Summer term 2021

Fourier Restriction and Applications
Homework Sheet 2

Exercise 2.1

Suppose ¢ € C*((a,b) : R) with ¢'(z) # 0 and p € C*((a,b) : C) not necessarily vanishing at
a and b. Find a condition on ¢ and v such that for all N € N, one has | fab M@ (2)] Spapab N
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Exercise 2.2
Find a counterexample that shows that a simple lower bound for |¢'(z)| alone does not suffice
for van der Corput’s lemma (Proposition 2.1.2) to hold.

Exercise 2.3
Prove Corollary 2.1.3 in the notes.

Exercise 2.4
1. Let £ € Ny. Show that
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2. Let n € C°, g € S(R) with g(z) = 0 for |z| sufficiently small, and ¢, N € Ny. Suppose
we knew the estimates
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Suppose ¥ € C°(R) is supported in a sufficiently small neighborhood around x = 0.
Combine (1), (2), and (3) to show
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Hint: Multiply and divide the integrand on the left side by e~ write U(z) =Pz Vo (z )
for some ¢ € C°(R) with ¢)(x) = 1 for & € supp(t), and expand e**¢)(z) in a Taylor
series.



