of δ’s converging to zero. Then α1 is called the upper Minkowski dimension of E,
denoted by dU (E).

It would also be possible to define the Minkowski dimensions like the Hausdorff dimension
but restricting to coverings of balls of the same size. Namely, define a set S to be δ-separated if
any two distinct points x, y ∈ S satisfy |x− y| > δ. Let Eδ(E) be the δ-entropy on E, defined by
the maximal possible cardinality for a δ-separated subset of E. 30 Then, one can show that

dL(E) = lim inf
δ→0

log Eδ(E)

log(1/δ)
,

dU (E) = lim sup
δ→0

log Eδ(E)

log(1/δ)
.

28See also Corollary 8.7 there which says that the Cantor set is indeed self-similar since it satisfies the open
set condition

⋃2
j=1 ψj([0, 1]) ⊂ [0, 1].

29See also Theorem 8.3 there which says that there is a unique compact set E ⊆ R such that ψ(E) :=⋃
j ψj(E) = E for any finite set of contractions, and for any non-empty compact set F ⊆ R, one has

limk→∞ ψk(F ) = E in Hausdorff metric.
30Show that Eδ(E) is comparable to the minimum number of δ-balls required to cover E.
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Notice that countable sets may have positive lower Minkowski dimension; consider, e.g., the set
{1/n}∞n=1 ∪ {0} which has upper and lower Minkowski dimension 1/2.

In the following, we will give a potential theoretic characterization of the Hausdorff measure.
If E is a compact set, then let P (E) denote the space of all probability measures supported on
E. The following will be quite helpful.

hausdorffprob Proposition E.7. Suppose E ⊆ Rd is compact. Then the following two assertions are equiva-
lent.

(1) There is a µ ∈ P (E) such that

µ(Bx(r)) ≤ Crα (E.3) eq:hausdorffprob

for a suitable constant C and all x ∈ Rd, r > 0.
(2) Hα(E) > 0.

Proof. See Wolff
Wolff2003
[179, Proposition 8.2]. �

Let us now define the α-dimensional energy of a (positive) measure µ with compact support
31 by the formula

Iα(µ) :=

∫
dµ(x)dµ(y)

|x− y|α
, α < d . (E.4) eq:defalphaenergy

Let us also define the mean field potential

V αµ (x) :=

∫
|x− y|−αdµ(y) ,

i.e., we have

Iα(µ) =

∫
V αµ (x) dµ(x) . (E.5) eq:coulombenergy

Roughly, one expects µ to have Iα(µ) <∞ if and only if it satisfies (
eq:hausdorffprobeq:hausdorffprob
E.3). Although this precise

statement is false, we will now see that the Hausdorff dimension of a compact subset can still be
defined in terms of the energies of measures in P (E).

Lemma E.8. Let µ be a probability measure with compact support. Then, the following two
assertions hold.

(1) If µ satisfies (
eq:hausdorffprobeq:hausdorffprob
E.3), then Iβ(µ) <∞ for all β < α.

(2) Conversely, if µ satisfies Iα(µ) < ∞, then there is another probability measure ν such
that ν(X) ≤ 2µ(X) for all sets X and such that ν satisfies (

eq:hausdorffprobeq:hausdorffprob
E.3).

Proof. (1) Without loss of generality, we assume that the diameter of supp(µ) is ≤ 1. Then, by
(
eq:hausdorffprobeq:hausdorffprob
E.3), ∫

V βµ (x) dµ(x) .
∫ ∞∑

j=0

2jβµ(Bx(2−j)) dµ(x) .
∫ ∞∑

j=0

2j(β−α) dµ(x) . 1 .

(2) Let F = {x : V αµ (x) ≤ 2Iα(µ)}, then µ(F ) ≥ 1/2 by Iα(µ) =
∫
V αµ (x) dµ(x) (and the mean

value theorem). Let us now define the new probability measure ν by ν(X) = µ(X ∩ F )/µ(F ).
By the previous argument ν(X) ≤ 2µ(X) and we are left to show that ν satisfies (

eq:hausdorffprobeq:hausdorffprob
E.3). Suppose

first x ∈ F . If r > 0 then

r−αν(Bx(r)) ≤ V αν (x) ≤ 2V αµ (x) ≤ 4Iα(µ)

31The compact support assumption is not needed; it is only included to simplify the presentation



190 K. MERZ

which shows (
eq:hausdorffprobeq:hausdorffprob
E.3) whenever x ∈ F . For general x we distinguish between the cases where

the intersection Bx(r) ∩ F is empty or not. Assume first that r is such that Bx(r) ∩ F = ∅.
Then evidently ν(Bx(r)) = 0. Else, if Bx(r) ∩ F 6= ∅, let y ∈ Bx(r) ∩ F and observe that
ν(Bx(r)) ≤ ν(By(2r)) . rα by the first part of the proof. �

We are now ready to give an alternative characterization of Hausdorff dimension for compact
subsets of Rd.

charachausdorff Proposition E.9. If E is compact then the Hausdorff dimension of E coincides with the number

sup{α : ∃µ ∈ P (E) with Iα(µ) <∞} . (E.6)

Proof. Denote the above supremum by s. If β < s, then by (2) of the previous lemma, we
know that E supports a measure with µ(Bx(r)) ≤ Crβ . But then by Proposition

hausdorffprobhausdorffprob
E.7, we have

Hβ(E) > 0, i.e., β ≤ dimE which means s ≤ dimE. Conversely, if β < dimE, then by
Proposition

hausdorffprobhausdorffprob
E.7, E supports a measure with µ(Bx(r)) ≤ Crβ+ε for some sufficiently small ε > 0.

Then Iβ(µ) <∞ and so β ≤ s which shows dimE ≤ s. �

As the α-energy is the expectation value of a translational invariant function, the Fourier
transform should come in handy. In particular, we will make us of the elementary

Proposition E.10. Let µ be a positive measure with compact support and α < d. Then

Iα(µ) =

∫
dµ(x)dµ(y)

|x− y|α
= cα

∫
Rd

|µ̂(ξ)|2

|ξ|d−α
dξ , where cα =

Γ
(
d−α

2

)
πα−d/2

Γ(α/2)
. (E.7) eq:coulombfourier

Using this and Proposition
charachausdorffcharachausdorff
E.9 allows us to prove a lower bound on the Hausdorff dimension

of the support of probability measures.

Corollary E.11. Suppose µ is a compactly supported probability measure on Rd with

|µ̂(ξ)| . |ξ|−β (E.8) eq:ftprobmeasure

for some 0 < β < d/2, or more generally that (
eq:ftprobmeasureeq:ftprobmeasure
E.8) is true in the L2 sense∫

B0(N)

|µ̂(ξ)|2 dξ . Nd−2β . (E.9) eq:ftprobmeasurel2

Then the dimension of the support of µ is at least 2β.

Proof. By Proposition
charachausdorffcharachausdorff
E.9 it suffices to show that if (

eq:ftprobmeasurel2eq:ftprobmeasurel2
E.9) holds, then Iα(µ) <∞ for all α < 2β.

But in view of the Fourier representation of Iα(µ), we have (using |µ̂(ξ)| ≤ ‖µ‖1 = 1)

c−1
α Iα(µ) =

(∫
|ξ|≤1

+

∫
|ξ|≥1

)
|µ̂(ξ)|2

|ξ|d−α
dξ . sup

ξ
|µ̂(ξ)|2 +

∞∑
j=0

2−j(d−α)

∫
2j≤|ξ|≤2j+1

|µ̂(ξ)|2 dξ

. ‖µ‖21 +

∞∑
j=0

2−j(d−α)+j(d−2β) <∞ ,

whenever α < 2β. This shows (
eq:ftprobmeasurel2eq:ftprobmeasurel2
E.9) and concludes the proof. �

One may ask the converse question, whether a compact set with dimension α must support a
measure µ satisfying

|µ̂(ξ)| .ε (1 + |ξ|)−α/2−ε (E.10) eq:necftbound
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for all ε > 0. The answer is (emphatically) no 32. Indeed, there are many counterexamples,
i.e., sets with positive Hausdorff dimension which do not support any measure whose Fourier
transform even decays as |ξ| → ∞. Consider, e.g., the line segment E = [0, 1] × {0} ⊆ R2.
Clearly, E has dimension 1, but if µ is a measure supported on E, then µ̂(ξ) only on ξ1, and
so it cannot go to zero as ξ2

1 + ξ2
2 → 0. If one considers only the case d = 1, this question is

related to the classical question of “sets of uniqueness”, see, e.g., Salem
Salem1963
[132] or Zygmund

Zygmund2002
[185].

For instance, one can show that the standard 1/3 Cantor set does not support any measure such
that µ̂ vanishes at infinity. Indeed, it is non-trivial to show that a “non-counterexample” exists,
i.e., a set E with given dimension α which supports a measure satisfying (

eq:necftboundeq:necftbound
E.10). One can find a

construction of such a set due to Kaufman in Wolff
Wolff2003
[179, Chapter 9].

Remark E.12. There is an important relation between the Fourier transform of Borel measures
and dynamical properties thereof in quantum mechanics. Consider a self-adjoint Hamiltonian
H in some Hilbert space H, the associated spectral measure (on Borel sets in R) dµψ(λ) =
(ψ, dEH(λ)ψ) for some ψ ∈ H, and its Fourier transform

µ̂ψ(t) =

∫
R

eitλ dµψ = (ψ, eitHψ) = (ψ(0), ψ(t)) .

Its absolute square, i.e., |µ̂ψ(t)| = |(ψ(0), ψ(t))|2, denotes the survival probability as ψ(0) is
evolved along the Hamiltonian flow. Usually, one is interested in its Cesaro average

< |µ̂|2 >T :=
1

T

∫ T

0

|µ̂(t)|2 dt .

Wiener’s theorem then asserts limT→∞ < |µ̂ψ|2 >T =
∑
λ∈R |µψ({λ})|2. Thus, if ψ ∈ Hc, the

continuous spectral subspace of H, the survival probability decays to zero. If µψ is uniformly
α Hölder continuous (UαH), i.e., µψ(I) ≤ |I|α for some α ∈ [0, 1] and where |I| denotes the
Lebesgue measure, then, Strichartz’s theorem

Strichartz1990
[154] (see also Last

Last1996
[112, Theorem 3.1]) refines

Wiener’s theorem and says

< |µ̂ψ|2 >T . T−α , ψ ∈ Huh(α)

where Huh(α) = {ψ : µψ is UαH}.
We say that a measure µ is α-continuous iff µ(E) = 0 for any set E for which the Hausdorff

measure Hα(E) = 0 and denote Hαc = {ψ : µψ is α-continuous}. Last
Last1996
[112, Theorem 5.2]

showed that for all α ∈ [0, 1] one has Huh(α) = Hαc which means that Hαc must have a dense
subset of vectors for which supT T

α < |µ̂ψ|2 >T <∞.
Moreover, the α-dimensional energy defined in (

eq:defalphaenergyeq:defalphaenergy
E.4) is related, via the Fourier transform to∫ ∞

0

|µ̂ψ(t)|2

t1−α
dt = (µ̂ψ, | · |−1+αµ̂ψ) = (dµψ, | · |−α ∗ dµψ) =

∫
dµψ(x)dµψ(y)

|x− y|α
= Iα(µψ) .

Recalling Proposition
charachausdorffcharachausdorff
E.9 it is then interesting to observe that (cf. Last

Last1996
[112, Lemma 5.1] µψ is

α-continuous, whenever Iα(µψ) <∞.
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Tao2006Notes [165] Terence Tao. Lecture notes: Fourier analysis. Available at https://www.math.ucla.edu/~tao/247a.1.06f/,

2006.

Tao2020Notes [166] Terence Tao. Lecture notes: Classical Fourier analysis. Available at https://terrytao.wordpress.com/

category/teaching/247b-classical-fourier-analysis/, 2020.
Taoetal1998 [167] Terence Tao, Ana Vargas, and Luis Vega. A bilinear approach to the restriction and Kakeya conjectures. J.

Amer. Math. Soc., 11(4):967–1000, 1998.
Tomas1975 [168] Peter A. Tomas. A restriction theorem for the Fourier transform. Bull. Amer. Math. Soc., 81:477–478, 1975.

Tomas1979 [169] Peter A. Tomas. Restriction theorems for the Fourier transform. In Harmonic Analysis in Euclidean spaces

(Proc. Sympos. Pure Math., Williams Coll., Williamstown, Mass., 1978), Part 1, Proc. Sympos. Pure
Math., XXXV, Part, pages 111–114. Amer. Math. Soc., Providence, R.I., 1979.

Triebel2001 [170] Hans Triebel. The Structure of Functions, volume 97 of Monographs in Mathematics. Birkhäuser Verlag,
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