Fourier restriction and applications (Summer
term 2021)

March 22, 2021

Lectures: Wed 16.45-18.15 and Thu 13.15-14.45, starting on April 14, 2021
Exercises: Wed 16.45-18.15 (every second week)

Let S be a smooth hypersurface in R% such as the sphere or the (truncated)
paraboloid, or the cone with associated surface measure do. The classic trace
lemma asserts that whenever f € L2(R%) with ¢ > 1/2, then f can be mean-
ingfully restricted to S with ||f||L2(S,da) S I1fllz2 rey. The decay of a function
at infinity can also be measured in scales of LP spaces; morally, f € LP de-
cays faster the smaller p is. Thus, the question arises whether estimates such
as Hf”Lq(S’dg) S Ifllp ey hold for certain 1 < p,g < co. If p = 2, then
f € L? ie., f belongs to an equivalence class within which its members are
allowed to differ off of sets of measure zero. Hence, restriction of L? functions
to codimension one surfaces is impossible. In the 60’s E. Stein made the sur-
prising discovery that when S is curved, then one can indeed restrict the Fourier
transform of LP functions (with p € [1,2)). This finding lead to the restriction
problem: “For which sets S C R? and which 1 < p < ¢ < oo is there an estimate
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for smooth, compactly supported f7”
In its dual form the restriction problem asks for finding p’, ¢’ such that the
extension estimate
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holds. Quantities of the form (gdo)Y naturally appear in the study of PDEs.
For example, a global solution to the free wave equation

Otu(t,z) — Au(t,z) =0

is automatically of the form wu(¢,z) = (gdo)¥ where do denotes the surface
measure on the light cone {(7,¢&) € R!*? . |7| = [¢]}. Or, a global solution to
the free Schrodinger equation

10wu(t, ) + Au(t,z) =0



is of the form u(t,xz) = (gdo)¥ where do is now the surface measure on the
paraboloid {(7,¢) € R4 : 7 = [¢|?}. Thus, the extension estimate measures
such as how quickly the solution (gdo)¥ decays at infinity. The lower the
exponent p’, the more decay we obtain.

In this lecture we will focus on the relation [4] between the restriction con-
jecture and a seemingly unrelated problem in geometry, the so-called Kakeya
conjecture: “If E C R? contains a line segment in every direction, then the
Hausdorff dimension of E must be exactly equal to d.” This is particularly
striking as it is known that such sets — known as Besicovitch sets — can have
measure zero!

One way to see that the restriction and Kakeya conjectures are closely related
is via the PDE interpretation of the restriction problem. All the above men-
tioned equations have “wave packet” solutions which resemble a pulse of waves
moving in tandem for a short while before dispersing. These can be thought
of as oscillatory approximations to straight lines just as the wave equation is
an oscillatory approximation to geometric optics. A general solution to such a
PDE tends to consist of a superposition of such wave packets, which one can
think of as an approximation to a Besicovitch set. The smaller one can make
a Besicovitch set, the worse the L norm of the solution becomes (i.e., only
higher p’ are admissible).

1. Remarks on the uncertainty principle, see, e.g., Wolff [I8, Chapter 5].

2. Oscillatory integrals of the first kind and decay of Fourier transform of
measures supported on hypersurfaces, see, e.g., Stein [IT, Chapter XIII].

3. Two necessary conditions and statement of the Fourier restriction conjec-
ture, see, e.g., Wolff [I8, Chapter 7].

4. The Tomas—Stein theorem

(a) Tomas’ proof, see, e.g., Wolff [I8, Chapter 7] (compact manifolds).

(b) Stein’s proof and complex interpolation [I0, 1T, T2] (compact mani-
folds).

(c) Strichartz estimates [I3] (Tomas—Stein for non-compact manifolds)
and global well-posedness of i0;u — Au = A|ul?u in d = 2, see Tao
[14, Lecture 4].

(d) Extension to Schatten ideals, see Frank—Sabin [7, Proposition 1 and
Theorem 2].

(e) Extension to general probability measures, see Bak—Seeger [1].
(f) Random Tomas—Stein, see Bourgain [5].

(g) Application in spectral theory (e.g., eigenvalue bounds, Lieb—Thirring).
5. Hausdorfl measures, see, e.g., Wolff [I8, Chapter 8].



6. First peek at localized restriction and relation to the Kakeya problem.
See, e.g., Tao [14, Lecture 5, Section 2] (in particular [I5, Theorem 1.2
and Bourgain [4], see also Tao [14] Lecture 7, Proposition 2.2] for two
e-removal lemmas) or Hickman—Vitturi [9, Lecture 1, Section 2].

7. First results in the Kakeya problem and how it may help to resolve the
restriction conjecture, see Wolff [I8, Chapter 10].

8. More on localized restriction, see Tao [14, Lecture 7, Section 2].

9. Wave packet decomposition, see, e.g., Demeter [6l Chapter 2] or Hickman—
Vitturi [9, Lecture 1, Section 4].

10. Square function estimates imply the restriction conjecture, see, e.g., Hickman—
Vitturi [9, Lecture 1, Section 4].

11. Bilinear restriction, see Tao [I4], Lecture 5] or [16, Lecture 1], Hickman—
Vitturi [9, Lecture 3|, Bennett [2], or Demeter [6, Chapter 3]. See also
Tao—Vargas—Vega [17].

12. Multilinear restriction and multilinear Kakeya, see Bennett—Carbery—Tao
[3] and Hickman—Vitturi [9, Lecture 3, Sections 2-5].

13. Short proof of multilinear Kakeya, see Guth [§].
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