Harmonic Analysis Homework Sheet 8

Exercise 8.1

Compute the Dirichlet kernel, i.e., for $t \in[0,1]$ and $N \in \mathbb{N}$ show that

$$
D_{N}(t):=\sum_{m=-N}^{N} \mathrm{e}^{2 \pi i m t}=\frac{\sin ((2 N+1) \pi t)}{\sin (\pi t)}
$$

Note that the higher-dimensional square Dirichlet kernel, i.e.,

$$
D_{N}^{\square}(t):=\sum_{m \in \mathbb{Z}^{d},\left|m_{j}\right| \leq N} \mathrm{e}^{2 \pi i m \cdot t}=\prod_{j=1}^{d} D_{N}\left(t_{j}\right), \quad t \in \mathbb{T}^{d}
$$

simply factorizes (as opposed to the spherical Dirichlet kernel $\sum_{m \in \mathbb{Z}^{d},|m| \leq N} \mathrm{e}^{2 \pi i m \cdot t}$).

Exercise 8.2

The disc conjecture for $1<p<\infty$ is the statement that the Fourier multiplier $\mathbf{1}_{B_{0}(1)}(\xi)$ is bounded on $L^{p}\left(\mathbb{R}^{2}\right)$, i.e., $\left\|\left(\mathbf{1}_{B_{0}(1)} \hat{f}\right)^{\vee}\right\|_{p} \lesssim_{p}\|f\|_{p}$. (The case $p=2$ is trivial in view of Plancherel's theorem.) Show the following

Lemma 0.1 (Y. Meyer). Let $\left(v_{j}\right)_{j \in \mathbb{N}} \in \mathbb{S}^{1}$ be a sequence of unit vectors in \mathbb{R}^{2} and let H_{j} be the half-plane $\left\{x \in \mathbb{R}^{2}: x \cdot v_{j} \geq 0\right\}$. Define the "half plane multipliers" $\left(T_{j}\right)_{j \in \mathbb{N}}$ on $L^{p}\left(\mathbb{R}^{2}\right)$ by setting $\widehat{T_{j} f}(\xi)=\mathbf{1}_{H_{j}}(\xi) \hat{f}(\xi)$. If the disc conjecture holds for some $1<p<\infty$, then for any sequence $\left(f_{j}\right)_{j \in \mathbb{N}}$, we have the square function estimate

$$
\left\|\left(\sum_{j}\left|T_{j} f_{j}\right|^{2}\right)^{1 / 2}\right\|_{p} \lesssim_{p}\left\|\left(\sum_{j}\left|f_{j}\right|^{2}\right)^{1 / 2}\right\|_{p}, \quad f_{j} \in \mathcal{S}\left(\mathbb{R}^{2}\right) .
$$

Exercise 8.3

Truncated integral kernels usually give rise to somewhat "localized" operators. For $R>0$, we say that a linear operator T is R-local if $\operatorname{supp} T f \subseteq R \operatorname{supp} f$. (Here, $R A=\left\{x \in \mathbb{R}^{d}: x \in\right.$ $B_{y}(R)$ for all $\left.y \in A\right\}$ for some $A \subseteq \mathbb{R}^{d}$.) In particular, this means that $\operatorname{supp} T \mathbf{1}_{B_{x}(R)} \subseteq B_{x}(2 R)$. Show the following
Lemma 0.2. Suppose T is a R-local linear operator taking functions on \mathbb{R}^{d} to functions on \mathbb{R}^{d}. Then, for any $1 \leq p \leq q \leq \infty$, the bound

$$
\begin{equation*}
\|T f\|_{q} \lesssim\|f\|_{p}, \quad f \in L^{p}\left(\mathbb{R}^{d}\right) \tag{1}
\end{equation*}
$$

is equivalent to the bound

$$
\begin{equation*}
\|T f\|_{L^{q}\left(B_{x}(2 R)\right)} \lesssim\|f\|_{p}, \quad f \in L^{p}\left(B_{x}(R)\right) \tag{2}
\end{equation*}
$$

holding uniformly in $x \in \mathbb{R}^{d}$. In other words, to show (1) it suffices to test it for functions on an R-ball.

