Fourier Restriction and Applications Homework Sheet 1

Exercise 1.1

Let $R>0$ and $f \in C_{c}^{\infty}(\mathbb{R})$ be such that $\operatorname{supp} f \subseteq \bar{B}_{0}(R) \equiv\{x \in \mathbb{R}:|x| \leq R\}$. Show that \hat{f} is holomorphic and satisfies $|\hat{f}(\xi)| \leq \mathrm{e}^{2 \pi R|\operatorname{Im} \xi|}\|f\|_{1}$ for $\xi \in \mathbb{C}$. Conclude that supp $\mathcal{F}[f]$ cannot be compact, unless $\hat{f} \equiv 0$.

Exercise 1.2

Let $\varphi \in C_{c}^{\infty}\left(\mathbb{R}^{d}:[0,1]\right)$ be a radial bump centered at $x=0$ with $\varphi(x)=1$ for $|x| \leq 1$ and $\varphi(x)=0$ for $|x| \geq 2$, and let $\varphi_{k}(x)=\varphi(x / k)$. Let $f \in C^{N}\left(\mathbb{R}^{d}\right)$ with $D^{\alpha} f \in L^{1}\left(\mathbb{R}^{d}\right)$ for all $\alpha=\left(\alpha_{1}, \ldots, \alpha_{d}\right) \in \mathbb{N}_{0}^{d}$ with $0 \leq|\alpha|:=\sum_{j=1}^{d} \alpha_{j} \leq N$. Show that $\lim _{k \rightarrow \infty}\left\|D^{\alpha} f_{k}-D^{\alpha} f\right\|_{L^{1}}=0$ for all $|\alpha| \leq N$.

Exercise 1.3

Convince yourself that there are radial bump functions $\hat{\chi}$ in Fourier space such that $\chi(x) \geq 0$ and $\chi(x)>\mathbf{1}_{B_{0}(1)}(x)$ in physical space.

Exercise 1.4

Let $N_{1}, N_{2}>0, N>N_{1}+N_{2}$, and $F: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ be measurable, bounded. Let $F(D)$ be the associated Fourier multiplier acting as $F(D) \psi(x)=\mathcal{F}^{-1}[F \hat{\psi}](x)$ for $\psi \in \mathcal{S}\left(\mathbb{R}^{d}\right)$, say. Let $\gamma \in$ $C_{c}^{\infty}\left(\mathbb{R}^{d}:[0,1]\right)$ be a radial smooth bump function in physical space and $\hat{\gamma}_{1 / N}(\xi):=N^{d} \hat{\gamma}(N \xi)$. Show that $\mathbf{1}_{|x| \leq N_{1}} F(D) \mathbf{1}_{|x| \leq N_{2}}=\mathbf{1}_{|x| \leq N_{1}} \mathcal{F}^{-1}\left(F(\xi) * \gamma_{1 / N}\right) \mathcal{F} \mathbf{1}_{|x| \leq N_{2}}$.
Remark: The above identity says that (even rough) spatial cut-offs lead to frequency smearing on the inverse scale.

Exercise 1.5

Let T be an invertible $d \times d$ symmetric matrix with complex entries and $\operatorname{Re}(T) \geq 0$. Show that the distributional Fourier transform of $\mathrm{e}^{-\pi\langle x, T x\rangle}$ is given by $\left(\operatorname{det} T^{-1}\right)^{1 / 2} \mathrm{e}^{-\pi\left\langle x, T^{-1} x\right\rangle}$.
Remarks: (1) Since the set H of symmetric matrices A with $\operatorname{Re}(A) \geq 0$ is convex, it follows that there is a unique analytic branch of $H \ni A \mapsto(\operatorname{det} A)^{1 / 2}$ such that $(\operatorname{det} A)^{1 / 2}>0$ when A is real.
(2) If $T=i B$ with B being purely real (and invertible), one can compute ($\operatorname{det} T)^{1 / 2}$ directly. In this case, one can assume that B is diagonal since a real orthogonal transformation does not change $(\operatorname{det} T)^{1 / 2}$ (since it does not if T is real), i.e., we assume $\langle x, B x\rangle=\sum_{j} b_{j} x_{j}^{2}$ with $b_{j} \in \mathbb{R} \backslash\{0\}$ being the eigenvalues of B. Then $(\operatorname{det}(i B))^{1 / 2}=|\operatorname{det} B|^{1 / 2} \mathrm{e}^{\pi i \operatorname{sgn}(B) / 4}$ where $\operatorname{sgn}(B)=\sum_{j} \operatorname{sgn}\left(b_{j}\right)$ denotes the signature of B.
Hints: The computation is a generalization of the scalar case $d=1$. If you have not yet seen this, see Proposition 4.2 in Wolff's lecture notes or Theorem 7.6.1 in Hörmander's The Analysis of Linear Partial Differential Operators.

