Fourier Restriction and Applications Homework Sheet 5

Exercise 5.1

Let σ_{1}, σ_{2} be two Borel measures supported on $M_{1}, M_{2} \subseteq \mathbb{R}^{d}$. Recall that the convolution is defined by

$$
\left(\sigma_{1} * \sigma_{2}\right)(\Omega)=\int_{M_{1}} d \sigma_{1}\left(\eta_{1}\right) \int_{M_{2}} d \sigma_{2}\left(\eta_{2}\right) \mathbf{1}_{\Omega}\left(\eta_{1}+\eta_{2}\right), \quad \Omega \subseteq \mathbb{R}^{d} \text { measurable }
$$

and supported on the Minkowski sum $M_{1}+M_{2}=\left\{x+y: x \in M_{1}, y \in M_{2}\right\}$ (cf. Hörmander I). If $\sigma_{1} * \sigma_{2}$ is absolutely continuous with respect to Lebesgue, one can evaluate $\sigma_{1} * \sigma_{2}$ almost everywhere with

$$
\begin{equation*}
\left(\sigma_{1} * \sigma_{2}\right)(\xi)=\int_{M_{1}} d \sigma_{1}\left(\eta_{1}\right) \int_{M_{2}} d \sigma_{2}\left(\eta_{2}\right) \delta\left(\xi-\eta_{1}-\eta_{2}\right) \tag{1}
\end{equation*}
$$

where $\delta(\cdot)$ denotes the usual d-dimensional Dirac delta.
Let $\Omega \subseteq \mathbb{R}^{d}$ be open, $P \in C^{1}(\Omega)$ and, $S=\{\xi \in \Omega: P(\xi)=0\}$ a C^{1} codimension one manifold endowed with euclidean surface measure $d \Sigma_{S}$. Recall that the Leray surface measure of S is given by $d \sigma_{S}(\xi)=\delta(P(\xi)) d \xi=|\nabla P(\xi)|^{-1} d \Sigma_{S}(\xi)$ (in weak sense, i.e., when integrated against test functions).
Suppose $\sigma:=\sigma_{\mathbb{S}^{d-1}}=\delta\left(|\xi|^{2}-1\right) d \xi=2^{-1} \delta(|\xi|-1) d \xi=2^{-1} d \Sigma_{\mathbb{S}^{d-1}}(\xi)$ denotes the Leray measure of the unit sphere \mathbb{S}^{d-1}. Use (1) to check

$$
(\sigma * \sigma)(\xi)=\int_{\mathbb{S}^{d}-1} \delta\left(1-|\xi-\eta|^{2}\right) d \sigma(\omega)=|\xi|^{-1} \int_{\mathbb{S}^{d-1}} \delta\left(2 \frac{\xi}{|\xi|} \cdot \eta-|\xi|\right) d \sigma(\eta)
$$

and use spherical coordinates to show

$$
(\sigma * \sigma)(\xi)=\frac{\left|\mathbb{S}^{d-2}\right|}{2|\xi|}\left(1-\frac{|\xi|^{2}}{4}\right)_{+}^{\frac{d-3}{2}}
$$

For hints, see the nice survey by Foschi and Oliveira e Silva (arXiv 1701.06895).

Exercise 5.2

Let I_{1} and I_{2} be two θ-arcs on \mathbb{S}^{1} whose separation is comparable to θ, say

$$
I_{1}=\{(\cos \varphi, \sin \varphi): \varphi \in[0, \theta]\}, \quad I_{2}=\{(\cos (2 \theta+\varphi), \sin (2 \theta+\varphi)): \varphi \in[0, \theta]\} .
$$

Let $d \sigma_{I_{j}}(\xi)=\left.d \sigma_{\mathbb{S}^{1}}\right|_{I_{j}}$ denote the associated Lebesgue surface measures. Show that $\| d \sigma_{I_{1}} *$ $d \sigma_{I_{2}} \|_{\infty} \lesssim \theta^{-1}$.
Hints: You may fatten these arcs up, say $I_{1}^{\varepsilon}=\{r(\cos \varphi, \sin \varphi): r \in[1-\varepsilon / 2,1+\varepsilon / 2], \varphi \in$ $[0, \theta]\}$, and consider $\varepsilon^{-1} \mathbf{1}_{I^{\varepsilon}}$ instead of $d \sigma_{I}$. (Recall $\varepsilon^{-1} \mathbf{1}_{I^{\varepsilon}} \rightarrow d \sigma_{I}$ weakly.) Show that then $\left\|\mathbf{1}_{I_{1}^{\varepsilon}} * \mathbf{1}_{I_{2}^{\varepsilon}}\right\|_{\infty} \lesssim \varepsilon^{2} \theta^{-1}$ (with implicit constant independent of ε) by showing that any translate of I_{1}^{ε} can intersect I_{2}^{ε} in a geometric body of measure at most $\varepsilon^{2} \theta^{-1}$. Demonstrate this first in the case where I_{j}^{ε} are rectangles with side lengths ε and θ, whose orientations are θ-separated.

Exercise 5.3

The reason why even Lebesgue exponents are helpful in Fourier analysis is that one can often use so-called almost orthogonality arguments.

Definition 0.1. Let $\left(\Omega_{j}\right)_{j=1}^{n}$ be a sequence of sets in \mathbb{R}^{d}. We say that " ξ lies in at most $A=A(\xi) \in \mathbb{N}$ of the Ω_{j} " whenever the maximal number of Ω_{j} which contain ξ is given by $A(\xi)$, i.e.,

$$
A(\xi):=\sup \left\{\text { number of } \Omega_{j} \text { containing } \xi\right\} .
$$

Prove the following
Proposition 0.2 (Reverse L^{2} and L^{4} square function estimates). Let $f_{1}, \ldots, f_{n} \in \mathcal{S}\left(\mathbb{R}^{d}\right)$ have Fourier support in sets $\Omega_{1}, \ldots, \Omega_{n} \subseteq \mathbb{R}^{d}$, respectively. Then we have the following assertions.

1. (Almost orthogonality) If the sets $\Omega_{1}, \ldots, \Omega_{n}$ have overlap at most A_{2}, (i.e., every $\xi \in \mathbb{R}^{d}$ lies in at most $A_{2} \in \mathbb{N}$ of the Ω_{j}, i.e., $\sup _{\xi \in \mathbb{R}^{d}} A(\xi) \leq A_{2}$) for some $A_{2}>0$, then

$$
\left\|\sum_{j=1}^{n} f_{j}\right\|_{L^{2}\left(\mathbb{R}^{d}\right)} \leq A_{2}^{1 / 2}\left\|\left(\sum_{j=1}^{n}\left|f_{j}\right|^{2}\right)^{1 / 2}\right\|_{L^{2}\left(\mathbb{R}^{d}\right)} .
$$

2. (Almost bi-orthogonality) If the $\left(n^{2}\right)$ sum sets $\Omega_{i}+\Omega_{j}:=\left\{\xi+\xi^{\prime}: \xi \in \Omega, \xi^{\prime} \in \Omega^{\prime}\right\}$ with $i, j \in\{1, \ldots, n\}$ have overlap at most A_{4} for some $A_{4}>0$, then

$$
\left\|\sum_{j=1}^{n} f_{j}\right\|_{L^{4}\left(\mathbb{R}^{d}\right)} \leq A_{4}^{1 / 4}\left\|\left(\sum_{j=1}^{n}\left|f_{j}\right|^{2}\right)^{1 / 2}\right\|_{L^{4}\left(\mathbb{R}^{d}\right)} .
$$

Remark 0.3. (1) Clearly, the above theme can be generalized for $L^{2 p}$ with $p \in \mathbb{N}$, if one assumes that the sum sets $\sum_{j=1}^{p} \Omega_{j}$ have overlap at most $A_{2 p}$, see, e.g., Gressman-Guo-Pierce-Roos-Yung (arXiv 1906.05877).
(2) By using $f_{i} \overline{f_{j}}$ in place of $f_{i} f_{j}$, one can also establish a variant of (2) in Proposition 0.2 where the sum set $\Omega_{i}+\Omega_{j}$ is replaced by the difference set $\Omega_{i}-\Omega_{j}:=\left\{\xi-\xi^{\prime}: \xi \in \Omega, \xi^{\prime} \in \Omega^{\prime}\right\}$.

